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ABSTRACT

The finite-difference method (FDM) is an essential tool in exploration geophysics, particularly for
simulating wave propagation in fluid-solid coupled media. Despite its widespread use, FDM faces sig-
nificant challenges that affect its accuracy and efficiency. Firstly, the implicit handling of fluid-solid
boundary conditions through parameter averaging strategy often results in low simulation accuracy.
Secondly, surface topography can introduce staircase diffraction noise when grid spacing is large. To
address these issues, this paper presents a novel approach. We derive an implicit expression for fluid-
solid boundary conditions based on average medium theory, translating explicit boundary conditions
into model parameter modification. This enables implicit handling of fluid-solid boundaries by modi-
fying the parameters near the boundary. Furthermore, to mitigate staircase diffraction noise, we employ
multiple interface discretization based on the superposition method. This effectively suppresses stair-
case diffraction noise without requiring grid refinement. The efficacy of our method in accurately
modeling wave propagation phenomena in fluid-solid coupled media is demonstrated by numerical
examples. Results align well with those obtained using the spectral element method (SEM), with sig-
nificant reduction in staircase diffraction noise.

© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

The study of seismic wave propagation in fluid-solid coupled
media has garnered considerable attention across various scien-
tific domains in recent years. This phenomenon poses a significant
challenge in understanding the intricate interactions between
fluid and solid mediums, where changes in fluid pressure induce
deformations in solids, and conversely, solid deformations affect
fluid behavior through the boundary interface linking the two
media. The simulation of coupled fluid-solid media holds para-
mount importance in fields such as geophysics, engineering, and
medicine. In exploration geophysics, it finds diverse applications
ranging from marine reflected wave exploration to full-waveform
inversion and hydraulic fracturing studies (Liang et al., 2017; Li
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et al, 2018; Agudo et al., 2020; Antonietti et al., 2020; Kamath
et al., 2021; Yang et al., 2023; Xie et al., 2024a, 2024b). Engineer-
ing applications heavily rely on these simulations for dynamic
assessments of structures such as dams (Soares and Mansur, 2006;
Soares, 2008). Furthermore, medical research benefits from tech-
niques like full waveform inversion in brain ultrasound studies
(Guasch et al., 2020).

However, in many imaging and inversion studies, including
full-waveform inversion and reverse-time migration, only the
pressure recorded by hydrophones or the vertical component
recorded by geophones is utilized. This selective use simplifies the
treatment of the fluid-solid coupled medium into a single fluid
medium and disregards the elastic properties of the solid medium,
such as P-S converted waves and interface waves. Consequently,
there is a significant loss of information regarding the complex
interactions within the medium. To fully exploit the potential of
recording devices such as Ocean Bottom Cable (OBC) or Ocean
Bottom Node (OBN), it becomes imperative to accurately simulate
and invert the propagation characteristics of the entire seismic
wave field in the fluid-solid coupled system. This approach ensures
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that the elastic characteristics of the subsurface solid medium,
such as the S-wave velocity model, are properly captured in ve-
locity inversion processes.

Numerical simulation methods for fluid-solid coupled media in
geophysics are commonly categorized into two main types: par-
titioned and monolithic methods (Hou et al., 2012; De Basabe and
Sen, 2015). The partitioned method employs different wave
equations in the fluid and solid regions, explicitly addressing the
fluid-solid boundary conditions. One advantage of this approach is
its ability to reduce the number of degrees of freedom in the fluid
domain, explicitly satisfying interface conditions, and even
allowing for the use of different numerical methods in different
domains (Komatitsch et al., 2000b; Carcione and Helle, 2004; Cao
et al., 2022). However, it requires precise knowledge of the inter-
face location, which can be cumbersome in cases of complex ge-
ometry. In contrast, the monolithic method utilizes the same wave
equation for the entire fluid-solid coupling medium, implicitly
incorporating interface conditions (Virieux, 1986; Graves, 1996;
van Vossen et al., 2002). Its advantages lie in its simplicity of
implementation and its applicability to any interface case. How-
ever, drawbacks include limitations in numerical simulation ac-
curacy due to dispersion characteristics and the discretization of
undulating interfaces. Despite the advantages of the partitioned
method, the monolithic approach has been widely employed in
exploration geophysics. Therefore, our study focuses on the
monolithic method.

The staggered-grid FDM (Virieux, 1986) is widely utilized in the
monolithic approach due to its ease of implementation, low
memory requirements, and high computational efficiency. In
modeling wave propagation within fluid-solid coupled media, this
method typically sets only the shear velocity to zero in the fluid
region and uses the harmonic averaging of shear module at the
interface. However, its effectiveness is limited to a specific range of
incidence angles (Graves, 1996). In addition, this simplified
approach assumes that all field variables remain continuous at the
fluid-solid interface, which differs from the fluid-solid boundary
condition where the normal components of stress and displace-
ment are continuous while the tangential components are
discontinuous. Consequently, this assumption may lead to inac-
curate energy partitioning, particularly concerning interface and
converted waves (De Basabe and Sen, 2015). Furthermore, the
discretization of surface topography poses a challenge in the
application of FDM. Two commonly employed methods for
addressing this issue are the grid deformation method and the
rectangular grid method. The grid deformation method entails
mapping a rectangular grid onto a curvilinear grid and imple-
menting boundary conditions on the deformed grid. While this
approach offers more accurate results, particularly for complex
topographies, its implementation is inherently more complex and
challenging (Tessmer and Kosloff, 1994; Zhang et al., 2012; de la
Puente et al., 2014; Petersson and Sjogreen, 2015; Qu et al., 2017;
Li et al., 2019; Sun et al., 2021).

