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a b s t r a c t

The finite-difference method (FDM) is an essential tool in exploration geophysics, particularly for 
simulating wave propagation in fluid-solid coupled media. Despite its widespread use, FDM faces sig
nificant  challenges that affect its accuracy and efficiency. Firstly, the implicit handling of fluid-solid 
boundary conditions through parameter averaging strategy often results in low simulation accuracy. 
Secondly, surface topography can introduce staircase diffraction noise when grid spacing is large. To 
address these issues, this paper presents a novel approach. We derive an implicit expression for fluid- 
solid boundary conditions based on average medium theory, translating explicit boundary conditions 
into model parameter modification. This enables implicit handling of fluid-solid boundaries by modi
fying the parameters near the boundary. Furthermore, to mitigate staircase diffraction noise, we employ 
multiple interface discretization based on the superposition method. This effectively suppresses stair
case diffraction noise without requiring grid refinement.  The efficacy  of our method in accurately 
modeling wave propagation phenomena in fluid-solid  coupled media is demonstrated by numerical 
examples. Results align well with those obtained using the spectral element method (SEM), with sig
nificant reduction in staircase diffraction noise.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

The study of seismic wave propagation in fluid-solid  coupled 
media has garnered considerable attention across various scien
tific domains in recent years. This phenomenon poses a significant 
challenge in understanding the intricate interactions between 
fluid and solid mediums, where changes in fluid pressure induce 
deformations in solids, and conversely, solid deformations affect 
fluid  behavior through the boundary interface linking the two 
media. The simulation of coupled fluid-solid  media holds para
mount importance in fields such as geophysics, engineering, and 
medicine. In exploration geophysics, it finds diverse applications 
ranging from marine reflected wave exploration to full-waveform 
inversion and hydraulic fracturing studies (Liang et al., 2017; Li 

et al., 2018; Agudo et al., 2020; Antonietti et al., 2020; Kamath 
et al., 2021; Yang et al., 2023; Xie et al., 2024a, 2024b). Engineer
ing applications heavily rely on these simulations for dynamic 
assessments of structures such as dams (Soares and Mansur, 2006; 
Soares, 2008). Furthermore, medical research benefits from tech
niques like full waveform inversion in brain ultrasound studies 
(Guasch et al., 2020).

However, in many imaging and inversion studies, including 
full-waveform inversion and reverse-time migration, only the 
pressure recorded by hydrophones or the vertical component 
recorded by geophones is utilized. This selective use simplifies the 
treatment of the fluid-solid  coupled medium into a single fluid 
medium and disregards the elastic properties of the solid medium, 
such as P-S converted waves and interface waves. Consequently, 
there is a significant  loss of information regarding the complex 
interactions within the medium. To fully exploit the potential of 
recording devices such as Ocean Bottom Cable (OBC) or Ocean 
Bottom Node (OBN), it becomes imperative to accurately simulate 
and invert the propagation characteristics of the entire seismic 
wave field in the fluid-solid coupled system. This approach ensures 
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that the elastic characteristics of the subsurface solid medium, 
such as the S-wave velocity model, are properly captured in ve
locity inversion processes.

Numerical simulation methods for fluid-solid coupled media in 
geophysics are commonly categorized into two main types: par
titioned and monolithic methods (Hou et al., 2012; De Basabe and 
Sen, 2015). The partitioned method employs different wave 
equations in the fluid and solid regions, explicitly addressing the 
fluid-solid boundary conditions. One advantage of this approach is 
its ability to reduce the number of degrees of freedom in the fluid 
domain, explicitly satisfying interface conditions, and even 
allowing for the use of different numerical methods in different 
domains (Komatitsch et al., 2000b; Carcione and Helle, 2004; Cao 
et al., 2022). However, it requires precise knowledge of the inter
face location, which can be cumbersome in cases of complex ge
ometry. In contrast, the monolithic method utilizes the same wave 
equation for the entire fluid-solid  coupling medium, implicitly 
incorporating interface conditions (Virieux, 1986; Graves, 1996; 
van Vossen et al., 2002). Its advantages lie in its simplicity of 
implementation and its applicability to any interface case. How
ever, drawbacks include limitations in numerical simulation ac
curacy due to dispersion characteristics and the discretization of 
undulating interfaces. Despite the advantages of the partitioned 
method, the monolithic approach has been widely employed in 
exploration geophysics. Therefore, our study focuses on the 
monolithic method.

The staggered-grid FDM (Virieux, 1986) is widely utilized in the 
monolithic approach due to its ease of implementation, low 
memory requirements, and high computational efficiency. In 
modeling wave propagation within fluid-solid coupled media, this 
method typically sets only the shear velocity to zero in the fluid 
region and uses the harmonic averaging of shear module at the 
interface. However, its effectiveness is limited to a specific range of 
incidence angles (Graves, 1996). In addition, this simplified 
approach assumes that all field variables remain continuous at the 
fluid-solid  interface, which differs from the fluid-solid boundary 
condition where the normal components of stress and displace
ment are continuous while the tangential components are 
discontinuous. Consequently, this assumption may lead to inac
curate energy partitioning, particularly concerning interface and 
converted waves (De Basabe and Sen, 2015). Furthermore, the 
discretization of surface topography poses a challenge in the 
application of FDM. Two commonly employed methods for 
addressing this issue are the grid deformation method and the 
rectangular grid method. The grid deformation method entails 
mapping a rectangular grid onto a curvilinear grid and imple
menting boundary conditions on the deformed grid. While this 
approach offers more accurate results, particularly for complex 
topographies, its implementation is inherently more complex and 
challenging (Tessmer and Kosloff, 1994; Zhang et al., 2012; de la 
Puente et al., 2014; Petersson and Sjogreen, 2015; Qu et al., 2017; 
Li et al., 2019; Sun et al., 2021).

