Petroleum Science 22 (2025) 4102-4116

KeAil

CHINESE ROOTS
GLOBAL IMPACT

journal homepage: www.keaipublishing.com/en/journals/petroleum-science

(2}

Petroleum
Science

Contents lists available at ScienceDirect

Petroleum Science

Original Paper

Incremental dimensionality reduction for efficiently solving Bayesian  m)

inverse problems

Check for
updates

Qing-Qing Li? Bo Yu"’, Jia-Liang Xu ¢, Ning Wang ", Shi-Chao Wang", Hui Zhou ¢

2State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, 266580, Shandong, China

b The School of Earth Sciences, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China

©Sanya Offshore Oil and Gas Research Institute, Northeast Petroleum University, Sanya, 572025, Hainan, China

d State Key Laboratory of Petroleum Resources and Engineering, CNPC Key Lab of Geophysical Exploration, China University of Petroleum (Beijing), Beijing,

102249, China

ARTICLE INFO

Article history:

Received 7 April 2025
Received in revised form

29 June 2025

Accepted 5 August 2025
Available online 8 August 2025

Edited by Meng-Jiao Zhou

Keywords:

Dimension reduction
Seismic inversion
Discrete cosine transform

ABSTRACT

The inversion of large sparse matrices poses a major challenge in geophysics, particularly in Bayesian
seismic inversion, significantly limiting computational efficiency and practical applicability to large-
scale datasets. Existing dimensionality reduction methods have achieved partial success in addressing
this issue. However, they remain limited in terms of the achievable degree of dimensionality reduction.
An incremental deep dimensionality reduction approach is proposed herein to significantly reduce
matrix size and is applied to Bayesian linearized inversion (BLI), a stochastic seismic inversion approach
that heavily depends on large sparse matrices inversion. The proposed method first employs a linear
transformation based on the discrete cosine transform (DCT) to extract the matrix's essential infor-
mation and eliminate redundant components, forming the foundation of the dimensionality reduction
framework. Subsequently, an innovative iterative DCT-based dimensionality reduction process is
applied, where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce
dimensionality, thereby effectively eliminating matrix redundancy in depth. This process is referred to
as the incremental discrete cosine transform (IDCT). Ultimately, a linear IDCT-based reduction operator
is constructed and applied to the kernel matrix inversion in BLI, resulting in a more efficient BLI
framework. The proposed method was evaluated through synthetic and field data tests and compared
with conventional dimensionality reduction methods. The IDCT approach significantly improves the
dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy,
demonstrating prominent advantages in solving Bayesian inverse problems more efficiently.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

2022; Chen et al., 2024b). Over the past six decades, seismic in-
verse problems have predominantly been solved within the

Seismic inversion is a critical technique in geophysical explo-
ration, enabling the transformation of seismic reflection data into
quantitative subsurface properties such as velocity, density, and
lithology (Chen et al., 2024a; Wang et al., 2024a; Sun et al., 2025).
To date, seismic inversion significantly advances the character-
ization of subsurface structures and fluid distributions, serving a
critical role in hydrocarbon exploration, mineral prospecting, and
carbon sequestration monitoring (Ding et al., 2021; Zhang et al.,
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Bayesian framework, evolving into two principal categories:
deterministic and stochastic inversion. Deterministic seismic
inversion employs optimization techniques to derive the optimal
solution for target parameters from seismic data, whereas sto-
chastic inversion not only estimates subsurface parameters from
observational data but also quantifies the associated uncertainty
(Bosch et al., 2010; Alemie and Sacchi, 2011; Yang et al., 2023).
Due to the ill-posed nature of seismic inversion problems and
the uncertainties introduced by errors and noise in various types of
observed datasets, such as seismic and well log data, seismic
inversion exhibits strong multimodality (Downton, 2005; Chen
et al,, 2025). Therefore, in addition to seeking the optimal solu-
tion, it is crucial to assess the uncertainty of the inversion solution.
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The stochastic inversion strategy offers distinct advantages in this
regard (Yu et al, 2021). The ultimate objective of stochastic
inversion is not to obtain the optimal solution for the parameters,
but rather to derive a set of solutions. This solution set is typically
represented by the posterior probability distribution of the pa-
rameters within a statistical framework, capturing the distribution
space of the inversion parameters and characterizing the uncer-
tainty of the inversion process.

Generally, seismic stochastic inversion can be broadly catego-
rized into two types: iterative geostatistical stochastic inversion and
the Kalman stochastic inversion (Pereira et al., 2019). The founda-
tional framework of geostatistical inversion comprises geostatistics
and Monte Carlo optimization (Pereira et al., 2020), and it has been
extensively studied in the field of petroleum geophysics (Penna and
Lupinacci, 2024). Another type of stochastic inversion essentially
can be defined as Kalman stochastic inversion, which mainly re-
news the model parameters using the Kalman gain calculated from
the well-log and seismic data (Zhang and Oliver, 2011). The main
advantages of Kalman inversion lie in its stability and efficiency
compared with geostatistical inversion. Currently, Kalman inversion
can also be categorized into linear and nonlinear types. The linear
method is essentially Bayesian linearized inversion (BLI), which
directly solves the posterior probability distribution of the param-
eters using a linearization approach within the Bayesian framework
(Buland and Omre, 2003; Grana et al., 2022; Shi et al.,, 2024).
Compared with linear Kalman inversion (BLI), nonlinear Kalman
inversion like ensemble Kalman inversion is beneficial for solving
complex nonlinear inverse problems (Cao et al., 2024), such as the
inversion of complex reservoir physical properties and full-
waveform inversion (Thurin and Brossier, 2019).

Although Kalman inversion combines high efficiency and sta-
bility, it is constrained by the inversion of large sparse matrices.
Both linear and nonlinear Kalman inversions require solving large
kernel matrices to compute the Kalman gain. Given the large scale
of field data in practical applications, the difficulty of matrix
inversion becomes significantly high, which severely impacts the
practicality of Kalman inversion. Choosing an appropriate
dimensionality reduction method can help alleviate this issue to
some extent, reducing the limitations of large matrix dimension-
ality reduction on Kalman stochastic inversion.