To circumvent the necessity for grid deformation, many re-
searchers opt for using rectangular grids to represent surface
topography. Rectangular grids can be classified into two types:
variable grids and regular grids. Variable grids employ varying grid
spacing across different areas of the model, thereby avoiding
oversampling and effectively reducing computational costs (Sun
and Yang, 2003; Liu and Sen, 2011). In contrast, regular grids
maintain uniform grid spacing throughout the model, which re-
sults in a spatial sampling strategy inside the model dependent on
the strategy at the interface, consequently leading to increased
computational costs, particularly when dealing with surface
topography. Regular grids often employ a staircase approximation
to represent surface topography (Robertsson, 1996; Kristek et al.,
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2002; Zeng et al., 2012; Cao and Chen, 2018; Li et al., 2020; Zhou
et al., 2023b; Chen et al., 2024). However, staircase approxima-
tion with large grid spacing can introduce non-correlated diffrac-
tion noise in the wavefront as it propagates into the staircase-
shaped topography, affecting the wavefield record. While
reducing the grid spacing effectively suppresses staircase diffrac-
tion noise, it entails larger computational costs and memory re-
quirements. Addressing the issues of inaccurate expression of
fluid-solid boundary conditions and staircase diffraction noise
generated during surface topography discretization is imperative
to enhance the applicability of FDM in fluid-solid coupled media.

Building upon the aforementioned challenges, this paper in-
troduces an implicit expression of fluid-solid boundary conditions
suitable for staggered-grid FDM from a physical point of view. The
proposed expression is derived utilizing average medium theory,
facilitating the realization of fluid-solid boundary conditions by
modifying the constitutive relationship and density at the inter-
face. Furthermore, the paper presents a discretization method for
surface topography based on the superposition method (Drainville
et al., 2019; Zhou et al., 2023b). This approach enables effective
suppression of staircase diffraction noise even with larger grid
spacing, thereby reducing computational costs and memory re-
quirements significantly. Through a series of numerical experi-
ments, the accuracy and effectiveness of the proposed method in
suppressing staircase diffraction noise are demonstrated. These
findings underscore the method's pivotal role in numerical simu-
lations of fluid-solid coupled media.

2. Methods
2.1. Derivation of the fluid-solid boundary condition

Based on the average medium theory proposed by Moczo et al.
(2002), this paper derives a novel expression for fluid-solid
boundary conditions from a physical perspective, utilizing the
constitutive relationship between two isotropic solid media. This
expression can be directly applied to the velocity-stress staggered-
grid FDM, which is currently mainstream in the industry. In
accordance with the average medium theory, as illustrated in Fig. 1,
the effective representation of two interconnected isotropic elastic
media can be achieved through an averaged medium. The aver-
aged medium can be mathematically expressed as
D = EAeA, (1)
where 7! and 4 are the stress and strain tensor of the averaged
medium, respectively, which can also be understood as the stress
and strain tensor at the interface where the two media are con-
nected, and E” is the elasticity matrix of the averaged medium,

Flui
uid 11 #0,14=0

42, 2

Solid

Fig. 1. Schematic diagram of the elastic parameters at the fluid-solid interface.
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which contains only the elasticity parameters (11,x1) and (13, 43)
of the upper and lower media, where 1 and y are the Lamé con-
stants. Since the stress and displacement continuity conditions
cannot be satisfied at the fluid-solid interface, it is not possible to
directly generalize the average medium method proposed by
Moczo et al. (2002) that is suitable for the solid-solid interface to
the fluid-solid interface. Therefore, we start the derivation from
the physical point of view, first posit a solid-solid interface, and
derive the constitutive relation of this solid-solid interface ac-
cording to the theory of the average medium method. On the basis
of this constitutive relationship, the shear modulus of a certain
layer of medium is equal to zero (i.e., u; = 0), so that the physical
properties of the interface approximate to the fluid-solid interface,
which can establish the constitutive relationship at the fluid-solid
interface. This kind of method has been successfully applied to the
free surface scenario (Mittet, 2002; Xu et al., 2007; Cao et al., 2018;
Zhou et al., 2022, 2023a), and thus the method can be used to carry
out the treatment of fluid-solid interfaces as well from the physical
point of view. The proposed method can implicitly implement
boundary conditions by modifying model parameters at the fluid-
solid interface.

We elaborate on our derivation process using the example of
isotropic media in two-dimensional scenarios. The constitutive
relations of isotropic media can be expressed as

Txx A+ 2p A 0] [ exx
2z | = A A+2u O |ez |- (2)
Txz 0 0 U 2exz

According to the displacement and stress continuity conditions
at the interface (Alterman and Karal Jr, 1968; Moczo et al., 2002),
the stress and strain components can be classified into two cate-
gories: continuous and discontinuous components, which are
represented by Eqgs. (3) and (4), respectively:

Tc = [sz, TZZL

ec = [EXXL (3)
and

7q = [txl, (4)

€4 = [Exz, Ezz} s

where the subscript c represents the continuous component,
while the subscript d represents the discontinuous component.
Combining Eqs. (2)-(4), the elasticity matrix is readjusted to obtain
an alternative expression of the constitutive relationship at the
interface:
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u 0 0
R = 5 P= 3
0 A+2u 2 (6)

S=[+2yu.

By placing the discontinuous component of the above equation
on the left-hand side of the equal sign, we can rewrite Eq. (5) as

€d | _ *R_lp R_l €c (7)
4 S—PR'P PR |z

Based on Eq. (7), we next introduce the average medium theory.

