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a b s t r a c t

Subsurface reservoirs commonly exhibit layered structures. Conventional amplitude variation with 
angle (AVA) inversion, which relies on the Zoeppritz equation and its approximations, often fails to 
accurately estimate elastic parameters because it assumes single-interface models and ignores multiple 
reflections and transmission losses. To address these limitations, this study proposes a novel prestack 
time-frequency domain joint inversion method that utilizes the reflection matrix method (RMM) as the 
forward operator. The RMM accurately simulates wave propagation in layered media, while the joint 
inversion framework minimizes the misfit between observed and synthetic data in both the time and 
frequency domains. By incorporating Bayesian theory to optimize the inversion process, the method 
effectively balances contributions from both time-domain waveforms and frequency-domain spectral 
information through a weighting factor. Tests on both synthetic data and field data demonstrate that the 
proposed method outperforms conventional AVA inversion and time-domain waveform inversion in 
accuracy and robustness. Furthermore, the method demonstrates good robustness against variations in 
initial models, random noise, and coherent noise interference. This study provides a practical and 
effective approach for high-precision reservoir characterization, with potential applications in complex 
layered media.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

Amplitude variation with angle/offset (AVA/AVO) technology 
estimates subsurface elastic parameters by analyzing the variation 
of reflection amplitudes with offset or incident angle. This forms 
the foundation of prestack seismic inversion and plays a pivotal 
role in lithology identification, reservoir characterization and hy
drocarbon detection. Conventional AVO/AVA inversion utilizes the 
Zoeppritz equation and its approximations (Aki and Richards, 
2002; Shuey, 1985; Zoeppritz, 1919). However, these approxima
tions reliance on the small-angle approximation, which often re
sults in inaccurate results at larger incident angles (Mallick, 2007). 
Furthermore, these methods assume a single interface model, 
considering only primary reflection while neglecting transmission 
losses and multiple reflections.  These simplifications  limit their 

effectiveness to realistic layered media. These limitations can be 
effectively mitigated by employing more rigorous forward 
modeling methods approaches (Mallick and Adhikari, 2015; Sen 
and Roy, 2003).

To address the limitations of small-angle approximations, the 
exact Zoeppritz equation (Lu et al., 2015) offers an alternative 
solution. However, this approach still fails to account for the lim
itations imposed by wave propagation effects. In contrast, the 
reflection matrix method (RMM) grounded in plane wave theory 
provides a forward modeling technique for seismic wavefields in 
layered media. RMM utilizes a propagation matrix to connect the 
stress and displacement at the top and bottom of the layered 
medium, enabling accurate simulation of various propagation ef
fects in layered media. RMM effectively captures complex wave
field  characteristics, including aliasing effects in actual seismic 
gathers, thereby providing a robust theoretical foundation for 
detailed reservoir characterization. The RMM was initially pro
posed by Thomson (1950) to investigate elastic wave propagation 
in layered solid media and subsequently refined and extended by 
Haskell (1953). Gilbert and Backus (1966) formally defined  the 
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“propagation matrix” as the transfer operator of stress and 
displacement between layers in a layered model. Fuchs (1968)
pioneered the use of the Thomson-Haskell matrix to generate a 
synthetic seismogram incorporating all multiple reflections. Fuchs 
and Müller (1971) further enhanced the method by incorporating 
transmission loss into the forward modeling of layered media. 
They highlighted that RMM's key advantage lies in its ability to 
incorporate multiple reflections and converted waves within the 
reflection  zone, yielding more accurate synthetic seismograms 
compared to ray-tracing methods. Kennett advanced the reflection 
matrix method by developing an iterative approach to calculate 
reflection and transmission coefficients  for multilayer media. He 
also addressed the instability issues arising from exponential 
growth in the propagation matrix, leading to its widespread 
adoption in seismic data forward modeling (Kennett, 1974, 2009; 
Kennett and Kerry, 1979). These developments render RMM 
particularly suitable for modeling complex layered media and 
provide a robust foundation for joint time-frequency domain 
inversion. Subsequent research has further extended RMM to 
more complex media, including anisotropic and viscoelastic en
vironments (Carcione, 1990; Fryer and Frazer, 1987).

