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Subsurface reservoirs commonly exhibit layered structures. Conventional amplitude variation with
angle (AVA) inversion, which relies on the Zoeppritz equation and its approximations, often fails to
accurately estimate elastic parameters because it assumes single-interface models and ignores multiple
reflections and transmission losses. To address these limitations, this study proposes a novel prestack
time-frequency domain joint inversion method that utilizes the reflection matrix method (RMM) as the
forward operator. The RMM accurately simulates wave propagation in layered media, while the joint
inversion framework minimizes the misfit between observed and synthetic data in both the time and
frequency domains. By incorporating Bayesian theory to optimize the inversion process, the method
effectively balances contributions from both time-domain waveforms and frequency-domain spectral
information through a weighting factor. Tests on both synthetic data and field data demonstrate that the
proposed method outperforms conventional AVA inversion and time-domain waveform inversion in
accuracy and robustness. Furthermore, the method demonstrates good robustness against variations in
initial models, random noise, and coherent noise interference. This study provides a practical and
effective approach for high-precision reservoir characterization, with potential applications in complex
layered media.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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1. Introduction

Amplitude variation with angle/offset (AVA/AVO) technology
estimates subsurface elastic parameters by analyzing the variation
of reflection amplitudes with offset or incident angle. This forms
the foundation of prestack seismic inversion and plays a pivotal
role in lithology identification, reservoir characterization and hy-
drocarbon detection. Conventional AVO/AVA inversion utilizes the
Zoeppritz equation and its approximations (Aki and Richards,
2002; Shuey, 1985; Zoeppritz, 1919). However, these approxima-
tions reliance on the small-angle approximation, which often re-
sults in inaccurate results at larger incident angles (Mallick, 2007).
Furthermore, these methods assume a single interface model,
considering only primary reflection while neglecting transmission
losses and multiple reflections. These simplifications limit their
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effectiveness to realistic layered media. These limitations can be
effectively mitigated by employing more rigorous forward
modeling methods approaches (Mallick and Adhikari, 2015; Sen
and Roy, 2003).

To address the limitations of small-angle approximations, the
exact Zoeppritz equation (Lu et al., 2015) offers an alternative
solution. However, this approach still fails to account for the lim-
itations imposed by wave propagation effects. In contrast, the
reflection matrix method (RMM) grounded in plane wave theory
provides a forward modeling technique for seismic wavefields in
layered media. RMM utilizes a propagation matrix to connect the
stress and displacement at the top and bottom of the layered
medium, enabling accurate simulation of various propagation ef-
fects in layered media. RMM effectively captures complex wave-
field characteristics, including aliasing effects in actual seismic
gathers, thereby providing a robust theoretical foundation for
detailed reservoir characterization. The RMM was initially pro-
posed by Thomson (1950) to investigate elastic wave propagation
in layered solid media and subsequently refined and extended by
Haskell (1953). Gilbert and Backus (1966) formally defined the
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“propagation matrix” as the transfer operator of stress and
displacement between layers in a layered model. Fuchs (1968)
pioneered the use of the Thomson-Haskell matrix to generate a
synthetic seismogram incorporating all multiple reflections. Fuchs
and Miiller (1971) further enhanced the method by incorporating
transmission loss into the forward modeling of layered media.
They highlighted that RMM's key advantage lies in its ability to
incorporate multiple reflections and converted waves within the
reflection zone, yielding more accurate synthetic seismograms
compared to ray-tracing methods. Kennett advanced the reflection
matrix method by developing an iterative approach to calculate
reflection and transmission coefficients for multilayer media. He
also addressed the instability issues arising from exponential
growth in the propagation matrix, leading to its widespread
adoption in seismic data forward modeling (Kennett, 1974, 2009;
Kennett and Kerry, 1979). These developments render RMM
particularly suitable for modeling complex layered media and
provide a robust foundation for joint time-frequency domain
inversion. Subsequent research has further extended RMM to
more complex media, including anisotropic and viscoelastic en-
vironments (Carcione, 1990; Fryer and Frazer, 1987).

