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ABSTRACT

With the rapid development of deep learning neural networks, new solutions have emerged for
addressing fluid flow problems in porous media. Combining data-driven approaches with physical
constraints has become a hot research direction, with physics-informed neural networks (PINNs) being
the most popular hybrid model. PINNs have gained widespread attention in subsurface fluid flow
simulations due to their low computational resource requirements, fast training speeds, strong gener-
alization capabilities, and broad applicability. Despite success in homogeneous settings, standard PINNs
face challenges in accurately calculating flux between irregular Eulerian cells with disparate properties
and capturing global field influences on local cells. This limits their suitability for heterogeneous res-
ervoirs and the irregular Eulerian grids frequently used in reservoir. To address these challenges, this
study proposes a physics-informed graph neural network (PIGNN) model. The PIGNN model treats the
entire field as a whole, integrating information from neighboring grids and physical laws into the so-
lution for the target grid, thereby improving the accuracy of solving partial differential equations in
heterogeneous and Eulerian irregular grids. The optimized model was applied to pressure field pre-
diction in a spatially heterogeneous reservoir, achieving an average L, error and R? score of 6.710 x 10~*
and 0.998, respectively, which confirms the effectiveness of model. Compared to the conventional PINN
model, the average L, error was reduced by 76.93%, the average R? score increased by 3.56%. Moreover,
evaluating robustness, training the PIGNN model using only 54% and 76% of the original data yielded
average relative L, error reductions of 58.63% and 56.22%, respectively, compared to the PINN model.
These results confirm the superior performance of this approach compared to PINN.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

1. Introduction

reservoirs by discretizing and solving differential equations.
However, these traditional methods often face a range of chal-

In the process of oil and gas reservoir development, accurately
calculating the fluid flow state within the pores is crucial for the
effective development and management of underground oil and
gas resources. Traditional numerical simulation methods often
simulate the movement of fluids and pressure changes in
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lenges and limitations. Numerical simulation techniques, typically
based on finite difference, finite element, or finite volume
methods, often encounter restrictions when dealing with nonlin-
earity, heterogeneity, and multiscale problems. Numerical simu-
lation methods generally require iterative approximation of the
correct solution to the equations. Therefore, if the discrete matrix
of the model is in a large-scale ill-conditioned state, the compu-
tational cost can be extremely high (Li et al., 2019). Additionally,
when dealing with large-scale oil and gas reservoir simulations, as
well as reservoir parameter inversion and optimization, the
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computational cost and speed can become unacceptable. These
drawbacks severely limit the real-time capability of simulations
and the efficiency of inversion and optimization calculations.
Given the limitations of traditional numerical simulation models,
several methods have emerged in recent years to improve
computational efficiency, such as upscaling methods (Li et al.,
2021; Syed et al., 2020), mixed finite volume method (FVM)/
finite element method (FEM) (Ghoreishian Amiri et al., 2017; Shao
et al., 2021), polynomial chaos expansion (PCE) (Jain et al., 2017;
Tarakanov and Elsheikh, 2019), Gaussian process (Conrad et al.,
2016; Hamdi et al, 2017), deep-learning-based methods
(Atadeger et al., 2022; Kingma and Dhariwal, 2018), etc.