Despite being the most widely adopted and successful reservoir 
characterization technique, the AVO inversion method exhibits 
limitations in its forward operator for layered media applications. 
Mallick and Adhikari (2015) developed a prestack waveform 
inversion method based on a locally horizontal one-dimensional 
(1D) layered structure assumption and conducted a comparative 
analysis with AVO inversion using genetic algorithm on actual 
seismic data. Their findings  established that the prestack wave
form inversion method delivers enhanced resolution and accuracy. 
Consequently, inversion algorithm employing RMM as the forward 
operator have emerged as the preferred approach for reservoir 
characterization. However, due to the computational complexity 
of forward modeling, many prestack waveform inversion methods 
rely on global optimization algorithms (Li and Mallick, 2015; 
Mallick, 1999; Mallick and Adhikari, 2015; Padhi and Mallick, 
2014; Sen and Stoffa, 1991). Although these methods eliminate 
the need to compute derivatives of the objective function, the 
extensive forward modeling requirements impose substantial 
computational costs. To address these computational challenges, 
gradient-based optimization algorithms have been adopted in 
some prestack waveform inversion methods (Amundsen and 
Ursin, 1991; Lu et al., 2019; Sen and Roy, 2003; Yang and Wang, 
2022; Yang and Lu, 2020; Zhao et al., 1994). The inherently ill- 
posed nature of prestack waveform inversion presents substan
tial challenges for traditional regularization approaches, often 
limiting their effectiveness. To mitigate solutions non-uniqueness 
in inverse problems, it is crucial to fully incorporate priori 
knowledge of the model parameters. The emergence of Bayesian 
framework-based prestack waveform inversion method has 
significantly  enhanced the stability of the inversion process by 
effectively integrating prior information and observation data 
(Alemie and Sacchi, 2011; Buland and Omre, 2003; Liu et al., 2016; 
Luo et al., 2020).

The instability of inversion processes is further aggravated by 
insufficient  input data. Recent studies demonstrate that PP-PS 
joint prestack waveform inversion substantially improves result 
reliability (Lu et al., 2015; Luo et al., 2020; Yang and Wang, 2022). 
However, both pure PP wave and PP-PS joint inversion predomi
nantly focus on time-domain waveforms processing while over
looking critical frequency-domain information. As seismic waves 
propagate through layered media, they generate complex tuned 
reflections  exhibiting distinct frequency-domain characteristics. 
Spectral characteristics offer key advantages for quantifying 
layered thickness in stratified  formations (Marfurt and Kirlin, 

2001; Partyka et al., 1999; Puryear and Castagna, 2008). There
fore, integrating frequency-domain information into time-domain 
waveform inversion can effectively mitigate the multi-solution 
problem, enhance inversion stability, and improve result reli
ability. Rubino and Velis (2009) introduced prestack amplitude 
spectral inversion for thin-layer characterization, demonstrating 
that frequency-domain spectral data can accurately resolve thin 
layers below the tuning thickness. Lin et al. (2023) observed that 
frequency-domain inversion achieve higher resolution at fine 
feature scale but exhibits reduced stability under high-noise 
conditions. Time-domain waveform inversion maintains noise 
robustness at low signal-to-noise ratios (SNR) but has inherent 
resolution limits (Yin et al., 2017). Time-frequency domain joint 
inversion effectively balances noise robustness and resolution, 
producing superior inversion results (Lin et al., 2023; Yin et al., 
2017; Zhao et al., 2023).

This study utilizes the RMM as the forward operator to generate 
both synthetic angle gathers and frequency amplitude spectral 
data. We develop a prestack time-frequency joint inversion algo
rithm incorporating the Gauss-Newton method within a Bayesian 
framework to estimate P- and S-wave velocity and density pa
rameters. The proposed method is validated using both one- 
dimensional (1D) and two-dimensional (2D) model data, 
compare the AVO inversion method based on the Aki approxi
mation, the time-domain waveform inversion method using RMM, 
and the time-frequency domain joint inversion method based on 
RMM. Furthermore, this study systematically examines the im
pacts of initial model variations, random noise, and coherent noise 
on the proposed inversion method, demonstrating its excellent 
stability. Finally, the reliability and robustness of the proposed 
method are demonstrated through its application to field seismic 
data.

2. Method

2.1. Forward operator

Grounded in plane wave theory, the RMM characterizes wave 
propagation in horizontally layered, homogeneous media. This 
method efficiently  simulates all propagation phenomena in 
layered systems, including reflected, transmitted, and multiple 
waves, as well as other physical effects. For an isotropic layered 
media, the wave propagation can be described by the following 
ordinary differential equation (Kennett, 2009): 

∂zb= iωAb + F; (1) 

where b denotes the stress-displacement vector, F represents the 
body force term, A is the system matrix, i is the imaginary unit, and 
the ω denotes the angular frequency. The RMM utilizes the 
eigenvector matrix D of the system matrix and the phase shift 
matrix E of the upgoing and downgoing waves between layers to 
obtain the wave propagation matrix Q of the entire layer system: 

