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a b s t r a c t

The inversion of large sparse matrices poses a major challenge in geophysics, particularly in Bayesian 
seismic inversion, significantly  limiting computational efficiency  and practical applicability to large- 
scale datasets. Existing dimensionality reduction methods have achieved partial success in addressing 
this issue. However, they remain limited in terms of the achievable degree of dimensionality reduction. 
An incremental deep dimensionality reduction approach is proposed herein to significantly  reduce 
matrix size and is applied to Bayesian linearized inversion (BLI), a stochastic seismic inversion approach 
that heavily depends on large sparse matrices inversion. The proposed method first employs a linear 
transformation based on the discrete cosine transform (DCT) to extract the matrix's essential infor
mation and eliminate redundant components, forming the foundation of the dimensionality reduction 
framework. Subsequently, an innovative iterative DCT-based dimensionality reduction process is 
applied, where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce 
dimensionality, thereby effectively eliminating matrix redundancy in depth. This process is referred to 
as the incremental discrete cosine transform (IDCT). Ultimately, a linear IDCT-based reduction operator 
is constructed and applied to the kernel matrix inversion in BLI, resulting in a more efficient  BLI 
framework. The proposed method was evaluated through synthetic and field data tests and compared 
with conventional dimensionality reduction methods. The IDCT approach significantly  improves the 
dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy, 
demonstrating prominent advantages in solving Bayesian inverse problems more efficiently.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Seismic inversion is a critical technique in geophysical explo
ration, enabling the transformation of seismic reflection data into 
quantitative subsurface properties such as velocity, density, and 
lithology (Chen et al., 2024a; Wang et al., 2024a; Sun et al., 2025). 
To date, seismic inversion significantly  advances the character
ization of subsurface structures and fluid distributions, serving a 
critical role in hydrocarbon exploration, mineral prospecting, and 
carbon sequestration monitoring (Ding et al., 2021; Zhang et al., 

2022; Chen et al., 2024b). Over the past six decades, seismic in
verse problems have predominantly been solved within the 
Bayesian framework, evolving into two principal categories: 
deterministic and stochastic inversion. Deterministic seismic 
inversion employs optimization techniques to derive the optimal 
solution for target parameters from seismic data, whereas sto
chastic inversion not only estimates subsurface parameters from 
observational data but also quantifies the associated uncertainty 
(Bosch et al., 2010; Alemie and Sacchi, 2011; Yang et al., 2023).

Due to the ill-posed nature of seismic inversion problems and 
the uncertainties introduced by errors and noise in various types of 
observed datasets, such as seismic and well log data, seismic 
inversion exhibits strong multimodality (Downton, 2005; Chen 
et al., 2025). Therefore, in addition to seeking the optimal solu
tion, it is crucial to assess the uncertainty of the inversion solution. 
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The stochastic inversion strategy offers distinct advantages in this 
regard (Yu et al., 2021). The ultimate objective of stochastic 
inversion is not to obtain the optimal solution for the parameters, 
but rather to derive a set of solutions. This solution set is typically 
represented by the posterior probability distribution of the pa
rameters within a statistical framework, capturing the distribution 
space of the inversion parameters and characterizing the uncer
tainty of the inversion process.

Generally, seismic stochastic inversion can be broadly catego
rized into two types: iterative geostatistical stochastic inversion and 
the Kalman stochastic inversion (Pereira et al., 2019). The founda
tional framework of geostatistical inversion comprises geostatistics 
and Monte Carlo optimization (Pereira et al., 2020), and it has been 
extensively studied in the field of petroleum geophysics (Penna and 
Lupinacci, 2024). Another type of stochastic inversion essentially 
can be defined  as Kalman stochastic inversion, which mainly re
news the model parameters using the Kalman gain calculated from 
the well-log and seismic data (Zhang and Oliver, 2011). The main 
advantages of Kalman inversion lie in its stability and efficiency 
compared with geostatistical inversion. Currently, Kalman inversion 
can also be categorized into linear and nonlinear types. The linear 
method is essentially Bayesian linearized inversion (BLI), which 
directly solves the posterior probability distribution of the param
eters using a linearization approach within the Bayesian framework 
(Buland and Omre, 2003; Grana et al., 2022; Shi et al., 2024). 
Compared with linear Kalman inversion (BLI), nonlinear Kalman 
inversion like ensemble Kalman inversion is beneficial  for solving 
complex nonlinear inverse problems (Cao et al., 2024), such as the 
inversion of complex reservoir physical properties and full- 
waveform inversion (Thurin and Brossier, 2019).

Although Kalman inversion combines high efficiency and sta
bility, it is constrained by the inversion of large sparse matrices. 
Both linear and nonlinear Kalman inversions require solving large 
kernel matrices to compute the Kalman gain. Given the large scale 
of field  data in practical applications, the difficulty  of matrix 
inversion becomes significantly high, which severely impacts the 
practicality of Kalman inversion. Choosing an appropriate 
dimensionality reduction method can help alleviate this issue to 
some extent, reducing the limitations of large matrix dimension
ality reduction on Kalman stochastic inversion.