To circumvent the necessity for grid deformation, many re
searchers opt for using rectangular grids to represent surface 
topography. Rectangular grids can be classified  into two types: 
variable grids and regular grids. Variable grids employ varying grid 
spacing across different areas of the model, thereby avoiding 
oversampling and effectively reducing computational costs (Sun 
and Yang, 2003; Liu and Sen, 2011). In contrast, regular grids 
maintain uniform grid spacing throughout the model, which re
sults in a spatial sampling strategy inside the model dependent on 
the strategy at the interface, consequently leading to increased 
computational costs, particularly when dealing with surface 
topography. Regular grids often employ a staircase approximation 
to represent surface topography (Robertsson, 1996; Kristek et al., 

2002; Zeng et al., 2012; Cao and Chen, 2018; Li et al., 2020; Zhou 
et al., 2023b; Chen et al., 2024). However, staircase approxima
tion with large grid spacing can introduce non-correlated diffrac
tion noise in the wavefront as it propagates into the staircase- 
shaped topography, affecting the wavefield  record. While 
reducing the grid spacing effectively suppresses staircase diffrac
tion noise, it entails larger computational costs and memory re
quirements. Addressing the issues of inaccurate expression of 
fluid-solid  boundary conditions and staircase diffraction noise 
generated during surface topography discretization is imperative 
to enhance the applicability of FDM in fluid-solid coupled media.

Building upon the aforementioned challenges, this paper in
troduces an implicit expression of fluid-solid boundary conditions 
suitable for staggered-grid FDM from a physical point of view. The 
proposed expression is derived utilizing average medium theory, 
facilitating the realization of fluid-solid  boundary conditions by 
modifying the constitutive relationship and density at the inter
face. Furthermore, the paper presents a discretization method for 
surface topography based on the superposition method (Drainville 
et al., 2019; Zhou et al., 2023b). This approach enables effective 
suppression of staircase diffraction noise even with larger grid 
spacing, thereby reducing computational costs and memory re
quirements significantly. Through a series of numerical experi
ments, the accuracy and effectiveness of the proposed method in 
suppressing staircase diffraction noise are demonstrated. These 
findings underscore the method's pivotal role in numerical simu
lations of fluid-solid coupled media.

2. Methods

2.1. Derivation of the fluid-solid boundary condition

Based on the average medium theory proposed by Moczo et al. 
(2002), this paper derives a novel expression for fluid-solid 
boundary conditions from a physical perspective, utilizing the 
constitutive relationship between two isotropic solid media. This 
expression can be directly applied to the velocity-stress staggered- 
grid FDM, which is currently mainstream in the industry. In 
accordance with the average medium theory, as illustrated in Fig. 1, 
the effective representation of two interconnected isotropic elastic 
media can be achieved through an averaged medium. The aver
aged medium can be mathematically expressed as 

τA = EAεA; (1) 

where τA and εA are the stress and strain tensor of the averaged 
medium, respectively, which can also be understood as the stress 
and strain tensor at the interface where the two media are con
nected, and EA is the elasticity matrix of the averaged medium, 

Fluid
λ1 ≠ 0, μ1 = 0

λ2, μ2

Solid

Fig. 1. Schematic diagram of the elastic parameters at the fluid-solid interface.
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which contains only the elasticity parameters (λ1; μ1) and (λ2; μ2)

of the upper and lower media, where λ and μ are the Lam�e con
stants. Since the stress and displacement continuity conditions 
cannot be satisfied at the fluid-solid interface, it is not possible to 
directly generalize the average medium method proposed by 
Moczo et al. (2002) that is suitable for the solid-solid interface to 
the fluid-solid  interface. Therefore, we start the derivation from 
the physical point of view, first  posit a solid-solid interface, and 
derive the constitutive relation of this solid-solid interface ac
cording to the theory of the average medium method. On the basis 
of this constitutive relationship, the shear modulus of a certain 
layer of medium is equal to zero (i.e., μ1 = 0), so that the physical 
properties of the interface approximate to the fluid-solid interface, 
which can establish the constitutive relationship at the fluid-solid 
interface. This kind of method has been successfully applied to the 
free surface scenario (Mittet, 2002; Xu et al., 2007; Cao et al., 2018; 
Zhou et al., 2022, 2023a), and thus the method can be used to carry 
out the treatment of fluid-solid interfaces as well from the physical 
point of view. The proposed method can implicitly implement 
boundary conditions by modifying model parameters at the fluid- 
solid interface.