The rapid development of artificial intelligence and the suc-
cessful application of neural networks in high-dimensional data
regression in computer vision and natural language processing
have stimulated research into building surrogate models for high-
dimensional nonlinear systems based on deep learning methods
(Lazzara et al., 2023; Zhao et al., 2023). Although neural network
approaches have achieved widespread application and great suc-
cess in engineering, most models rely on data-driven methods to
extract target features (Han and Xue, 2023; Zhu et al., 2020). This
approach, however, presents some unresolved issues (Oishi and
Yagawa, 2017; Yuan et al., 2022). First, data-driven methods
require a large amount of high-quality data, and errors in the data
can significantly affect the model (Xue et al., 2023). Second, during
training, data-driven methods are prone to overfitting, leading to
weak generalization ability. Additionally, due to the lack of guid-
ance from physical theories, the model's predictions may some-
times violate scientific principles. To address these issues, a model
that integrates data-driven methods with physical knowledge is
needed to enhance its consistency with predictions from tradi-
tional physics-driven modeling. Researchers have explored various
strategies to embed physics-based priors into machine learning,
influencing aspects like network structure, loss functions, and
optimization algorithms. Kang et al. (2025), for instance, intro-
duced a methodology employing strong physical constraints by
integrating mechanistic insights with data-driven models;
leveraging a physics-informed autoencoder, they incorporated
prior knowledge from well log interpretation into their network
model. In related work, Qu et al. (2023) proposed a deep neural
network for forecasting fracturing parameters. Addressing the
challenge of limited data availability, their model incorporated
physical constraints based on field expertise and the principle of
fracture volume conservation to enhance predictive accuracy. To
incorporate physical partial differential equation (PDE) constraints
into neural network models, Raissi et al. (2019) proposed physics-
informed neural networks (PINNs), which incorporate physical
knowledge into network training. Using the residuals of nonlinear
partial differential equations as constraints, the network is trained
with automatic differentiation on grid data. With this method, the
network can learn any underlying physical equations. Based on the
PINN model framework, researchers have proposed numerous
network models with various strengths to address different issues
(Chiuetal., 2022; Hu et al., 2024; Meng et al., 2023). To address the
challenge of uncertainty propagation in high-dimensional elliptic
stochastic partial differential equations (SPDEs), Karumuri et al.
(2020) developed a new method. By introducing a physics-
informed loss function derived from the variational principle,
they trained a deep residual neural network, effectively addressing
the challenges of high-dimensional uncertainty propagation and
its inverse problems. To solve fluid flow problems in geological
structures, many PINN-based models have been proposed (Han
et al,, 2023). Shan et al. (2023) introduced a PINN incorporating
long short-term memory (LSTM) and attention mechanisms to
solve the Buckley-Leverett partial differential equation governing
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two-phase flow in porous media. Wang et al. (2020) developed the
theory-guided neural network (TgNN). This model is trained based
on observed or simulated data, with guidance from physical laws,
engineering controls, and expert knowledge, achieving higher
prediction accuracy compared to traditional artificial neural net-
works. To address the challenge of limited access to labeled data,
Zhu et al. (2019) developed a model that incorporates the gov-
erning equations of the physical model into the loss function. This
model can be trained without any labeled data and generates
prediction results comparable to those of data-driven supervised
learning models. To tackle the challenges posed by anisotropy and
source/sink terms when simulating flow on a Eulerian grid. A deep
learning framework named the theory-guided convolutional
neural network (TgCNN) was developed by Wang et al. (2021) for
the purpose of effective uncertainty quantification and data
assimilation in reservoir flow scenarios involving uncertain model
parameters. Han et al. (2024) proposed criss-cross physics-
informed convolutional neural networks (CC-PINN), which use
predefined two-dimensional convolutional layers to represent the
spatial correlation between neighboring locations. This approach
learns the solutions to partial differential equations with spatial
heterogeneity parameters that possess physical properties. By
improving the PINN model, these researchers have cleverly inte-
grated physical constraints into neural networks to solve partial
differential equations in physical fields. However, these advance-
ments are still insufficient for accurately solving the fluid flow
states in Eulerian unstructured grids with spatial heterogeneity.
In the process of oil and gas reservoir development, grid
refinement is necessary to improve the accuracy of simulations.
However, this leads to a decrease in computational efficiency for
reservoir numerical simulations. On the other hand, increasing
grid size to improve computational efficiency results in the loss of
some geological information, thereby reducing the accuracy of the
simulations. Since Eulerian irregular grids can adaptively adjust
their sizes based on specific needs—dividing into smaller grids in
areas with large pressure drops and larger grids in areas with
smaller pressure drops—they can achieve a balance between high
accuracy and computational efficiency. As a result, they are widely
used in the simulation of fluid flow in porous media (Mlacnik et al.,
2006). Previous deep neural network models were limited to
convolutional architectures on regular grids and could not be
extended to unstructured grid reservoir data. The PINN model,
which relies on automatic differentiation, exhibits good adapt-
ability in handling isotropic problems. However, due to the
inability of automatic differentiation to enforce flux continuity
across heterogeneous grids, the PINN framework faces challenges
in accurately capturing the interconnectivity of heterogeneous,
irregular grids with differing physical properties in anisotropic
scenarios (Zhang et al., 2023). To address these issues, leveraging
the inherent advantages of graph structures in representing un-
structured data, and building on previous research (Pfaff et al.,
2021; Shao et al., 2023), we propose PIGNN, a novel physics-
informed graph neural network. By incorporating graph convolu-
tional layers with customized adjacency-based convolution ker-
nels, the model strictly enforces flux continuity between grid cells
and accurately represents the discretized finite volume method
(FVM) control equations, harmonic averaging of permeability, and
the upwind-weighted differencing scheme. Building on these
design principles, the model not only approximates the training
data generated by numerical simulations but also employs the
finite volume method to approximate the residuals of the gov-
erning partial differential equations. It implicitly handles the
reservoir grid pressure and conductivity across cells, enabling the
strict enforcement of flux continuity between adjacent elements.
In addition, PIGNN leverages local message passing between
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adjacent nodes and the underlying data structure for training and
inference, which helps alleviate the challenges associated with
training deep neural networks. This model enables fast and ac-
curate prediction of fluid flow patterns in reservoirs and achieves
higher computational precision compared to conventional PINN
models.