Dimensionality reduction plays a crucial role in fields  that 
involve massive data processing, such as geophysics, mathematical 
geology, computer science, and image processing (Marzouk and 
Najm, 2009; Esser et al., 2012). In recent years, with the rapid 
development of deep learning, dimensionality reduction tech
niques have been extensively studied. A series of linear and 
nonlinear reduction methods have been proposed, which can 
effectively improve the efficiency  of deep learning algorithms 
(Cunningham and Ghahramani, 2015). Dimensionality reduction 
of ultra-large matrices is one of the key challenges in information 
reduction (Bunte et al., 2012). The solution of high-dimensional 
inverse problems essentially involves the inversion of ultra-large 
matrices, which poses significant  computational challenges in 
practical applications. To address this, various dimensionality 
reduction inversion methods have been proposed. By discarding 
part of the redundant information, these approaches significantly 
improve the computational efficiency of solving high-dimensional 
nonlinear inverse problems without notably compromising 
inversion accuracy (Aravkin et al., 2012; Atkinson and Zabaras, 
2019). Zahm et al. (2022) introduced dimensionality reduction 
strategies into the Bayesian framework to accelerate the solution 
of nonlinear inverse problems. As a typical class of inverse prob
lems, seismic inversion methods also commonly require infor
mation reduction techniques (Jumah and Herrmann, 2014; Gao 
et al., 2020). Among various seismic inversion approaches, two 

methods exhibit the highest demand for dimensionality reduction. 
The first  is full waveform inversion (FWI), where dimensionality 
reduction strategies can effectively reduce the model space (Yin 
et al., 2025), thereby improving computational efficiency. The 
second is stochastic inversion, particularly the Kalman-based 
stochastic inversion methods discussed earlier.

Previous studies have attempted to address the challenges of 
large matrix inversion and high-dimensional parameter estima
tion in Kalman-based stochastic inversion by incorporating 
dimensionality reduction strategies. Grana et al. (2019) proposed a 
data dimensionality reduction method that is of significant 
importance for improving the efficiency of Kalman gain compu
tation in Bayesian linearized inversion. Liu et al. (2022) also 
adopted this dimensionality reduction strategy to enhance the 
efficiency  of Bayesian stochastic inversion. These methods are 
mainly based on principal component analysis (PCA). Although 
they alleviate the curse of dimensionality to some extent, they also 
introduce additional computational burden during the reduction 
process. Yu et al. (2024) proposed an efficient  dimensionality 
reduction strategy for linearized Kalman inversion based on 
discrete cosine transform (DCT), which effectively alleviates the 
issue of large matrix dimensionality reduction, without increasing 
the computational cost of the inversion method itself.

The above dimensionality reduction methods have reduced the 
difficulty of inverting large sparse matrices to some extent. These 
methods are not only significant  for seismic inversion but also 
have practical value for other geophysical processing and inter
pretation techniques that require huge sparse matrix inverse. 
However, the existing dimensionality reduction methods typically 
reduce the matrix dimension to around 40%–50% of the original 
matrix size (Yu et al., 2024), which does not completely resolve the 
issue of inverting extremely large matrices. For ultra-large 
matrices, reducing the dimension by 50% still results in a rela
tively large matrix, and the difficulty of inversion remains.

Based on the dimensionality reduction method based on DCT 
(Yu et al., 2024), this paper proposes an incremental discrete 
cosine transform (IDCT) strategy, and further presents an innova
tive matrix dimensionality reduction method. Through an iterative 
IDCT-based reduction process, the matrix dimensions are incre
mentally reduced, thereby achieving deep dimensionality reduc
tion of large matrices. By introducing this dimensionality 
reduction method into the linearized Kalman inversion—BLI, a fast 
stochastic inversion method is formulated and defined as IDCT-BLI 
(Bayesian linearized inversion based on incremental discrete 
cosine transform). Finally, the effectiveness of the proposed 
method is verified by a synthetic and a field data tests. The com
parisons in terms of computational efficiency and dimensionality 
reduction performance between the IDCT-BLI and DCT-BLI pro
posed by Yu et al. (2024) are also conducted in the tests.

The remaining sections of the paper are introduced briefly as 
following. First, the basic principles of DCT are introduced. Then, 
the DCT-based dimensionality reduction method for large sparse 
matrices is discussed. Next, the basic principles and advantages of 
the IDCT-based dimensionality reduction method are presented. 
Following that, the expression for IDCT-BLI is derived. Finally, 
synthetic and real data tests are conducted to verify the effec
tiveness of IDCT-BLI.

2. Theory

2.1. Traditional dimension reduction based on DCT

2.1.1. DCT for a matrix
The core theorem of this research is DCT, which can be 

described as the following equation for 1D cases: 
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H(u)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1(u)=N

√ ∑N− 1

i=0

ϵ(i)cos[(i+0:5)πu =N]; (1) 

where ϵ is a signal such as the seismic data, and its sampling 
number is represented by N. c1 is a correction parameter that takes 
a value of 1 when u is zero and 2 when u is non-zero in the case of 
1D signals.

Yu et al. (2024) used DCT to reduce the core matrix size in 
Bayesian seismic inversion, where a core matrix Σ is taken as a 
two-dimensional signal and transformed by the 2D DCT as follows: 

H(u; v)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[c1(u)c2(v)]
/

N2

√
∑N− 1

i=0

∑N− 1

j=0

Σ(i; j)cos[

× (i+0:5)πu =N]cos[(j+0:5)πv =N]; (2) 

where c1 and c2 are the correction parameters corresponding to 
the u and v when dealing with a 2D signal, c2 should be 1 and 2 
when v is zero and non-zero, respectively. Actually, c1 and c2 are 
the same variable but their subscripts just denote different di
rection of a 2D matrix (or signal). Eq. (2) can be denoted by the 
following matrix form (Yu et al., 2024), 

Σʹ=RΣRT; (3) 

where the elements in the transform operator R can be expressed 
as 

R(u; v)= c1(u)cos[(j+0:5)πu =N]; (4) 

and RTR equals to a unit matrix, i.e., 

Σ=RTRΣRTR = RTΣʹR; (5) 

where Σʹ = RΣRT is the form of Σ after DCT. Actually, after the 2D 
DCT, most of the significant coefficients  in matrix Σʹ are concen
trated in the top-left corner, i.e., Σʹ can represent the effective in
formation in Σ.