Despite being the most widely adopted and successful reservoir
characterization technique, the AVO inversion method exhibits
limitations in its forward operator for layered media applications.
Mallick and Adhikari (2015) developed a prestack waveform
inversion method based on a locally horizontal one-dimensional
(1D) layered structure assumption and conducted a comparative
analysis with AVO inversion using genetic algorithm on actual
seismic data. Their findings established that the prestack wave-
form inversion method delivers enhanced resolution and accuracy.
Consequently, inversion algorithm employing RMM as the forward
operator have emerged as the preferred approach for reservoir
characterization. However, due to the computational complexity
of forward modeling, many prestack waveform inversion methods
rely on global optimization algorithms (Li and Mallick, 2015;
Mallick, 1999; Mallick and Adhikari, 2015; Padhi and Mallick,
2014; Sen and Stoffa, 1991). Although these methods eliminate
the need to compute derivatives of the objective function, the
extensive forward modeling requirements impose substantial
computational costs. To address these computational challenges,
gradient-based optimization algorithms have been adopted in
some prestack waveform inversion methods (Amundsen and
Ursin, 1991; Lu et al.,, 2019; Sen and Roy, 2003; Yang and Wang,
2022; Yang and Lu, 2020; Zhao et al., 1994). The inherently ill-
posed nature of prestack waveform inversion presents substan-
tial challenges for traditional regularization approaches, often
limiting their effectiveness. To mitigate solutions non-uniqueness
in inverse problems, it is crucial to fully incorporate priori
knowledge of the model parameters. The emergence of Bayesian
framework-based prestack waveform inversion method has
significantly enhanced the stability of the inversion process by
effectively integrating prior information and observation data
(Alemie and Sacchi, 2011; Buland and Omre, 2003; Liu et al., 2016;
Luo et al., 2020).

The instability of inversion processes is further aggravated by
insufficient input data. Recent studies demonstrate that PP-PS
joint prestack waveform inversion substantially improves result
reliability (Lu et al., 2015; Luo et al.,, 2020; Yang and Wang, 2022).
However, both pure PP wave and PP-PS joint inversion predomi-
nantly focus on time-domain waveforms processing while over-
looking critical frequency-domain information. As seismic waves
propagate through layered media, they generate complex tuned
reflections exhibiting distinct frequency-domain characteristics.
Spectral characteristics offer key advantages for quantifying
layered thickness in stratified formations (Marfurt and Kirlin,
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2001; Partyka et al., 1999; Puryear and Castagna, 2008). There-
fore, integrating frequency-domain information into time-domain
waveform inversion can effectively mitigate the multi-solution
problem, enhance inversion stability, and improve result reli-
ability. Rubino and Velis (2009) introduced prestack amplitude
spectral inversion for thin-layer characterization, demonstrating
that frequency-domain spectral data can accurately resolve thin
layers below the tuning thickness. Lin et al. (2023) observed that
frequency-domain inversion achieve higher resolution at fine
feature scale but exhibits reduced stability under high-noise
conditions. Time-domain waveform inversion maintains noise
robustness at low signal-to-noise ratios (SNR) but has inherent
resolution limits (Yin et al., 2017). Time-frequency domain joint
inversion effectively balances noise robustness and resolution,
producing superior inversion results (Lin et al., 2023; Yin et al,,
2017; Zhao et al., 2023).

This study utilizes the RMM as the forward operator to generate
both synthetic angle gathers and frequency amplitude spectral
data. We develop a prestack time-frequency joint inversion algo-
rithm incorporating the Gauss-Newton method within a Bayesian
framework to estimate P- and S-wave velocity and density pa-
rameters. The proposed method is validated using both one-
dimensional (1D) and two-dimensional (2D) model data,
compare the AVO inversion method based on the Aki approxi-
mation, the time-domain waveform inversion method using RMM,
and the time-frequency domain joint inversion method based on
RMM. Furthermore, this study systematically examines the im-
pacts of initial model variations, random noise, and coherent noise
on the proposed inversion method, demonstrating its excellent
stability. Finally, the reliability and robustness of the proposed
method are demonstrated through its application to field seismic
data.

2. Method
2.1. Forward operator

Grounded in plane wave theory, the RMM characterizes wave
propagation in horizontally layered, homogeneous media. This
method efficiently simulates all propagation phenomena in
layered systems, including reflected, transmitted, and multiple
waves, as well as other physical effects. For an isotropic layered
media, the wave propagation can be described by the following
ordinary differential equation (Kennett, 2009):

;b =iwAb +F, (1)
where b denotes the stress-displacement vector, F represents the
body force term, A is the system matrix, i is the imaginary unit, and
the » denotes the angular frequency. The RMM utilizes the
eigenvector matrix D of the system matrix and the phase shift
matrix E of the upgoing and downgoing waves between layers to
obtain the wave propagation matrix Q of the entire layer system:

Q=D;’ ﬁ(DkEkD,;l)Dn, )

1
k=2

where subscripts the position of the layer. Using the block matrix,
Q can be written as follows:

Quu Qup } _

Qou Qpp
The reflection and transmission coefficient matrix of the entire
layer system can be expressed by this block matrix:

Q=[ 3)
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Rp = Qup(Qpp) ™', Ry = ~(Qpp) ' Qou, (4)
To = (Qop) ' Tu = Quu ~ Qup(Qop) ' Qou-

The reflection coefficient matrix can be expressed as Rp =
REP RPS
RY Ry

slowness domain is obtained. As shown in Fig. 1, it is a schematic
diagram of the reflection and transmission of three-layer model in
an elastic media, where «, 3, p, h represent the P- and S-wave ve-
locity, density and layer thickness respectively, Rpp, Rps, Tpp, Tps at
the interface represent the reflected and transmitted PP and PS
waves. The dotted arrows in the middle layer represent multiple
reflections in the three-layer model.