The structure of this paper is as follows: Section 2 introduces
the governing equations for single-phase Darcy flow in reservoirs
and their discretized form based on the finite volume method.
Next, the network architecture of the PIGNN model and the
physics-informed training scheme are presented. Section 3 opti-
mizes the network's hyperparameters using single-phase reservoir
simulation data and verifies the superiority of the optimized
model in heterogeneous single-phase reservoirs. Additionally, the
PIGNN and PINN models are trained using training sets of varying
sizes to test the predictive performance of the PIGNN model under
different amounts of training data. Finally, Section 4 provides a
summary and discussion of the findings.

2. Methodology
2.1. Single-phase flow in subsurface

The fluid flow in reservoir formations is a typical problem of
porous media flow. In this study, we consider the general single-
phase Darcy governing equation for porous media in reservoir
formations. Additionally, the fluid in the reservoir is considered
slightly compressible in this study. The macroscopic behavior of
single-phase fluid must satisfy the continuity equation (Eq. (1))
and Darcy's law (Eq. (2)).

%‘FV'(P?)ZP% (1)
V= S(Vp —gpVz), (2)

where ¢ represents the porosity of the reservoir; p is the density of

the reservoir fluid; t denotes time; v represents the Darcy velocity
of the fluid; q is the source or sink term in the reservoir; K denotes
the absolute permeability of the reservoir; x is the viscosity of the
reservoir fluid; p represents the reservoir formation pressure; g is
the gravitational acceleration; and z represents the vertical
coordinate.

In this work, the compressibility of the slightly compressible
fluid and the rock can be expressed as follows:

1dp
Cr=—5-, 3
f pdp ()
1d¢
Cr=——, 4
= ()

where ¢; represents the fluid compressibility coefficient; and ¢,
represents the rock compressibility coefficient.

By substituting Darcy's law (Eq. (2)), the fluid compressibility
equation (Eq. (3)), and the rock compressibility equation (Eq. (4))
into the continuity equation (Eq. (1)), and neglecting vertical ef-
fects to consider only horizontal flow, we obtain the parabolic
equation for fluid pressure.
thﬁp‘;—? -V {’KW} =pq, (5)

)2
where c; represents the sum of the compressibility coefficients of
the rock and fluid, i.e., ¢t = ¢¢ + cr.
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The governing equation can be rewritten using the volume
factor and compressibility coefficient as

@aﬁ,v. [%Vp} =q,
o

B, ot
where B, represents the volume factor of oil in the reservoir.

(6)

2.2. Physics-informed graph neural network

Traditional neural network models, such as convolutional
neural networks (CNNs), deep neural networks (DNNs), and
recurrent neural networks (RNNs), have achieved significant suc-
cess in processing Euclidean structured data, such as images, text,
and audio. However, in many scientific fields, numerous real-
world research subjects and problems require complex non-
Euclidean graph representations, such as protein molecular
structures (Réau et al., 2023), social relationships (Hawthorne
et al., 2023), and transportation networks (Sant’Ana da Silva
et al., 2023). A graph is a special type of data structure used to
describe the attributes of natural entities and the complex re-
lationships between them. It is typically represented as G = (V,E),
where V represents the nodes of the network, and E represents the
edges connecting the nodes. In this study, V represents the center
of each reservoir grid, and E represents the contact surface be-
tween grids.

Graph neural networks (GNNs), with their powerful ability to
process structured data and extract high-order information, have
become an emerging technology in many recommendation prob-
lems. In this study, we designed a neural network model with an
encode-process-decode structure based on MeshGraphNets (Shao
et al., 2023), aimed at learning the numerical simulation patterns
of Eulerian irregular grid structures. This model serves as an effi-
cient and accurate alternative to traditional numerical simulation
models. The model predicts the graph data G'*! for the next time
step based on the graph data G! at the current time step.

In the encoder part, the Eulerian irregular data of the reservoir
is encoded into graph data G = (V,E). In the graph, the nodes V
represent the centers of the grids, with the grid pressure used as
the feature of each node. Since fluid flows bidirectionally across
the contact surfaces between grids in the reservoir, the edges in
the graph are encoded as bidirectional. The relative displacement
of the position coordinates on both sides of the contact surface, the
norm of the relative displacement, and the area of the contact
surface between the grids are used as edge features in the graph.
The features of G are encoded into multi-dimensional vectors
using a multilayer perceptron (MLP) network. The dimensionality
D of the target encoded vectors was treated as a hyperparameter
and optimized in subsequent research.

The processor part consists of multiple node and edge infor-
mation exchange blocks, where information is continuously
passed between nodes and edges within the graph neural network.
Each information exchange block has independent network pa-
rameters, and these blocks are connected in series, taking the
output of the previous block as the input for the next block,
thereby updating the information in the graph. The information
update process for nodes and edges in each exchange block can be
represented by the following equations:

emn < f* (emn, vm, vn), v —f" (Um7ze;nn>7 (7)
n

where e, represents the feature of the edge between node m and
node n; e, represents the updated feature of the edge between
node m and node n; vy represents the feature of node m; v,
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represents the feature of node n; v, represents the updated
feature of node m; fE and fV represent MLP networks with residual
connections.