2.1.2. Extraction of effective information from a matrix after DCT
Matrix Σʹ is a transformed version of Σ that concentrates its 

significant  information, while both matrices share the same di
mensions. Next step, the effective information of Σʹ need to be 
extracted. Assuming that the dimension of Σ or Σʹ is n0, and the 
expected dimension after reduction is n1, a reduction operator X of 
n0 column and n1 row is defined to extract the valid information 
from the Σʹ as the following manner (Yu et al., 2024): 

Σ1 =XΣʹXT; (6) 

where X is actually a sampling operator. In Eq. (6), Σ1 is also a 
square matrix. Since X is a linear operator that determines the 
matrix dimensions before and after the transformation, it is not a 
square matrix. Here, n1=n0 (n0 ≥ n1) is defined as reduction coef
ficient (Rcoe). Therefore, the core matrix Σ can be converted into 
Σ1 with a much smaller size n1 once the Rcoe is given.

Overall, the effective part of Σ are concentrated in one corner of 
Σʹ. Therefore, these principal components can be effectively 
extracted by operator X with a suitable size, and formulate the 
final reduced matrix Σ1 whose size is smaller than Σ.

2.1.3. The expression of the DCT-based dimension reduction
In the above process, an initial matrix Σ can be converted onto a 

matrix Σ1 with a smaller size by DCT (Yu et al., 2024), and this 
process can be expressed as 

Σ=RTRΣRTR=RTΣʹR=RTX− 1XΣʹXT
(

XT
)− 1

R=RTX− 1Σ1

(
XT

)− 1
R:

(7) 

For simplicity, Eq. (7) is rewritten in the following form: 

Σ=Γ1Σ1Γ1
T; (8) 

where the operator for dimensionality reduction is defined as 

Γ1 =RTX− 1: (9) 

Based on the above derivation, the inverse calculation of Σ can 
be written as 

Σ− 1 =
(

Γ1Σ1Γ1
T
)− 1

=
(

Γ1
T
)− 1

(Σ1)
− 1Γ− 1

1 : (10) 

The inverse of Σ is converted into the inversions of the above 
three matrices. It seems that the matrix inverse after the above 
conversion is more complicated than inverting Σ directly. How
ever, Γ (or ΓT) is constant for a single two- or three-dimensional 
seismic inversion test. Thus, only once inversion of Γ (or ΓT) is 
enough for all the traces.

The aforementioned approach is the dimensionality reduction 
method proposed by Yu et al. (2024). This method enables the 
generation of reduced representations by assigning a specific value 
to the Rcoe parameter. As illustrated in Fig. 1(a), the method 
operates by concentrating the effective information of the original 
matrix via Eq. (3), and then extracting this information using Eq. 
(6), thereby achieving dimensionality reduction. In most cases, 
this approach can reduce the dimensionality of a matrix to 
approximately 40%–50%. Building upon this framework, the pre
sent study introduces an incremental reduction method, which 
applies iterative DCT-based reduction to the matrix, enabling a 
more thorough dimensionality reduction than the conventional 
DCT approach.

2.2. Incremental reduction based on DCT

The key to the IDCT is achieving a deeper reduction degree 
incrementally, by conducting DCT iteratively, namely conducting 
serval rounds (more than one) of DCT. However, it is essential to 
reasonably select the relevant parameters during the iterative 
process to ensure that the progressive dimensionality reduction 
does not compromise the integrity of the effective matrix infor
mation. In the following subsection, two cases including two and l 
(l > 2) rounds of dimension reductions are listed herein to clarify 
the basic theorem of IDCT.

2.2.1. Derivation of two reduction iterations
First, a simple case with two reduction iterations is used to 

introduce the IDCT initially. This case, in another word, is first 
converting Σ to Σ1,using Eq. (8), and further transform Σ1 to Σ2 
with a size of n2 (n0 > n1 > n2). Notably, n1=n0 and n2=n1 herein 
are Rcoe values for the first  and the second reduction iteration. 
Generally, the Rcoe values in different reduction rounds can be a 
same value for convenience. The above second reduction process 
can be expressed as 

Σ1 = Γ2Σ2Γ2
T; (11) 

where the dimension reduction operator is 
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Γ2 =RT
2X− 1

2 : (12) 

where the R2 and X2 are the DCT transform operator and sampling 
operator corresponding to the matrix size n1, which are intro
duced in Eqs. (3) and (6). Then, the relationship between Σ and Σ2 
can be written as 

Σ=Γ1Γ2Σ2Γ1
TΓ2

T; (13) 

The inverse of Σ can be also expressed as 

Σ− 1 =
(

Γ1Γ2Σ2Γ1
TΓ2

T
)− 1

=
(

Γ2
T
)− 1(

Γ1
T
)− 1

Σ− 1
2 Γ− 1

1 Γ− 1
2 :

(14) 

Therefore, the inverse of Σ is transformed into the inverse of 
a much smaller matrix Σ2 and a set of reduction operators, 
which means the inverse of Σ has a great possibility to be 
simplified.

This simple IDCT approach, which involves only two stages of 
dimensionality reduction, is illustrated in Fig. 1(b). The blue and 
white squares can respectively represent the effective and 
redundant elements within the matrix. First, the DCT method is 
applied to concentrate the effective information from the original 
9-dimensional matrix. Then, the effective information (indicated 
by blue nodes) is extracted which results in a 6-dimensional ma
trix. However, this intermediate matrix still contains some 
redundant or non-informative components (represented by white 
nodes in Fig. 1. Therefore, a second DCT-based reduction is applied 
to further compress the data, ultimately yielding a three- 
dimensional matrix.