The frequency-slowness domain reflection coefficient R(w, p)
obtained in Eq. (4) needs to be converted to the frequency-angle
domain R(w, 6). Then the frequency domain wavelet W is multi-
plied by the frequency domain reflection coefficient to obtain the
reflection coefficient spectral A(w, ), and the time domain angle
gather dpp is obtained by inverse Fourier transform:

A(w,6) =R(w,6)-W(w, ), (5)

}, and the reflection coefficient in the frequency-

dop :Zln / Ao, )€ doy. (6)

2.2. Joint inversion objective function

The time-domain waveform and frequency-domain spectral
can be expressed as:

d; = Gi(m) +n;, df = Ge(m) +ng, (7)
where d; represents the prestack time-domain waveform data, d
represents the prestack frequency-domain amplitude spectral
data. n; and n¢ represent the random noise of observation data in
time domain and frequency domain respectively. G represents the
nonlinear forward operator, and m represents elastic parameters
such as P- and S-wave velocity and density, which can be
expressed as m = [aq--ap,B1-Bn,p1--pnlT . AVO inversion is
inherently ill-posed without prior constraints. To address this, we
develop a Bayesian framework-based prestack joint inversion
method. Assuming that the noises n: and ns obey Gaussian dis-
tribution and the noises are independent of each other, the like-
lihood function can be written as:
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1 _
Pdrim) —exp(  5(de — Ge(m)"C (@ - Gem) ). (8)

P(dim) —exp( 5 (dr - Grom)) '€ (4~ Grm) ). (9)

where C; and C; represent the variance of noise, when it is
assumed that the noises in seismic records are independent of
each other, there is C = ¢2I. At the same time, assuming that the
prior distribution also obeys Gaussian distribution, there are

P(m):exp(f%(m—u)TC;‘l(m—u)), (10)

where u in the prior distribution represents the mean value of the

model, and C;;}! represents the inverse of covariance matrix of the
model parameter m, the covariance matrix can be expressed as:

Cm =Kron(Cov{a,$,p}.1), (11)

where Kron(-) is the Kronecker product, Cov(-) is the covariance
matrix. I is the identity matrix, size is N x N, N is the length of
parameter. The covariance matrix introduces the relationship be-
tween the parameters, significantly enhancing the numerical sta-
bility of inversion solutions. From this we can get that the posterior
distribution is as follows:

P(mid) = P(em)P(m)scexp{ 3 ¢(d - Ge(m)" (d: - Gu(m)
T
+(1-¢)(ds —Gr(m) ) (dg — Gr(m))

+r(m-w)'c, <m—u)} }
(12)

where ¢ denotes the time-frequency weighting factor and 5 rep-
resents the prior constraint regularization parameter. The
parameter ¢ balances the contributions of waveform and spectral
information in the joint inversion process, while 5 regulates the
trade-off between seismic data and prior information. Increasing »
amplifies the prior constraint's impact, enhancing solution sta-
bility at the cost of resolution. Conversely, reducing » increases the
detail resolution but enhances noise susceptibility. Typically, these
weighting factors are determined through trial-and-error ap-
proaches based on model tests and well-log inversion analysis.

R
P PS ‘ R
/ / PP
Ve
e
Layer 1 // a, Br, pr
Interface 1
Layer 2 " h 02, fa, p2
o v
Interface 2 N
Layer 3 \\
\\ a3, Pa, pa
\ \\
\
PS Tps‘ 4 Tep

Fig. 1. Schematic diagram of reflection and transmission in a three-layer elastic media model.
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Alternatively, they can be optimized using the L-curve method or
generalized cross-validation to achieve an optimal trade-off.

Maximizing the posterior probability distribution is mathe-
matically equivalent to minimizing the following objective
function:

Q(m)— [¢(de—Ge(m) (A~ Gem) + (1) (dr—Gr(m) )

1
=
(df—cf(m)) +rm-u)'C;! (m—u)} .
(13)

The Gauss-Newton method is particularly well-suited for
solving nonlinear least squares problems, a common challenge in

Petroleum Science 22 (2025) 4065-4082

algorithms (e.g., gradient descent), the Gauss-Newton method
exhibits superior efficiency and stability by utilizing approximate
second-order derivative information. Additionally, by incorpo-
rating prior information as constraints, the method effectively
alleviates overfitting, yielding more reliable and physically
meaningful solutions. These advantages solidify the Gauss-
Newton method as an optimal choice for objective function opti-
mization in this study:

m“! =m* + Am, Am= —H(m") 1g(m"), (14)
where g and H denote the gradient vector and Hessian matrix of
the objective function respectively, defined as follows:

