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a b s t r a c t

With the rapid development of deep learning neural networks, new solutions have emerged for 
addressing fluid  flow problems in porous media. Combining data-driven approaches with physical 
constraints has become a hot research direction, with physics-informed neural networks (PINNs) being 
the most popular hybrid model. PINNs have gained widespread attention in subsurface fluid  flow 
simulations due to their low computational resource requirements, fast training speeds, strong gener
alization capabilities, and broad applicability. Despite success in homogeneous settings, standard PINNs 
face challenges in accurately calculating flux between irregular Eulerian cells with disparate properties 
and capturing global field  influences on local cells. This limits their suitability for heterogeneous res
ervoirs and the irregular Eulerian grids frequently used in reservoir. To address these challenges, this 
study proposes a physics-informed graph neural network (PIGNN) model. The PIGNN model treats the 
entire field as a whole, integrating information from neighboring grids and physical laws into the so
lution for the target grid, thereby improving the accuracy of solving partial differential equations in 
heterogeneous and Eulerian irregular grids. The optimized model was applied to pressure field  pre
diction in a spatially heterogeneous reservoir, achieving an average L2 error and R2 score of 6.710 × 10− 4 

and 0.998, respectively, which confirms the effectiveness of model. Compared to the conventional PINN 
model, the average L2 error was reduced by 76.93%, the average R2 score increased by 3.56%. Moreover, 
evaluating robustness, training the PIGNN model using only 54% and 76% of the original data yielded 
average relative L2 error reductions of 58.63% and 56.22%, respectively, compared to the PINN model. 
These results confirm the superior performance of this approach compared to PINN.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

In the process of oil and gas reservoir development, accurately 
calculating the fluid flow state within the pores is crucial for the 
effective development and management of underground oil and 
gas resources. Traditional numerical simulation methods often 
simulate the movement of fluids  and pressure changes in 

reservoirs by discretizing and solving differential equations. 
However, these traditional methods often face a range of chal
lenges and limitations. Numerical simulation techniques, typically 
based on finite difference, finite element, or finite volume 
methods, often encounter restrictions when dealing with nonlin
earity, heterogeneity, and multiscale problems. Numerical simu
lation methods generally require iterative approximation of the 
correct solution to the equations. Therefore, if the discrete matrix 
of the model is in a large-scale ill-conditioned state, the compu
tational cost can be extremely high (Li et al., 2019). Additionally, 
when dealing with large-scale oil and gas reservoir simulations, as 
well as reservoir parameter inversion and optimization, the 
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computational cost and speed can become unacceptable. These 
drawbacks severely limit the real-time capability of simulations 
and the efficiency  of inversion and optimization calculations. 
Given the limitations of traditional numerical simulation models, 
several methods have emerged in recent years to improve 
computational efficiency, such as upscaling methods (Li et al., 
2021; Syed et al., 2020), mixed finite  volume method (FVM)/ 
finite element method (FEM) (Ghoreishian Amiri et al., 2017; Shao 
et al., 2021), polynomial chaos expansion (PCE) (Jain et al., 2017; 
Tarakanov and Elsheikh, 2019), Gaussian process (Conrad et al., 
2016; Hamdi et al., 2017), deep-learning-based methods 
(Atadeger et al., 2022; Kingma and Dhariwal, 2018), etc.

The rapid development of artificial  intelligence and the suc
cessful application of neural networks in high-dimensional data 
regression in computer vision and natural language processing 
have stimulated research into building surrogate models for high- 
dimensional nonlinear systems based on deep learning methods 
(Lazzara et al., 2023; Zhao et al., 2023). Although neural network 
approaches have achieved widespread application and great suc
cess in engineering, most models rely on data-driven methods to 
extract target features (Han and Xue, 2023; Zhu et al., 2020). This 
approach, however, presents some unresolved issues (Oishi and 
Yagawa, 2017; Yuan et al., 2022). First, data-driven methods 
require a large amount of high-quality data, and errors in the data 
can significantly affect the model (Xue et al., 2023). Second, during 
training, data-driven methods are prone to overfitting, leading to 
weak generalization ability. Additionally, due to the lack of guid
ance from physical theories, the model's predictions may some
times violate scientific principles. To address these issues, a model 
that integrates data-driven methods with physical knowledge is 
needed to enhance its consistency with predictions from tradi
tional physics-driven modeling. Researchers have explored various 
strategies to embed physics-based priors into machine learning, 
influencing  aspects like network structure, loss functions, and 
optimization algorithms. Kang et al. (2025), for instance, intro
duced a methodology employing strong physical constraints by 
integrating mechanistic insights with data-driven models; 
leveraging a physics-informed autoencoder, they incorporated 
prior knowledge from well log interpretation into their network 
model. In related work, Qu et al. (2023) proposed a deep neural 
network for forecasting fracturing parameters. Addressing the 
challenge of limited data availability, their model incorporated 
physical constraints based on field expertise and the principle of 
fracture volume conservation to enhance predictive accuracy. To 
incorporate physical partial differential equation (PDE) constraints 
into neural network models, Raissi et al. (2019) proposed physics- 
informed neural networks (PINNs), which incorporate physical 
knowledge into network training. Using the residuals of nonlinear 
partial differential equations as constraints, the network is trained 
with automatic differentiation on grid data. With this method, the 
network can learn any underlying physical equations. Based on the 
PINN model framework, researchers have proposed numerous 
network models with various strengths to address different issues 
(Chiu et al., 2022; Hu et al., 2024; Meng et al., 2023). To address the 
challenge of uncertainty propagation in high-dimensional elliptic 
stochastic partial differential equations (SPDEs), Karumuri et al. 
(2020) developed a new method. By introducing a physics- 
informed loss function derived from the variational principle, 
they trained a deep residual neural network, effectively addressing 
the challenges of high-dimensional uncertainty propagation and 
its inverse problems. To solve fluid  flow  problems in geological 
structures, many PINN-based models have been proposed (Han 
et al., 2023). Shan et al. (2023) introduced a PINN incorporating 
long short-term memory (LSTM) and attention mechanisms to 
solve the Buckley–Leverett partial differential equation governing 