Assuming that D is the discontinuous function at the interface, i.e.,

D! £ D? , we define the averaging function D* to be
adl (01 2
pre (D +D?). (8)

According to Egs. (1) and (8), the discontinuity component of
the averaged medium can be expressed as

“1p)\A “1\A

s wrlel
d (S—PTR’lp) (PTR*1>

with

ed| _1(|ea|, | | _lec| || (0
a7z \|a] T 2l) 2] T T e

We bring e}, 2, 74, and 7/} into Eq. (7) and replace e, £c, 74 , and

7 accordingly. Afterwards, by placing the stress components on
the left-hand side of the equal sign, we obtain

48 g
R- [(Rl)A}l,
P- {(R’])AT (R*lp)A, (12)

5= (s- PTR—1P)A + (PTR—1)A [(R*)A} o (R-1P)A.

T | _ Rl_ P||leq (5) Recombining the above equation according to Eq. (2) yields
Td P S Ec ’
with
2p1(A1 + 1) | 2pp(A2 + o) M (2 + 2p3) + A2 (41 + 2pq) 0
A+ 21 A2+ 2uy M+ 2u + 22+ 2

Z: | A +2p9) + Aa (A1 + 2u1) 2(1 + 2u1) (A2 + 2u3) 0 Z: (13)
e M+ 21 + A2 + 2pp M+ 201 + 22 + 2pp fxr 7

0 0 Auing

M1+ M2
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where interface following the staircase approximation, we implement the
5 grid configuration proposed by Kristek et al. (2002). Specifically,
n= (41 (A2 + 2p3) + A2(A1 + 2p1)] ] (14) normal stresses are positioned at the interface, while shear stresses

20 + 2p1)(A 4+ 2p2) (A1 + 2pq + A3 + 2u5) are placed half a grid point below the interface, as illustrated in Fig. 2.
Regarding the required model parameters at the half-grid points, we
adopt the strategy that harmonically averaging the Lamé constant and
arithmetically averaging the density.

From Fig. 2, we observe that grid cells on the fluid-solid inter-
face following the staircase approximation fall into seven major

As shown in Fig. 1, in Eq. (13), by making the shear modulus
u1 =0 in one of the layers of the medium, we can obtain the
constitutive relationship satisfied by the stress and strain com-
ponents at the fluid-solid interface from the physical point of view:

2p5 (A2 + pa) [A1 (A2 + 2u2) + o] M2 +20p) + o
Tax o +2py  221(A + 2pp) (M + A2 + 2up) M+ 22+ 2up Exx
Tz | = M (A + 2up) + A2 221 (A2 + 2uy) 0 €2z |- (15)
Txz M+ A+ 2up M+ 22+ 2p xz
0 0 0

From this, we can see that the fluid-solid boundary condition is classes: H, VL, VR, OL, OR, IL, and IR. Among these, H, VL, and VR

implicitly expressed in the elastic matrix of the fluid-solid aver- denote grid cells for the fluid on the upper, left, and right sides of
aged medium. As for the density at the fluid-solid interface, we the interface respectively. OL and OR, as well as IL and IR, represent
refer to the treatment of Moczo et al. (2002) and use the arithmetic transition corner point cells of the interface. In the preceding
averaging method, that is section, we derived the implicit expression of the fluid-solid

boundary condition at the horizontal interface, corresponding to
p:@. (16) the H grid cell. A schematic of the grid configuration and coordi-

nate system utilized in the Finite Difference Method (FDM) is
Egs. (15) and (16) together give an implicit expression of the depicted in Fig. 3, where i and k denote the corresponding grid
fluid-solid boundary conditions based on the average medium

nodes in the x- and z-directions, i.e., igihx, I<gihzv with hy and h;
theory.

denoting the grid spacing in the x- and z-directions respectively. As
depicted in Fig. 3(b) and (c), we can transform a VL or VR grid cell
2.2. Extend the proposed method to topography scenarios into an H grid cell by rotating the VL or VR interface cell by an
appropriate angle. For instance, considering the VL grid cell,

To effectively apply the proposed implicit expressions to fluid-solid ~  rotating the coordinate system clockwise by 90° would convert the
interfaces with topography, we must extend the implicit expressions VL grid cell into an H grid cell in the new coordinate system.

of boundary conditions derived from horizontal fluid-solid bound- ~ Consequently, we can extend the stress and strain relationship
aries. This extension is necessary for ensuring applicability to arbi-  established on the H grid cell to the VL and VR grid cell by rotating
trarily complex fluid-solid interface geometries, as depicted in Fig. 2. the coordinate system. During coordinate rotation, the stress and
For discretizing the irregular interface, we employ a staircase strain components before and after rotation can be expressed as

approximation. To maintain the overall position of the fluid-solid  follows:

(0 (/;1/2, K)

(i, k+1/2) b

e ¢ ¢ ¢ ¢ e ¢ e ¢ ¢e  vite vt gite  gite  ¢te gite gite gite gite vite

@ I\ Vi px Y Vap: (g

Fig. 2. The implementation of the topography of the proposed method. The squares represent the grid cells, and the solid circle indicates the positions of the integer grid point.
The black line represents the irregular free surface obtained by staircase discretization. IL and IR indicate the inner corner grid cells with air above to the left and right,
respectively; OL and OR indicate the outer corner grid cells with air to the left and right, respectively; VL and VR indicate the vertical boundary grid cells with air to the left and
right, respectively; and H indicates the horizontal boundary grid cells.
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Solid Fluid

8 7 ]

X
X
Solid Fluid Soiig
\a = v
(i, K+172)  (i+1/2, k+1/2)
z

V vap O

Fig. 3. Three kinds of boundary grid after the staircase discretization of the irregular fluid-solid interface. The red line in each subplot denotes the irregular fluid-solid interface.
(a) H boundary grids: horizontal boundary grid used in the horizontal interface. (b) and (c) represent VL and VR boundary grids, which means vertical boundary grids with fluid to

the left and right, respectively.