2.2.2. Derivation of l reduction iterations
According to the above derivation, Σ can be transformed into an 

extremely small matrix after l rounds of reductions, which can be 
expressed as following according to Eq. (13), 

Σ=Γ1Γ2⋯ΓlΣlΓl
T⋯Γ2

TΓ1
T = ΛΣlΛT; (15) 

for the convenience of the following inversion derivation, 
Γ1Γ2⋯Γl is defined  as the final  reduction operator Λ that 
responsible for incremental dimension reduction. The corre
sponding inverse of Σ after l times of reductions can be written 
as 

Σ− 1 =
(

Γ1Γ2⋯ΓlΣlΓl
T⋯Γ2

TΓ1
T
)− 1

=
(

Γl
T
)− 1

⋯
(

Γ2
T
)− 1

(
Γ1

T
)− 1

Σ− 1
l (Σl)

− 1Γ− 1
1 Γ− 1

2 ⋯Γ− 1
l 

=
(

ΛT
)− 1

Σ− 1
l Λ

− 1
: (16) 

(a)

6×6

9×9 9×9

(b)

6×6

9×9

3×3

9×9

6×6

Fig. 1. The sketches of (a) DCT, and (b) IDCT with two rounds of reductions expressed in Eq. (13).
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2.2.3. Parameters selection of IDCT
The above derivation proves that a large matrix can be trans

formed into a small matrix by IDCT, which is essentially con
ducting DCT iteratively on the large matrix. Although the 
mathematical theorem of IDCT is demonstrated, two critical issues 
mast be clarified to keep the effectiveness of IDCT in geophysical 
applications.

(a) The Rcoe value should not be too large in IDCT, as it is a 
crucial factor in IDCT. In DCT, the reduction is performed 
only once, and Rcoe is typically set to 40%–60% (depending 
on the data type). However, DCT is relatively rough because 
such a small Rcoe may result in excessive loss of valid in
formation. In each iteration of IDCT, a larger Rcoe (e.g., 70%– 
80%) is used to mitigate the loss of valid information. 
Consequently, the reduction per iteration in IDCT is smaller 
than that in DCT, but the overall reduction effect of IDCT is 
significantly more pronounced than that of DCT.

(b) Although IDCT can effectively reduce the size of a matrix, it 
also generates multiple reduction operators that need to be 
inverted. This may appear to introduce additional compu
tational burden. However, in practical two-dimensional and 
three-dimensional applications of seismic inversion, the 
inversion of these reduction operators only needs to be 
performed for a single trace, and the same reduction oper
ators can be applied to other traces.

Therefore, a 1D inversion test near a drilled well must be 
conducted before performing two-dimensional and three- 

dimensional seismic inversion with IDCT for two purposes: First, 
the crucial sampling parameters including Rcoe and iteration 
count are determined; Second, the reduction operators like Γ− 1

l in 
Eq. (16) need to be pre-calculated and stored before the IDCT- 
based inversion application in large-scale datasets. Consequently, 
for all traces except the one used in the 1D test, the only matrix 
that needs to be inverted is actually the one after IDCT, e.g., the Σl 
in Eq. (16).

2.3. Bayesian linearized inversion with IDCT

BLI is a seismic inversion technique that integrates Bayesian 
inference with linearization methods. The fundamental principle 
is to update the posterior distribution of model parameters based 
on Bayesian theorem, given prior information and observed data. 
BLI is based on the Bayesian theory, 

p(m|d)= p(d|m)p(m) =p(d) (17) 

where p(m) represents the prior probability distribution of the 
parameter m, p(d|m) is the likelihood function, p(m|d) is the 
posterior probability distribution. The detailed information 
regarding calculating p(m|d) by BLI can be found in Appendix A.

Apparently, according to Appendix A, the inverse of a core 
matrix Cd is significant  for both the estimation of the posterior 
means in Eq. (A-6) and covariance matrix in Eq. (A-6) of BLI. The 
inversion of large matrices is highly challenging, which signifi
cantly limits the practicality of BLI. Herein, the IDCT-based large 
matrix dimensionality reduction method mentioned above is 
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of (a)5◦ , (b) 15◦ , and (c) 25◦ .
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applied to solve the problem of traditional BLI. In the proposed 
method, the dimensionality reduction on the core matrix of BLI is 
conducted using the incremental dimensionality reduction oper
ator Λ: As the manner shown in Eq. (15), the core matrix Cd (the 
subscript d represents the seismic data) of BLI, which is expressed 
by Eqs. (A-6) and (A-7) in Appendix A, is converted into the 
following form: 

Cd =ΛCʹ
dΛT = Γ1Γ2⋯ΓlC

ʹ
dΓl

T⋯Γ2
TΓ1

T; (18) 

where Cʹ
d is small matrix that has a much smaller size than Cd 

according to the IDCT theory, then inverse of Cd can be further 
expressed as 

C− 1
d =

(
Γ1Γ2⋯ΓlC

ʹ
dΓl

T⋯Γ2
TΓ1

T
)− 1

=
(

ΛT
)− 1(

Cʹ
d
)− 1Λ− 1: (19) 

Therefore, using the IDCT strategy, the inverted posterior mean 
for BLI in Eq. (A-6) can be converted into the following expression: 

Ψm|d =Ψm +CmGT
(

Γ1Γ2⋯ΓlC
ʹ
dΓl

T⋯Γ2
TΓ1

T
)− 1

(d − GΨm)