two-phase flow in porous media. Wang et al. (2020) developed the 
theory-guided neural network (TgNN). This model is trained based 
on observed or simulated data, with guidance from physical laws, 
engineering controls, and expert knowledge, achieving higher 
prediction accuracy compared to traditional artificial neural net
works. To address the challenge of limited access to labeled data, 
Zhu et al. (2019) developed a model that incorporates the gov
erning equations of the physical model into the loss function. This 
model can be trained without any labeled data and generates 
prediction results comparable to those of data-driven supervised 
learning models. To tackle the challenges posed by anisotropy and 
source/sink terms when simulating flow on a Eulerian grid. A deep 
learning framework named the theory-guided convolutional 
neural network (TgCNN) was developed by Wang et al. (2021) for 
the purpose of effective uncertainty quantification  and data 
assimilation in reservoir flow scenarios involving uncertain model 
parameters. Han et al. (2024) proposed criss-cross physics- 
informed convolutional neural networks (CC-PINN), which use 
predefined two-dimensional convolutional layers to represent the 
spatial correlation between neighboring locations. This approach 
learns the solutions to partial differential equations with spatial 
heterogeneity parameters that possess physical properties. By 
improving the PINN model, these researchers have cleverly inte
grated physical constraints into neural networks to solve partial 
differential equations in physical fields. However, these advance
ments are still insufficient  for accurately solving the fluid  flow 
states in Eulerian unstructured grids with spatial heterogeneity.

In the process of oil and gas reservoir development, grid 
refinement  is necessary to improve the accuracy of simulations. 
However, this leads to a decrease in computational efficiency for 
reservoir numerical simulations. On the other hand, increasing 
grid size to improve computational efficiency results in the loss of 
some geological information, thereby reducing the accuracy of the 
simulations. Since Eulerian irregular grids can adaptively adjust 
their sizes based on specific needs—dividing into smaller grids in 
areas with large pressure drops and larger grids in areas with 
smaller pressure drops—they can achieve a balance between high 
accuracy and computational efficiency. As a result, they are widely 
used in the simulation of fluid flow in porous media (Mlacnik et al., 
2006). Previous deep neural network models were limited to 
convolutional architectures on regular grids and could not be 
extended to unstructured grid reservoir data. The PINN model, 
which relies on automatic differentiation, exhibits good adapt
ability in handling isotropic problems. However, due to the 
inability of automatic differentiation to enforce flux  continuity 
across heterogeneous grids, the PINN framework faces challenges 
in accurately capturing the interconnectivity of heterogeneous, 
irregular grids with differing physical properties in anisotropic 
scenarios (Zhang et al., 2023). To address these issues, leveraging 
the inherent advantages of graph structures in representing un
structured data, and building on previous research (Pfaff et al., 
2021; Shao et al., 2023), we propose PIGNN, a novel physics- 
informed graph neural network. By incorporating graph convolu
tional layers with customized adjacency-based convolution ker
nels, the model strictly enforces flux continuity between grid cells 
and accurately represents the discretized finite volume method 
(FVM) control equations, harmonic averaging of permeability, and 
the upwind-weighted differencing scheme. Building on these 
design principles, the model not only approximates the training 
data generated by numerical simulations but also employs the 
finite  volume method to approximate the residuals of the gov
erning partial differential equations. It implicitly handles the 
reservoir grid pressure and conductivity across cells, enabling the 
strict enforcement of flux continuity between adjacent elements. 
In addition, PIGNN leverages local message passing between 
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adjacent nodes and the underlying data structure for training and 
inference, which helps alleviate the challenges associated with 
training deep neural networks. This model enables fast and ac
curate prediction of fluid flow patterns in reservoirs and achieves 
higher computational precision compared to conventional PINN 
models.

The structure of this paper is as follows: Section 2 introduces 
the governing equations for single-phase Darcy flow in reservoirs 
and their discretized form based on the finite  volume method. 
Next, the network architecture of the PIGNN model and the 
physics-informed training scheme are presented. Section 3 opti
mizes the network's hyperparameters using single-phase reservoir 
simulation data and verifies  the superiority of the optimized 
model in heterogeneous single-phase reservoirs. Additionally, the 
PIGNN and PINN models are trained using training sets of varying 
sizes to test the predictive performance of the PIGNN model under 
different amounts of training data. Finally, Section 4 provides a 
summary and discussion of the findings.