(2 2)- (e )z )

(17)
cos(9) —sin(0)
(sin(&) cos(0) >’
and
Ex &z ) [ Cos(0) sin(0)) [ew ex
(S/Zx 8;z> B (—sin(&) cos(e)) (sz €zz) (18)
cos(9) —sin(0)
(sin(@) cos() )’
respectively.

In the above equations, 6 represents the angle of rotation of the
coordinate system, where positive values denote clockwise rota-
tion. For the H grid cell, the constitutive relation can be observed in
Eq. (15). Considering the VL grid cell as an example, from Egs. (17)
and (18), we obtain:

247 (A + p2) [41 (22 + 2u2) + o)

M (A2 + 2up) + 1o

is needed; only an arithmetic averaging of the density is sufficient.
In this way we obtain an expression of the boundary conditions at
the irregular fluid-solid interface, which is also implicitly
expressed in the elasticity matrix of the fluid-solid averaged me-
dium. In the staggered-grid FDM, we transform the implicit
expression of this irregular fluid-solid boundary into a modifica-
tion of the model parameters at the grid points near the fluid-solid
interface rerfering to Eqs. (19) and (20).

The derivation process outlined above illustrates that the pro-
posed method of implicitly realizing fluid-solid boundary condi-
tions can be readily extended to anisotropic and viscoelastic media
by appropriately modifying Eq. (5) to accommodate different
media types. Moreover, the proposed method can be straightfor-
wardly extended to the three-dimensional case, meeting the re-
quirements of large-scale numerical simulations.

2.3. Introduction of the superposition method

Generally, in order to suppress the staircase diffraction noise

0
T2 A2 +2p) 201 (A2 + 2p2) (41 + 22 + 2u3) M+ 22+ 2p £z
T | = 12 + 2u3) + A2dq 221 (A + 2u3) ol &= | (19)
Tzx M 422+ 2uy M+ A+ 2uy —éxz
0 0

Similarly, for the VR grid, we can obtain the corresponding
constitutive relations by rotating the coordinates, that is

2py (A2 + p3) (21 (A2 + 2u2) + Ap21)

caused by the staircase discretization of irregular interfaces, the
commonly used method is grid refinement, i.e., a smaller grid is

M (A2 + 2up) + o4

Tr A2 +2py 240 (A2 + 2p2) (A1 + A2 + 2u3) M+ A2 + 2py 2
Txx = M (A2 + 2up) + a4 221(A2 + 2u5) 0 Exx | - (20)
Tt M+ A2+ 24 M+ A2+ 24 Exz

0 0 0

As for the density, its abrupt changes in the fluid and solid re-
gions are small compared to the velocity, and no special treatment

used to discretize the irregular interfaces. However, grid refine-
ment leads to a significant increase in computation costs, which
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can lead to a significant reduction in computational efficiency and
even the problem that the computer server is unable to satisfy the
memory requirements of the computation.

Hence, this paper adopts the superposition method, as pro-
posed by Drainville et al. (2019), to tackle the challenging issue of
suppressing staircase noise. This involves applying the super-
position theory to the discretization of irregular fluid-solid in-
terfaces. According to the superposition theory, for a linear system,
the overall state can be decomposed into a sum of independent
parts. In this context, the equations can be solved independently in
each of these parts, and subsequently, these independent solutions

Petroleum Science 22 (2025) 4083-4101

percent, it is recognized as the medium above the interface. This
straightforward division method is susceptible to generating
staircase diffraction noise, especially when the grid spacing is
considerable. To address this issue, we introduce several different
thresholds for dividing the grids belonging to the interface.
Assuming the total number of superpositions is denoted as N, the
thresholds are set as gLy, 21, ... ylig. Consequently, when the area
of the grid below the interface exceeds a particular threshold, the
grid is designated as part of the medium in the lower section. This
concept can be succinctly expressed as follows:

can be combined to obtain the overall solution. Traditionally, dis- 1 axz2)> n
cretization of the staircase approximation employs a rounded grid kn (X,2) = N+1 (21)
division approach. Specifically, when the interface intersects a ' 0 alx2) < n ’
grid, if the area below the interface constitutes more than 50 T N+1
percent of the grid, it is identified as the medium below the
interface; conversely, if the area above the interface exceeds 50
(a) Configuration 1 (b) Configuration 2 (c) Configuration 3
10 10
5 5 4
0 0 0
0 5 10 0 5 10 0 5 10
(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

o

(9)

Z direction

Staircase-shaped discretization

o

0 0.1 0.2 0.3 0.4

6

X direction

0.5

Fig. 4. Diagram of the superposition method when the number of superpositions is 6. Subplots (a)-(f) denote the discretization of irregular interface based on thresholds of 1/7, 2/
7, 3|7, 4/7, 5/7, and 6/7, respectively. Subplot (g) indicates a schematic representation of irregular interface as it passes through the grid, with the color within each grid rep-

resenting the size of the area of the grid region below the interface.

4088



X.-H. Zhou, Y.-Y. Wang and S.-D. Huo

where x, (X, z) represents the physical properties of the medium in
the grid. While «n(x, z) is 1, it represents that the grid belongs to the
medium in the part below the interface, and when it is 0 it rep-
resents that the grid belongs to the medium in the part above the

interface. a(x,z) represents the area of the grid in the part below
the interface as a percentage of the total grid area. n is the nth

1000

1000

2000

-1
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superposition. Taking N =6 as an example, we give the dis-
cretization of the irregular fluid-solid interface for different
thresholds in Fig. 4.