= Ψm +CmGT
(

ΛT
)− 1(

Cʹ
d
)− 1Λ− 1(d − GΨm):

(20) 

Correspondingly, the inverted posterior covariance should be 

Cm|d =Cm − CmGT
(

Γ1Γ2⋯ΓlC
ʹ
dΓl

T⋯Γ2
TΓ1

T
)− 1

Cm

= Cm − CmGT
(

ΛT
)− 1(

Cʹ
d
)− 1Λ− 1Cm:

(21) 

The physical meaning of the above parameters can be found in 
Appendix A. The subscript "m" denotes the model parameters. Eqs. 
(20) and (21) formulate the final expression of the IDCT-BLI, which 
only needs to solve a much smaller core matrix than the DCT-BLI. 
In the IDCT-BLI method, Λ and ΛT are only related to the size of the 
seismic data, therefore, they are the same for all the traces in a 
two-dimensional and three-dimensional zone. Hence, only one 
inverse calculation for Λ and ΛT is necessary in a two-dimensional 
and three-dimensional IDCT-BLI case. Therefore, in the whole 
IDCT-BLI process, the inverse of the small matrix Ćd is the core 
issue that need to be taken into consideration, which contributes 
to improving the efficiency of the traditional BLI.

3. Numerical examples

A synthetic test and a real data test of the above IDCT-BLI 
method is conducted to demonstrate the effectiveness of the 
IDCT-based dimensionality reduction method. In the two tests, the 
comparison between the IDCT-based dimensionality reduction 
method with the DCT-based method proposed by Yu et al. (2024)
are also conducted to validate the advantages of the proposed 
IDCT-based dimensionality reduction approach.

3.1. Synthetic data test

A two-dimensional salt dome model is used herein to verify the 
performance of the proposed incremental reduction strategy in 
geophysical inversion. The two-dimensional real models of P- and 
S-wave velocities and density is displayed in Fig. 2, and these 
models includes 320 nodes in the vertical (time) direction and 681 
nodes in the horizon (CDP) direction.

The noise-free synthetic prestack seismic data is obtained by a 
30 Hz Ricker wavelet convolving with the PP-wave reflection co
efficient  from the Aki-Richards approximation formula. The 

incident angles of the seismic profiles shown in Fig. 3(a)–(c) are 5◦, 
15◦ and 25◦. Universally, prior models are crucial in seismic 
inversion, especially for the different BLI methods. In this theo
retical model test, the prior models are constructed by smoothing 
the real models displayed in Fig. 2. Fig. 4 show the prior models of 
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Fig. 5. The inversion accuracy comparison, (a) is the comparison between BLI and 
IDCT-BLI, (b) is the comparison between BLI and DCT-BLI, and (c) is the comparison 
between BLI and IDCT-BLI using the noisy seismic data. The black lines note the real 
models; the green lines are the inversion results of BLI; the red lines represent the 
posterior mean of the inversion results estimated by IDCT-BLI in (a) and DCT-BLI in 
(b); the orange and gray lines note the 95% confidence interval of the BLI and BLI with 
dimension reduction.
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the P- and S-wave velocities, and density. The following tests of the 
traditional BLI, DCT_BLI, and IDCT_BLI use the same prior model.

The traditional BLI, DCT-BLI, and IDCT-BLI are conducted 
simultaneously for comparison. The first trace of the real model is 
used as an example, and the corresponding 1D inversion test re
sults are displayed in Fig. 5(a) to prove the reduction effect of the 
IDCT. In Fig. 5(a), the black dashed lines present the real models of 
the P- and S-wave velocities, and density. The green dashed and 

red lines denote the inversion results of BLI (without any dimen
sion reduction) and IDCT-BLI. The orange dashed gray lines 
represent the 95% confidence interval of the 1D inversion results. 
The inversion results from IDCT-BLI keep good accordance with 
those of BLI. In addition, the boundaries of the confidence intervals 
estimated by BLI and IDCT-BLI are also the same with each other.

The core matrix size in the 1D BLI test is 1280, while the size in 
IDCT-BLI is 180, namely the percent of the dimension reduction of 
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the IDCT strategy is more nearly 86% in this case. For comparison, 
the 1D DCT-BLI is also conducted using the same model, and the 
final core matrix dimension is also set as 180. Fig. 5(b) displays the 
corresponding inversion result, where the difference between the 
inversion results from BLI and DCT-BLI is more evident than that in 
Fig. 5(a), whatever for the inversion results and the confidence 
interval. Therefore, the reduction limit of the DCT-based method is 
over 180 in this case.

To further evaluate the noise robustness of the dimensionality 
reduction method, random noise is added to the one-dimensional 
seismic trace used in this test, resulting in a signal-to-noise ratio 
(SNR) of 7 dB. Fig. 5(c) presents a comparison between the tradi
tional BLI and the IDCT-BLI methods under noisy seismic data. 
Compared to the noise-free inversion results in Fig. 5(a), both 
methods exhibit reduced inversion accuracy due to the presence of 
noise, and the confidence  intervals become wider, indicating 
increased uncertainty in the inversion results. However, the 
inversion results and the corresponding confidence  interval 
boundaries for both methods are nearly identical, suggesting that 

the IDCT-based dimensionality reduction is unaffected by the 
added noise. Regardless of whether noise is present, the inversion 
results of pre-stack three-parameter estimation before and after 
IDCT-based dimensionality reduction remain consistent.