2. Methodology

2.1. Single-phase flow in subsurface

The fluid  flow in reservoir formations is a typical problem of 
porous media flow. In this study, we consider the general single- 
phase Darcy governing equation for porous media in reservoir 
formations. Additionally, the fluid  in the reservoir is considered 
slightly compressible in this study. The macroscopic behavior of 
single-phase fluid  must satisfy the continuity equation (Eq. (1)) 
and Darcy's law (Eq. (2)). 

∂(ϕρ)
∂t

+∇ ⋅
(
ρ v→
)
= ρq; (1) 

v→= −
K
μ
(∇p − gρ∇z); (2) 

where ϕ represents the porosity of the reservoir; ρ is the density of 

the reservoir fluid; t denotes time; v⇀ represents the Darcy velocity 
of the fluid; q is the source or sink term in the reservoir; K denotes 
the absolute permeability of the reservoir; μ is the viscosity of the 
reservoir fluid; p represents the reservoir formation pressure; g is 
the gravitational acceleration; and z represents the vertical 
coordinate.

In this work, the compressibility of the slightly compressible 
fluid and the rock can be expressed as follows: 

cf =
1
ρ

dρ
dp

; (3) 

cr =
1
ϕ

dϕ
dp

; (4) 

where cf represents the fluid  compressibility coefficient;  and cr 

represents the rock compressibility coefficient.
By substituting Darcy's law (Eq. (2)), the fluid compressibility 

equation (Eq. (3)), and the rock compressibility equation (Eq. (4)) 
into the continuity equation (Eq. (1)), and neglecting vertical ef
fects to consider only horizontal flow, we obtain the parabolic 
equation for fluid pressure. 

ctϕρ
∂p
∂t

− ∇ ⋅
[

ρK
μ
∇p
]

= ρq; (5) 

where ct represents the sum of the compressibility coefficients of 
the rock and fluid, i.e., ct = cf + cr.

The governing equation can be rewritten using the volume 
factor and compressibility coefficient as 

ctϕ
Bo

∂p
∂t

− ∇ ⋅
[

ρK
Boμ

∇p
]

= q; (6) 

where Bo represents the volume factor of oil in the reservoir.

2.2. Physics-informed graph neural network

Traditional neural network models, such as convolutional 
neural networks (CNNs), deep neural networks (DNNs), and 
recurrent neural networks (RNNs), have achieved significant suc
cess in processing Euclidean structured data, such as images, text, 
and audio. However, in many scientific  fields,  numerous real- 
world research subjects and problems require complex non- 
Euclidean graph representations, such as protein molecular 
structures (R�eau et al., 2023), social relationships (Hawthorne 
et al., 2023), and transportation networks (Sant’Ana da Silva 
et al., 2023). A graph is a special type of data structure used to 
describe the attributes of natural entities and the complex re
lationships between them. It is typically represented as G = (V;E), 
where V represents the nodes of the network, and E represents the 
edges connecting the nodes. In this study, V represents the center 
of each reservoir grid, and E represents the contact surface be
tween grids.

Graph neural networks (GNNs), with their powerful ability to 
process structured data and extract high-order information, have 
become an emerging technology in many recommendation prob
lems. In this study, we designed a neural network model with an 
encode-process-decode structure based on MeshGraphNets (Shao 
et al., 2023), aimed at learning the numerical simulation patterns 
of Eulerian irregular grid structures. This model serves as an effi
cient and accurate alternative to traditional numerical simulation 
models. The model predicts the graph data Gt+1 for the next time 
step based on the graph data Gt at the current time step.

In the encoder part, the Eulerian irregular data of the reservoir 
is encoded into graph data G = (V; E). In the graph, the nodes V 
represent the centers of the grids, with the grid pressure used as 
the feature of each node. Since fluid  flows bidirectionally across 
the contact surfaces between grids in the reservoir, the edges in 
the graph are encoded as bidirectional. The relative displacement 
of the position coordinates on both sides of the contact surface, the 
norm of the relative displacement, and the area of the contact 
surface between the grids are used as edge features in the graph. 
The features of Gt+1 are encoded into multi-dimensional vectors 
using a multilayer perceptron (MLP) network. The dimensionality 
D of the target encoded vectors was treated as a hyperparameter 
and optimized in subsequent research.

The processor part consists of multiple node and edge infor
mation exchange blocks, where information is continuously 
passed between nodes and edges within the graph neural network. 
Each information exchange block has independent network pa
rameters, and these blocks are connected in series, taking the 
output of the previous block as the input for the next block, 
thereby updating the information in the graph. The information 
update process for nodes and edges in each exchange block can be 
represented by the following equations: 

émn ← f E(emn; vm; vn); v́m←f V

(

vm;
∑

n
émn

)

; (7) 

where emn represents the feature of the edge between node m and 
node n; émn represents the updated feature of the edge between 
node m and node n; vm represents the feature of node m; vn 
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represents the feature of node n; v́m represents the updated 
feature of node m; f E and f V represent MLP networks with residual 
connections.