Based on this approach, we discretize the irregular interface N
times and subsequently conduct numerical simulations for each
discretization outcome. Finally, we superimpose the results

Fig. 5. Snapshots of the wavefield for the horizontal and vertical components of the particle velocity at different moments. The first row corresponds to the horizontal component
of the particle velocity and the second row to the vertical component of the particle velocity. Subplots (a), (b) and (c) correspond to wavefield snapshots at t = 0.48 s, t = 0.80 s and
t = 1.12 s, respectively. The black characters in the figure represent the wave phenomena present in the fluid part, while the white represents the solid part. P represents direct
acoustic waves, PP represents reflected P and transmitted P waves, PS represents converted S waves, H represents the head wave associated with the transmitted P wave, and S

represents Scholte waves.

(a)
R7 ~
R6 r~
R5
R4
R3 Vv
R2 -
R1 L
Vi
0 05 1.0 15

(b)
R7 Ar
R6
R5
R4
R3
R2
R1 A
FDM
- — — SEM Ve
- : -
0 05 10 15

Fig. 6. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot

(b) shows the vertical component of the particle velocity.
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corresponding to each discretization model to obtain the final
simulation result, which can be expressed as

N

v(x,z,t) :% > wu(x,z,t,n).

n=1

(22)

3. Numerical experiments

In this section, we will present several numerical experiments
to showcase the accuracy and viability of the proposed method. In
our staggered-grid FD scheme, sixth-order spatial operators and
second-order temporal operators were employed.

3.1. Case 1: a horizontal fluid-solid interface model

First, we validate our implicit expression of the fluid-solid
boundary conditions through numerical experiments with two
different horizontal interface fluid-solid bilayer models.

In Model 1, the dimensions are 4000 m x 2000 m, with a dis-
cretized grid of 1001 x 501 and a grid spacing of 4 m. In the solid
part, the P-wave velocity is 2700 m/s, the S-wave velocity is
1400 my/s, and the density is 1200 kg/m>. In the fluid part, the P-
wave velocity is 1500 m/s, and the density is 1000 kg/m>. The
pressure source is located in the fluid at a depth of 800 m, posi-
tioned 200 m above the fluid-solid interface. We utilize a Ricker

X, m

500

1000

1500

2000

500

1000

1500

2000

-1
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wavelet as the source wavelet, with a dominant frequency of 17 Hz.
The wavelet is recorded for a duration of 1.6 s, with a time step of
0.4 ms. Horizontal arrays of receivers are placed 20 m above the
fluid-solid interface, with a spacing of 4 m between them. The
horizontal and vertical components of wavefield snapshots at
different time steps obtained from simulations are depicted in
Fig. 5. These wavefield snapshots demonstrate that the proposed
method effectively captures wave phenomena at the interface. To
further validate the proposed implicit expression of fluid-solid
boundary conditions and ensure accurate partitioning of energy
between interface waves and converted waves in staggered-grid
FDM, seismic records are extracted from seven receivers (R1-R7,
at depths of 980 m) at offsets of —1480, —960, —440, 80, 490, 1110,
and 1640 m, and compared with results obtained from SEM (see
Fig. 6). The SEM results are derived using the open-source soft-
ware SPECFEM2D (Komatitsch and Vilotte, 1998; Komatitsch and
Tromp, 1999; Komatitsch et al., 2000a, 2016; Komatitsch and
Martin, 2007; Tromp et al., 2008). Through single-trace seismic
record comparisons, it becomes evident that the simulated am-
plitudes and phases of seismic waves closely match those obtained
from SEM, thus validating the accuracy of our method.

Next, we utilize Model 2 for numerical simulation, which al-
lows for a more effective observation of the Leaky Rayleigh wave
mode (Zhu and Popovics, 2006) and Scholte wave propagating
along the interface. Model 2 has dimensions of 2000 m x 2000 m,
with a grid size of 501 x 501 and a grid spacing of 4 m. In this

X, m

Fig. 7. Snapshots of the wavefield for the horizontal and vertical components of the particle velocity at different moments. The first row corresponds to the horizontal component
of the particle velocity and the second row to the vertical component of the particle velocity. Subplots (a), (b) and (c) correspond to wavefield snapshots at t = 0.30 s, t = 0.50 s and
t = 0.70 s, respectively. P represents direct acoustic waves, PP represents reflected P and transmitted P waves, PS represents converted S waves, H represents the head wave
associated with the transmitted P wave, S represents Scholte waves,R represents Rayleigh waves, and LR represents the Leaky mode Rayleigh waves.
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model, the P-wave velocity in the solid portion is 4000 m/s, the S-
wave velocity is 2300 m/s, and the density is 2400 kg/m>. The
parameters of the fluid portion are consistent with Model 1. A
pressure source is located within the fluid at a depth of 840 m,
positioned 160 m above the fluid-solid interface. The source
wavelet is a Ricker wavelet with a dominant frequency of 15 Hz,
recorded for 1 s with a time step of 0.4 ms. Horizontal arrays of
receivers are positioned 8 m above the fluid-solid interface, with a
spacing of 8 m between receivers. The horizontal and vertical
components of the wavefield snapshots at different time steps are
depicted in Fig. 7. These snapshots illustrate the accurate simula-
tion of wave propagation phenomena at the fluid-solid interface,
encompassing acoustic waves in the fluid region, transmitted P-
waves in the solid region, P-S converted waves, Leaky Rayleigh
waves, and Scholte waves propagating along the fluid-solid inter-
face. Similarly to Model 1, seismic recordings from seven receivers
(R1-R7, at depths of 992 m) at offsets of —732 m, —460 m, —188 m,
84 m, 356 m, 628 m, and 900 m are extracted and compared with
results obtained using the SEM method. As illustrated in Fig. 8, a
close agreement between the two methods is observed, under-
scoring the feasibility of implicitly expressing fluid-solid boundary
conditions in staggered-grid FDM and the effectiveness of simu-
lating seismic wave propagation in fluid-solid coupled media.