We elaborate on our derivation process using the example of 
isotropic media in two-dimensional scenarios. The constitutive 
relations of isotropic media can be expressed as 
⎡

⎣
τxx
τzz
τxz

⎤

⎦=

⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤

⎦

⎡

⎣
εxx
εzz
2εxz

⎤

⎦: (2) 

According to the displacement and stress continuity conditions 
at the interface (Alterman and Karal Jr, 1968; Moczo et al., 2002), 
the stress and strain components can be classified into two cate
gories: continuous and discontinuous components, which are 
represented by Eqs. (3) and (4), respectively: 

τc = [τxz; τzz];

εc = [εxx];
(3) 

and 

τd = [τxx];

εd = [εxz; εzz];
(4) 

where the subscript c represents the continuous component, 
while the subscript d represents the discontinuous component. 
Combining Eqs. (2)–(4), the elasticity matrix is readjusted to obtain 
an alternative expression of the constitutive relationship at the 
interface: 
[

τc
τd

]

=

[
R P
PT S

][
εd
εc

]

; (5) 

with 

R =

⎡

⎣
μ 0

0 λ + 2μ

⎤

⎦ ; P =

⎡

⎣
0

λ

⎤

⎦ ;

S = [λ + 2μ]:

(6) 

By placing the discontinuous component of the above equation 
on the left-hand side of the equal sign, we can rewrite Eq. (5) as 
[

εd
τd

]

=

[
− R− 1P R− 1

S − PTR− 1P PTR− 1

][
εc
τc

]

: (7) 

Based on Eq. (7), we next introduce the average medium theory. 
Assuming that D is the discontinuous function at the interface, i.e., 

D1 ∕= D2 , we define the averaging function DA to be 

DA=
d 1

2

(
D1 + D2

)
: (8) 

According to Eqs. (1) and (8), the discontinuity component of 
the averaged medium can be expressed as 

⎡

⎣
εA

d

τA
d

⎤

⎦=

⎡

⎢
⎣

(
− R− 1P

)A (
R− 1

)A

(
S − PTR− 1P

)A (
PTR− 1

)A

⎤

⎥
⎦

⎡

⎣
εA

c

τA
c

⎤

⎦; (9) 

with 
⎡

⎣
εA

d

τA
d

⎤

⎦=
1
2

⎛

⎝

⎡

⎣
ε1

d

τ1
d

⎤

⎦+

⎡

⎣
ε2

d

τ2
d

⎤

⎦

⎞

⎠ ;

⎡

⎣
εA

c

τA
c

⎤

⎦ =

⎡

⎣
ε1

c

τ1
c

⎤

⎦ =

⎡

⎣
ε2

c

τ2
c

⎤

⎦ : (10) 

We bring εA
d , εA

c , τA
d , and τA

d into Eq. (7) and replace εd, εc, τd , and 
τc accordingly. Afterwards, by placing the stress components on 
the left-hand side of the equal sign, we obtain 
⎡

⎣
τA

c

τA
d

⎤

⎦=

[
R P
P

T
S

]
⎡

⎣
εA

d

εA
c

⎤

⎦; (11) 

with 

R =

[(
R− 1

)A
]− 1

;

P =

[(
R− 1

)A
]− 1(

R− 1P
)A
;

S =
(

S − PTR− 1P
)A

+
(

PTR− 1
)A
[(

R− 1
)A
]− 1(

R− 1P
)A
:

(12) 

Recombining the above equation according to Eq. (2) yields 

⎡

⎣
τxx
τzz
τxz

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2μ1(λ1 + μ1)

λ1 + 2μ1
+

2μ2(λ2 + μ2)

λ2 + 2μ2
+ η

λ1(λ2 + 2μ2) + λ2(λ1 + 2μ1)

λ1 + 2μ1 + λ2 + 2μ2
0

λ1(λ2 + 2μ2) + λ2(λ1 + 2μ1)

λ1 + 2μ1 + λ2 + 2μ2

2(λ1 + 2μ1)(λ2 + 2μ2)

λ1 + 2μ1 + λ2 + 2μ2
0

0 0
4μ1μ2

μ1 + μ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
εxx
εzz
εxz

⎤

⎦; (13) 
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where 

η=
[λ1(λ2 + 2μ2) + λ2(λ1 + 2μ1)]

2

2(λ1 + 2μ1)(λ2 + 2μ2)(λ1 + 2μ1 + λ2 + 2μ2)
: (14) 

As shown in Fig. 1, in Eq. (13), by making the shear modulus 
μ1 = 0 in one of the layers of the medium, we can obtain the 
constitutive relationship satisfied  by the stress and strain com
ponents at the fluid-solid interface from the physical point of view:

From this, we can see that the fluid-solid boundary condition is 
implicitly expressed in the elastic matrix of the fluid-solid  aver
aged medium. As for the density at the fluid-solid  interface, we 
refer to the treatment of Moczo et al. (2002) and use the arithmetic 
averaging method, that is 

ρ=
ρ1 + ρ2

2
: (16) 

Eqs. (15) and (16) together give an implicit expression of the 
fluid-solid  boundary conditions based on the average medium 
theory.

2.2. Extend the proposed method to topography scenarios

To effectively apply the proposed implicit expressions to fluid-solid 
interfaces with topography, we must extend the implicit expressions 
of boundary conditions derived from horizontal fluid-solid  bound
aries. This extension is necessary for ensuring applicability to arbi
trarily complex fluid-solid interface geometries, as depicted in Fig. 2. 
For discretizing the irregular interface, we employ a staircase 
approximation. To maintain the overall position of the fluid-solid 

interface following the staircase approximation, we implement the 
grid configuration proposed by Kristek et al. (2002). Specifically, 
normal stresses are positioned at the interface, while shear stresses 
are placed half a grid point below the interface, as illustrated in Fig. 2. 
Regarding the required model parameters at the half-grid points, we 
adopt the strategy that harmonically averaging the Lam�e constant and 
arithmetically averaging the density.