Dimensionality reduction plays a crucial role in fields that
involve massive data processing, such as geophysics, mathematical
geology, computer science, and image processing (Marzouk and
Najm, 2009; Esser et al., 2012). In recent years, with the rapid
development of deep learning, dimensionality reduction tech-
niques have been extensively studied. A series of linear and
nonlinear reduction methods have been proposed, which can
effectively improve the efficiency of deep learning algorithms
(Cunningham and Ghahramani, 2015). Dimensionality reduction
of ultra-large matrices is one of the key challenges in information
reduction (Bunte et al., 2012). The solution of high-dimensional
inverse problems essentially involves the inversion of ultra-large
matrices, which poses significant computational challenges in
practical applications. To address this, various dimensionality
reduction inversion methods have been proposed. By discarding
part of the redundant information, these approaches significantly
improve the computational efficiency of solving high-dimensional
nonlinear inverse problems without notably compromising
inversion accuracy (Aravkin et al.,, 2012; Atkinson and Zabaras,
2019). Zahm et al. (2022) introduced dimensionality reduction
strategies into the Bayesian framework to accelerate the solution
of nonlinear inverse problems. As a typical class of inverse prob-
lems, seismic inversion methods also commonly require infor-
mation reduction techniques (Jumah and Herrmann, 2014; Gao
et al., 2020). Among various seismic inversion approaches, two
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methods exhibit the highest demand for dimensionality reduction.
The first is full waveform inversion (FWI), where dimensionality
reduction strategies can effectively reduce the model space (Yin
et al, 2025), thereby improving computational efficiency. The
second is stochastic inversion, particularly the Kalman-based
stochastic inversion methods discussed earlier.

Previous studies have attempted to address the challenges of
large matrix inversion and high-dimensional parameter estima-
tion in Kalman-based stochastic inversion by incorporating
dimensionality reduction strategies. Grana et al. (2019) proposed a
data dimensionality reduction method that is of significant
importance for improving the efficiency of Kalman gain compu-
tation in Bayesian linearized inversion. Liu et al. (2022) also
adopted this dimensionality reduction strategy to enhance the
efficiency of Bayesian stochastic inversion. These methods are
mainly based on principal component analysis (PCA). Although
they alleviate the curse of dimensionality to some extent, they also
introduce additional computational burden during the reduction
process. Yu et al. (2024) proposed an efficient dimensionality
reduction strategy for linearized Kalman inversion based on
discrete cosine transform (DCT), which effectively alleviates the
issue of large matrix dimensionality reduction, without increasing
the computational cost of the inversion method itself.

The above dimensionality reduction methods have reduced the
difficulty of inverting large sparse matrices to some extent. These
methods are not only significant for seismic inversion but also
have practical value for other geophysical processing and inter-
pretation techniques that require huge sparse matrix inverse.
However, the existing dimensionality reduction methods typically
reduce the matrix dimension to around 40%-50% of the original
matrix size (Yu et al., 2024), which does not completely resolve the
issue of inverting extremely large matrices. For ultra-large
matrices, reducing the dimension by 50% still results in a rela-
tively large matrix, and the difficulty of inversion remains.

Based on the dimensionality reduction method based on DCT
(Yu et al., 2024), this paper proposes an incremental discrete
cosine transform (IDCT) strategy, and further presents an innova-
tive matrix dimensionality reduction method. Through an iterative
IDCT-based reduction process, the matrix dimensions are incre-
mentally reduced, thereby achieving deep dimensionality reduc-
tion of large matrices. By introducing this dimensionality
reduction method into the linearized Kalman inversion—BLI, a fast
stochastic inversion method is formulated and defined as IDCT-BLI
(Bayesian linearized inversion based on incremental discrete
cosine transform). Finally, the effectiveness of the proposed
method is verified by a synthetic and a field data tests. The com-
parisons in terms of computational efficiency and dimensionality
reduction performance between the IDCT-BLI and DCT-BLI pro-
posed by Yu et al. (2024) are also conducted in the tests.

The remaining sections of the paper are introduced briefly as
following. First, the basic principles of DCT are introduced. Then,
the DCT-based dimensionality reduction method for large sparse
matrices is discussed. Next, the basic principles and advantages of
the IDCT-based dimensionality reduction method are presented.
Following that, the expression for IDCT-BLI is derived. Finally,
synthetic and real data tests are conducted to verify the effec-
tiveness of IDCT-BLI.

2. Theory
2.1. Traditional dimension reduction based on DCT
2.1.1. DCT for a matrix

The core theorem of this research is DCT, which can be
described as the following equation for 1D cases:
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N-1

Hu)=+vc (u)/NZ e(i)cos[(i+ 0.5)mu / N],

i=0

(1)

where ¢ is a signal such as the seismic data, and its sampling
number is represented by N. c; is a correction parameter that takes
avalue of 1 when u is zero and 2 when u is non-zero in the case of
1D signals.

Yu et al. (2024) used DCT to reduce the core matrix size in
Bayesian seismic inversion, where a core matrix X is taken as a
two-dimensional signal and transformed by the 2D DCT as follows:

N-1 N-1
Hw,v) =/ ler e )] /N Y~ >~ %0, j)cos]
i—0 j=0

x (i+0.5)zu / N]cos[(j + 0.5)nv / N], (2)
where c¢; and ¢, are the correction parameters corresponding to
the u and v when dealing with a 2D signal, c; should be 1 and 2
when v is zero and non-zero, respectively. Actually, ¢; and ¢, are
the same variable but their subscripts just denote different di-
rection of a 2D matrix (or signal). Eq. (2) can be denoted by the
following matrix form (Yu et al., 2024),
¥ —R=R, (3)
where the elements in the transform operator R can be expressed
as

R(u,v) =cq(u)cos[(j+0.5)nu / N], (4)
and R'R equals to a unit matrix, i.e.,
= =R'RZIR'R =R'ZR, (5)

where £ = RER' is the form of X after DCT. Actually, after the 2D
DCT, most of the significant coefficients in matrix X" are concen-
trated in the top-left corner, i.e., £ can represent the effective in-
formation in X.