A set of inversion cases are conducted to discuss the reduction 
limit of DCT-based and IDCT-based reduction methods, and to 
prove the advantages of IDCT compared with DCT. In these tests, 
the size of the core matrix is 1280, and 5 reduced dimension are set 
as 1000, 800, 600, 400, and 200. As is introduced in the Theory 
section, IDCT-based reduction is actually an iterative DCT-based 
reduction strategy. IDCT equals DCT when the iteration round is 
1. Herein, the iterations of IDCT-BLI vary from 1 to 5 in this syn
thetic data test. The root-mean-square errors (RMSEs) between 
inversion results of BLI and the IDCT-BLIs with different reduction 
rounds and different expected reduced dimensions are used as the 
evaluation criterion.

Fig. 6(a) displays the analysis result of IDCT-BLI with only 1 
round of reduction (namely the DCT-BLI), and Fig. 6(b)–(e) show 
the analysis results of IDCT-BLI with the reduction rounds varying 
from 2 to 5. of dimension reduction. The blue, yellow, and green 
lines represent the RMSE curves for P- and S-wave velocities, and 
density.

After Eq. (7), the Rcoe is defined  to characterize the dimen
sionality reduction ratio in each round of the dimension reduction. 
Table 1 presents the Rcoe values corresponding to the five inver
sion tests. For example, the value of 78% in the second row and 
second column of Table 1 indicates that when Rcoe is 78%, a single- 
step dimensionality reduction using the DCT-BLI method reduces 
the core matrix from 1280 dimensions to 1000 dimensions. 
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Fig. 7. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density 
estimated by BLI.
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Fig. 8. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density 
estimated by DCT-BLI.

Table 1 
The Rcoe values corresponding to different target dimension in the five times of 
inversion tests.

Dimension 
iteration

1000 800 600 400 200

1 78% 62% 47% 31% 16%
2 89% 79% 69% 56% 40%
3 92% 86% 78% 68% 54%
4 94% 89% 83% 75% 63%
5 95% 91% 86% 79% 69%
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Similarly, the value of 40% in the third row and sixth column 
means that when Rcoe is 40%, applying a two-step dimensionality 
reduction with the IDCT-BLI method can reduce the core matrix 
from 1280 dimensions to 200 dimensions.

It can be observed from Fig. 6 that when the inversion in
volves only a single-step dimensionality reduction, namely 
IDCT-BLI and DCT-BLI are equivalent, the RMSE of the inverted 
P-wave velocity, S-wave velocity, and density starts to increase 
significantly  when the matrix dimension is reduced to 600, as 
shown in Fig. 6(a). However, when the number of dimension
ality reduction steps in a single inversion exceeds two, as 
illustrated in Fig. 6(b)–(e), the RMSE of the three inversion pa
rameters only shows a slight increase when the matrix 
dimension is reduced below 400.

When the dimensionality reduction exceeds one step, even if 
the matrix dimension is reduced to 200, the RMSE of the three 
model parameters does not increase obviously. When the matrix 
dimension is reduced to 200, the relative error of the three 
inversion parameters remains below 1% and has no visually 
noticeable impact on the inversion results for all Fig. 6(a)–(e). The 
specific  effects can be referenced in Fig. 5(a). Furthermore, as 
shown in Fig. 6(b)–(e), although the number of dimensionality 
reduction steps increases from 2 to 5, the inversion accuracy does 
not improve too much after dimensionality reduction. Taking the 
P-wave velocity as an example, when the core matrix dimension is 
reduced to 200, the RMSE values of P-wave velocity in Fig. 6(b)–(e) 
are 0.0089, 0.0087, 0.0086, and 0.0084 km/s, respectively. There
fore, the optimal number of reduction iterations is two for the salt 
dome model in this test. A single-step reduction affects the 

inversion accuracy after dimensionality reduction, while excessive 
reduction rounds can increase the calculation burden. Further
more, an excessive number of dimensionality reduction steps may 
introduce computational instability due to the accumulation of 
iterative operations. Based on the results from the present model 
experiments, it is generally advisable to limit the number of 
reduction iterations to two or three for a balance between effi
ciency and stability.

In addition, a comparison of the computational time required 
by IDCT-BLI and DCT-BLI in the aforementioned reduction tests is 
presented in Fig. 6(f). Dimensionality reduction tests with target 
dimensions of 1000, 800, 600, 400, and 200 were performed on 
the 2D model (original matrix dimension: 1280). For each reduc
tion level, inversion is carried out using both IDCT-BLI and DCT-BLI 
across all 681 seismic traces in the model, and the corresponding 
computational time is recorded. In the case of IDCT-BLI, the 
reduction is conducted using a two-step iterative approach, 
consistent with the tests in Fig. 6(b). The red and black curves in 
Fig. 6(f) represent the runtime of DCT-BLI and IDCT-BLI, respec
tively. Notably, the computational time for traditional BLI on the 
same 2D model is approximately 430 s. As shown in Fig. 6(f), a 
clear trend is observed: as the matrix dimensionality decreases, 
the inversion runtime also decreases. Compared to the 430 s 
required by traditional BLI, both DCT-BLI and IDCT-BLI achieve 
more than 30% runtime reduction at the maximum reduction level 
(dimension = 200), indicating the significant efficiency improve
ment brought by dimensionality reduction. Furthermore, although 
the runtime of IDCT-BLI is consistently slightly longer than that of 
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Fig. 10. The inversion error of (a) P-wave velocity, (b) S-wave velocity, and (c) density 
estimated by DCT-BLI.
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Fig. 9. The inversion results of (a) P-wave velocity, (b) S-wave velocity, and (c) density 
estimated by IDCT-BLI.
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DCT-BLI due to the additional matrix multiplications involved in 
the iterative reduction process, IDCT-BLI maintains high inversion 
accuracy even at a dimensionality of 200. In contrast, DCT-BLI fails 
to ensure inversion accuracy when the matrix dimension drops 
below 600. Therefore, despite a slight increase in computational 
cost, IDCT-BLI offers a more efficient  and robust solution for 
inversion tasks, outperforming DCT-BLI in terms of both accuracy 
and practical applicability.