In the decoder part, the decoder uses a MLP network to convert 
the multi-dimensional node features v́m from the processor into 
output features pt+1

m , such as pressure and other quantities. The set 
of output features for all nodes Pt+1 is then used to update the 
network nodes V , generating Gt+1, thereby achieving the predic
tion of the graph state at time step t + 1 based on previous time 
step t.

2.3. Loss function

Although traditional data-driven methods have developed 
rapidly, purely data-driven approaches are often considered black- 
box systems with no physical interpretability. They fail to fully 
leverage the implicit physical information contained in the 
collected data, making the predicted outputs physically inconsis
tent. In this study, we train the proposed PIGNN model using a 
reservoir numerical simulation dataset based on the governing 
equations of fluid flow. The model not only needs to approximate 
the labeled data but also must satisfy the fluid  flow governing 
equations between adjacent time steps. Therefore, the model's loss 
function must include both a data-driven loss and a physics-driven 
loss. We define the loss function as 

Loss= Lossdata + Lossphysics; (8) 

where Lossdata represents the data-driven loss; and Lossphysics 
represents the physics-driven loss.

The data-driven loss function is defined as 

Lossdata =
∑

t

∑

m

(
qt

m − q̂t
m
)
; (9) 

where t represents the time step; m represents the grid node; pt
m 

denotes the pressure value at node m at time step t; p̂t
m represents 

the model-predicted pressure value at node m at time step t.
The flow governing equation (Eq. (6)) can be discretized using 

the finite volume method. The discretized governing equation is 

∑

j

Tn+1
i;j

(
pj − pi

)n+1
−

Vi

Δt

(
ϕcr

Bo
−

co

Bo

)(
pn+1

i − pn
i

)
= q; (10) 

where i represents any grid block generated after grid discretiza
tion; j represents the adjacent grids around grid i, as shown in 
Fig. 1; Vi denotes the volume of grid; Δt is the time step size; su
perscripts n and n + 1 represent the previous and next time steps, 
respectively; the volume factor Bo is taken as the value of the grid 
with higher pressure, i.e., using the upstream weighting value (Eq. 
(11)); Tn+1

i;j represents the transmissibility between the two adja

cent grids i and j.
The irregular grid used in this study is the perpendicular 

bisectional grid (PEBI), and the transmissibility between grids can 
be expressed as Eq. (12). 

Bo =

{ Bo;i if pi ≥ pj

B0;j if pi ≤ pj

; (11) 

Ti;j =
Kijωij

μodij
; (12) 

where Kij represents the harmonic mean of the permeability be
tween grid i and grid j; the fluid viscosity μo is taken as the vis
cosity at the grid with the higher pressure, i.e., using the upstream 
weighting (Eq. (13)); ωij represents the cross-sectional area be
tween grid i and grid j; and dij represents the distance between the 
center of grid i and the center of grid j. 

μo =

{ μo;i if pi ≥ pj

μ0;j if pi ≤ pj

; (13) 

The well model can be defined by the Peacemen equation (Eq. 
(14)). 

q=
2πkh

μo(ln(re=rw) + S)
(pw − pi); (14) 

where k represents the permeability of the grid at the well point; h 
denotes the thickness of the grid at the well point; pi is the pres
sure in the grid at the well point; pw represents the bottomhole 
pressure; rw is the wellbore radius; and S denotes the skin factor of 
well.

To ensure the continuity of flux between heterogeneous grids 
and incorporate physical constraints into the graph neural 
network, we propose a predefined physical graph neural network 
convolution kernel, as illustrated in Fig. 2.

Thus, the residual of the discrete governing equation (Eq. (10)) 
can be represented using the physical graph neural network 
convolution kernel as follows: 

MSEphysics =
1
N

∑N

i=1

[

A −
Vi
Δt

(
ϕcr

Bo
−

co

Bo

)(
pn+1

i − pn
i

)
− qi

]2

;

(15) 

where MSEphysics represents the residual loss of the physical gov

erning equation; A = physics − gnn − kernel⋅
(

pn+1
surround − pn+1

i

)
; 

physics − gnn − kernel denotes the physical graph convolution 
kernel; N is the total number of grids; pn+1

i represents a vector of 
length equal to the number of grids surrounding grid i, containing 
the pressures pn+1

i at time n+ 1; pn+1
surround is a vector consisting of 

the pressures of the grids surrounding grid i; and qi denotes the 
source or sink term at grid i.

Fig. 1. Reservoir grid element structure.
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For boundary condition constraints, this can be implemented 
by simulating grid padding. If a closed boundary condition is used, 
a grid with the same pressure as the boundary grid is added 
outside the boundary to simulate a no-fluid-flow state. If a con
stant pressure boundary is applied, a grid with a fixed pressure is 
added outside the boundary to simulate fluid flow.