2.1.2. Extraction of effective information from a matrix after DCT

Matrix ¥’ is a transformed version of ¥ that concentrates its
significant information, while both matrices share the same di-
mensions. Next step, the effective information of £ need to be
extracted. Assuming that the dimension of £ or X' is ng, and the
expected dimension after reduction is ny, a reduction operator X of
ng column and n; row is defined to extract the valid information
from the ¥ as the following manner (Yu et al., 2024):
= =XxzX", (6)
where X is actually a sampling operator. In Eq. (6), 1 is also a
square matrix. Since X is a linear operator that determines the
matrix dimensions before and after the transformation, it is not a
square matrix. Here, nq /ng (ng > ny) is defined as reduction coef-
ficient (Rcoe). Therefore, the core matrix = can be converted into
X, with a much smaller size n; once the Rcoe is given.

Overall, the effective part of X are concentrated in one corner of
Y. Therefore, these principal components can be effectively
extracted by operator X with a suitable size, and formulate the
final reduced matrix £; whose size is smaller than =.

2.1.3. The expression of the DCT-based dimension reduction

In the above process, an initial matrix X can be converted onto a
matrix £; with a smaller size by DCT (Yu et al., 2024), and this
process can be expressed as
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-1
» —R'RER'R=R"TR=R'X'Xz'X" (xT)

O (7)
R=R'X'x, (xT) R.
For simplicity, Eq. (7) is rewritten in the following form:
T=IZi0, (8)

where the operator for dimensionality reduction is defined as

r; =R"X"1. 9)

Based on the above derivation, the inverse calculation of X can
be written as

-1 -1
z1= (r@lrlT) - (rﬁ) (21)" 'yl (10)

The inverse of T is converted into the inversions of the above
three matrices. It seems that the matrix inverse after the above
conversion is more complicated than inverting X directly. How-
ever, I (or I'") is constant for a single two- or three-dimensional
seismic inversion test. Thus, only once inversion of I' (or I'T) is
enough for all the traces.

The aforementioned approach is the dimensionality reduction
method proposed by Yu et al. (2024). This method enables the
generation of reduced representations by assigning a specific value
to the Rcoe parameter. As illustrated in Fig. 1(a), the method
operates by concentrating the effective information of the original
matrix via Eq. (3), and then extracting this information using Eq.
(6), thereby achieving dimensionality reduction. In most cases,
this approach can reduce the dimensionality of a matrix to
approximately 40%-50%. Building upon this framework, the pre-
sent study introduces an incremental reduction method, which
applies iterative DCT-based reduction to the matrix, enabling a
more thorough dimensionality reduction than the conventional
DCT approach.

2.2. Incremental reduction based on DCT

The key to the IDCT is achieving a deeper reduction degree
incrementally, by conducting DCT iteratively, namely conducting
serval rounds (more than one) of DCT. However, it is essential to
reasonably select the relevant parameters during the iterative
process to ensure that the progressive dimensionality reduction
does not compromise the integrity of the effective matrix infor-
mation. In the following subsection, two cases including two and [
(I'> 2) rounds of dimension reductions are listed herein to clarify
the basic theorem of IDCT.

2.2.1. Derivation of two reduction iterations

First, a simple case with two reduction iterations is used to
introduce the IDCT initially. This case, in another word, is first
converting X to Xq,using Eq. (8), and further transform X, to X,
with a size of n, (ng >n; >ny). Notably, nq/ng and n,/n; herein
are Rcoe values for the first and the second reduction iteration.
Generally, the Rcoe values in different reduction rounds can be a
same value for convenience. The above second reduction process

can be expressed as
Ty =50, (11)

where the dimension reduction operator is
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(b) 9x9
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=

Fig. 1. The sketches of (a) DCT, and (b) IDCT with two rounds of reductions expressed in Eq. (13).

I, =RIX;!. (12)
where the R, and X, are the DCT transform operator and sampling
operator corresponding to the matrix size ny, which are intro-
duced in Egs. (3) and (6). Then, the relationship between X and X,
can be written as

I=IL50 T, (13)
The inverse of X can be also expressed as
-1 -1 -1
I <r1r222r1Tr2T) - (I‘ZT) (rlT) ot el el
(14)

Therefore, the inverse of X is transformed into the inverse of
a much smaller matrix £, and a set of reduction operators,
which means the inverse of X has a great possibility to be
simplified.

This simple IDCT approach, which involves only two stages of
dimensionality reduction, is illustrated in Fig. 1(b). The blue and
white squares can respectively represent the effective and
redundant elements within the matrix. First, the DCT method is
applied to concentrate the effective information from the original
9-dimensional matrix. Then, the effective information (indicated
by blue nodes) is extracted which results in a 6-dimensional ma-
trix. However, this intermediate matrix still contains some
redundant or non-informative components (represented by white
nodes in Fig. 1. Therefore, a second DCT-based reduction is applied
to further compress the data, ultimately yielding a three-
dimensional matrix.

2.2.2. Derivation of | reduction iterations

According to the above derivation, = can be transformed into an
extremely small matrix after | rounds of reductions, which can be
expressed as following according to Eq. (13),
=T 0T = AZAT, (15)
for the convenience of the following inversion derivation,
1Ty is defined as the final reduction operator A that
responsible for incremental dimension reduction. The corre-
sponding inverse of X after | times of reductions can be written
as
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2.2.3. Parameters selection of IDCT

The above derivation proves that a large matrix can be trans-
formed into a small matrix by IDCT, which is essentially con-
ducting DCT iteratively on the large matrix. Although the
mathematical theorem of IDCT is demonstrated, two critical issues
mast be clarified to keep the effectiveness of IDCT in geophysical
applications.