The above one-dimensional test demonstrates that IDCT-BLI 
can achieve inversion results with the same accuracy as tradi
tional BLI and DCT-BLI, without compromising inversion precision. 
Therefore, the advantage of the IDCT-based reduction compared 
with the DCT-based method is also proved. A two-dimensional test 
will be conducted to further evaluate the effectiveness of IDCT-BLI. 
Based on the pre-stack seismic angle gathers and initial model 
shown in Figs. 3 and 4, the inversion results for the P- and S-wave 
velocities, and density are obtained.

Fig. 7 presents the inversion results obtained using the 
traditional BLI, while Figs. 8 and 9 show the three-parameter 
inversion results derived from DCT-BLI and IDCT-BLI, respec
tively. A direct comparison reveals that DCT-BLI and IDCT-BLI 
achieve the same inversion performance as traditional BLI, 
with the three-parameter inversion results closely matching the 
true model shown in Fig. 2. To further quantify the inversion 
performance, Fig. 10 illustrates the relative errors between the 
three-parameter inversion results of BLI and DCT-BLI, whereas 
Fig. 11 displays the relative errors between the three- 
parameter inversion results of BLI and IDCT-BLI. The relative 

error equals the absolute difference between the inversion 
result of DCT-BLI or IDCT-BLI and that of BLI, divided by the BLI 
inversion result.

As observed from the above figures, both IDCT-BLI and DCT-BLI 
exhibit similar inversion error compared to traditional BLI. How
ever, in Figs. 10 and 11, the relative errors of the P- and S-wave 
velocities, and density are mostly within 1%, indicating that both 
DCT-BLI and IDCT-BLI achieve high inversion accuracy. Notably, 
even when the core matrix dimension is reduced to 180, IDCT-BLI 
maintains a similar inversion accuracy to DCT-BLI, further 
demonstrating the effectiveness of the IDCT-based matrix 
dimensionality reduction method.

3.2. Field data test

The effectiveness of the proposed inversion method is evalu
ated using a field  dataset from an oilfield  in China. This dataset 
includes three partial-angle stacked two-dimensional seismic 
sections, corresponding to center incident angles of 5◦, 15◦, and 
25◦ displayed in Fig. 12(a)–(c). The two-dimensional inversion grid 
consists of 900 cells in the horizontal direction and 400 cells in the 
vertical direction, corresponding to 900 seismic traces and a 400 
ms time window for each trace. The grid cell sizes are 20 m hor
izontally and 1 ms vertically.

As mentioned in the theoretical model test, initial models are 
significant  to BLI, and a reasonable initial model is necessary to 
verify the effectiveness of the IDCT-BLI. The initial model used in 
the real data test is constructed based on well-log data constrained 
by seismic horizons. Actually, a commercial software is used 
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Fig. 12. Field prestack angle gathers with the incident angles of (a)5◦ , (b) 15◦ , and (c) 
25◦ .
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Fig. 11. The inversion error of (a) P-wave velocity, (b) S-wave velocity, and (c) density 
estimated by IDCT-BLI.
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herein to accomplish this work. The initial models for the P- and S- 
wave velocities, and density are shown in Fig. 13(a)–(c). Based on 
the prestack seismic data and the initial model described above, 
the inversion tests are conducted using BLI, DCT-BLI, and IDCT-BLI, 
respectively.

For a fair comparison of inversion performance, the three 
inversion tests are conducted using the same parameters, 
including the variogram, initial model, and noise variance. How
ever, BLI does not employ the dimensionality reduction method 
proposed in this study, and the core matrix dimension remained at 
1200. DCT-BLI utilizes the DCT-based dimensionality reduction 
method proposed by Yu et al. (2024). Through testing, the core 
matrix dimension is reduced from 1200 to 430, as further reduc
tion would compromise inversion accuracy. IDCT-BLI that based on 
the dimensionality reduction method proposed in this study 
achieves a minimum core matrix dimension of 200.

Fig. 14(a)–(c) show the inversion results for the P- and S-wave 
velocities, and density corresponding to the traditional BLI. Fig. 15
(a)–(c) present the inversion results for the three prestack elastic 
parameters obtained using DCT-BLI. Fig. 16(a)–(c) display the pre- 
stack three-parameter inversion results obtained using IDCT 
method. The inversion results from the above three methods 
exhibit satisfactory resolution and lateral continuity, effectively 
capturing the spatial distribution characteristics of the reservoir at 
900 ms. Visually, the three prestack inversion results for the three 
elastic parameters shown in Figs. 14–16 are highly similar, indi
cating that the dimensionality reduction of the matrix has not 
compromised the inversion accuracy.

To quantitatively evaluate the effectiveness of the IDCT 
dimensionality reduction method, the relative errors between the 
inversion results of DCT-BLI, IDCT-BLI, and traditional BLI were 
computed, using the inversion results of traditional BLI as the 
reference. Fig. 17 presents the relative errors of the three param
eters between DCT-BLI and traditional BLI, while Fig. 18 shows the 
relative errors of the three parameters between IDCT-BLI and 
traditional BLI. A comparison reveals that both DCT-BLI and IDCT- 
BLI produce inversion results for P-wave velocity, S-wave velocity, 
and density with relative errors within 1% compared to traditional 
BLI. This indicates that the inversion accuracy of DCT-BLI and IDCT- 
BLI is equivalent to that of traditional BLI, and the dimensionality 
reduction of the matrix does not affect the inversion accuracy.