Q =D− 1
1

∏i− 1

k=2

(
DkEkD− 1

k

)
Dn; (2) 

where subscripts the position of the layer. Using the block matrix, 
Q can be written as follows: 

Q =

[
QUU QUD
QDU QDD

]

: (3) 

The reflection and transmission coefficient matrix of the entire 
layer system can be expressed by this block matrix: 
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RD = QUD(QDD)
− 1;RU = − (QDD)

− 1QDU;

TD = (QDD)
− 1
;TU = QUU − QUD(QDD)

− 1QDU:
(4) 

The reflection  coefficient  matrix can be expressed as RD =
⎡

⎣
RPP

D RPS
D

RSP
D RSS

D

⎤

⎦, and the reflection  coefficient  in the frequency- 

slowness domain is obtained. As shown in Fig. 1, it is a schematic 
diagram of the reflection and transmission of three-layer model in 
an elastic media, where α; β; ρ;h represent the P- and S-wave ve
locity, density and layer thickness respectively, RPP;RPS; TPP; TPS at 
the interface represent the reflected and transmitted PP and PS 
waves. The dotted arrows in the middle layer represent multiple 
reflections in the three-layer model.

The frequency-slowness domain reflection  coefficient  R(ω;p)
obtained in Eq. (4) needs to be converted to the frequency-angle 
domain R(ω; θ). Then the frequency domain wavelet W is multi
plied by the frequency domain reflection coefficient to obtain the 
reflection coefficient spectral A(ω; θ), and the time domain angle 
gather dPP is obtained by inverse Fourier transform: 

A(ω; θ)=R(ω; θ)⋅W(ω; θ); (5) 

dPP =
1
2π

∫ ∞

− ∞
A(ω; θ)eiωtdω: (6) 

2.2. Joint inversion objective function

The time-domain waveform and frequency-domain spectral 
can be expressed as: 

dt = Gt(m) + nt; df = Gf(m) + nf ; (7) 

where dt represents the prestack time-domain waveform data, df 
represents the prestack frequency-domain amplitude spectral 
data. nt and nf represent the random noise of observation data in 
time domain and frequency domain respectively. G represents the 
nonlinear forward operator, and m represents elastic parameters 
such as P- and S-wave velocity and density, which can be 

expressed as m = [α1⋯αN; β1⋯βN; ρ1⋯ρN]
T . AVO inversion is 

inherently ill-posed without prior constraints. To address this, we 
develop a Bayesian framework-based prestack joint inversion 
method. Assuming that the noises nt and nf obey Gaussian dis
tribution and the noises are independent of each other, the like
lihood function can be written as: 

P(dt|m)= exp
(

−
1
2
(dt − Gt(m))

TC− 1
t (dt − Gt(m))

)

; (8) 

P
(

df |m
)
= exp

(

−
1
2

(
df − Gf(m)

)T
C− 1

f

(
df − Gf(m)

))

; (9) 

where Ct and Cf represent the variance of noise, when it is 
assumed that the noises in seismic records are independent of 
each other, there is C = σ2I. At the same time, assuming that the 
prior distribution also obeys Gaussian distribution, there are 

P(m) = exp
(

−
1
2
(m − u)TC− 1

m (m − u)
)

; (10) 

where u in the prior distribution represents the mean value of the 

model, and C− 1
m represents the inverse of covariance matrix of the 

model parameter m, the covariance matrix can be expressed as: 

Cm =Kron(Cov{α; β; ρ}; I); (11) 

where Kron( ⋅) is the Kronecker product, Cov( ⋅) is the covariance 
matrix. I is the identity matrix, size is N × N, N is the length of 
parameter. The covariance matrix introduces the relationship be
tween the parameters, significantly enhancing the numerical sta
bility of inversion solutions. From this we can get that the posterior 
distribution is as follows: 

P(m|d)= P(d|m)P(m)∝exp
{

−
1
2

[

ξ
(

dt − Gt(m)
)T(

dt − Gt(m)
)

+(1 − ξ)
(

df − Gf(m)
)T(

df − Gf(m)
)

+η(m − u)TC− 1
m (m − u)

]}

;

(12) 

where ξ denotes the time-frequency weighting factor and η rep
resents the prior constraint regularization parameter. The 
parameter ξ balances the contributions of waveform and spectral 
information in the joint inversion process, while η regulates the 
trade-off between seismic data and prior information. Increasing η 
amplifies  the prior constraint's impact, enhancing solution sta
bility at the cost of resolution. Conversely, reducing η increases the 
detail resolution but enhances noise susceptibility. Typically, these 
weighting factors are determined through trial-and-error ap
proaches based on model tests and well-log inversion analysis. 