From Fig. 2, we observe that grid cells on the fluid-solid inter
face following the staircase approximation fall into seven major 

classes: H, VL, VR, OL, OR, IL, and IR. Among these, H, VL, and VR 
denote grid cells for the fluid on the upper, left, and right sides of 
the interface respectively. OL and OR, as well as IL and IR, represent 
transition corner point cells of the interface. In the preceding 
section, we derived the implicit expression of the fluid-solid 
boundary condition at the horizontal interface, corresponding to 
the H grid cell. A schematic of the grid configuration and coordi
nate system utilized in the Finite Difference Method (FDM) is 
depicted in Fig. 3, where i and k denote the corresponding grid 

nodes in the x- and z-directions, i.e., i=d ihx, k=d ihz, with hx and hz 

denoting the grid spacing in the x- and z-directions respectively. As 
depicted in Fig. 3(b) and (c), we can transform a VL or VR grid cell 
into an H grid cell by rotating the VL or VR interface cell by an 
appropriate angle. For instance, considering the VL grid cell, 
rotating the coordinate system clockwise by 90◦ would convert the 
VL grid cell into an H grid cell in the new coordinate system. 
Consequently, we can extend the stress and strain relationship 
established on the H grid cell to the VL and VR grid cell by rotating 
the coordinate system. During coordinate rotation, the stress and 
strain components before and after rotation can be expressed as 
follows: 

(i+1/2, k)

OL OL

OLVRVL IL

ILOLORIRIL

IL

IL

τxx, τzz vx, ρx vz, ρz τxz

IR

OL

ORH

(i, k)

(i, k+1/2)

Fluid

Solid

Fig. 2. The implementation of the topography of the proposed method. The squares represent the grid cells, and the solid circle indicates the positions of the integer grid point. 
The black line represents the irregular free surface obtained by staircase discretization. IL and IR indicate the inner corner grid cells with air above to the left and right, 
respectively; OL and OR indicate the outer corner grid cells with air to the left and right, respectively; VL and VR indicate the vertical boundary grid cells with air to the left and 
right, respectively; and H indicates the horizontal boundary grid cells.

⎡

⎣
τxx
τzz
τxz

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2μ2(λ2 + μ2)

λ2 + 2μ2
+

[λ1(λ2 + 2μ2) + λ2λ1]
2

2λ1(λ2 + 2μ2)(λ1 + λ2 + 2μ2)

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

0

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

2λ1(λ2 + 2μ2)

λ1 + λ2 + 2μ2
0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
εxx
εzz
εxz

⎤

⎦: (15) 
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(
τ́xx τ́xz

τ́zx τ́zz

)

=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
τxx τxz

τzx τzz

)

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

;

(17) 

and 
(

έxx έxz

έzx έzz

)

=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
εxx εxz

εzx εzz

)

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

;

(18) 

respectively.
In the above equations, θ represents the angle of rotation of the 

coordinate system, where positive values denote clockwise rota
tion. For the H grid cell, the constitutive relation can be observed in 
Eq. (15). Considering the VL grid cell as an example, from Eqs. (17) 
and (18), we obtain:

Similarly, for the VR grid, we can obtain the corresponding 
constitutive relations by rotating the coordinates, that is

As for the density, its abrupt changes in the fluid and solid re
gions are small compared to the velocity, and no special treatment 

is needed; only an arithmetic averaging of the density is sufficient. 
In this way we obtain an expression of the boundary conditions at 
the irregular fluid-solid  interface, which is also implicitly 
expressed in the elasticity matrix of the fluid-solid averaged me
dium. In the staggered-grid FDM, we transform the implicit 
expression of this irregular fluid-solid boundary into a modifica
tion of the model parameters at the grid points near the fluid-solid 
interface rerfering to Eqs. (19) and (20).

The derivation process outlined above illustrates that the pro
posed method of implicitly realizing fluid-solid boundary condi
tions can be readily extended to anisotropic and viscoelastic media 
by appropriately modifying Eq. (5) to accommodate different 
media types. Moreover, the proposed method can be straightfor
wardly extended to the three-dimensional case, meeting the re
quirements of large-scale numerical simulations.

2.3. Introduction of the superposition method

Generally, in order to suppress the staircase diffraction noise 

caused by the staircase discretization of irregular interfaces, the 
commonly used method is grid refinement,  i.e., a smaller grid is 

used to discretize the irregular interfaces. However, grid refine
ment leads to a significant  increase in computation costs, which 

SolidFluid

x

z

FluidSolid

x

z

Fluid(a) (b) (c)

Solid

(i+1/2, k+1/2)(i, k+1/2)

(i, k) (i+1/2, k)

z

x

τxx, τzz vx, ρx vz, ρz τxz

Fig. 3. Three kinds of boundary grid after the staircase discretization of the irregular fluid-solid interface. The red line in each subplot denotes the irregular fluid-solid interface. 
(a) H boundary grids: horizontal boundary grid used in the horizontal interface. (b) and (c) represent VL and VR boundary grids, which means vertical boundary grids with fluid to 
the left and right, respectively.