In the decoder part, the decoder uses a MLP network to convert
the multi-dimensional node features v, from the processor into
output features p%1, such as pressure and other quantities. The set
of output features for all nodes Pt*1 is then used to update the
network nodes V , generating G'+1, thereby achieving the predic-
tion of the graph state at time step t + 1 based on previous time
step t.

2.3. Loss function

Although traditional data-driven methods have developed
rapidly, purely data-driven approaches are often considered black-
box systems with no physical interpretability. They fail to fully
leverage the implicit physical information contained in the
collected data, making the predicted outputs physically inconsis-
tent. In this study, we train the proposed PIGNN model using a
reservoir numerical simulation dataset based on the governing
equations of fluid flow. The model not only needs to approximate
the labeled data but also must satisfy the fluid flow governing
equations between adjacent time steps. Therefore, the model's loss
function must include both a data-driven loss and a physics-driven
loss. We define the loss function as

Loss = LoSSgata + LOSSppysicss (8)
where Lossg,, represents the data-driven loss; and LosSppysics
represents the physics-driven loss.

The data-driven loss function is defined as

Lossdata:ZZ(qgn —5;)7 (9)
t m

where t represents the time step; m represents the grid node; pt,

denotes the pressure value at node m at time step t; ﬁtm represents
the model-predicted pressure value at node m at time step t.

The flow governing equation (Eq. (6)) can be discretized using
the finite volume method. The discretized governing equation is

zj:Tid’Jrl (pj - pi) (%(: — l%) (pF+l

where i represents any grid block generated after grid discretiza-
tion; j represents the adjacent grids around grid i, as shown in
Fig. 1; V; denotes the volume of grid; At is the time step size; su-
perscripts n and n + 1 represent the previous and next time steps,
respectively; the volume factor B, is taken as the value of the grid
with higher pressure, i.e., using the upstream weighting value (Eq.
(1)), T,.”j+ 1 represents the transmissibility between the two adja-
cent grids i and j.

The irregular grid used in this study is the perpendicular
bisectional grid (PEBI), and the transmissibility between grids can
be expressed as Eq. (12).

ntl oV

At (10)

-pf)=a.

By; if p; >p;
Bo :{ , (11)
Byj if p; <p;
Kiji
T, =—3914 (12)
Y ﬂodij
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®
Q

Fig. 1. Reservoir grid element structure.

where Kj; represents the harmonic mean of the permeability be-
tween grid i and grid j; the fluid viscosity y, is taken as the vis-
cosity at the grid with the higher pressure, i.e., using the upstream
weighting (Eq. (13)); o represents the cross-sectional area be-
tween grid i and grid j; and d;; represents the distance between the
center of grid i and the center of grid j.

wo={

The well model can be defined by the Peacemen equation (Eq.

(14)).

Hoi 1f p;>pj
_ 7 (13)
moj if p; <pj

2nkh S (P =) (14)

“ao(n(re/Tw) + S

where k represents the permeability of the grid at the well point; h
denotes the thickness of the grid at the well point; p; is the pres-
sure in the grid at the well point; py represents the bottomhole
pressure; ry is the wellbore radius; and S denotes the skin factor of
well.

To ensure the continuity of flux between heterogeneous grids
and incorporate physical constraints into the graph neural
network, we propose a predefined physical graph neural network
convolution kernel, as illustrated in Fig. 2.

Thus, the residual of the discrete governing equation (Eq. (10))
can be represented using the physical graph neural network
convolution kernel as follows:

2
- 1 N ‘/1 ¢Cr Co n+1
MSEpnysics = N ; {A N (E a B—o) (pi

-9} - qi] 7
(15)

where MSEysics represents the residual loss of the physical gov-
physics — gnn — kernel denotes the physical graph convolution
kernel; N is the total number of grids; p{* 1 represents a vector of
length equal to the number of grids surrounding grid i, containing
the pressures pl’.‘+1 at time n+ 1; p™t! is a vector consisting of

surround
the pressures of the grids surrounding grid i; and g; denotes the

source or sink term at grid i.

erning equation; A = physics — gnn — kerne1~<pglfr1mund —p?“
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Physical graph neural network
convolutional kernel

Fig. 2. Physical graph convolution kernel.

For boundary condition constraints, this can be implemented
by simulating grid padding. If a closed boundary condition is used,
a grid with the same pressure as the boundary grid is added
outside the boundary to simulate a no-fluid-flow state. If a con-
stant pressure boundary is applied, a grid with a fixed pressure is
added outside the boundary to simulate fluid flow.