Interface 1

Interface 2
Layer 3

Layer 2

Layer 1

P
PP

PS

h

RPP

RPS

TPPTPS
PS

PP

α1, β1, ρ1

α2, β2, ρ2

α3, β3, ρ3

Fig. 1. Schematic diagram of reflection and transmission in a three-layer elastic media model.
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Alternatively, they can be optimized using the L-curve method or 
generalized cross-validation to achieve an optimal trade-off.

Maximizing the posterior probability distribution is mathe
matically equivalent to minimizing the following objective 
function: 

Q(m)=
1
2

[

ξ
(

dt − Gt(m)
)T(

dt − Gt(m)
)
+(1 − ξ)

(
df − Gf(m)

)T

(
df − Gf(m)

)
+η(m − u)TC− 1

m (m − u)
]

:

(13) 

The Gauss-Newton method is particularly well-suited for 
solving nonlinear least squares problems, a common challenge in 
seismic inversion. In contrast to first-order  optimization 

algorithms (e.g., gradient descent), the Gauss-Newton method 
exhibits superior efficiency and stability by utilizing approximate 
second-order derivative information. Additionally, by incorpo
rating prior information as constraints, the method effectively 
alleviates overfitting,  yielding more reliable and physically 
meaningful solutions. These advantages solidify the Gauss- 
Newton method as an optimal choice for objective function opti
mization in this study: 

mk+1 =mk +Δm;Δm= − H
(

mk
)− 1

g
(

mk
)
; (14) 

where g and H denote the gradient vector and Hessian matrix of 
the objective function respectively, defined as follows: 
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Input model parameters m

Q < Set threshold
or iteration number >
maximum iteration

number 

Output inverted results m

Calculate synthetic
AVA traces dt

No

Yes

Objective function
Q(m)

Calculate
updated vector

Δm = -H(mk)-1 g(mk)

Update
parameters vector

mk+1 = mk + Δm

Calculate synthetic
amplitude spectrum df

Fig. 2. Flow chart of prestack time-frequency domain joint inversion based on the RMM.
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Both the time-domain waveform and the frequency-domain 
spectral are related to the parameter m through the reflection 
coefficient. Therefore, only the derivative of the reflection coeffi
cient RD with respect to the parameter m is required: 

∂RD

∂m =
∂
[
QUD(QDD)

− 1
]

∂m
=

∂QUD
∂m

(QDD)
− 1

+QUD
∂(QDD)

− 1

∂m

=
∂QUD
∂m

(QDD)
− 1

− QUD(QDD)
− 1∂QDD

∂m
(QDD)

− 1
;

(17) 

where ∂Q
∂m denotes the partial derivative of the wave propagation 

matrix Q with respect to the elastic parameters m across all layers 
in the layered medium. Fig. 2 illustrates the workflow of the RMM- 
based Bayesian prestack time-frequency joint inversion method. 
The maximum number of iterations is set to 25, and the 

convergence threshold is set to 0.01. To ensure computational ef
ficiency  and avoid unnecessary iterations, the optimization pro
cess is terminated if the objective function value increases or 
shows insufficient decrease for five consecutive iterations. These 
parameters were optimized through extensive testing to achieve 
an optimal balance between inversion accuracy and computa
tional efficiency.

3. Synthetic data examples

3.1. Forward operator testing

To assess the effectiveness of the RMM in AVA modeling and 
prestack inversion, we conducted numerical tests on both single- 
interface and multi-layer models. Fig. 3 presents a comparison of 
P-wave reflection coefficients computed for the interface. In Fig. 3
(a), the colored lines represent elastic parameters, while in Fig. 3

∂Q
∂m

=

∂

(

D− 1
1

[
∏n− 1

k=2

DkEkD− 1
k

]

Dn

)

∂m

=

∂
(

D− 1
1

)
[
∏n− 1

k=2

DkEkD− 1
k

]

Dn

∂mi
1

+ D− 1
1

∂

([
∏n− 1

k=2

DkEkD− 1
k

])

∂mi
k

Dn
+

D− 1
1

[
∏n− 1

k=2

DkEkD− 1
k

]

∂(Dn)

∂mi
n

;

(18) 

g(m) =
∂Q(m)

∂m
= ξ
(

∂Gt(m)

∂m

)T
(Gt(m) − dt ) + (1 − ξ)

(
∂Gf(m)

∂m

)T(
Gf(m) − df

)
+ ηC− 1

m (m − μ): (15) 

H(m) =
∂2Q(m)

∂m2 ≈ ξ
(

∂Gt(m)

∂m

)T∂Gt(m)

∂m
+ (1 − ξ)

(
∂Gf(m)

∂m

)T∂Gf(m)

∂m
+ ηC− 1

m : (16) 
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(b), the black solid line indicates the reflection coefficient 
computed by the Zoeppritz equation, and the red circles denote 
the reflection  coefficient  obtained from RMM. The results show 
excellent agreement between the reflection coefficients computed 
by both methods for the single-interface model.