⎡

⎣
τzz
τxx
τzx

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2μ2(λ2 + μ2)

λ2 + 2μ2
+

[λ1(λ2 + 2μ2) + λ2λ1]
2

2λ1(λ2 + 2μ2)(λ1 + λ2 + 2μ2)

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

0

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

2λ1(λ2 + 2μ2)

λ1 + λ2 + 2μ2
0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
εzz
εxx
− εxz

⎤

⎦: (19) 

⎡

⎣
τzz
τxx
− τzx

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2μ2(λ2 + μ2)

λ2 + 2μ2
+

[λ1(λ2 + 2μ2) + λ2λ1]
2

2λ1(λ2 + 2μ2)(λ1 + λ2 + 2μ2)

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

0

λ1(λ2 + 2μ2) + λ2λ1
λ1 + λ2 + 2μ2

2λ1(λ2 + 2μ2)

λ1 + λ2 + 2μ2
0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
εzz
εxx
εxz

⎤

⎦: (20) 
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can lead to a significant reduction in computational efficiency and 
even the problem that the computer server is unable to satisfy the 
memory requirements of the computation.

Hence, this paper adopts the superposition method, as pro
posed by Drainville et al. (2019), to tackle the challenging issue of 
suppressing staircase noise. This involves applying the super
position theory to the discretization of irregular fluid-solid  in
terfaces. According to the superposition theory, for a linear system, 
the overall state can be decomposed into a sum of independent 
parts. In this context, the equations can be solved independently in 
each of these parts, and subsequently, these independent solutions 
can be combined to obtain the overall solution. Traditionally, dis
cretization of the staircase approximation employs a rounded grid 
division approach. Specifically, when the interface intersects a 
grid, if the area below the interface constitutes more than 50 
percent of the grid, it is identified  as the medium below the 
interface; conversely, if the area above the interface exceeds 50 

percent, it is recognized as the medium above the interface. This 
straightforward division method is susceptible to generating 
staircase diffraction noise, especially when the grid spacing is 
considerable. To address this issue, we introduce several different 
thresholds for dividing the grids belonging to the interface. 
Assuming the total number of superpositions is denoted as N, the 
thresholds are set as 1

N+1, 2
N+1, …, N

N+1. Consequently, when the area 
of the grid below the interface exceeds a particular threshold, the 
grid is designated as part of the medium in the lower section. This 
concept can be succinctly expressed as follows: 

κn(x; z)=

⎧
⎪⎪⎨

⎪⎪⎩

1 α(x; z)>
n

N + 1

0 α(x; z) ≤
n

N + 1

; (21) 
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where κn(x; z) represents the physical properties of the medium in 
the grid. While κn(x; z) is 1, it represents that the grid belongs to the 
medium in the part below the interface, and when it is 0 it rep
resents that the grid belongs to the medium in the part above the 
interface. α(x; z) represents the area of the grid in the part below 
the interface as a percentage of the total grid area. n is the nth 

superposition. Taking N = 6 as an example, we give the dis
cretization of the irregular fluid-solid  interface for different 
thresholds in Fig. 4.

Based on this approach, we discretize the irregular interface N 
times and subsequently conduct numerical simulations for each 
discretization outcome. Finally, we superimpose the results 
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t = 1.12 s, respectively. The black characters in the figure represent the wave phenomena present in the fluid part, while the white represents the solid part. P represents direct 
acoustic waves, PP represents reflected P and transmitted P waves, PS represents converted S waves, H represents the head wave associated with the transmitted P wave, and S 
represents Scholte waves.

Fig. 6. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot 
(b) shows the vertical component of the particle velocity.
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corresponding to each discretization model to obtain the final 
simulation result, which can be expressed as 

v(x; z; t)=
1
N

∑N

n=1

v(x; z; t;n): (22) 

3. Numerical experiments

In this section, we will present several numerical experiments 
to showcase the accuracy and viability of the proposed method. In 
our staggered-grid FD scheme, sixth-order spatial operators and 
second-order temporal operators were employed.

3.1. Case 1: a horizontal fluid-solid interface model

First, we validate our implicit expression of the fluid-solid 
boundary conditions through numerical experiments with two 
different horizontal interface fluid-solid bilayer models.

In Model 1, the dimensions are 4000 m × 2000 m, with a dis
cretized grid of 1001 × 501 and a grid spacing of 4 m. In the solid 
part, the P-wave velocity is 2700 m/s, the S-wave velocity is 
1400 m/s, and the density is 1200 kg/m3. In the fluid part, the P- 
wave velocity is 1500 m/s, and the density is 1000 kg/m3. The 
pressure source is located in the fluid at a depth of 800 m, posi
tioned 200 m above the fluid-solid  interface. We utilize a Ricker 

wavelet as the source wavelet, with a dominant frequency of 17 Hz. 
The wavelet is recorded for a duration of 1.6 s, with a time step of 
0.4 ms. Horizontal arrays of receivers are placed 20 m above the 
fluid-solid  interface, with a spacing of 4 m between them. The 
horizontal and vertical components of wavefield  snapshots at 
different time steps obtained from simulations are depicted in 
Fig. 5. These wavefield snapshots demonstrate that the proposed 
method effectively captures wave phenomena at the interface. To 
further validate the proposed implicit expression of fluid-solid 
boundary conditions and ensure accurate partitioning of energy 
between interface waves and converted waves in staggered-grid 
FDM, seismic records are extracted from seven receivers (R1–R7, 
at depths of 980 m) at offsets of − 1480, − 960, − 440, 80, 490, 1110, 
and 1640 m, and compared with results obtained from SEM (see 
Fig. 6). The SEM results are derived using the open-source soft
ware SPECFEM2D (Komatitsch and Vilotte, 1998; Komatitsch and 
Tromp, 1999; Komatitsch et al., 2000a, 2016; Komatitsch and 
Martin, 2007; Tromp et al., 2008). Through single-trace seismic 
record comparisons, it becomes evident that the simulated am
plitudes and phases of seismic waves closely match those obtained 
from SEM, thus validating the accuracy of our method.