Input model parameters m

Calculate synthetic
AVA traces d;

Calculate synthetic
amplitude spectrum d¢

1

Objective function
Q(m)

Q < Set threshold
or iteration number >
maximum iteration
number

Output inverted results m

Fig. 2. Flow chart of prestack time-frequency domain joint inversion based on the RMM.

seismic inversion. In contrast to first-order optimization
Update
parameters vector
m“t=mf+ Am
Calculate
updated vector
Am = —H(m*)~" g(m*)
(@ ©° (b)
100 A
<
2
200 o
@ g
1S Q
4 o
E — S
- =
300 2
=
0]
14
400
V;, mis
Vi, m/s
p, kg/m®
500

1000 2500 4000

0

-0.2 4

-0.4 4

-0.6

-0.8 4

Zoeppritz
RMM

o

30 60

Incident angle, °

Fig. 3. (a) Single interface model, (b) comparison of PP wave reflection coefficients computed using the Zoeppritz equation (black solid line) and the RMM (red circles).
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T T
gm) =200 () (Gum) - de) (1 9 ("E ) (Grm) — d ) 4y (m ) (15)
2 T T
-2 (1o ()

Both the time-domain waveform and the frequency-domain convergence threshold is set to 0.01. To ensure computational ef-

spectral are related to the parameter m through the reflection ficiency and avoid unnecessary iterations, the optimization pro-
coefficient. Therefore, only the derivative of the reflection coeffi- cess is terminated if the objective function value increases or
cient Rp with respect to the parameter m is required: shows insufficient decrease for five consecutive iterations. These

parameters were optimized through extensive testing to achieve

?9%) 70[QUD(Q,DD)71} 0Qup, » a(QDD)_] i.r;nzll)tézgi!egilance between inversion accuracy and computa-
= om = m (Qpp) +Q—UDT (17) 1 1ency.
d _ _10 _ .
:%(QDD) 1 _Qup(Qpp) ! gn]iD(QDD) 1 3. Synthetic data examples
3.1. Forward operator testing
15 1
a(D1 [ D.E;D; }Dn>
n_
om om
n-1 d DkEkDf :| > n—1
-1 -1 k - _
0(1)1 ) [kH DE;Dj ]Dn I AN D, D;' {H DkEl<Dl<1:| 9(Dn)
= =2 - 6m;{ | k=2 _
om’ omy, 7

To assess the effectiveness of the RMM in AVA modeling and
prestack inversion, we conducted numerical tests on both single-
interface and multi-layer models. Fig. 3 presents a comparison of
P-wave reflection coefficients computed for the interface. In Fig. 3
(a), the colored lines represent elastic parameters, while in Fig. 3

where % denotes the partial derivative of the wave propagation
matrix Q with respect to the elastic parameters m across all layers
in the layered medium. Fig. 2 illustrates the workflow of the RMM-
based Bayesian prestack time-frequency joint inversion method.
The maximum number of iterations is set to 25, and the

(a) (b) RMM Zoeppritz Difference
° ° ° ° NS YIS
\r = Interface 1
Transmission loss
100 A 100 A 100 A 100 - \\J
————— \ P Interface 2
00 200 00 00 Interface 3
[} 1]
1S €
o) )
- 5 \ J 'i
L 300 306 T %00 ) Interface 4
Internal multiples
400 400 400 400
500 500 500 500 1 1 t t
2200 4200 1000 2000 2000 2800 30 0 15 30
V,, m/s Vs, m/s p, kg/m? Incident angle, °

Fig. 4. (a) Multi-layer model, (b) comparison of prestack angle gathers using the RMM and Zoeppritz equation, along with their differences.
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0.2

—— Zoeppritz
.......... RMM

Amplitude

-0.2 T T T T
0 100 200 300 400 500

Time, ms

Fig. 5. Comparison of seismic waveforms at 0° incidence angle computed using the
Zoeppritz equation (blue solid line) and RMM (red dashed line).

(b), the black solid line indicates the reflection coefficient
computed by the Zoeppritz equation, and the red circles denote
the reflection coefficient obtained from RMM. The results show
excellent agreement between the reflection coefficients computed
by both methods for the single-interface model.

Fig. 4 shows a comparison of time-domain angle gathers
generated by the RMM and the Zoeppritz equation for a multilayer
model using a 30 Hz Riker wavelet. Fig. 4(a) shows the elastic
parameters, including P- and S-wave velocity, and density. Fig. 4(b)
presents the time-domain angle gathers computed by both
methods and their differences. Red dashed lines denote interfaces,
blue dashed circles highlight multiple internal reflections, and
arrows indicate transmission losses. It is evident that multiple
reflections become more pronounced with increasing incident
angle, while transmission losses grow more significant with
increasing propagation time. The prestack time-domain angle
gathers generated using the RMM account for more propagation
effects.