How to set the weight coefficients for the data matching loss
term and the physics constraint loss term in the loss function is a
problem without a definitive answer. Previous researchers typi-
cally set the weight coefficients manually based on experience or
optimized them through trial and error (Xu et al., 2021). In this
work, we adopt the training technique proposed by Han et al.
(2024). Since the physics constraint loss is built on top of the
data-driven loss, the reduction of the physics loss requires the
reduction of the data matching loss. Therefore, we first train the
neural network using only the data-driven approach. Once the
data-driven loss has been reduced to a certain level, we then add
the physics constraint loss to the loss function and continue
training the network weights using both data-driven and physics-
driven approaches to minimize the overall loss. This method not
only partially addresses the issue of setting the weight coefficients
for the loss terms, but also avoids the problem of the network's
output exceeding the domain of the physics constraint equations
due to random initialization. Additionally, it accelerates the net-
work's training process.

The model architecture and network hyperparameters of the
physics-constrained graph neural network are shown in Fig. 3 and
Table 1.

The input to the PIGNN network consists of node data and edge
data. The node data is the pressure data at the center of the
irregular grid from the previous time step, represented as a one-
dimensional vector. The edge data includes spatial information
between adjacent grids from the previous time step, such as grid
contact area, distance between grid centers, etc., represented as a
multi-dimensional vector. The output is the pressure data at the
grid centers for the next time step. The network architecture is
shown in Fig. 3, and the network uses the ReLU activation function.
The Adam optimizer is used to optimize network parameters, with
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a learning rate decay strategy to accelerate training. The hyper-
parameters such as learning rate, learning rate decay rate, and
number of training iterations are detailed in Table 1.

In this study, the coefficient of determination and the relative
L, error are used as two metrics to evaluate the predictive per-
formance of the PIGNN model, as shown in Eqgs. (16) and (17).
Additionally, we used root mean squared error (RMSE) and mean
absolute percentage error (MAPE) to calculate the error between
the model-predicted bottomhole pressure and the reference bot-
tomhole pressure, thereby assessing the prediction accuracy of the
model. RMSE and MAPE can be calculated using Eqs. (18) and (19)

N
> (U — uy)?
i=1
R2_1—£:(u._u.)2, (16)
l:] 1 1
@l
L="p, (a7
(18)
(19)

where 1; represents the true value; u; represents the predicted
value; u; represents the average of the true values; N represents
the number of evaluated values; and |||, denotes the standard
Euclidean norm; |-| represents the absolute value.

3. Result and discussion

In this section, we optimized some of the model's hyper-
parameters and evaluated the performance of the optimized
model in heterogeneous reservoir problems. Additionally, we
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Pressure at time N + 1

Pressure at time N

Predicted pressure at time N + 1

Information propagation

4

: Residuals of physics Residuals of data

\

Update

Encoder Processor Decoder

Information propagation 4 )
MLP
o -
i MLP

Fig. 3. Model structure of the physics-informed graph neural network.

Table 1
The hyperparameters of the PIGNN.

Hyperparameter Range of value
Learning rate 0.001
Learning rate decay rate 0.1

Batch size 1

Input node dimension 1

Input edge dimension 4

1

32, 64, 128, 256
1,2,4,8

4,8, 16, 32

Output dimension

Hidden layer dimension
Number of layers

Information propagation steps

assessed the accuracy and robustness of the PIGNN model
compared to the PINN model.

First, we validate the model's performance using a two-
dimensional heterogeneous reservoir model. This model is
derived from an actual geological reservoir model with four closed
boundaries, and the label data was generated using commercial
numerical simulation software. The initial fluid pressure in the
reservoir is 300 bar. The reservoir model has dimensions of
1020 m x 1020 m x 10 m, and the PEBI (perpendicular bisection)
grid method is used to divide the reservoir into grid blocks of
varying shapes and sizes. Finer grids are applied in areas with
complex near-wellbore flow to improve calculation accuracy,
while coarser grids are used in regions with simpler far-wellbore
flow to enhance computational efficiency. The permeability of
the reservoir is heterogeneous across the plane, as shown in Fig. 4,
while the porosity of the reservoir is uniform at 0.3. The reservoir
rock and formation water are incompressible, and the volume
factor of the reservoir oil at reference pressure is 1.12, with a
compressibility factor of 0.0045 bar~'. The viscosities of the
reservoir water and oil are 0.3 and 3 cP, respectively, and remain
constant regardless of pressure changes. The reservoir model
contains three oil production wells, each producing at a fixed oil
rate of 70, 90 and 50 m>/d, respectively. The well coordinates are
(280, 280), (510, 510), and (780, 780). The reservoir simulation
runs for 100 time steps, with each time step representing a
duration of one month.
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Fig. 4. Permeability field.