Next, we utilize Model 2 for numerical simulation, which al
lows for a more effective observation of the Leaky Rayleigh wave 
mode (Zhu and Popovics, 2006) and Scholte wave propagating 
along the interface. Model 2 has dimensions of 2000 m × 2000 m, 
with a grid size of 501 × 501 and a grid spacing of 4 m. In this 
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model, the P-wave velocity in the solid portion is 4000 m/s, the S- 
wave velocity is 2300 m/s, and the density is 2400 kg/m3. The 
parameters of the fluid  portion are consistent with Model 1. A 
pressure source is located within the fluid  at a depth of 840 m, 
positioned 160 m above the fluid-solid  interface. The source 
wavelet is a Ricker wavelet with a dominant frequency of 15 Hz, 
recorded for 1 s with a time step of 0.4 ms. Horizontal arrays of 
receivers are positioned 8 m above the fluid-solid interface, with a 
spacing of 8 m between receivers. The horizontal and vertical 
components of the wavefield snapshots at different time steps are 
depicted in Fig. 7. These snapshots illustrate the accurate simula
tion of wave propagation phenomena at the fluid-solid interface, 
encompassing acoustic waves in the fluid  region, transmitted P- 
waves in the solid region, P-S converted waves, Leaky Rayleigh 
waves, and Scholte waves propagating along the fluid-solid inter
face. Similarly to Model 1, seismic recordings from seven receivers 
(R1–R7, at depths of 992 m) at offsets of − 732 m, − 460 m, − 188 m, 
84 m, 356 m, 628 m, and 900 m are extracted and compared with 
results obtained using the SEM method. As illustrated in Fig. 8, a 
close agreement between the two methods is observed, under
scoring the feasibility of implicitly expressing fluid-solid boundary 
conditions in staggered-grid FDM and the effectiveness of simu
lating seismic wave propagation in fluid-solid coupled media.

3.2. Case 2: an irregular fluid-solid interface model

In this section, we demonstrate the effectiveness of the derived 
expression for the irregular fluid-solid interface in staggered-grid 
FDM through numerical experiments. As depicted in Fig. 9, we 
construct a solid-fluid  coupled model featuring an irregular 
interface. The model dimensions are 3840 m × 2880 m, discretized 
into 1281 × 961 grids. The lower solid region exhibits a P-wave 

velocity of 3500 m/s, S-wave velocity of 1963 m/s, and density of 
2500 kg/m3, while the upper fluid region has a P-wave velocity of 
1500 m/s and density of 1000 kg/m3. A seismic source is posi
tioned in the fluid region, represented by a pressure source excited 
at a depth of 1140 m (as indicated by the red star in Fig. 9). The 
source time function is a Ricker wavelet with a dominant fre
quency of 17 Hz, recorded for 1.6 s with a time step of 0.4 ms. 
Fig. 10(a)–(c) and Fig. 11(a)–(c) respectively illustrate the hori
zontal and vertical components of wavefield snapshots at different 
times (t = 0.48 s, t = 0.90 s, and t = 1.28 s). These snapshots clearly 
depict transmitted P-waves and P-S waves in the solid region, 

Fig. 8. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot 
(b) shows the vertical component of the particle velocity.
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acoustic waves in the fluid region, and the propagation of Scholte 
waves and leaky Rayleigh waves along the interface. This obser
vation confirms the effectiveness of the proposed expression for 
the irregular fluid-solid interface. However, noticeable diffraction 
noise is also observed in the fluid  region of the wavefield  snap
shots, stemming from scattering at the turning points of grid cells 
approximating irregular surfaces using staircase functions. Fig. 12
presents the horizontal and vertical components of particle ve
locity single-shot records for SEM and FDM numerical simulations 
of the fluid-solid  coupled model. The first  row represents hori
zontal particle velocity components, while the second row repre
sents vertical components. Fig. 12(a) and (d) depict the results of 
SEM, whereas Fig. 12(b) and (e) illustrate the results of the pro
posed FDM. From the single-shot records, it is evident that, aside 
from the pronounced staircase diffraction noise, the results ob
tained by the proposed FDM closely resemble those of SEM.

To mitigate staircase diffraction noise, we employ the super
position method to discretize the irregular fluid-solid  interface. 
Before conducting numerical experiments, we needed to deter
mine a suitable value of N to set different thresholds for the 
staircase discretization of the irregular interface. If N is too large, it 