Fig. 4 shows a comparison of time-domain angle gathers 
generated by the RMM and the Zoeppritz equation for a multilayer 
model using a 30 Hz Riker wavelet. Fig. 4(a) shows the elastic 
parameters, including P- and S-wave velocity, and density. Fig. 4(b) 
presents the time-domain angle gathers computed by both 
methods and their differences. Red dashed lines denote interfaces, 
blue dashed circles highlight multiple internal reflections,  and 
arrows indicate transmission losses. It is evident that multiple 
reflections  become more pronounced with increasing incident 
angle, while transmission losses grow more significant  with 
increasing propagation time. The prestack time-domain angle 
gathers generated using the RMM account for more propagation 
effects.

Fig. 5 depicts the differences in seismic waveforms generated 
by the two methods at an incidence angle of 0◦. The solid blue line 
represents the forward modeling results obtained by the Zoeppritz 
equation, while the red dashed lines denote the results calculated 

using the RMM. Green arrows highlight transmission losses, while 
orange arrows indicate multiple reflections.  Evidently, trans
mission losses increase as propagation distance increases. Fig. 6
compares the amplitudes at interfaces 1 and 4 of the multilayer 
model. Fig. 6(a) shows the comparison result for interface 1, while 
Fig. 6(b) shows the result for interface 4. It is evident that trans
mission losses are more pronounced at interface 4 than at inter
face 1. These results indicate that the RMM, as a forward operator, 
offers better adaptability for modeling layered media. Therefore, 
using the RMM as the forward operator for prestack inversion can 
enhance the accuracy of elastic parameter predictions in layered 
media, especially in scenarios with complex wave propagation 
effects.
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Fig. 5. Comparison of seismic waveforms at 0◦ incidence angle computed using the 
Zoeppritz equation (blue solid line) and RMM (red dashed line).
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3.2. Inversion algorithm testing

Following the validation of the RMM, we conducted prestack 
time-frequency domain joint inversion using 1-D model data. 
Fig. 7 displays the elastic parameters, including P- and S-wave 
velocity and density. First, prestack AVA gathers were generated as 
the observation data using a 30Hz Ricker wavelet, with incidence 
angles ranging from 5◦ to 35◦ at 10◦ interval, as shown in Fig. 8.

We compare the inversion results obtained using the Aki 
approximation, the time-domain waveform inversion results 
based on the RMM, and the time-frequency domain joint inversion 
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Fig. 8. Prestack synthetic angle gathers generated from the elastic parameters of 1D 
model.
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solid line indicates the inversion result.

Table 1 
Mean squared error (MSE) between true model and inversion results of different 
methods.

MSE Vp inversion Vs inversion ρ inversion

Aki approximation 135.98 83.98 12.75
Time domain 15.95 9.46 1.50
Joint domain 0.17 0.10 0.016
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results using RMM, as illustrated in Fig. 9. The black solid line 
denotes the true model, the blue dashed line indicates the initial 
model, and the red solid line represents the inversion result. Fig. 9
(a) displays the Aki approximation inversion results, where P- and 
S-wave velocity and density exhibit apparent jitters within the 
layer. Fig. 9(b) illustrates the time-domain waveform inversion 
results using RMM. It is evident that the inversion results exhibit 
minor jitters within the layer. Nonetheless, compared to the re
sults based on the conventional Aki approximation, a significant 
improvement is observed. Fig. 9(c) presents the time-frequency 
domain joint inversion results. The inversion results exhibit 
excellent consistency with the true results, validating the effec
tiveness of the proposed method. The inversion results are sub
stantially improved due to the constraints imposed by multi- 
domain data, compared to single-domain inversion. To quantita
tively assess the improvement, we calculated the mean squared 
error (MSE) between the inversion results and the true values for 
the three methods. As shown in Table 1, the Aki approximation- 
based inversion exhibits the poorest performance with the high
est MSE value. In contrast, the RMM-based time-frequency joint 
inversion achieves the lowest MSE, confirming its superior accu
racy. Moreover, the efficiency of the inversion method is also an 
important consideration. Compared to conventional AVO inver
sion, the proposed RMM-based inversion algorithm requires more 
computational time due to the complexity of RMM, which involves 

multiple loops for frequency, angle, and layer variations. As a 
result, the efficiency  of the inversion is closely related to these 
parameters. However, when compared to time-domain waveform 
inversion, a single iteration in the time-frequency joint inversion 
does not significantly increase the computational time. To address 
the computational cost, parallel computing could be considered to 
save time and make the method more accessible for large-scale 
applications.