(a) The Rcoe value should not be too large in IDCT, as it is a
crucial factor in IDCT. In DCT, the reduction is performed
only once, and Rcoe is typically set to 40%-60% (depending
on the data type). However, DCT is relatively rough because
such a small Rcoe may result in excessive loss of valid in-
formation. In each iteration of IDCT, a larger Rcoe (e.g., 70%—
80%) is used to mitigate the loss of valid information.
Consequently, the reduction per iteration in IDCT is smaller
than that in DCT, but the overall reduction effect of IDCT is
significantly more pronounced than that of DCT.

(b) Although IDCT can effectively reduce the size of a matrix, it
also generates multiple reduction operators that need to be
inverted. This may appear to introduce additional compu-
tational burden. However, in practical two-dimensional and
three-dimensional applications of seismic inversion, the
inversion of these reduction operators only needs to be
performed for a single trace, and the same reduction oper-
ators can be applied to other traces.

Therefore, a 1D inversion test near a drilled well must be
conducted before performing two-dimensional and three-

=)

—_
()
-

80

o 160 0 :E.
E £
240

320 1

(b) !
[} ()
£ E
) 0o 2
£ £
= <

-1

CDP

(c) !
Q
g g
g 0F
£ £
= <

100

200

300
CDP

400 500 600

Fig. 3. Synthetic seismic profiles of partial angle stacked data with the incident angles
of (a)5°, (b) 15°, and (c) 25°.
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dimensional seismic inversion with IDCT for two purposes: First,
the crucial sampling parameters including Rcoe and iteration
count are determined; Second, the reduction operators like l‘,‘l in
Eq. (16) need to be pre-calculated and stored before the IDCT-
based inversion application in large-scale datasets. Consequently,
for all traces except the one used in the 1D test, the only matrix
that needs to be inverted is actually the one after IDCT, e.g., the X;
in Eq. (16).

2.3. Bayesian linearized inversion with IDCT

BLI is a seismic inversion technique that integrates Bayesian
inference with linearization methods. The fundamental principle
is to update the posterior distribution of model parameters based
on Bayesian theorem, given prior information and observed data.
BLI is based on the Bayesian theory,

p(m|d) =p(djm)p(m) / p(d)

where p(m) represents the prior probability distribution of the
parameter m, p(d/m) is the likelihood function, p(m|d) is the
posterior probability distribution. The detailed information
regarding calculating p(m|d) by BLI can be found in Appendix A.

Apparently, according to Appendix A, the inverse of a core
matrix Cy4 is significant for both the estimation of the posterior
means in Eq. (A-6) and covariance matrix in Eq. (A-6) of BLI. The
inversion of large matrices is highly challenging, which signifi-
cantly limits the practicality of BLI. Herein, the IDCT-based large
matrix dimensionality reduction method mentioned above is

(17)

—_
)
=

(2} w
E £
[} x
£ a
= 3>
2
CDP
(b)
25
[%2] d
E €
o) 20 %
S @
it >
15
100 200 300 400 500 600
CDP
() ©
25
80 £
‘ S
5 160 5
g 23 %
= l" o
240 o
2.1
320 . . . . . .
100 200 300 400 500 600
CDP

Fig. 4. The prior models of the (a) P-wave velocity, (b) S-wave velocity, and (c)
density.
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applied to solve the problem of traditional BLL In the proposed
method, the dimensionality reduction on the core matrix of BLI is
conducted using the incremental dimensionality reduction oper-
ator A. As the manner shown in Eq. (15), the core matrix C4 (the
subscript d represents the seismic data) of BLI, which is expressed
by Egs. (A-6) and (A-7) in Appendix A, is converted into the
following form:

Cq=AC AT = Iy TG0, -1, Ty T, (18)
where Cj is small matrix that has a much smaller size than Cq
according to the IDCT theory, then inverse of C4 can be further
expressed as

Ci' = (1‘11‘2"'rlclclrlT"'1‘2TI‘1T)7l = (AT)A (C'd)ﬂA*]. (19)

Therefore, using the IDCT strategy, the inverted posterior mean
for BLI in Eq. (A-6) can be converted into the following expression:

-1
Winia=¥m +CmG' (rlr2 --.r,Cdr,T-..rzTrlT) (d— G¥p)

— ¥ +CnG' (A7) ) AT d - G,
(20)

Correspondingly, the inverted posterior covariance should be

-1
Cnjd = Cm — CmG" (rlrz-..r,Cdr,T..-rzTrlT) Cm o
21
-1 _
= Cm— 6" (A7) (Cy) A Cm

The physical meaning of the above parameters can be found in
Appendix A. The subscript "m" denotes the model parameters. Egs.
(20) and (21) formulate the final expression of the IDCT-BLI, which
only needs to solve a much smaller core matrix than the DCT-BLI.
In the IDCT-BLI method, A and AT are only related to the size of the
seismic data, therefore, they are the same for all the traces in a
two-dimensional and three-dimensional zone. Hence, only one
inverse calculation for A and AT is necessary in a two-dimensional
and three-dimensional IDCT-BLI case. Therefore, in the whole
IDCT-BLI process, the inverse of the small matrix Cy is the core
issue that need to be taken into consideration, which contributes
to improving the efficiency of the traditional BLIL

3. Numerical examples

A synthetic test and a real data test of the above IDCT-BLI
method is conducted to demonstrate the effectiveness of the
IDCT-based dimensionality reduction method. In the two tests, the
comparison between the IDCT-based dimensionality reduction
method with the DCT-based method proposed by Yu et al. (2024)
are also conducted to validate the advantages of the proposed
IDCT-based dimensionality reduction approach.