will increase the computational cost, and if it is too small, it may 
not effectively suppress the staircase diffractions. To determine the 
appropriate value of N, we compared the results calculated by the 
proposed method with those calculated by the SPECFEM2D soft
ware package and calculated the L2 norm misfits. Fig. 13 shows the 
relationship between different values of N and L2 norm misfits, 
and it can be observed that when N <6, the error decreases 
gradually with the increase of N. When N > 6, the magnitude of the 
error reduction becomes smaller with the increase of N. Consid
ering both computational cost and the L2 norm misfits, we choose 
N = 6 for the following numerical tests. The second rows in Figs. 10 
and 11 illustrate the simulation results obtained after discretizing 
the irregular interface using the superposition method. Comparing 
these results with those obtained in the first row without using the 
superposition method, we can clearly observe effective suppres
sion of staircase diffraction noise. Fig. 12(c) and (f) present single- 
shot records obtained after discretizing the irregular interface 
using the superposition method, showcasing the suppression ef
fect on staircase diffraction noise. To further illustrate the effec
tiveness of the superposition method, Fig. 12(g) compares a 
seismic record at an offset of 60 m. The blue trace represents the 
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Fig. 12. Single-shot records of particle velocities in the irregular fluid-solid interface model and single-trace comparison, subplots (a), (b) and (c) are single-shot records of the 
horizontal component of particle velocities obtained by the SEM, the FDM without the superposition method and the FDM with the superposition method; subplots (d), (e) and (f) 
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SEM result, while the black and red traces correspond to the FDM 
results obtained with and without the superposition method, 
respectively. It is evident that the staircase diffraction noise in the 
results obtained after superposition-based discretization of the 
irregular interface is effectively suppressed, thereby demon
strating the effectiveness of our superposition method in miti
gating staircase diffraction noise. Finally, to verify the accuracy of 
the proposed method in numerically simulating irregular fluid- 
solid interfaces, we compare single-trace records from seven re
ceivers located at offsets of − 237, − 60, 240, 663, 840, 1224, and 

1575 m with SEM, as shown in Fig. 14. From Fig. 14, we observe 
good agreement between both horizontal and vertical particle 
velocity components and the results obtained from SEM, thereby 
confirming  the accuracy of the proposed FDM in numerical 
simulation when dealing with irregular fluid-solid  interfaces. In 
the comparison, we further include the treatment of harmonic 
averaging of the shear modulus. We can see that the harmonic 
averaging treatment does not fit the reference results well at far 
offset distances (e.g., the vertical component of the R7 receiver) 
compared to the proposed method.

3.3. Case 3: a layered fluid-solid coupled model

Finally, based on the irregular fluid-solid interface double-layer 
model, we establish a multi-layer model. The schematic diagram 
of the model and the P-wave velocity and density for each layer are 
illustrated in Fig. 15, where the units for velocity are m/s and for 
density are kg/m3. Except for the water layer, the S-wave velocity 
of the solid layer can be determined from a Poisson's ratio of 0.25. 
The pressure source is positioned within the fluid  at a depth of 
540 m, as indicated by the red star in Fig. 15. The source wavelet is 
a 13 Hz Ricker wavelet, with a recording time of 2 s and a time step 
of 0.2 ms. The comparison of the recorded single-shot records is 
depicted in Fig. 16, where the three columns from left to right 
represent the results of SEM, FDM without using the superposition 
method, and FDM using the superposition method, respectively. 
From the single-shot records, the presence of inter-layer reflection 
waves is clearly observed. Additionally, the existence of staircase 
noise is evident in (b) and (e) of Fig. 16, obscuring the reflection 
wave signals. However, after employing the superposition method 

Fig. 14. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot 
(b) shows the vertical component of the particle velocity. FDM-HM refers here to the result of implicitly processing the boundary conditions using harmonic averaging of the shear 
modulus.
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for irregular interface discretization, the staircase diffraction noise 
is effectively suppressed, and its presence is no longer observed in 
the reflection wave portion. To further validate the accuracy of the 
proposed method, single-trace records at different offsets were 
compared with SEM, as shown in Fig. 17, for both the horizontal 
and vertical components of particle velocity. From the comparison 
results, it can be observed that the results of FDM are in good 
agreement with SEM, further demonstrating the effectiveness and 
accuracy of our method in modeling irregular seabed layer models.

4. Discussion

4.1. Computational costs and memory requirements

When utilizing the superposition method to discretize irregular 
fluid-solid interfaces, six different discretizations are necessary to 
effectively suppress staircase diffraction noise. To illustrate the 
computational cost issue, we conducted numerical simulations 
using a simplified model, as shown in Fig. 18. The model has di
mensions of 2000 m × 1000 m, discretized into two cases: 
501 × 251 grids and 1001 × 501 grids, corresponding to grid 
spacings of 4 m and 2 m, respectively. In the solid portion, the P- 
wave velocity is 2700 m/s, the S-wave velocity is 1400 m/s, and the 
density is 1200 kg/m3. In the fluid portion, the P-wave velocity is 
1500 m/s, and the density is 1000 kg/m3. A pressure source is 
located at the red star in Fig. 18. Fig. 19 illustrates the recorded 
single-shot records, with the first  row indicating the horizontal 
component of particle velocity and the second row indicating the 
vertical components. From left to right, the three columns repre
sent grid spacings of h = 2 m, h = 4 m, and h = 4 m using the 
superposition method for discretization, where h is the grid 
spacing. From Fig. 19, it is evident that using a grid spacing of 
h = 4 m for numerical simulation results in noticeable staircase 
diffraction noise (Fig. 19(b) and (e)). When the grid is refined to 
h = 2 m, the staircase diffraction noise is effectively suppressed 
(Fig. 19(a) and (d)). Similarly, employing the superposition method 
for discretization with h = 4 m results in effective suppression of 
staircase diffraction noise (Fig. 19(c) and (f)). Furthermore, a 
comparison is made between the results obtained using the su
perposition method for discretization and those obtained with 
h = 2 m. The comparison of single-shot records is shown in Fig. 20. 
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Fig. 16. Single-shot records of particle vibration velocities in the layered fluid-solid coupled model, subplots (a), (b) and (c) are single-shot records of the horizontal component of 
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The comparison demonstrates good agreement between the two, 
indicating that using a grid spacing of h = 4 m in conjunction with 
the superposition method for discretization achieves precision 
and reduces staircase diffraction noise intensity comparable to 
that obtained with h = 2 m. The calculations were executed on an 
AMD Ryzen 9 5950X processor. The computation time for dis
cretization using a grid spacing of h = 4 m in conjunction with the 