3.2. Case 2: an irregular fluid-solid interface model

In this section, we demonstrate the effectiveness of the derived
expression for the irregular fluid-solid interface in staggered-grid
FDM through numerical experiments. As depicted in Fig. 9, we
construct a solid-fluid coupled model featuring an irregular
interface. The model dimensions are 3840 m x 2880 m, discretized
into 1281 x 961 grids. The lower solid region exhibits a P-wave
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velocity of 3500 m/s, S-wave velocity of 1963 m/s, and density of
2500 kg/m>, while the upper fluid region has a P-wave velocity of
1500 m/s and density of 1000 kg/m>. A seismic source is posi-
tioned in the fluid region, represented by a pressure source excited
at a depth of 1140 m (as indicated by the red star in Fig. 9). The
source time function is a Ricker wavelet with a dominant fre-
quency of 17 Hz, recorded for 1.6 s with a time step of 0.4 ms.
Fig. 10(a)~(c) and Fig. 11(a)-(c) respectively illustrate the hori-
zontal and vertical components of wavefield snapshots at different
times (t = 0.48 s,t =0.90 s, and t = 1.28 s). These snapshots clearly
depict transmitted P-waves and P-S waves in the solid region,

0 500 1000 1500 2000 2500 3000 3500

X, m

0

1800

500 1600
1400
1000
1200
1000
1500

2000

2500

Fig. 9. Schematic diagram of the fluid-solid coupled model at the irregular interface,
where the red stars represent the location of the source.
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Fig. 8. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot

(b) shows the vertical component of the particle velocity.
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Fig. 10. Snapshots of the wavefield at different moments of the horizontal component of the particle velocity in the irregular fluid-solid interface model, subplots (a), (b) and (c)
show the simulation results without the use of the superposition method to discretize the irregular interface; subplots (d), (e) and (f) show the simulation results after the use of
the superposition method to discretize the irregular interface.
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Fig. 11. Snapshots of the wavefield at different moments of the vertical component of the particle velocity in the irregular fluid-solid interface model, subplots (a), (b) and (c)
show the simulation results without the use of the superposition method to discretize the irregular interface; subplots (d), (e) and (f) show the simulation results after the use of
the superposition method to discretize the irregular interface.
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acoustic waves in the fluid region, and the propagation of Scholte
waves and leaky Rayleigh waves along the interface. This obser-
vation confirms the effectiveness of the proposed expression for
the irregular fluid-solid interface. However, noticeable diffraction
noise is also observed in the fluid region of the wavefield snap-
shots, stemming from scattering at the turning points of grid cells
approximating irregular surfaces using staircase functions. Fig. 12
presents the horizontal and vertical components of particle ve-
locity single-shot records for SEM and FDM numerical simulations
of the fluid-solid coupled model. The first row represents hori-
zontal particle velocity components, while the second row repre-
sents vertical components. Fig. 12(a) and (d) depict the results of
SEM, whereas Fig. 12(b) and (e) illustrate the results of the pro-
posed FDM. From the single-shot records, it is evident that, aside
from the pronounced staircase diffraction noise, the results ob-
tained by the proposed FDM closely resemble those of SEM.

To mitigate staircase diffraction noise, we employ the super-
position method to discretize the irregular fluid-solid interface.
Before conducting numerical experiments, we needed to deter-
mine a suitable value of N to set different thresholds for the
staircase discretization of the irregular interface. If N is too large, it

Petroleum Science 22 (2025) 4083-4101

will increase the computational cost, and if it is too small, it may
not effectively suppress the staircase diffractions. To determine the
appropriate value of N, we compared the results calculated by the
proposed method with those calculated by the SPECFEM2D soft-
ware package and calculated the L, norm misfits. Fig. 13 shows the
relationship between different values of N and L, norm misfits,
and it can be observed that when N <6, the error decreases
gradually with the increase of N. When N > 6, the magnitude of the
error reduction becomes smaller with the increase of N. Consid-
ering both computational cost and the L, norm misfits, we choose
N = 6 for the following numerical tests. The second rows in Figs. 10
and 11 illustrate the simulation results obtained after discretizing
the irregular interface using the superposition method. Comparing
these results with those obtained in the first row without using the
superposition method, we can clearly observe effective suppres-
sion of staircase diffraction noise. Fig. 12(c) and (f) present single-
shot records obtained after discretizing the irregular interface
using the superposition method, showcasing the suppression ef-
fect on staircase diffraction noise. To further illustrate the effec-
tiveness of the superposition method, Fig. 12(g) compares a
seismic record at an offset of 60 m. The blue trace represents the
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Fig. 12. Single-shot records of particle velocities in the irregular fluid-solid interface model and single-trace comparison, subplots (a), (b) and (c) are single-shot records of the
horizontal component of particle velocities obtained by the SEM, the FDM without the superposition method and the FDM with the superposition method; subplots (d), (e) and (f)
are single-shot records of the vertical component of particle velocities obtained by the SEM, the FDM without the superposition method and the FDM with the superposition
method; subplot (g) is a single-trace comparison of the three results at an offset distance of 60 m. Subplot (h) is an enlarged version of the waveform comparison within the black
box in subplot (g). The blue line is the result of the SEM, the black and red lines correspond to the results obtained with the FDM with and without the superposition method,

respectively.
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Fig. 13. L, norm misfits corresponding to different numbers of superpositions.