How to set the weight coefficients for the data matching loss 
term and the physics constraint loss term in the loss function is a 
problem without a definitive answer. Previous researchers typi
cally set the weight coefficients manually based on experience or 
optimized them through trial and error (Xu et al., 2021). In this 
work, we adopt the training technique proposed by Han et al. 
(2024). Since the physics constraint loss is built on top of the 
data-driven loss, the reduction of the physics loss requires the 
reduction of the data matching loss. Therefore, we first train the 
neural network using only the data-driven approach. Once the 
data-driven loss has been reduced to a certain level, we then add 
the physics constraint loss to the loss function and continue 
training the network weights using both data-driven and physics- 
driven approaches to minimize the overall loss. This method not 
only partially addresses the issue of setting the weight coefficients 
for the loss terms, but also avoids the problem of the network's 
output exceeding the domain of the physics constraint equations 
due to random initialization. Additionally, it accelerates the net
work's training process.

The model architecture and network hyperparameters of the 
physics-constrained graph neural network are shown in Fig. 3 and 
Table 1.

The input to the PIGNN network consists of node data and edge 
data. The node data is the pressure data at the center of the 
irregular grid from the previous time step, represented as a one- 
dimensional vector. The edge data includes spatial information 
between adjacent grids from the previous time step, such as grid 
contact area, distance between grid centers, etc., represented as a 
multi-dimensional vector. The output is the pressure data at the 
grid centers for the next time step. The network architecture is 
shown in Fig. 3, and the network uses the ReLU activation function. 
The Adam optimizer is used to optimize network parameters, with 

a learning rate decay strategy to accelerate training. The hyper
parameters such as learning rate, learning rate decay rate, and 
number of training iterations are detailed in Table 1.

In this study, the coefficient of determination and the relative 
L2 error are used as two metrics to evaluate the predictive per
formance of the PIGNN model, as shown in Eqs. (16) and (17). 
Additionally, we used root mean squared error (RMSE) and mean 
absolute percentage error (MAPE) to calculate the error between 
the model-predicted bottomhole pressure and the reference bot
tomhole pressure, thereby assessing the prediction accuracy of the 
model. RMSE and MAPE can be calculated using Eqs. (18) and (19)

R2 =1 −

∑N

i=1
(ûi − ui)

2

∑N

i=1
(ui − ui)

2
; (16) 

L2 =
‖û − u‖2
‖u‖2

; (17) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(ui − ûi)
2

√
√
√
√ ; (18) 

MAPE=
1
N

∑N

i=1

⃒
⃒
⃒
⃒
ui − ûi

ui

⃒
⃒
⃒
⃒; (19) 

where ûi represents the true value; ui represents the predicted 
value; ui represents the average of the true values; N represents 
the number of evaluated values; and || ⋅||2 denotes the standard 
Euclidean norm; |⋅| represents the absolute value.

3. Result and discussion

In this section, we optimized some of the model's hyper
parameters and evaluated the performance of the optimized 
model in heterogeneous reservoir problems. Additionally, we 

Fig. 2. Physical graph convolution kernel.
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assessed the accuracy and robustness of the PIGNN model 
compared to the PINN model.

First, we validate the model's performance using a two- 
dimensional heterogeneous reservoir model. This model is 
derived from an actual geological reservoir model with four closed 
boundaries, and the label data was generated using commercial 
numerical simulation software. The initial fluid  pressure in the 
reservoir is 300 bar. The reservoir model has dimensions of 
1020 m× 1020 m× 10 m, and the PEBI (perpendicular bisection) 
grid method is used to divide the reservoir into grid blocks of 
varying shapes and sizes. Finer grids are applied in areas with 
complex near-wellbore flow  to improve calculation accuracy, 
while coarser grids are used in regions with simpler far-wellbore 
flow  to enhance computational efficiency. The permeability of 
the reservoir is heterogeneous across the plane, as shown in Fig. 4, 
while the porosity of the reservoir is uniform at 0.3. The reservoir 
rock and formation water are incompressible, and the volume 
factor of the reservoir oil at reference pressure is 1.12, with a 
compressibility factor of 0.0045 bar− 1. The viscosities of the 
reservoir water and oil are 0.3 and 3 cP, respectively, and remain 
constant regardless of pressure changes. The reservoir model 
contains three oil production wells, each producing at a fixed oil 
rate of 70, 90 and 50 m3/d, respectively. The well coordinates are 
(280, 280), (510, 510), and (780, 780). The reservoir simulation 
runs for 100 time steps, with each time step representing a 
duration of one month.

3.1. Hyperparameter optimization of the model

In this study, the data from the first 65 time steps were used as 
the training set, and the data from the remaining 35 time steps 
were used as the test set to evaluate the model's performance. This 
section investigated three parameters of the physics-constrained 
graph neural network model that required sensitivity analysis: 
the number of neurons in the MLP's hidden layers, the number of 
hidden layers of the MLP, and the number of message-passing 
steps in the neural network. By comparing the model's predic
tion performance on the test set, the optimal values for these pa
rameters were determined, with evaluation metrics including the 
R2 score and the relative L2 error.

Empirically, the number of hidden layers in the model was pre- 
set to 2, and the number of message-passing steps was set to 16. 

Fig. 3. Model structure of the physics-informed graph neural network.