3.1. Synthetic data test

A two-dimensional salt dome model is used herein to verify the
performance of the proposed incremental reduction strategy in
geophysical inversion. The two-dimensional real models of P- and
S-wave velocities and density is displayed in Fig. 2, and these
models includes 320 nodes in the vertical (time) direction and 681
nodes in the horizon (CDP) direction.

The noise-free synthetic prestack seismic data is obtained by a
30 Hz Ricker wavelet convolving with the PP-wave reflection co-
efficient from the Aki-Richards approximation formula. The
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incident angles of the seismic profiles shown in Fig. 3(a)-(c) are 5°,
15° and 25°. Universally, prior models are crucial in seismic
inversion, especially for the different BLI methods. In this theo-
retical model test, the prior models are constructed by smoothing
the real models displayed in Fig. 2. Fig. 4 show the prior models of

Range IDCT Range BLI — INVIDCT --- Real model INV BLI
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Fig. 5. The inversion accuracy comparison, (a) is the comparison between BLI and
IDCT-BLI, (b) is the comparison between BLI and DCT-BLI, and (c) is the comparison
between BLI and IDCT-BLI using the noisy seismic data. The black lines note the real
models; the green lines are the inversion results of BLI; the red lines represent the
posterior mean of the inversion results estimated by IDCT-BLI in (a) and DCT-BLI in
(b); the orange and gray lines note the 95% confidence interval of the BLI and BLI with
dimension reduction.
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the P- and S-wave velocities, and density. The following tests of the
traditional BLI, DCT_BLI, and IDCT_BLI use the same prior model.
The traditional BLI, DCT-BLI, and IDCT-BLI are conducted
simultaneously for comparison. The first trace of the real model is
used as an example, and the corresponding 1D inversion test re-
sults are displayed in Fig. 5(a) to prove the reduction effect of the
IDCT. In Fig. 5(a), the black dashed lines present the real models of
the P- and S-wave velocities, and density. The green dashed and
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red lines denote the inversion results of BLI (without any dimen-
sion reduction) and IDCT-BLL. The orange dashed gray lines
represent the 95% confidence interval of the 1D inversion results.
The inversion results from IDCT-BLI keep good accordance with
those of BLI. In addition, the boundaries of the confidence intervals
estimated by BLI and IDCT-BLI are also the same with each other.

The core matrix size in the 1D BLI test is 1280, while the size in
IDCT-BLI is 180, namely the percent of the dimension reduction of
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Fig. 6. The RMSEs of the three inverted model parameters from IDCT-BLI with different reduction iterations. (a)-(e) corresponds to the reduction iterations of 1-5. (f) Presents the
comparison of the time consuming for IDCT-BLI and DCT-BLI solving different size of kernel matrices.
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the IDCT strategy is more nearly 86% in this case. For comparison,
the 1D DCT-BLI is also conducted using the same model, and the
final core matrix dimension is also set as 180. Fig. 5(b) displays the
corresponding inversion result, where the difference between the
inversion results from BLI and DCT-BLI is more evident than that in
Fig. 5(a), whatever for the inversion results and the confidence
interval. Therefore, the reduction limit of the DCT-based method is
over 180 in this case.

To further evaluate the noise robustness of the dimensionality
reduction method, random noise is added to the one-dimensional
seismic trace used in this test, resulting in a signal-to-noise ratio
(SNR) of 7 dB. Fig. 5(c) presents a comparison between the tradi-
tional BLI and the IDCT-BLI methods under noisy seismic data.
Compared to the noise-free inversion results in Fig. 5(a), both
methods exhibit reduced inversion accuracy due to the presence of
noise, and the confidence intervals become wider, indicating
increased uncertainty in the inversion results. However, the
inversion results and the corresponding confidence interval
boundaries for both methods are nearly identical, suggesting that
Table 1

The Rcoe values corresponding to different target dimension in the five times of
inversion tests.

Dimension 1000 800 600 400 200
iteration
1 78% 62% 47% 31% 16%
2 89% 79% 69% 56% 40%
3 92% 86% 78% 68% 54%
4 94% 89% 83% 75% 63%
5 95% 91% 86% 79% 69%
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Fig. 7. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density
estimated by BLI.
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the IDCT-based dimensionality reduction is unaffected by the
added noise. Regardless of whether noise is present, the inversion
results of pre-stack three-parameter estimation before and after
IDCT-based dimensionality reduction remain consistent.

A set of inversion cases are conducted to discuss the reduction
limit of DCT-based and IDCT-based reduction methods, and to
prove the advantages of IDCT compared with DCT. In these tests,
the size of the core matrix is 1280, and 5 reduced dimension are set
as 1000, 800, 600, 400, and 200. As is introduced in the Theory
section, IDCT-based reduction is actually an iterative DCT-based
reduction strategy. IDCT equals DCT when the iteration round is
1. Herein, the iterations of IDCT-BLI vary from 1 to 5 in this syn-
thetic data test. The root-mean-square errors (RMSEs) between
inversion results of BLI and the IDCT-BLIs with different reduction
rounds and different expected reduced dimensions are used as the
evaluation criterion.

Fig. 6(a) displays the analysis result of IDCT-BLI with only 1
round of reduction (namely the DCT-BLI), and Fig. 6(b)-(e) show
the analysis results of IDCT-BLI with the reduction rounds varying
from 2 to 5. of dimension reduction. The blue, yellow, and green
lines represent the RMSE curves for P- and S-wave velocities, and
density.

After Eq. (7), the Rcoe is defined to characterize the dimen-
sionality reduction ratio in each round of the dimension reduction.
Table 1 presents the Rcoe values corresponding to the five inver-
sion tests. For example, the value of 78% in the second row and
second column of Table 1 indicates that when Rcoe is 78%, a single-
step dimensionality reduction using the DCT-BLI method reduces
the core matrix from 1280 dimensions to 1000 dimensions.