SEM result, while the black and red traces correspond to the FDM
results obtained with and without the superposition method,
respectively. It is evident that the staircase diffraction noise in the
results obtained after superposition-based discretization of the
irregular interface is effectively suppressed, thereby demon-
strating the effectiveness of our superposition method in miti-
gating staircase diffraction noise. Finally, to verify the accuracy of
the proposed method in numerically simulating irregular fluid-
solid interfaces, we compare single-trace records from seven re-
ceivers located at offsets of —237, —60, 240, 663, 840, 1224, and
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R6

RS

R4
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1575 m with SEM, as shown in Fig. 14. From Fig. 14, we observe
good agreement between both horizontal and vertical particle
velocity components and the results obtained from SEM, thereby
confirming the accuracy of the proposed FDM in numerical
simulation when dealing with irregular fluid-solid interfaces. In
the comparison, we further include the treatment of harmonic
averaging of the shear modulus. We can see that the harmonic
averaging treatment does not fit the reference results well at far
offset distances (e.g., the vertical component of the R7 receiver)
compared to the proposed method.

3.3. Case 3: a layered fluid-solid coupled model

Finally, based on the irregular fluid-solid interface double-layer
model, we establish a multi-layer model. The schematic diagram
of the model and the P-wave velocity and density for each layer are
illustrated in Fig. 15, where the units for velocity are m/s and for
density are kg/m>. Except for the water layer, the S-wave velocity
of the solid layer can be determined from a Poisson's ratio of 0.25.
The pressure source is positioned within the fluid at a depth of
540 m, as indicated by the red star in Fig. 15. The source wavelet is
a 13 Hz Ricker wavelet, with a recording time of 2 s and a time step
of 0.2 ms. The comparison of the recorded single-shot records is
depicted in Fig. 16, where the three columns from left to right
represent the results of SEM, FDM without using the superposition
method, and FDM using the superposition method, respectively.
From the single-shot records, the presence of inter-layer reflection
waves is clearly observed. Additionally, the existence of staircase
noise is evident in (b) and (e) of Fig. 16, obscuring the reflection
wave signals. However, after employing the superposition method
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Fig.14. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot
(b) shows the vertical component of the particle velocity. FDM-HM refers here to the result of implicitly processing the boundary conditions using harmonic averaging of the shear

modulus.
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Fig. 15. Layered fluid-solid coupled model, where the red stars represent the location
of the source.

for irregular interface discretization, the staircase diffraction noise
is effectively suppressed, and its presence is no longer observed in
the reflection wave portion. To further validate the accuracy of the
proposed method, single-trace records at different offsets were
compared with SEM, as shown in Fig. 17, for both the horizontal
and vertical components of particle velocity. From the comparison
results, it can be observed that the results of FDM are in good
agreement with SEM, further demonstrating the effectiveness and
accuracy of our method in modeling irregular seabed layer models.
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4. Discussion
4.1. Computational costs and memory requirements

When utilizing the superposition method to discretize irregular
fluid-solid interfaces, six different discretizations are necessary to
effectively suppress staircase diffraction noise. To illustrate the
computational cost issue, we conducted numerical simulations
using a simplified model, as shown in Fig. 18. The model has di-
mensions of 2000 m x 1000 m, discretized into two cases:
501 x 251 grids and 1001 x 501 grids, corresponding to grid
spacings of 4 m and 2 m, respectively. In the solid portion, the P-
wave velocity is 2700 m/s, the S-wave velocity is 1400 m/s, and the
density is 1200 kg/m>. In the fluid portion, the P-wave velocity is
1500 m/s, and the density is 1000 kg/m>. A pressure source is
located at the red star in Fig. 18. Fig. 19 illustrates the recorded
single-shot records, with the first row indicating the horizontal
component of particle velocity and the second row indicating the
vertical components. From left to right, the three columns repre-
sent grid spacings of h =2 m, h = 4 m, and h = 4 m using the
superposition method for discretization, where h is the grid
spacing. From Fig. 19, it is evident that using a grid spacing of
h = 4 m for numerical simulation results in noticeable staircase
diffraction noise (Fig. 19(b) and (e)). When the grid is refined to
h = 2 m, the staircase diffraction noise is effectively suppressed
(Fig.19(a) and (d)). Similarly, employing the superposition method
for discretization with h = 4 m results in effective suppression of
staircase diffraction noise (Fig. 19(c) and (f)). Furthermore, a
comparison is made between the results obtained using the su-
perposition method for discretization and those obtained with
h = 2 m. The comparison of single-shot records is shown in Fig. 20.
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0.05
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Fig. 16. Single-shot records of particle vibration velocities in the layered fluid-solid coupled model, subplots (a), (b) and (c) are single-shot records of the horizontal component of
particle velocities obtained by the SEM, the FDM without the superposition method and the FDM with the superposition method; subplots (d), (e) and (f) are single-shot records
of the vertical component of particle velocities obtained by the SEM, the FDM without the superposition method and the FDM with the superposition method.
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Fig.17. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot

(b) shows the vertical component of the particle velocity.
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Fig. 18. Schematic diagram of the simple model, where the red star shows the loca-
tion of the source.