Table 1 
The hyperparameters of the PIGNN.

Hyperparameter Range of value

Learning rate 0.001
Learning rate decay rate 0.1
Batch size 1
Input node dimension 1
Input edge dimension 4
Output dimension 1
Hidden layer dimension 32, 64, 128, 256
Number of layers 1, 2, 4, 8
Information propagation steps 4, 8, 16, 32

Fig. 4. Permeability field.
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The impact of different numbers of neurons in the MLP's hidden 
layers on the prediction results is shown in Fig. 5(a). With the 
number of neurons in the MLP's hidden layers set to 256 and the 
number of message-passing steps set to 16, sensitivity analysis 
was conducted on different numbers of hidden layers of the MLP. 
The impact of varying the number of hidden layers on the pre
diction results is shown in Fig. 5(b). When the number of neurons 
in the hidden layers of the MLP was 256 and the number of hidden 
layers was 2, the model achieved the highest R2 and the lowest 
relative L2 error on the test set, indicating optimal prediction 
performance. As the number of neurons in the hidden layers and 
the number of hidden layers increased, the model's prediction 
accuracy first  improved and then decreased. Initially, increasing 
the number of neurons or hidden layers effectively enhanced the 
model's ability to extract latent features from the data. However, 
as the number of temporal-spatial convolution blocks increased, 
the number of parameter matrices in the network grew larger. 
Despite the physical information constraints, the model inevitably 
experienced overfitting, leading to reduced prediction accuracy.

Through these experiments, the optimal values for the number 
of neurons in the MLP's hidden layers and the number of MLP's 
hidden layers were determined. The number of message-passing 
steps in the model, being a major factor affecting the capability 
and efficiency of node and edge information exchange, often had a 
significant  impact on the prediction results. For the number of 
message-passing steps, the model was trained with settings of 4, 8, 
16, and 32 after optimizing other hyperparameters, and the pre
diction performance was analyzed. The impact of different 
numbers of message-passing steps on the prediction results is 
shown in Fig. 5(c). When the number of message-passing steps 
was set to 4 or 8, insufficient transmission of node and edge in
formation resulted in poorer prediction performance, with a lower 
coefficient of determination and a higher relative L2 error. When 
the number of message-passing steps was set to 32, excessive 
transmission of node and edge information led to the amplification 
of irrelevant information, resulting in decreased prediction accu
racy and poorer performance. When the number of message- 
passing steps was 16, the model achieved a balance between 
effective feature extraction, elimination of irrelevant information, 
and computational efficiency, resulting in the highest coefficient of 
determination and the lowest relative L2 error, indicating the best 
prediction accuracy.

3.2. Model comparison

In this section, we continue using the numerical simulation 
data from the previous section as the dataset. The data from the 
first  65 time steps are extracted as the training dataset for the 
neural network model, while the data from the last 35 time steps 
serve as the test set. We establish the optimized PIGNN and PINN 
models, iteratively adjusting the network parameters using the 

training data, and predicting the future pressure field in the test 
set to compare the predictive accuracy of the PIGNN and PINN 
models. Additionally, to facilitate a multi-angle visual comparison 
of the model differences, we compute the fluid  flow behavior 
within the reservoir using Eq. (2) and the predict pressure fields. At 
time step 75, the predicted pressures and velocity from the PIGNN 
and PINN models, compared to the reference pressure, are shown 
in Fig. 6. Similarly, at time step 100, the predicted pressures and 
velocity are shown in Fig. 7. The experimental results indicate that, 
compared to the PINN model, the PIGNN model produces pressure 
and velocity fields more closely aligned with the reference pres
sure and velocity field, making it better suited for handling fluid 
flow and pressure distribution in heterogeneous reservoir models.

As shown in Fig. 8, we present a quantitative comparison be
tween the PIGNN and PINN models. The figure illustrates the 
correlation between the predicted values and the reference values 
at time steps 75 and 100 for both the PIGNN and PINN models. 
From the figure,  it is evident that the PIGNN model exhibits a 
better fit between the predicted values and the reference values, 
resulting in higher prediction accuracy. Additionally, as the time 
steps increase, the correlation between the predicted values and 
reference values for the PINN model weakens rapidly, leading to a 
sharp decline in accuracy. In contrast, the PIGNN model shows a 
slower decline in prediction accuracy over time.

Fig. 9 compares the PIGNN and PINN models by illustrating 
their relative L2 errors and R2 scores of pressures at each time step 
on the test set. Averaged over the time steps, the PINN model 
shows a relative L2 error of 2.908 × 10− 3 and an R2 score of 0.964. 
The PIGNN model demonstrates superior performance, with its 
average relative L2 error reduced to 6.710 × 10− 4 (a 76.93% 
decrease from PINN) and its average R2 score increased to 0.998 (a 
3.56% improvement over PINN). When the time steps are small, 
the prediction errors of the PIGNN and PINN models are quite 
similar. However, as the prediction time steps increase, the error in 
the PINN model grows exponentially, while the PIGNN model 
shows a slower increase in prediction error, demonstrating better 
stability. This is because the graph convolution kernel effectively 
captures the planar heterogeneity of permeability, resulting in 
slower accumulation of prediction errors. In contrast, the PINN 
model struggles to learn the heterogeneous characteristics of the 
reservoir, leading to an exponential increase in prediction error in 
the later time steps of the test set.