—
)
=1

(2] w
£ “E
[ X
£ I
[ 3>
2
CDP
(b)
” 25
S £
g 20
[ >
15
CDP
(c)
25 ¢
(2} o
€ >
g 23 %
= 2
a

CDP

Fig. 8. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density
estimated by DCT-BLL
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Similarly, the value of 40% in the third row and sixth column
means that when Rcoe is 40%, applying a two-step dimensionality
reduction with the IDCT-BLI method can reduce the core matrix
from 1280 dimensions to 200 dimensions.

It can be observed from Fig. 6 that when the inversion in-
volves only a single-step dimensionality reduction, namely
IDCT-BLI and DCT-BLI are equivalent, the RMSE of the inverted
P-wave velocity, S-wave velocity, and density starts to increase
significantly when the matrix dimension is reduced to 600, as
shown in Fig. 6(a). However, when the number of dimension-
ality reduction steps in a single inversion exceeds two, as
illustrated in Fig. 6(b)-(e), the RMSE of the three inversion pa-
rameters only shows a slight increase when the matrix
dimension is reduced below 400.

When the dimensionality reduction exceeds one step, even if
the matrix dimension is reduced to 200, the RMSE of the three
model parameters does not increase obviously. When the matrix
dimension is reduced to 200, the relative error of the three
inversion parameters remains below 1% and has no visually
noticeable impact on the inversion results for all Fig. 6(a)-(e). The
specific effects can be referenced in Fig. 5(a). Furthermore, as
shown in Fig. 6(b)-(e), although the number of dimensionality
reduction steps increases from 2 to 5, the inversion accuracy does
not improve too much after dimensionality reduction. Taking the
P-wave velocity as an example, when the core matrix dimension is
reduced to 200, the RMSE values of P-wave velocity in Fig. 6(b)—(e)
are 0.0089, 0.0087, 0.0086, and 0.0084 kmy/s, respectively. There-
fore, the optimal number of reduction iterations is two for the salt
dome model in this test. A single-step reduction affects the
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Fig. 9. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density
estimated by IDCT-BLI.
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inversion accuracy after dimensionality reduction, while excessive
reduction rounds can increase the calculation burden. Further-
more, an excessive number of dimensionality reduction steps may
introduce computational instability due to the accumulation of
iterative operations. Based on the results from the present model
experiments, it is generally advisable to limit the number of
reduction iterations to two or three for a balance between effi-
ciency and stability.

In addition, a comparison of the computational time required
by IDCT-BLI and DCT-BLI in the aforementioned reduction tests is
presented in Fig. 6(f). Dimensionality reduction tests with target
dimensions of 1000, 800, 600, 400, and 200 were performed on
the 2D model (original matrix dimension: 1280). For each reduc-
tion level, inversion is carried out using both IDCT-BLI and DCT-BLI
across all 681 seismic traces in the model, and the corresponding
computational time is recorded. In the case of IDCT-BLI, the
reduction is conducted using a two-step iterative approach,
consistent with the tests in Fig. 6(b). The red and black curves in
Fig. 6(f) represent the runtime of DCT-BLI and IDCT-BLI, respec-
tively. Notably, the computational time for traditional BLI on the
same 2D model is approximately 430 s. As shown in Fig. 6(f), a
clear trend is observed: as the matrix dimensionality decreases,
the inversion runtime also decreases. Compared to the 430 s
required by traditional BLI, both DCT-BLI and IDCT-BLI achieve
more than 30% runtime reduction at the maximum reduction level
(dimension = 200), indicating the significant efficiency improve-
ment brought by dimensionality reduction. Furthermore, although
the runtime of IDCT-BLI is consistently slightly longer than that of
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Fig. 10. The inversion error of (a) P-wave velocity, (b) S-wave velocity, and (c) density
estimated by DCT-BLI.
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DCT-BLI due to the additional matrix multiplications involved in
the iterative reduction process, IDCT-BLI maintains high inversion
accuracy even at a dimensionality of 200. In contrast, DCT-BLI fails
to ensure inversion accuracy when the matrix dimension drops
below 600. Therefore, despite a slight increase in computational
cost, IDCT-BLI offers a more efficient and robust solution for
inversion tasks, outperforming DCT-BLI in terms of both accuracy
and practical applicability.

The above one-dimensional test demonstrates that IDCT-BLI
can achieve inversion results with the same accuracy as tradi-
tional BLI and DCT-BLI, without compromising inversion precision.
Therefore, the advantage of the IDCT-based reduction compared
with the DCT-based method is also proved. A two-dimensional test
will be conducted to further evaluate the effectiveness of IDCT-BLI.
Based on the pre-stack seismic angle gathers and initial model
shown in Figs. 3 and 4, the inversion results for the P- and S-wave
velocities, and density are obtained.

Fig. 7 presents the inversion results obtained using the
traditional BLI, while Figs. 8 and 9 show the three-parameter
inversion results derived from DCT-BLI and IDCT-BLI, respec-
tively. A direct comparison reveals that DCT-BLI and IDCT-BLI
achieve the same inversion performance as traditional BLI,
with the three-parameter inversion results closely matching the
true model shown in Fig. 2. To further quantify the inversion
performance, Fig. 10 illustrates the relative errors between the
three-parameter inversion results of BLI and DCT-BLI, whereas
Fig. 11 displays the relative errors between the three-
parameter inversion results of BLI and IDCT-BLI. The relative
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Fig. 11. The inversion error of (a) P-wave velocity, (b) S-wave velocity, and (c) density
estimated by IDCT-BLI.
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error equals the absolute difference between the inversion
result of DCT-BLI or IDCT-BLI and that of BLI, divided by the BLI
inversion result.

As observed from the above figures, both IDCT-BLI and DCT-BLI
exhibit similar inversion error compared to traditional BLI. How-
ever, in Figs. 10 and 11, the relative errors of the P- and S-wave
velocities, and density are mostly within 1%, indicating that both
DCT-BLI and IDCT-BLI achieve high inversion accuracy. Notably,
even when the core matrix dimension is reduced to 180, IDCT-BLI
maintains a similar inversion accuracy to DCT-BLI, further
demonstrating the effectiveness of the IDCT-based matrix
dimensionality reduction method.