Next, we analyze the discrepancies between the synthetic angle 
gathers generated by the RMM inversion results and the observed 
data, as depicted in Fig. 10. Fig. 10(a) and (b) show that the time- 
domain waveform traces from the true model and the inversion 
results exhibit a high degree of agreement. However, noticeable 
differences exist in their frequency-domain amplitude spectral. 
Therefore, relying solely on time-domain data for predicting P- and 
S-wave velocity and density is insufficient, and frequency domain 
information should also be integrated. It is crucial to ensure not 
only alignment in the time domain but also minimization of errors 
in the frequency-domain amplitude spectral. Fig. 10(c) and (d) 
present the comparison of the synthetic and observed data ob
tained from the joint inversion results in both the time and fre
quency domains, illustrating enhanced consistency. These results 
demonstrate that incorporating frequency-domain information 
into waveform inversion improves the accuracy of elastic param
eter estimation.
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Additionally, we explore the impact of various initial models on 
the time-frequency domain joint inversion results. This study 
utilizes a smooth function to generate the initial model with 
gradually increasing smoothness. Whereas the prior inversion 
adopted a 50-point moving average for initial model generation, 
the current analysis tests 80-point, 120-point and 160-point 
moving average. The joint inversion results are depicted in 

Fig. 11. Fig. 11(a)–(c) show the inversion result based on the 80- 
point, 120-point and 160-point moving average, respectively. The 
black solid line denotes the true model, the blue dashed line in
dicates the initial model, and the red solid line represents the 
inversion results. As the smoothness of the initial model increases, 
the time-frequency domain joint inversion results display 
increasing jitter. When the initial model approximates a straight 
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line, the prediction accuracy is minimized. Nevertheless, the 
method remains relatively high independence from the initial 
model and demonstrates strong robustness.

Random noise was added to the observed data to assess the 
noise resistance of the proposed method, with noise intensity 
quantified  by signal-to-noise ratio (SNR). Fig. 12 compares the 
observed data under three conditions: no noise, SNR = 10 and 
SNR = 5. Fig. 12(a) shows the time-domain waveform at different 
noise levels, while Fig. 12(b) presents the frequency-domain 
amplitude spectral under varying noise levels. Prestack time- 
frequency domain joint inversion was performed using observa
tion data under various noise conditions. The results are illustrated 
in Fig. 13, where Fig. 13(a) and (b) present the inversion results at 
SNR = 10 and SNR = 5, respectively. The black solid line denotes 
the true model, the blue dashed line indicates the initial model, 
and the red solid line represents the inversion results. Despite the 
presence of random noise, the proposed method accurately esti
mates the P- and S-wave velocity and density parameters, 
demonstrating strong noise resistance.

Fig. 14 compares the observed data with the synthetic data 
derived from the joint inversion for different random noise levels. 
Fig. 14(a) and (b) show the comparison between the time-domain 
waveform data and frequency-domain amplitude spectral data at 
SNR = 10, respectively, while Fig. 14(c) and (d) present the results 
at SNR = 5. The difference represents the residual between the 
observed and synthetic data. Evidently, for both SNR = 10 and 
SNR = 5, the inversion results accurately reconstruct the waveform 
and amplitude spectral data. The residual between the observed 
and synthetic data approximates the added random noise, 
demonstrating the superior noise resistance of the proposed 
method.

Building on the random noise tests, we further explored the 
impact of coherent noise (primarily multiples) on inversion re
sults. Fig. 15 compares three datasets: noise-free data, data with 
weak coherent noise (coherent noise 1), and data with strong 
coherent noise (coherent noise 2). Fig. 15(a) and (b) show the time- 
domain waveform and frequency-domain amplitude spectral un
der different noise levels, respectively. The inversion results are 
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Fig. 15. Comparison of observed data with different levels of coherent noise: (a) time-domain waveform and (b) frequency-domain amplitude spectral.
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presented in Fig. 16, where Fig. 16(a) and (b) correspond to weak 
and strong coherent noise, respectively. The results indicate that as 
the intensity of coherent noise increases, inversion accuracy de
clines, with its interference effect significantly stronger than that 
of random noise. This is due to coherent noise exhibiting wave
form characteristics rather than discrete noise points. Fig. 17
compares the observed data with synthetic data derived from joint 
inversion. Fig. 17(a) and (b) show the comparison between time- 