To further compare the performance of the PIGNN and PINN 
models, the prediction results of bottomhole pressure in the test 
set for both models are plotted Fig. 10 and compared with the 
reference values obtained from numerical simulation. From the 
figure, it is clear that the PINN model has larger prediction errors, 
and these errors increase over time. In contrast, the values pre
dicted by the PIGNN model almost overlap with the reference 
pressure, showing much higher accuracy than the PINN model. 
This may be due to the difficulty of the PINN model in learning the 

Fig. 5. Results for different hyperparameters.
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source and sink characteristics at the well points, leading to poor 
convergence and inaccurate predictions in regions with large 
pressure gradients. To quantify the prediction performance of both 
models for bottomhole pressure, the RMSE and MAPE in the 

predicted bottomhole pressure for the three wells was calculated, 
as shown in Table 2.

After multiple comparisons, it is evident that, under the 
same number of iterations, the prediction accuracy of the 

Fig. 6. Pressure (a) and velocity (b) fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time step 75.

Fig. 7. Pressure (a) and velocity (b) fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time step 100.
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PIGNN model is superior to that of the PINN model. The 
PIGNN model is better equipped to handle fluid  flow  and 
pressure distribution in reservoirs with planar heterogeneity. 
This effectiveness may stem from the ability of the PIGNN 

model to accurately calculate the residual of the discrete 
percolation partial differential equation via predefined  graph 
convolutional kernels, while simultaneously predicting the 
pressure of a target grid cell for the next step using 

Fig. 8. Correlation between the reference and predicted pressures at time steps 75 (a, c) and 100 (b, d).

Fig. 9. The relative L2 error (a) and R2 score (b) obtained by PIGNN and PINN models on the test dataset.
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information from the target and adjacent cells at the previous 
time step.

3.3. Effect of different training data volumes

In the previous section, the training data consisted of 65 time 
steps, while the prediction data covered 35 time steps, with the 
training data accounting for 65% of the total dataset. However, in 
some real-world scenarios, the available data might not meet the 
requirements for training data. Therefore, in this section, we 

investigated and compared the prediction performance of the 
PIGNN and PINN models under different training data volumes, 
testing the robustness of the PIGNN model when the training data 
was limited.

When the training dataset consists of 35 time steps, the pre
diction results of the PIGNN and PINN models at time steps 45 and 
75 are shown in Fig. 11. When the training dataset consists of 50 
time steps, the prediction results at steps 60 and 85 are shown in 
Fig. 12. The study reveals that the performance of the PIGNN model 
is less affected by the size of the training dataset, whereas the 

Fig. 10. The bottomhole pressures of well-1 (a), well-2 (b), and well-3 (c) obtained by numerical simulation, PIGNN model, and PINN model.

Table 2 
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models.

Model RMSE MAPE

Well-1 Well-2 Well-3 Well-1 Well-2 Well-3

PIGNN 0.418 0.231 0.485 1.393 × 10− 3 8.590 × 10− 4 1.617 × 10− 3

PINN 4.158 1.349 1.647 1.770 × 10− 2 6.011 × 10− 3 6.718 × 10− 3

Fig. 11. The pressure fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time steps 45 (a) and 75 (b) when the training set is 35 time 
steps.
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prediction accuracy of the PINN model deteriorates significantly as 
the training data decreases, indicating that the PIGNN model ex
hibits better robustness than the PINN model. This may be because 
the PINN model relies solely on the data features of the target grid 
and the differential terms at the grid points. When the amount of 
data is limited, the model learns fewer features, leading to poorer 
performance. In contrast, the PIGNN model considers the influence 
of surrounding grids on the prediction of the target grid, providing 
a broader view when predicting the pressure of the target grid. 
This increases the influence of the physical constraint term in the 
loss function, allowing the model to learn more features and 
mitigating the negative impact of insufficient data, thus slowing 
down the rate of performance degradation.

Fig. 13 presents histograms of the relative L2 errors on the test 
dataset for models trained with varying amounts of data (repre
sented by the number of training time steps). A lower relative L2 
error is generally indicative of superior performance in regression 
prediction. Specifically, with 35 training time steps, the PIGNN 
model achieved a prediction error of 2.047 × 10− 3, and with 50 
time steps, the error was 1.761 × 10− 3. These errors represent re
ductions of 56.22% and 58.63%, respectively, compared to the 
prediction errors of the PINN model under the same conditions 
(4.677 × 10− 3 and 4.257 × 10− 3). This comparison suggests that the 
PIGNN model exhibits enhanced predictive robustness. Lower L2 
errors demonstrate the model's superiority in regression predic
tion. From the figure, it is evident that the PIGNN model exhibits 

Fig. 12. The pressure fields obtained by numerical simulation (left), PIGNN model (middle), and PINN model (right) at time steps 60 (a) and 85 (b) when the training set is 50 time 
steps.