Fig. 5 depicts the differences in seismic waveforms generated
by the two methods at an incidence angle of 0°. The solid blue line
represents the forward modeling results obtained by the Zoeppritz
equation, while the red dashed lines denote the results calculated

(a) -0:09

Zoeppritz

—0— RMM

-0.10 A

-0.11

Amplitude

=0.12 A

0 10 20 30

Incident angle, °
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0 0 0
50 50 50
100 100 o 100
150 150 150
€
r=
a
© 200 - 200 A 200 A
[a)]
250 - 250 - 250 -
300 - 300 300 -
350 - 350 350 -
1600 1900 350 600 1980 2080
V,, m/s Vi, m/s p, kg/m?

Fig. 7. Elastic parameters of 1D model: (a) P-wave velocity, (b) S-wave velocity and (c)
density.

using the RMM. Green arrows highlight transmission losses, while
orange arrows indicate multiple reflections. Evidently, trans-
mission losses increase as propagation distance increases. Fig. 6
compares the amplitudes at interfaces 1 and 4 of the multilayer
model. Fig. 6(a) shows the comparison result for interface 1, while
Fig. 6(b) shows the result for interface 4. It is evident that trans-
mission losses are more pronounced at interface 4 than at inter-
face 1. These results indicate that the RMM, as a forward operator,
offers better adaptability for modeling layered media. Therefore,
using the RMM as the forward operator for prestack inversion can
enhance the accuracy of elastic parameter predictions in layered
media, especially in scenarios with complex wave propagation
effects.

(b) -0.15

Zoeppritz

—0— RMM

-0.16 A

Amplitude
s
3

-0.18 A

-0.19 T T

Incident angle, °

Fig. 6. Comparison of prestack angle gathers amplitudes at the interface computed using the Zoeppritz equation (black solid line) and RMM (red circles): (a) interface 1, (b)

interface 4.
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Table 1

0
Mean squared error (MSE) between true model and inversion results of different
methods.
100 4 MSE V,, inversion Vs inversion p inversion
Aki approximation 135.98 83.98 12.75
Time domain 15.95 9.46 1.50
200 4 Joint domain 0.17 0.10 0.016
300 A . . .
3.2. Inversion algorithm testing
400 4 Following the validation of the RMM, we conducted prestack
time-frequency domain joint inversion using 1-D model data.
Fig. 7 displays the elastic parameters, including P- and S-wave
: . ¢ t velocity and density. First, prestack AVA gathers were generated as
5 15 25 35

500
the observation data using a 30Hz Ricker wavelet, with incidence
Incident angle, ° angles ranging from 5° to 35° at 10° interval, as shown in Fig. 8.
. ) ) We compare the inversion results obtained using the Aki
Eﬁdgl Prestack synthetic angle gathers generated from the elastic parameters of 1D approximation, the time-domain waveform inversion results
based on the RMM, and the time-frequency domain joint inversion

Time, ms

(@ © 0 0 (b) © 0 0
50 50 - 50 -
100 - 100 100
100 - 100 100
200 4 200 4 200 4 150 150 150
2]
g E
g <
E & 200 - 200 200
= (=]
300 4 300 A 300 A
250 250 4 250 4
400 4 400 4 400 4 300 4 300 A 300 A
350 - 350 - 350 -
500 500 500
1600 1900 350 600 1980 2080 1600 1900 350 600 1980 2080
V,, m/s Vi, m/s p, kgim® V,, m/s V,, m/s p, kgim®
(¢) © 0 0
50 A 50 50
100 100 - 100 -
150 150 150
S
<
S 200 200 4 200 4
[
[a]
250 - 250 - 250 -
300 - 300 4 300 -
350 - 350 - 350 -
1600 1900 350 600 1980 2080
V,, m/s Ve, m/s p, kg/m?

Fig. 9. Comparison of parameter prediction results for three inversion methods: (a) prestack seismic inversion using the Aki approximation, (b) prestack waveform inversion and
(c) prestack time-frequency domain joint inversion, both using RMM. The black solid line represents the true model, the blue dashed line denotes the initial model, and the red

solid line indicates the inversion result.
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(a) True Inverted Difference
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(b) True Inverted Difference
0
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N
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>
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(d) True Inverted Difference
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Fig. 10. Comparison of observed data and synthetic data. Time-domain waveform inversion results: (a) time-domain waveform, (b) frequency-domain amplitude spectral. Time-
frequency domain joint inversion results: (c) time-domain waveform, (d) frequency-domain amplitude spectral.