The comparison demonstrates good agreement between the two,
indicating that using a grid spacing of h = 4 m in conjunction with
the superposition method for discretization achieves precision
and reduces staircase diffraction noise intensity comparable to
that obtained with h = 2 m. The calculations were executed on an
AMD Ryzen 9 5950X processor. The computation time for dis-
cretization using a grid spacing of h = 4 m in conjunction with the

superposition method was 406 s, while the computation time for a
grid spacing of h = 2 m was 552 s. Thus, the proposed discretiza-
tion method using the superposition method reduces computation
time compared to conventional grid spacing. The grid spacing of
h = 2 m necessitates twice the sampling in each Cartesian direc-
tion compared to h = 4 m. Additionally, for smaller grid spacings,
the time step must be reduced to meet stability criteria. Therefore,
as the grid spacing decreases from h = 2 m to h = 4 m, the
computational cost reduces by 8 times. Considering six super-
position iterations, the final computation cost using the super-
position method for discretization with a grid spacing of h = 4 m
should ideally be 3/4 of the computation cost with h = 2 m. The
ratio of computation times in our calculations is close to 3/4,
further confirming our inference. If extended to three-dimensional
numerical simulations, the ideal computation cost using the su-
perposition method for discretization should be 3/8 of the
computation cost with conventional grid spacing. From the above
comparison, it can be observed that when employing the super-
position method for discretization, the computation cost is
reduced compared to spatial sampling strategies that effectively
suppress staircase diffraction noise.

Furthermore, when employing smaller grid spacing for nu-
merical simulations, all stresses, velocities, and other parame-
ters at every grid point must be stored in memory
simultaneously, leading to a significant demand for memory.
Once memory requirements cannot be met, it becomes chal-
lenging to obtain high-resolution numerical simulation results.
The method we propose involves using larger grid spacing for
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Fig. 19. (a), (b) and (c) are single-shot records of the horizontal component of the particle velocity for h = 2 m, h = 4 m and h = 4 (using the superposition method of dis-
cretization), and (d), (e) and (f) are single-shot records of the vertical component of the particle velocity for h =2 m, h = 4 m and h = 4 m (using the superposition method of
discretization) in the simple irregular fluid-solid interface model.
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Fig. 20. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and
subplot (b) shows the vertical component of the particle velocity.
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multiple independent numerical simulations. With this
approach, the larger memory requirements are distributed
among the individual numerical simulations, making it easier to
meet memory demands. This distributed memory usage strat-
egy facilitates high-resolution simulations without exceeding
memory constraints.

4.2. Code portability and expandability

The proposed method involves straightforward modifications
of model parameters at the interface. This simplicity makes it easy
to adapt for conventional Cartesian staggered-grid FDM schemes
and commonly used GPU parallel computing systems in the oil and
gas industry. Moreover, the method can be readily extended to
other types of media, including anisotropic media, viscoelastic
media, and more.

5. Conclusion

To address the challenges of untreated boundary conditions
and staircase diffraction noise in irregular interfaces when
employing the first-order velocity-stress staggered-grid FDM for
fluid-solid coupled medium numerical simulation, this paper
proposes two solutions:

(1) Implicit Boundary Condition Expression: Leveraging
average medium theory and fluid-solid boundary condi-
tions, the paper deduces constitutive and density relation-
ships at the fluid-solid boundary. By modifying interface
parameters based on these relationships, explicit fluid-solid
boundary conditions are implicitly incorporated into nu-
merical simulations.

(2) Superposition-based Interface Discretization: Utilizing the
superposition method, the interface undergoes multiple
discretizations by employing different thresholds. Numeri-
cal simulations are conducted for each discretized interface
model, and the final results are obtained through
superposition.

Numerical experiments demonstrate that the proposed
method yields simulation results in good agreement with the SEM
for both horizontal and irregular interfaces. Furthermore,
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employing the superposition method for fluid-solid interface
discretization effectively suppresses staircase diffraction noise
without necessitating grid refinement. Despite conducting multi-
ple simulations for the same model, the computational cost re-
mains low compared to grid refinement, and memory
requirements are effectively reduced.
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Appendix

In marine seismic exploration, geophones are typically placed
on the seafloor or via streamers below the sea surface. It's un-
common to place them in the rock or weathered layer beneath the
seafloor. Yet, to verify the feasibility and accuracy of our method,
we resimulated the four models in the “Numerical experiment”
part, placing geophones at the vertical mirror position relative to
the original ones. We then compared the results with those from
the SEM method. The comparison results for Model 1, Model 2, the
simple irregular-surface model, and the layered irregular-surface
model are in Figs. A1-A4. The results indicate that our method
can also fit the SEM results well when signals are received in the
solid.



X.-H. Zhou, Y.-Y. Wang and S.-D. Huo Petroleum Science 22 (2025) 4083-4101

(a) (b)

R7

R6

R6

RS

RS

R4 R4

R3

R3

o
AMI\,

R1 Al R1 A/

FDOM
V. — == SEM Vv,

S}
o
2}
=}
3
o
=}
3
=}
3

Time, s Time, s

Fig. A1. Model 1: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity
and subplot (b) shows the vertical component of the particle velocity.
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Fig. A2. Model 2: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity
and subplot (b) shows the vertical component of the particle velocity.
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Fig. A3. The simple irregular-surface model: comparison of single-trace seismic records at different offset distances.

Time, s

(b)

R7

R6

R5 1

R4

R3

R2

R1

Petroleum Science 22 (2025) 4083-4101

N
A
W
| u
FOM
=== SEM \A
0 05 10 15

component of the particle velocity and subplot (b) shows the vertical component of the particle velocity.

Time, s

Subplot (a) shows the comparison of the horizontal
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Fig. A4. The layered irregular-surface model: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal
component of the particle velocity and subplot (b) shows the vertical component of the particle velocity.
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