superposition method was 406 s, while the computation time for a 
grid spacing of h = 2 m was 552 s. Thus, the proposed discretiza
tion method using the superposition method reduces computation 
time compared to conventional grid spacing. The grid spacing of 
h = 2 m necessitates twice the sampling in each Cartesian direc
tion compared to h = 4 m. Additionally, for smaller grid spacings, 
the time step must be reduced to meet stability criteria. Therefore, 
as the grid spacing decreases from h = 2 m to h = 4 m, the 
computational cost reduces by 8 times. Considering six super
position iterations, the final  computation cost using the super
position method for discretization with a grid spacing of h = 4 m 
should ideally be 3/4 of the computation cost with h = 2 m. The 
ratio of computation times in our calculations is close to 3/4, 
further confirming our inference. If extended to three-dimensional 
numerical simulations, the ideal computation cost using the su
perposition method for discretization should be 3/8 of the 
computation cost with conventional grid spacing. From the above 
comparison, it can be observed that when employing the super
position method for discretization, the computation cost is 
reduced compared to spatial sampling strategies that effectively 
suppress staircase diffraction noise.

Furthermore, when employing smaller grid spacing for nu
merical simulations, all stresses, velocities, and other parame
ters at every grid point must be stored in memory 
simultaneously, leading to a significant  demand for memory. 
Once memory requirements cannot be met, it becomes chal
lenging to obtain high-resolution numerical simulation results. 
The method we propose involves using larger grid spacing for 
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Fig. 17. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and subplot 
(b) shows the vertical component of the particle velocity.
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Fig. 19. (a), (b) and (c) are single-shot records of the horizontal component of the particle velocity for h = 2 m, h = 4 m and h = 4 (using the superposition method of dis
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Fig. 20. Comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity and 
subplot (b) shows the vertical component of the particle velocity.
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multiple independent numerical simulations. With this 
approach, the larger memory requirements are distributed 
among the individual numerical simulations, making it easier to 
meet memory demands. This distributed memory usage strat
egy facilitates high-resolution simulations without exceeding 
memory constraints.

4.2. Code portability and expandability

The proposed method involves straightforward modifications 
of model parameters at the interface. This simplicity makes it easy 
to adapt for conventional Cartesian staggered-grid FDM schemes 
and commonly used GPU parallel computing systems in the oil and 
gas industry. Moreover, the method can be readily extended to 
other types of media, including anisotropic media, viscoelastic 
media, and more.

5. Conclusion

To address the challenges of untreated boundary conditions 
and staircase diffraction noise in irregular interfaces when 
employing the first-order velocity-stress staggered-grid FDM for 
fluid-solid  coupled medium numerical simulation, this paper 
proposes two solutions:

(1) Implicit Boundary Condition Expression: Leveraging 
average medium theory and fluid-solid  boundary condi
tions, the paper deduces constitutive and density relation
ships at the fluid-solid  boundary. By modifying interface 
parameters based on these relationships, explicit fluid-solid 
boundary conditions are implicitly incorporated into nu
merical simulations.

(2) Superposition-based Interface Discretization: Utilizing the 
superposition method, the interface undergoes multiple 
discretizations by employing different thresholds. Numeri
cal simulations are conducted for each discretized interface 
model, and the final  results are obtained through 
superposition.

Numerical experiments demonstrate that the proposed 
method yields simulation results in good agreement with the SEM 
for both horizontal and irregular interfaces. Furthermore, 

employing the superposition method for fluid-solid  interface 
discretization effectively suppresses staircase diffraction noise 
without necessitating grid refinement. Despite conducting multi
ple simulations for the same model, the computational cost re
mains low compared to grid refinement, and memory 
requirements are effectively reduced.
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Appendix

In marine seismic exploration, geophones are typically placed 
on the seafloor  or via streamers below the sea surface. It's un
common to place them in the rock or weathered layer beneath the 
seafloor. Yet, to verify the feasibility and accuracy of our method, 
we resimulated the four models in the “Numerical experiment” 
part, placing geophones at the vertical mirror position relative to 
the original ones. We then compared the results with those from 
the SEM method. The comparison results for Model 1, Model 2, the 
simple irregular-surface model, and the layered irregular-surface 
model are in Figs. A1–A4. The results indicate that our method 
can also fit the SEM results well when signals are received in the 
solid.
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Fig. A1. Model 1: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity 
and subplot (b) shows the vertical component of the particle velocity.
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Fig. A2. Model 2: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal component of the particle velocity 
and subplot (b) shows the vertical component of the particle velocity.
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Fig. A3. The simple irregular-surface model: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal 
component of the particle velocity and subplot (b) shows the vertical component of the particle velocity.
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Fig. A4. The layered irregular-surface model: comparison of single-trace seismic records at different offset distances. Subplot (a) shows the comparison of the horizontal 
component of the particle velocity and subplot (b) shows the vertical component of the particle velocity.
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