results using RMM, as illustrated in Fig. 9. The black solid line
denotes the true model, the blue dashed line indicates the initial
model, and the red solid line represents the inversion result. Fig. 9
(a) displays the Aki approximation inversion results, where P- and
S-wave velocity and density exhibit apparent jitters within the
layer. Fig. 9(b) illustrates the time-domain waveform inversion
results using RMM. It is evident that the inversion results exhibit
minor jitters within the layer. Nonetheless, compared to the re-
sults based on the conventional Aki approximation, a significant
improvement is observed. Fig. 9(c) presents the time-frequency
domain joint inversion results. The inversion results exhibit
excellent consistency with the true results, validating the effec-
tiveness of the proposed method. The inversion results are sub-
stantially improved due to the constraints imposed by multi-
domain data, compared to single-domain inversion. To quantita-
tively assess the improvement, we calculated the mean squared
error (MSE) between the inversion results and the true values for
the three methods. As shown in Table 1, the Aki approximation-
based inversion exhibits the poorest performance with the high-
est MSE value. In contrast, the RMM-based time-frequency joint
inversion achieves the lowest MSE, confirming its superior accu-
racy. Moreover, the efficiency of the inversion method is also an
important consideration. Compared to conventional AVO inver-
sion, the proposed RMM-based inversion algorithm requires more
computational time due to the complexity of RMM, which involves

4072

multiple loops for frequency, angle, and layer variations. As a
result, the efficiency of the inversion is closely related to these
parameters. However, when compared to time-domain waveform
inversion, a single iteration in the time-frequency joint inversion
does not significantly increase the computational time. To address
the computational cost, parallel computing could be considered to
save time and make the method more accessible for large-scale
applications.

Next, we analyze the discrepancies between the synthetic angle
gathers generated by the RMM inversion results and the observed
data, as depicted in Fig. 10. Fig. 10(a) and (b) show that the time-
domain waveform traces from the true model and the inversion
results exhibit a high degree of agreement. However, noticeable
differences exist in their frequency-domain amplitude spectral.
Therefore, relying solely on time-domain data for predicting P- and
S-wave velocity and density is insufficient, and frequency domain
information should also be integrated. It is crucial to ensure not
only alignment in the time domain but also minimization of errors
in the frequency-domain amplitude spectral. Fig. 10(c) and (d)
present the comparison of the synthetic and observed data ob-
tained from the joint inversion results in both the time and fre-
quency domains, illustrating enhanced consistency. These results
demonstrate that incorporating frequency-domain information
into waveform inversion improves the accuracy of elastic param-
eter estimation.
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Fig. 11. Influence of initial models smoothness on inversion results: (a) 80-point smoothing (Smooth-80), (b) 120-point smoothing (Smooth-120), and (c) 160-point smoothing
(Smooth-160). The black, blue, and red lines represent the true model, initial model, and inversion result, respectively.
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Fig. 12. Observed data under different random noise levels: (a) time-domain waveforms and (b) frequency-domain amplitude spectral.

Additionally, we explore the impact of various initial models on
the time-frequency domain joint inversion results. This study
utilizes a smooth function to generate the initial model with
gradually increasing smoothness. Whereas the prior inversion
adopted a 50-point moving average for initial model generation,
the current analysis tests 80-point, 120-point and 160-point
moving average. The joint inversion results are depicted in

Fig. 11. Fig. 11(a)~(c) show the inversion result based on the 80-
point, 120-point and 160-point moving average, respectively. The
black solid line denotes the true model, the blue dashed line in-
dicates the initial model, and the red solid line represents the
inversion results. As the smoothness of the initial model increases,
the time-frequency domain joint inversion results display
increasing jitter. When the initial model approximates a straight
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Fig. 13. Time-frequency domain joint inversion results under different random noise levels: (a) SNR = 10, (b) SNR = 5. The black, blue, and red lines represent the true model,
initial model, and inversion result, respectively.
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line, the prediction accuracy is minimized. Nevertheless, the
method remains relatively high independence from the initial
model and demonstrates strong robustness.

Random noise was added to the observed data to assess the
noise resistance of the proposed method, with noise intensity
quantified by signal-to-noise ratio (SNR). Fig. 12 compares the
observed data under three conditions: no noise, SNR = 10 and
SNR = 5. Fig. 12(a) shows the time-domain waveform at different
noise levels, while Fig. 12(b) presents the frequency-domain
amplitude spectral under varying noise levels. Prestack time-
frequency domain joint inversion was performed using observa-
tion data under various noise conditions. The results are illustrated
in Fig. 13, where Fig. 13(a) and (b) present the inversion results at
SNR = 10 and SNR = 5, respectively. The black solid line denotes
the true model, the blue dashed line indicates the initial model,
and the red solid line represents the inversion results. Despite the
presence of random noise, the proposed method accurately esti-
mates the P- and S-wave velocity and density parameters,
demonstrating strong noise resistance.
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Fig. 14 compares the observed data with the synthetic data
derived from the joint inversion for different random noise levels.
Fig. 14(a) and (b) show the comparison between the time-domain
waveform data and frequency-domain amplitude spectral data at
SNR = 10, respectively, while Fig. 14(c) and (d) present the results
at SNR = 5. The difference represents the residual between the
observed and synthetic data. Evidently, for both SNR = 10 and
SNR = 5, the inversion results accurately reconstruct the waveform
and amplitude spectral data. The residual between the observed
and synthetic data approximates the added random noise,
demonstrating the superior noise resistance of the proposed
method.