3.2. Field data test

The effectiveness of the proposed inversion method is evalu-
ated using a field dataset from an oilfield in China. This dataset
includes three partial-angle stacked two-dimensional seismic
sections, corresponding to center incident angles of 5°, 15°, and
25¢ displayed in Fig. 12(a)-(c). The two-dimensional inversion grid
consists of 900 cells in the horizontal direction and 400 cells in the
vertical direction, corresponding to 900 seismic traces and a 400
ms time window for each trace. The grid cell sizes are 20 m hor-
izontally and 1 ms vertically.

As mentioned in the theoretical model test, initial models are
significant to BLI, and a reasonable initial model is necessary to
verify the effectiveness of the IDCT-BLI. The initial model used in
the real data test is constructed based on well-log data constrained
by seismic horizons. Actually, a commercial software is used
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herein to accomplish this work. The initial models for the P- and S-
wave velocities, and density are shown in Fig. 13(a)-(c). Based on
the prestack seismic data and the initial model described above,
the inversion tests are conducted using BLI, DCT-BLI, and IDCT-BLI,
respectively.

For a fair comparison of inversion performance, the three
inversion tests are conducted using the same parameters,
including the variogram, initial model, and noise variance. How-
ever, BLI does not employ the dimensionality reduction method
proposed in this study, and the core matrix dimension remained at
1200. DCT-BLI utilizes the DCT-based dimensionality reduction
method proposed by Yu et al. (2024). Through testing, the core
matrix dimension is reduced from 1200 to 430, as further reduc-
tion would compromise inversion accuracy. IDCT-BLI that based on
the dimensionality reduction method proposed in this study
achieves a minimum core matrix dimension of 200.

Fig. 14(a)-(c) show the inversion results for the P- and S-wave
velocities, and density corresponding to the traditional BLI. Fig. 15
(a)-(c) present the inversion results for the three prestack elastic
parameters obtained using DCT-BLI. Fig. 16(a)-(c) display the pre-
stack three-parameter inversion results obtained using IDCT
method. The inversion results from the above three methods
exhibit satisfactory resolution and lateral continuity, effectively
capturing the spatial distribution characteristics of the reservoir at
900 ms. Visually, the three prestack inversion results for the three
elastic parameters shown in Figs. 14-16 are highly similar, indi-
cating that the dimensionality reduction of the matrix has not
compromised the inversion accuracy.
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To quantitatively evaluate the effectiveness of the IDCT
dimensionality reduction method, the relative errors between the
inversion results of DCT-BLI, IDCT-BLI, and traditional BLI were
computed, using the inversion results of traditional BLI as the
reference. Fig. 17 presents the relative errors of the three param-
eters between DCT-BLI and traditional BLI, while Fig. 18 shows the
relative errors of the three parameters between IDCT-BLI and
traditional BLI. A comparison reveals that both DCT-BLI and IDCT-
BLI produce inversion results for P-wave velocity, S-wave velocity,
and density with relative errors within 1% compared to traditional
BLI. This indicates that the inversion accuracy of DCT-BLI and IDCT-
BLI is equivalent to that of traditional BLI, and the dimensionality
reduction of the matrix does not affect the inversion accuracy.

To further quantitatively analyze the errors between the
inversion results obtained by DCT-BLI and IDCT-BLI and those
obtained by traditional BLI, the probability distribution curves
corresponding to the errors shown in Figs. 17 and 18 are plotted
and presented in Fig. 19. In Fig. 19(a), the error distribution curves
of P-wave velocity are shown. The blue curve represents the error
between the IDCT-BLI and traditional BLI results, while the red
dashed curve represents the error between the DCT-BLI and
traditional BLI results. A comparison reveals that, except for the
region indicated by the black arrow where a slight discrepancy
exists, the two curves almost completely overlap across the rest of
the domain. Fig. 19(b) and (c) present the error distributions for S-
wave velocity and density, respectively. These two figures exhibit
similar patterns to Fig. 19(a), indicating that the inversion results
from DCT-BLI and IDCT-BLI are nearly identical, and their
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Fig. 14. BLI results of (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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discrepancies from the traditional BLI results are essentially the
same. Therefore, despite IDCT-BLI achieving a significantly higher
level of dimensionality reduction compared to DCT-BLI, the
inversion accuracy of both methods is nearly identical, demon-
strating the effectiveness of the IDCT-based dimensionality
reduction approach.

4. Discussion

The IDCT-based reduction method proposed in this study can
significantly reduce the dimensionality of large, sparse kernel
matrices in Kalman-based stochastic inversion, thereby
addressing the computational challenges associated with matrix
inversion in practical applications and substantially improving
computational efficiency. This method builds on the theoretical
foundation of the DCT-based dimensionality reduction approach
(Yu et al., 2024), which has proven effective in compressing
inversion kernel matrices to approximately 40%-50% of their
original size without compromising inversion accuracy. In
contrast, the proposed IDCT-based method offers the potential to
compress the matrix dimensionality to as low as 15% (see the
tests in Fig. 6). The advantage of the IDCT-based reduction lies in
its iterative and progressive dimensionality reduction strategy.
Essentially, matrix dimensionality reduction aims to retain crit-
ical information while discarding redundancies. The IDCT-based
approach achieves this by performing small-scale reductions in
each iteration, an incremental process that maximizes the pres-
ervation of critical matrix information throughout the reduction
procedure.
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This study conducted model tests with varying numbers of
incremental dimensionality reduction steps. The results demon-
strate that the maximum achievable reduction increases with the
number of steps; however, beyond three iterations, the marginal
benefit becomes negligible, as illustrated in Fig. 6. Moreover,
excessive reduction steps introduce additional computational
costs. Based on the findings of this study, the optimal number of
iterations in the incremental reduction process is two to three. This
strategy has also been validated through real data experiments.
Current tests on this method suggest that two iterations are suf-
ficient to achieve a significant reduction in matrix dimensionality
for most cases.