3.1. Hyperparameter optimization of the model

In this study, the data from the first 65 time steps were used as
the training set, and the data from the remaining 35 time steps
were used as the test set to evaluate the model's performance. This
section investigated three parameters of the physics-constrained
graph neural network model that required sensitivity analysis:
the number of neurons in the MLP's hidden layers, the number of
hidden layers of the MLP, and the number of message-passing
steps in the neural network. By comparing the model's predic-
tion performance on the test set, the optimal values for these pa-
rameters were determined, with evaluation metrics including the
R? score and the relative L, error.

Empirically, the number of hidden layers in the model was pre-
set to 2, and the number of message-passing steps was set to 16.
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The impact of different numbers of neurons in the MLP's hidden
layers on the prediction results is shown in Fig. 5(a). With the
number of neurons in the MLP's hidden layers set to 256 and the
number of message-passing steps set to 16, sensitivity analysis
was conducted on different numbers of hidden layers of the MLP.
The impact of varying the number of hidden layers on the pre-
diction results is shown in Fig. 5(b). When the number of neurons
in the hidden layers of the MLP was 256 and the number of hidden
layers was 2, the model achieved the highest R? and the lowest
relative L, error on the test set, indicating optimal prediction
performance. As the number of neurons in the hidden layers and
the number of hidden layers increased, the model's prediction
accuracy first improved and then decreased. Initially, increasing
the number of neurons or hidden layers effectively enhanced the
model's ability to extract latent features from the data. However,
as the number of temporal-spatial convolution blocks increased,
the number of parameter matrices in the network grew larger.
Despite the physical information constraints, the model inevitably
experienced overfitting, leading to reduced prediction accuracy.

Through these experiments, the optimal values for the number
of neurons in the MLP's hidden layers and the number of MLP's
hidden layers were determined. The number of message-passing
steps in the model, being a major factor affecting the capability
and efficiency of node and edge information exchange, often had a
significant impact on the prediction results. For the number of
message-passing steps, the model was trained with settings of 4, 8,
16, and 32 after optimizing other hyperparameters, and the pre-
diction performance was analyzed. The impact of different
numbers of message-passing steps on the prediction results is
shown in Fig. 5(c). When the number of message-passing steps
was set to 4 or 8, insufficient transmission of node and edge in-
formation resulted in poorer prediction performance, with a lower
coefficient of determination and a higher relative L, error. When
the number of message-passing steps was set to 32, excessive
transmission of node and edge information led to the amplification
of irrelevant information, resulting in decreased prediction accu-
racy and poorer performance. When the number of message-
passing steps was 16, the model achieved a balance between
effective feature extraction, elimination of irrelevant information,
and computational efficiency, resulting in the highest coefficient of
determination and the lowest relative L, error, indicating the best
prediction accuracy.

3.2. Model comparison

In this section, we continue using the numerical simulation
data from the previous section as the dataset. The data from the
first 65 time steps are extracted as the training dataset for the
neural network model, while the data from the last 35 time steps
serve as the test set. We establish the optimized PIGNN and PINN
models, iteratively adjusting the network parameters using the
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training data, and predicting the future pressure field in the test
set to compare the predictive accuracy of the PIGNN and PINN
models. Additionally, to facilitate a multi-angle visual comparison
of the model differences, we compute the fluid flow behavior
within the reservoir using Eq. (2) and the predict pressure fields. At
time step 75, the predicted pressures and velocity from the PIGNN
and PINN models, compared to the reference pressure, are shown
in Fig. 6. Similarly, at time step 100, the predicted pressures and
velocity are shown in Fig. 7. The experimental results indicate that,
compared to the PINN model, the PIGNN model produces pressure
and velocity fields more closely aligned with the reference pres-
sure and velocity field, making it better suited for handling fluid
flow and pressure distribution in heterogeneous reservoir models.

As shown in Fig. 8, we present a quantitative comparison be-
tween the PIGNN and PINN models. The figure illustrates the
correlation between the predicted values and the reference values
at time steps 75 and 100 for both the PIGNN and PINN models.
From the figure, it is evident that the PIGNN model exhibits a
better fit between the predicted values and the reference values,
resulting in higher prediction accuracy. Additionally, as the time
steps increase, the correlation between the predicted values and
reference values for the PINN model weakens rapidly, leading to a
sharp decline in accuracy. In contrast, the PIGNN model shows a
slower decline in prediction accuracy over time.

Fig. 9 compares the PIGNN and PINN models by illustrating
their relative L, errors and R? scores of pressures at each time step
on the test set. Averaged over the time steps, the PINN model
shows a relative L, error of 2.908 x 10~ and an R? score of 0.964.
The PIGNN model demonstrates superior performance, with its
average relative L, error reduced to 6.710 x 10~% (a 76.93%
decrease from PINN) and its average R? score increased to 0.998 (a
3.56% improvement over PINN). When the time steps are small,
the prediction errors of the PIGNN and PINN models are quite
similar. However, as the prediction time steps increase, the error in
the PINN model grows exponentially, while the PIGNN model
shows a slower increase in prediction error, demonstrating better
stability. This is because the graph convolution kernel effectively
captures the planar heterogeneity of permeability, resulting in
slower accumulation of prediction errors. In contrast, the PINN
model struggles to learn the heterogeneous characteristics of the
reservoir, leading to an exponential increase in prediction error in
the later time steps of the test set.