domain waveform and frequency-domain amplitude spectral un
der weak interference, while Fig. 17(c) and (d) display the results 
under strong interference. These differences represent the re
siduals between the observed and synthetic data. Notably, the 
joint inversion method successfully reconstructs both waveform 
and spectral characteristics even in the presence of coherent noise. 
This robustness arises from the method's ability to accurately 
simulate interbed multiples, demonstrating excellent resistance to 
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coherent noise interference. It is worth emphasizing that in 
practical seismic data processing, coherent noise can typically be 
effectively suppressed through preprocessing techniques.

To further assess the efficacy  of the time-frequency domain 
joint inversion method, we performed tests with 2D model data. 
The model data are extracted from a section of the Marmousi-2 
model, as shown in Fig. 18. Fig. 18(a)–(c) show the P- and S-wave 
velocity and density, respectively. Forward modeling was per
formed using a 30 Hz Ricker wavelet, with the resulting prestack 
angle gathers for incident angles of 5◦, 15◦, 25◦, and 35◦ shown in 
Fig. 19. Importantly, due to the significant contrast in elastic pa
rameters between the central gas-bearing layer and the sur
rounding rock, distinct amplitude variations are evident in the 

gathers. Fig. 20 presents the initial models for the P- and S-wave 
velocity, and density.

Fig. 21 shows the inversion results, with Fig. 21(a)–(c) depicting 
the Aki approximation-based inversion results, Fig. 21(d)–(f) pre
senting the time-domain waveform inversion results using RMM, 
and Fig. 21(g)–(i) displaying the time-frequency domain joint 
inversion results using RMM. It is evident that the Aki 
approximation-based inversion results are less effective in char
acterizing the gas reservoir and are significantly inferior to those 
from RMM, as RMM considers wave propagation effects between 
layers in the forward modeling. Moreover, by integrating 
frequency-domain information, the time-frequency domain joint 
inversion using RMM yields more accurate results than the time- 
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domain waveform inversion. Fig. 22 shows the residuals between 
the inversion results of different methods and the true model. 
Clearly, the residuals from the time-frequency domain joint 
inversion using RMM are the smallest, demonstrating the effec
tiveness of the proposed method.

4. Field data application

Finally, the prestack time-frequency domain joint inversion 
method was applied to field seismic data from a target area. The 
field seismic data are shown in Fig. 23, where the red line denotes 
the location of Well A. Fig. 24 shows the well-logging curve and its 
Backus average for Well A, with the black line representing the 
well-logging curve, the red line signifying the Backus-averaged 
result, and a sampling interval of 2 ms. The wavelet used for 
field  data inversion is the average wavelet estimated from the 

angle gathers, as shown in Fig. 25. The initial model was generated 
by interpolating the Backus-averaged well data along the selected 
horizon.

The inversion results for the profile are shown in Fig. 26, with 
Fig. 26(a)–(c) depicting the Aki approximation-based inversion 
results, Fig. 26(d)–(f) presenting the time-domain waveform 
inversion results using RMM, and Fig. 26(g)–(i) displaying the 
time-frequency domain joint inversion results using RMM. The 
RMM-based inversion results are more accurate in characterizing 
the reservoir than those from the Aki approximation. The time- 
frequency domain joint inversion method using RMM provides 
more detailed predictions than the time-domain waveform 
inversion method. Fig. 27 shows the inversion results at Well A, 
where the black line denotes the well logging curve, the green line 
indicates the inversion results based on the Aki approximation, the 
blue line represents the time-domain waveform inversion results 