Building on the random noise tests, we further explored the
impact of coherent noise (primarily multiples) on inversion re-
sults. Fig. 15 compares three datasets: noise-free data, data with
weak coherent noise (coherent noise 1), and data with strong
coherent noise (coherent noise 2). Fig. 15(a) and (b) show the time-
domain waveform and frequency-domain amplitude spectral un-
der different noise levels, respectively. The inversion results are
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Fig. 17. Comparison of observed data and synthetic data from joint inversion under different coherent noise. Noise 1: (a) time-domain waveforms, (b) frequency-domain
amplitude spectral; noise 2: (c) time-domain waveforms, (d) frequency-domain amplitude spectral.
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Fig. 18. Elastic parameters of a local region from the Marmousi-2 model: (a) P-wave velocity, (b) S-wave velocity, (c) density.

presented in Fig. 16, where Fig. 16(a) and (b) correspond to weak domain waveform and frequency-domain amplitude spectral un-
and strong coherent noise, respectively. The results indicate that as der weak interference, while Fig. 17(c) and (d) display the results

the intensity of coherent noise increases, inversion accuracy de- under strong interference. These differences represent the re-
clines, with its interference effect significantly stronger than that siduals between the observed and synthetic data. Notably, the
of random noise. This is due to coherent noise exhibiting wave- joint inversion method successfully reconstructs both waveform

form characteristics rather than discrete noise points. Fig. 17 and spectral characteristics even in the presence of coherent noise.
compares the observed data with synthetic data derived from joint This robustness arises from the method's ability to accurately
inversion. Fig. 17(a) and (b) show the comparison between time- simulate interbed multiples, demonstrating excellent resistance to
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Fig. 20. Initial model of a local region from the Marmousi-2 model: (a) P-wave velocity, (b) S-wave velocity, (c) density.

coherent noise interference. It is worth emphasizing that in
practical seismic data processing, coherent noise can typically be
effectively suppressed through preprocessing techniques.

To further assess the efficacy of the time-frequency domain
joint inversion method, we performed tests with 2D model data.
The model data are extracted from a section of the Marmousi-2
model, as shown in Fig. 18. Fig. 18(a)-(c) show the P- and S-wave
velocity and density, respectively. Forward modeling was per-
formed using a 30 Hz Ricker wavelet, with the resulting prestack
angle gathers for incident angles of 5°, 15°, 25°, and 35° shown in
Fig. 19. Importantly, due to the significant contrast in elastic pa-
rameters between the central gas-bearing layer and the sur-
rounding rock, distinct amplitude variations are evident in the
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gathers. Fig. 20 presents the initial models for the P- and S-wave
velocity, and density.

Fig. 21 shows the inversion results, with Fig. 21(a)-(c) depicting
the Aki approximation-based inversion results, Fig. 21(d)—(f) pre-
senting the time-domain waveform inversion results using RMM,
and Fig. 21(g)-(i) displaying the time-frequency domain joint
inversion results using RMM. It is evident that the AKki
approximation-based inversion results are less effective in char-
acterizing the gas reservoir and are significantly inferior to those
from RMM, as RMM considers wave propagation effects between
layers in the forward modeling. Moreover, by integrating
frequency-domain information, the time-frequency domain joint
inversion using RMM yields more accurate results than the time-
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Fig. 21. Comparison of parameter prediction results for three inversion methods: prestack seismic inversion using the Aki approximation: (a) Vp, (b) Vs and (c) p; prestack
waveform inversion using the RMM: (d) V), (e) Vs and (f) p; prestack time-frequency domain joint inversion using RMM: (g) V, (h) Vs and (i) p.

domain waveform inversion. Fig. 22 shows the residuals between
the inversion results of different methods and the true model.
Clearly, the residuals from the time-frequency domain joint
inversion using RMM are the smallest, demonstrating the effec-
tiveness of the proposed method.