To further compare the performance of the PIGNN and PINN
models, the prediction results of bottomhole pressure in the test
set for both models are plotted Fig. 10 and compared with the
reference values obtained from numerical simulation. From the
figure, it is clear that the PINN model has larger prediction errors,
and these errors increase over time. In contrast, the values pre-
dicted by the PIGNN model almost overlap with the reference
pressure, showing much higher accuracy than the PINN model.
This may be due to the difficulty of the PINN model in learning the
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Fig. 6. Pressure (a) and velocity (b) fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time step 75.
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Fig. 7. Pressure (a) and velocity (b) fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time step 100.

source and sink characteristics at the well points, leading to poor predicted bottomhole pressure for the three wells was calculated,
convergence and inaccurate predictions in regions with large as shown in Table 2.

pressure gradients. To quantify the prediction performance of both After multiple comparisons, it is evident that, under the
models for bottomhole pressure, the RMSE and MAPE in the same number of iterations, the prediction accuracy of the
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Fig. 9. The relative L, error (a) and R? score (b) obtained by PIGNN and PINN models on the test dataset.

PIGNN model is superior to that of the PINN model. The
PIGNN model is better equipped to handle fluid flow and
pressure distribution in reservoirs with planar heterogeneity.
This effectiveness may stem from the ability of the PIGNN

model to accurately calculate the residual of the discrete
percolation partial differential equation via predefined graph
convolutional kernels, while simultaneously predicting the
pressure of a target grid cell for the next step using
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Fig. 10. The bottomhole pressures of well-1 (a), well-2 (b), and well-3 (c) obtained by numerical simulation, PIGNN model, and PINN model.
Table 2
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models.
Model RMSE MAPE
Well-1 Well-2 Well-3 Well-1 Well-2 Well-3
PIGNN 0.418 0.231 0.485 1.393 x 1073 8.590 x 1074 1.617 x 1073
PINN 4.158 1.349 1.647 1.770 x 1072 6.011 x 1073 6.718 x 1073

information from the target and adjacent cells at the previous
time step.

3.3. Effect of different training data volumes

In the previous section, the training data consisted of 65 time
steps, while the prediction data covered 35 time steps, with the
training data accounting for 65% of the total dataset. However, in
some real-world scenarios, the available data might not meet the
requirements for training data. Therefore, in this section, we

Pressure, bar

investigated and compared the prediction performance of the
PIGNN and PINN models under different training data volumes,
testing the robustness of the PIGNN model when the training data
was limited.

When the training dataset consists of 35 time steps, the pre-
diction results of the PIGNN and PINN models at time steps 45 and
75 are shown in Fig. 11. When the training dataset consists of 50
time steps, the prediction results at steps 60 and 85 are shown in
Fig. 12. The study reveals that the performance of the PIGNN model
is less affected by the size of the training dataset, whereas the
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Fig. 11. The pressure fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time steps 45 (a) and 75 (b) when the training set is 35 time

steps.
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Fig. 12. The pressure fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time steps 60 (a) and 85 (b) when the training set is 50 time

steps.

prediction accuracy of the PINN model deteriorates significantly as
the training data decreases, indicating that the PIGNN model ex-
hibits better robustness than the PINN model. This may be because
the PINN model relies solely on the data features of the target grid
and the differential terms at the grid points. When the amount of
data is limited, the model learns fewer features, leading to poorer
performance. In contrast, the PIGNN model considers the influence
of surrounding grids on the prediction of the target grid, providing
a broader view when predicting the pressure of the target grid.
This increases the influence of the physical constraint term in the
loss function, allowing the model to learn more features and
mitigating the negative impact of insufficient data, thus slowing
down the rate of performance degradation.
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Fig. 13 presents histograms of the relative L, errors on the test
dataset for models trained with varying amounts of data (repre-
sented by the number of training time steps). A lower relative L,
error is generally indicative of superior performance in regression
prediction. Specifically, with 35 training time steps, the PIGNN
model achieved a prediction error of 2.047 x 103, and with 50
time steps, the error was 1.761 x 103, These errors represent re-
ductions of 56.22% and 58.63%, respectively, compared to the
prediction errors of the PINN model under the same conditions
(4.677 x 1072 and 4.257 x 10~3). This comparison suggests that the
PIGNN model exhibits enhanced predictive robustness. Lower L,
errors demonstrate the model's superiority in regression predic-
tion. From the figure, it is evident that the PIGNN model exhibits
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Fig. 13. The relative L, errors obtained by PIGNN and PINN models on the test dataset when the training set is 35 (a) and 50 (b) time steps, respectively.
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Fig. 14. The bottomhole pressures of well-1 (left), well-2 (middle), and well-3 (right) obtained by numerical simulation, PIGNN model, and PINN model when the training set is 35

(a) and 50 (b) time steps.