Fig. 13. The relative L2 errors obtained by PIGNN and PINN models on the test dataset when the training set is 35 (a) and 50 (b) time steps, respectively.
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better predictive performance. The L2 error for each time step in 
the test set increases as the time steps progress, likely due to the 
cumulative prediction errors of the model. This aligns with the 
classic theory of error accumulation in neural networks.

Fig. 14 shows the predicted bottomhole pressures for the test 
set using both models. Comparing the predicted bottomhole 
pressures of the three production wells with the reference 
pressures reveals that the PINN model's predictions significantly 
deviate from the actual bottomhole pressures, while the PIGNN 
model's predictions align well with the actual pressure curves. 
One explanation for the PINN model's accuracy limitations, 
especially near well grids, involves challenges such as insuffi
cient data to learn the governing flow physics and slow conver
gence due to large pressure drops. The PIGNN model circumvents 
these issues through its design: its graph neural network archi
tecture, combined with predefined graph convolutional kernels, 
enables it to effectively process structural information between 
grid cells and embed physical laws, thus facilitating accurate 
prediction of grid pressure. These results further demonstrate 
the robustness and superiority of the PIGNN model. To 

quantitatively compare the prediction performance of the 
models, the RMSE and MAPE for the predicted bottomhole 
pressures were calculated, as shown in Tables 3 and 4. The re
sults indicate that the prediction accuracy of the PIGNN model is 
significantly  higher than that of the PINN model, which is 
consistent with the conclusions of the above.

4. Conclusions

In this work, we proposed the PIGNN model, a new framework 
for graph-based deep learning applied to subsurface fluid  flow, 
aimed at predicting reservoir permeability fields  defined  on 
commonly used unstructured grids. Leveraging the characteristics 
of physical governing equations and graph neural networks, the 
PIGNN model not only incorporates physical information like the 
classical PINN model but also considers information from the 
surroundings of the target, enhancing the model's prediction ac
curacy and suitability for irregular grid numerical simulations. The 
graph convolution module proposed in this study seamlessly 

Fig. 14. The bottomhole pressures of well-1 (left), well-2 (middle), and well-3 (right) obtained by numerical simulation, PIGNN model, and PINN model when the training set is 35 
(a) and 50 (b) time steps.

Table 3 
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models when the training set is 35 time steps.

Model RMSE MAPE

Well-1 Well-2 Well-3 Well-1 Well-2 Well-3

PIGNN 0.907 1.368 0.653 3.609 × 10− 3 5.947 × 10− 3 2.470 × 10− 3

PINN 7.549 8.565 7.039 0.0324 0.0378 0.0282

Table 4 
RMSE and MAPE of bottomhole pressures obtained by PIGNN and PINN models when the training set is 50 time steps.

Model RMSE MAPE

Well-1 Well-2 Well-3 Well-1 Well-2 Well-3

PIGNN 0.541 0.966 0.517 2.181 × 10− 3 4.418 × 10− 3 1.726 × 10− 3

PINN 4.493 5.615 3.480 0.0199 0.0269 0.0144
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integrates physical equations, boundary conditions, and fluxes 
between grids into the model's residual calculation, improving 
computational efficiency.

The optimized model was applied to pressure field prediction 
in spatially heterogeneous reservoirs; the predicted average L2 
error and R2 score were 6.710 × 10− 4 and 0.998, respectively, by 
which the model's effectiveness was validated. The prediction 
performance of the PIGNN model was compared with that of the 
classic PINN model; the PIGNN model's L2 error was reduced by 
76.93% compared to the PINN model, the R2 score was increased by 
3.56% compared to the PINN model, and as the time step increased, 
the PIGNN model's prediction error grew slower compared to the 
PINN model. In addition, a better pressure fitting  effect at well 
points was exhibited by the PIGNN model; the average RMSE and 
MAPE errors were reduced by 84.15% and 87.28%, respectively, 
compared to the PINN model. This indicates that a better conver
gence effect is possessed by the PIGNN model in regions where 
pressure changes rapidly. The prediction accuracy of the two 
models when the amount of training data is small was discussed, 
and the robustness of the two models regarding the amount of 
training data was compared. When the prediction time steps were 
reduced from 65 to 50 and 35, the PIGNN model's L2 errors were 
2.047 × 10− 3 and 1.761 ×10− 3 respectively; compared to the PINN 
model's errors, they were reduced by 56.22% and 58.63%, by which 
the robustness of the PIGNN model and its superiority over the 
PINN model were proven. It is proven by these results that the 
PIGNN model proposed by the research is superior to the existing 
PINN model in predicting fluid flow in heterogeneous reservoirs.

Although the proposed PIGNN model exhibits strong perfor
mance in addressing fluid  flow  in heterogeneous oil reservoirs, 
certain aspects remain unexplored, and several technical chal
lenges still exist. For example, the current study is based on a single- 
phase reservoir flow model and only considers two-dimensional 
planar flow, without accounting for water flooding  scenarios, 
oil–water two-phase flow, or three-dimensional flow  dynamics. 
Considering these limitations, future work will aim to extend the 
model to two-phase and three-phase flow, three-dimensional 
simulations, and further reduce reliance on labeled data.
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