4. Field data application

Finally, the prestack time-frequency domain joint inversion
method was applied to field seismic data from a target area. The
field seismic data are shown in Fig. 23, where the red line denotes
the location of Well A. Fig. 24 shows the well-logging curve and its
Backus average for Well A, with the black line representing the
well-logging curve, the red line signifying the Backus-averaged
result, and a sampling interval of 2 ms. The wavelet used for
field data inversion is the average wavelet estimated from the
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angle gathers, as shown in Fig. 25. The initial model was generated
by interpolating the Backus-averaged well data along the selected
horizon.

The inversion results for the profile are shown in Fig. 26, with
Fig. 26(a)-(c) depicting the Aki approximation-based inversion
results, Fig. 26(d)-(f) presenting the time-domain waveform
inversion results using RMM, and Fig. 26(g)—(i) displaying the
time-frequency domain joint inversion results using RMM. The
RMM-based inversion results are more accurate in characterizing
the reservoir than those from the Aki approximation. The time-
frequency domain joint inversion method using RMM provides
more detailed predictions than the time-domain waveform
inversion method. Fig. 27 shows the inversion results at Well A,
where the black line denotes the well logging curve, the green line
indicates the inversion results based on the Aki approximation, the
blue line represents the time-domain waveform inversion results
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Fig. 22. Comparison of residuals between the true model and inversion results for three inversion methods: prestack seismic inversion using the Aki approximation: (a) V,, (b) Vs
and (c) p; prestack waveform inversion using the RMM: (d) Vj, (e) Vs and (f) p; prestack time-frequency domain joint inversion using the RMM: (g) V;, (h) Vs and (i) p.

using RMM, and the red line shows the time-frequency domain
joint inversion results using RMM. It is evident that the elastic
parameters predicted by the proposed time-frequency domain
joint inversion method are closer to the well-logging data and
exhibit excellent consistency with it, demonstrating the method's
effectiveness in field applications.

5. Discussion

We proposed a prestack time-frequency domain joint inversion
method that demonstrates strong robustness to noise and initial
model variations. However, several limitations exist due to the
method relies on the layered media assumption.
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First, the complexity of field data presents a significant chal-
lenge. Real logging data are inherently complex, and seismic data
typically represent the superposition of waveforms from
numerous thin layers, thus making it difficult to resolve blocky
structures. Second, noise and uncertainties in field seismic data
can obscure sharp boundaries and reduce the resolution of inver-
sion results, as shown in Fig. 13(a) and (b). Additionally, the
Gaussian prior distribution tends to yield smooth solutions,
potentially weakening the ability to characterize blocky structures.
Finally, while the proposed method is robust to initial model se-
lection, an initial model closer to the true model can significantly
enhance convergence speed and inversion accuracy, as shown in
Fig. 11(a)—(c). Therefore, the initial model should be geologically
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Fig. 23. Partial stacking angle gathers of the field dataset: (a) 3°-13°, (b) 11°-21°, (c) 19°-29° and (d) 27°-37°. The red dotted line indicates the position of well A.
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Fig. 26. Comparison of parameters prediction results for three inversion methods: prestack seismic inversion using the Aki approximation: (a) V,, (b) Vs and (c) p; prestack
waveform inversion using the RMM: (d) V,,, (e) Vs and (f) p; prestack time-frequency domain joint inversion using the RMM: (g) V;, (h) Vs and (i) p.

plausible and consistent with prior subsurface structure knowl-
edge to ensure a reasonable inversion starting point.

Despite these limitations, the results from our method remain
reasonable and reliable. Future work could focus on addressing
these challenges through advanced noise suppression techniques,
more sophisticated prior distributions, and initial model selection
optimization strategies.

6. Conclusion

This paper presents a prestack time-frequency domain joint
inversion method for layered media within a Bayesian framework.
The method uses Gauss-Newton iteration to estimate key pa-
rameters, including P- and S-wave velocity, and density. In the
forward modeling stage, RMM is used to capture wave propagation
characteristics in layered media, such as multiple reflections and
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transmission losses. By integrating both time-domain waveform
and frequency-domain data in the inversion, the method provides
significant advantages in noise resistance and resolution.

Experimental results from synthetic and field data show that
the proposed method significantly outperforms conventional AVA
inversion and time-domain waveform inversion in terms of ac-
curacy, resolution, and noise resistance. The method shows strong
stability under varying initial models and can provide reliable
predictions even under low SNR and strong coherent noise inter-
ference. Furthermore, comparisons with well-logging data vali-
date the practical applicability of our method for high-precision
reservoir characterization.

Future research could focus on extending the method to more
complex media, such as anisotropic or viscoelastic media, where
frequency-domain information may offer unique insights.
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Fig. 27. Comparison of inversion results for three methods at Well A: the black line
denotes the logging curve, the green line represents the inversion results using the
Aki approximation, the blue line indicates the time-domain waveform inversion re-
sults using the RMM, and the red line shows the time-frequency domain joint
inversion results using the RMM.
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