20 40 60 80 100

ecarTecarTecarT

0

100

200

300

400

500 1500

1550

1600

1650

1700

1750

1800

1850

20 40 60 80 100
400

450

500

550

600

20 40 60 80 100

1960

1980

2000

2020

2040

20600

100

200

300

400

500

0

100

200

300

400

500

Aki approximation

ytisneDyticolev evaw-Syticolev evaw-P )c()b()a(

s
m ,e

miT

s
m ,e

miT

s
m ,e

miT

Vp, m/s Vs, m/s ρ, kg/m3

20 40 60 80 100

Trace

Trace

ecarTecarT

ecarTecarT

50

100

150

200

250

300

350
1500

1550

1600

1650

1700

1750

1800

1850

20 40 60 80 100
400

450

500

550

600

20 40 60 80 100

1960

1980

2000

2020

2040

2060

50

100

150

200

250

300

350

50

100

150

200

250

300

350

RMM-time

ytisneDyticolev evaw-Syticolev evaw-P )f()e()d(

m ,htpe
D

 ,htpe
D

m

pe
D

m ,ht

Vp, m/s Vs, m/s ρ, kg/m3

20 40 60 80 100
1500

1550

1600

1650

1700

1750

1800

1850

20 40 60 80 100
400

450

500

550

600

20 40 60 80 100

1960

1980

2000

2020

2040

2060

50

100

150

200

250

300

350

50

100

150

200

250

300

350

50

100

150

200

250

300

350

RMM-joint

P-wave velocity ytisneDyticolev evaw-S)h()g( (i)

m ,htpe
D

m ,htpe
D

m ,htpe
D

Vp, m/s Vs, m/s ρ, kg/m3

Fig. 21. Comparison of parameter prediction results for three inversion methods: prestack seismic inversion using the Aki approximation: (a) Vp, (b) Vs and (c) ρ; prestack 
waveform inversion using the RMM: (d) Vp, (e) Vs and (f) ρ; prestack time-frequency domain joint inversion using RMM: (g) Vp, (h) Vs and (i) ρ.

Z.-Y. Kuai, D.-P. Cao and C. Jin Petroleum Science 22 (2025) 4065–4082

4078



using RMM, and the red line shows the time-frequency domain 
joint inversion results using RMM. It is evident that the elastic 
parameters predicted by the proposed time-frequency domain 
joint inversion method are closer to the well-logging data and 
exhibit excellent consistency with it, demonstrating the method's 
effectiveness in field applications.

5. Discussion

We proposed a prestack time-frequency domain joint inversion 
method that demonstrates strong robustness to noise and initial 
model variations. However, several limitations exist due to the 
method relies on the layered media assumption.

First, the complexity of field  data presents a significant  chal
lenge. Real logging data are inherently complex, and seismic data 
typically represent the superposition of waveforms from 
numerous thin layers, thus making it difficult  to resolve blocky 
structures. Second, noise and uncertainties in field  seismic data 
can obscure sharp boundaries and reduce the resolution of inver
sion results, as shown in Fig. 13(a) and (b). Additionally, the 
Gaussian prior distribution tends to yield smooth solutions, 
potentially weakening the ability to characterize blocky structures. 
Finally, while the proposed method is robust to initial model se
lection, an initial model closer to the true model can significantly 
enhance convergence speed and inversion accuracy, as shown in 
Fig. 11(a)–(c). Therefore, the initial model should be geologically 
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Fig. 23. Partial stacking angle gathers of the field dataset: (a) 3◦–13◦ , (b) 11◦–21◦, (c) 19◦–29◦ and (d) 27◦–37◦. The red dotted line indicates the position of well A.
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plausible and consistent with prior subsurface structure knowl
edge to ensure a reasonable inversion starting point.

Despite these limitations, the results from our method remain 
reasonable and reliable. Future work could focus on addressing 
these challenges through advanced noise suppression techniques, 
more sophisticated prior distributions, and initial model selection 
optimization strategies.

6. Conclusion

This paper presents a prestack time-frequency domain joint 
inversion method for layered media within a Bayesian framework. 
The method uses Gauss-Newton iteration to estimate key pa
rameters, including P- and S-wave velocity, and density. In the 
forward modeling stage, RMM is used to capture wave propagation 
characteristics in layered media, such as multiple reflections and 

transmission losses. By integrating both time-domain waveform 
and frequency-domain data in the inversion, the method provides 
significant advantages in noise resistance and resolution.

Experimental results from synthetic and field data show that 
the proposed method significantly outperforms conventional AVA 
inversion and time-domain waveform inversion in terms of ac
curacy, resolution, and noise resistance. The method shows strong 
stability under varying initial models and can provide reliable 
predictions even under low SNR and strong coherent noise inter
ference. Furthermore, comparisons with well-logging data vali
date the practical applicability of our method for high-precision 
reservoir characterization.

Future research could focus on extending the method to more 
complex media, such as anisotropic or viscoelastic media, where 
frequency-domain information may offer unique insights.
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Fig. 27. Comparison of inversion results for three methods at Well A: the black line 
denotes the logging curve, the green line represents the inversion results using the 
Aki approximation, the blue line indicates the time-domain waveform inversion re
sults using the RMM, and the red line shows the time-frequency domain joint 
inversion results using the RMM.
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