Table 3
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models when the training set is 35 time steps.
Model RMSE MAPE
Well-1 Well-2 Well-3 Well-1 Well-2 Well-3
PIGNN 0.907 1.368 0.653 3.609 x 1073 5.947 x 1073 2470 x 1073
PINN 7.549 8.565 7.039 0.0324 0.0378 0.0282
Table 4
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models when the training set is 50 time steps.
Model RMSE MAPE
Well-1 Well-2 Well-3 Well-1 Well-2 Well-3
PIGNN 0.541 0.966 0.517 2.181 x 1073 4418 x 1073 1.726 x 1073
PINN 4.493 5.615 3.480 0.0199 0.0269 0.0144

better predictive performance. The L, error for each time step in
the test set increases as the time steps progress, likely due to the
cumulative prediction errors of the model. This aligns with the
classic theory of error accumulation in neural networks.

Fig. 14 shows the predicted bottomhole pressures for the test
set using both models. Comparing the predicted bottomhole
pressures of the three production wells with the reference
pressures reveals that the PINN model's predictions significantly
deviate from the actual bottomhole pressures, while the PIGNN
model's predictions align well with the actual pressure curves.
One explanation for the PINN model's accuracy limitations,
especially near well grids, involves challenges such as insuffi-
cient data to learn the governing flow physics and slow conver-
gence due to large pressure drops. The PIGNN model circumvents
these issues through its design: its graph neural network archi-
tecture, combined with predefined graph convolutional kernels,
enables it to effectively process structural information between
grid cells and embed physical laws, thus facilitating accurate
prediction of grid pressure. These results further demonstrate
the robustness and superiority of the PIGNN model. To
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quantitatively compare the prediction performance of the
models, the RMSE and MAPE for the predicted bottomhole
pressures were calculated, as shown in Tables 3 and 4. The re-
sults indicate that the prediction accuracy of the PIGNN model is
significantly higher than that of the PINN model, which is
consistent with the conclusions of the above.

4. Conclusions

In this work, we proposed the PIGNN model, a new framework
for graph-based deep learning applied to subsurface fluid flow,
aimed at predicting reservoir permeability fields defined on
commonly used unstructured grids. Leveraging the characteristics
of physical governing equations and graph neural networks, the
PIGNN model not only incorporates physical information like the
classical PINN model but also considers information from the
surroundings of the target, enhancing the model's prediction ac-
curacy and suitability for irregular grid numerical simulations. The
graph convolution module proposed in this study seamlessly
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integrates physical equations, boundary conditions, and fluxes
between grids into the model's residual calculation, improving
computational efficiency.

The optimized model was applied to pressure field prediction
in spatially heterogeneous reservoirs; the predicted average L,
error and R? score were 6.710 x 10~% and 0.998, respectively, by
which the model's effectiveness was validated. The prediction
performance of the PIGNN model was compared with that of the
classic PINN model; the PIGNN model's L, error was reduced by
76.93% compared to the PINN model, the R? score was increased by
3.56% compared to the PINN model, and as the time step increased,
the PIGNN model's prediction error grew slower compared to the
PINN model. In addition, a better pressure fitting effect at well
points was exhibited by the PIGNN model; the average RMSE and
MAPE errors were reduced by 84.15% and 87.28%, respectively,
compared to the PINN model. This indicates that a better conver-
gence effect is possessed by the PIGNN model in regions where
pressure changes rapidly. The prediction accuracy of the two
models when the amount of training data is small was discussed,
and the robustness of the two models regarding the amount of
training data was compared. When the prediction time steps were
reduced from 65 to 50 and 35, the PIGNN model's L, errors were
2.047 x 1072 and 1.761 x 1073 respectively; compared to the PINN
model's errors, they were reduced by 56.22% and 58.63%, by which
the robustness of the PIGNN model and its superiority over the
PINN model were proven. It is proven by these results that the
PIGNN model proposed by the research is superior to the existing
PINN model in predicting fluid flow in heterogeneous reservoirs.

Although the proposed PIGNN model exhibits strong perfor-
mance in addressing fluid flow in heterogeneous oil reservoirs,
certain aspects remain unexplored, and several technical chal-
lenges still exist. For example, the current study is based on a single-
phase reservoir flow model and only considers two-dimensional
planar flow, without accounting for water flooding scenarios,
oil-water two-phase flow, or three-dimensional flow dynamics.
Considering these limitations, future work will aim to extend the
model to two-phase and three-phase flow, three-dimensional
simulations, and further reduce reliance on labeled data.
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