The problem of inverting large sparse matrices is pervasive
in fields such as geophysics and mathematical geology, with
typical applications including inversion, deconvolution,
denoising, and geological modeling. This presents non-
negligible challenges to the practicality and scalability of the
associated methods when applied to large-scale data. The pro-
posed matrix information dimensionality reduction strategy
offers an effective solution. However, existing reduction
methods typically employ a single-step approach, resulting in
limited reduction efficiency. This limitation arises because
single-step dimensionality reduction removes non-informative
components from the matrix in a single operation, which may
compromise essential information. In contrast, the IDCT-based
reduction iteratively extracts and progressively eliminates
non-informative components, thereby maximizing the preser-
vation of critical information while effectively discarding
redundant data. In the IDCT method, the selection of Rcoe is
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critical, which is determined through one-dimensional inver-
sion tests currently. Another possible manner is choosing Rcoe
by using certain optimization techniques.

Furthermore, existing dimensionality reduction methods
applied to seismic inversion generally require computations such
as principal component analysis, which inherently involve large
matrix operations and consequently increase extra computational
burden of seismic inversion. By comparison, the method proposed
in this study employs the same dimensionality reduction operator
for different seismic traces, thereby enhancing computational ef-
ficiency. Therefore, when performing two-dimensional or even
three-dimensional dimensionality reduction inversion, the
reduction operator only needs to be computed once during the
inversion of the first trace, eliminating the need for recalculation
in subsequent traces. This approach prevents the dimensionality
reduction algorithm from introducing additional computational
burden to the inversion process. Notably, this advantage is shared
by both DCT-based and IDCT-based dimensionality reduction
methods.

The complexity of geological structures also increases the
difficulty of dimensionality reduction. As shown in the two-
dimensional relative error maps in Figs. 17 and 18, the error is
higher in regions with horizontal strata than in those with in-
clined strata, a phenomenon consistently observed in both nu-
merical results and model validation tests. Nevertheless, the
relative errors of the inversion results before and after dimen-
sionality reduction remain within 1%, indicating that although
complex geological features may reduce the accuracy of
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The relative errors between the inversion results obtained by BLI and IDCT-

dimensionality reduction, the inversion results after reduction
are still reliable. Therefore, IDCT-based dimensionality reduction
method can alleviate the challenge of large matrix inversion
effectively. The advantages of IDCT become increasingly evident
as the dimensionality of the matrix increases. Especially in sce-
narios involving large-scale geophysical data inversion and multi-
channel data processing (Wang et al., 2024b), which necessitate
the inversion of ultra-large matrices, IDCT is expected to offer
substantial performance benefits.

5. Conclusions

A deep dimensionality reduction method named IDCT is pre-
sented to address the challenge of inverting large sparse matrices
in Bayesian inverse problem. The method is fundamentally based
on DCT and innovatively performs an iterative and incremental
DCT-based dimensionality reduction on large sparse matrices
inversion. The key to its effectiveness lies in calibrating a reason-
able reduction magnitude in the iteration process, thereby pre-
serving essential matrix information to the greatest extent. In
other words, the reduction intensity in each iteration of this
method remains moderate. The proposed method presents two
notable advantages over traditional dimensionality reduction
techniques. First, it achieves a substantially higher reduction ratio
compared to conventional approaches. Second, it introduces no
additional computational burden to the inversion process. This
study conducts both synthetic and field data tests, comparing the
proposed approach with traditional DCT-based dimensionality
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reduction methods. The test results fully validate the effectiveness
of the proposed method. This dimensionality reduction technique
is particularly valuable for solving Bayesian inverse issue under the
Kalman framework, where the inversion of large matrices is
inevitable. Moreover, it has broader implications for geophysics
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and mathematical geology, providing a valuable reference for
addressing large sparse matrix inversion problems in these fields.
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Appendix A

BLI is an excellent seismic stochastic inversion methodology,
whose objective is estimating p(m|d) in Eq. (17) from the observed
datasets. Generally, a Gaussian function is used herein to describe
the prior distribution of the prestack elastic parameters including
the P- and S-wave velocities and density:

m ~ N(Wm,Cm) (A-1)
where ¥, and C,, are the mean value and covariance matrix.

The seismic forward modeling based on the convolution the-
orem is commonly expressed as the following formula,

d=Gm +e, (A-2)
where e is the forward error. G is a forward operator. Generally, G
can both represent the linear and non-linear forward relation-
ships. However, this research focuses on the matrix dimension
reduction, hence, the linear forward equation constructed by Aki-
Richards is utilized herein to quantify the relationship between the
model parameters and the observed seismic data (Aki and
Richards, 2002). Considering the linear Gaussian theorem, the
distribution of the seismic data d can be written as
d~ N(G\I’m, GCnGT + ce). (A-3)
where C. is the variance matrix for the seismic error, and it can
represent the uncertainty of the seismic data. According the sta-
tistical theory, the joint distribution of model parameters and
seismic data can be expressed as,

(S]]

m
where CmGT and GC;, are the transposition with each other, and
they both present the statistical and spatial correlation between
model parameters and seismic data. Using Eq. (A-4), the

G¥,
¥

GCnG' +Ce CpGT

GCpy Cmn (A-4)
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conditional probability distribution of m constrained by d can be
calculated and expressed as follows,

m)d ~ N(\ym‘d,cm‘d), (A-5)

and it also includes a posterior mean term and a covariance
matrix ¥y, g and Cpq, and they can be expressed as

Wiod=%m + CmG'Cy' (d - GWny), (A-6)

Cinjd =Cm — CmG'2C4 ' Cn. (A-7)

where the core matrix for BLIis Cy = GCG' + Ce. The objective of
this research is improving the inverse efficiency of Cg.
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