To further quantitatively analyze the errors between the 
inversion results obtained by DCT-BLI and IDCT-BLI and those 
obtained by traditional BLI, the probability distribution curves 
corresponding to the errors shown in Figs. 17 and 18 are plotted 
and presented in Fig. 19. In Fig. 19(a), the error distribution curves 
of P-wave velocity are shown. The blue curve represents the error 
between the IDCT-BLI and traditional BLI results, while the red 
dashed curve represents the error between the DCT-BLI and 
traditional BLI results. A comparison reveals that, except for the 
region indicated by the black arrow where a slight discrepancy 
exists, the two curves almost completely overlap across the rest of 
the domain. Fig. 19(b) and (c) present the error distributions for S- 
wave velocity and density, respectively. These two figures exhibit 
similar patterns to Fig. 19(a), indicating that the inversion results 
from DCT-BLI and IDCT-BLI are nearly identical, and their 
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Fig. 13. Prior models of the (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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Fig. 14. BLI results of (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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discrepancies from the traditional BLI results are essentially the 
same. Therefore, despite IDCT-BLI achieving a significantly higher 
level of dimensionality reduction compared to DCT-BLI, the 
inversion accuracy of both methods is nearly identical, demon
strating the effectiveness of the IDCT-based dimensionality 
reduction approach.

4. Discussion

The IDCT-based reduction method proposed in this study can 
significantly  reduce the dimensionality of large, sparse kernel 
matrices in Kalman-based stochastic inversion, thereby 
addressing the computational challenges associated with matrix 
inversion in practical applications and substantially improving 
computational efficiency. This method builds on the theoretical 
foundation of the DCT-based dimensionality reduction approach 
(Yu et al., 2024), which has proven effective in compressing 
inversion kernel matrices to approximately 40%–50% of their 
original size without compromising inversion accuracy. In 
contrast, the proposed IDCT-based method offers the potential to 
compress the matrix dimensionality to as low as 15% (see the 
tests in Fig. 6). The advantage of the IDCT-based reduction lies in 
its iterative and progressive dimensionality reduction strategy. 
Essentially, matrix dimensionality reduction aims to retain crit
ical information while discarding redundancies. The IDCT-based 
approach achieves this by performing small-scale reductions in 
each iteration, an incremental process that maximizes the pres
ervation of critical matrix information throughout the reduction 
procedure.

This study conducted model tests with varying numbers of 
incremental dimensionality reduction steps. The results demon
strate that the maximum achievable reduction increases with the 
number of steps; however, beyond three iterations, the marginal 
benefit  becomes negligible, as illustrated in Fig. 6. Moreover, 
excessive reduction steps introduce additional computational 
costs. Based on the findings of this study, the optimal number of 
iterations in the incremental reduction process is two to three. This 
strategy has also been validated through real data experiments. 
Current tests on this method suggest that two iterations are suf
ficient to achieve a significant reduction in matrix dimensionality 
for most cases.

The problem of inverting large sparse matrices is pervasive 
in fields  such as geophysics and mathematical geology, with 
typical applications including inversion, deconvolution, 
denoising, and geological modeling. This presents non- 
negligible challenges to the practicality and scalability of the 
associated methods when applied to large-scale data. The pro
posed matrix information dimensionality reduction strategy 
offers an effective solution. However, existing reduction 
methods typically employ a single-step approach, resulting in 
limited reduction efficiency. This limitation arises because 
single-step dimensionality reduction removes non-informative 
components from the matrix in a single operation, which may 
compromise essential information. In contrast, the IDCT-based 
reduction iteratively extracts and progressively eliminates 
non-informative components, thereby maximizing the preser
vation of critical information while effectively discarding 
redundant data. In the IDCT method, the selection of Rcoe is 
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Fig. 15. DCT-BLI results of (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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Fig. 16. IDCT-BLI results of (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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critical, which is determined through one-dimensional inver
sion tests currently. Another possible manner is choosing Rcoe 
by using certain optimization techniques.

Furthermore, existing dimensionality reduction methods 
applied to seismic inversion generally require computations such 
as principal component analysis, which inherently involve large 
matrix operations and consequently increase extra computational 
burden of seismic inversion. By comparison, the method proposed 
in this study employs the same dimensionality reduction operator 
for different seismic traces, thereby enhancing computational ef
ficiency. Therefore, when performing two-dimensional or even 
three-dimensional dimensionality reduction inversion, the 
reduction operator only needs to be computed once during the 
inversion of the first trace, eliminating the need for recalculation 
in subsequent traces. This approach prevents the dimensionality 
reduction algorithm from introducing additional computational 
burden to the inversion process. Notably, this advantage is shared 
by both DCT-based and IDCT-based dimensionality reduction 
methods.

The complexity of geological structures also increases the 
difficulty  of dimensionality reduction. As shown in the two- 
dimensional relative error maps in Figs. 17 and 18, the error is 
higher in regions with horizontal strata than in those with in
clined strata, a phenomenon consistently observed in both nu
merical results and model validation tests. Nevertheless, the 
relative errors of the inversion results before and after dimen
sionality reduction remain within 1%, indicating that although 
complex geological features may reduce the accuracy of 

dimensionality reduction, the inversion results after reduction 
are still reliable. Therefore, IDCT-based dimensionality reduction 
method can alleviate the challenge of large matrix inversion 
effectively. The advantages of IDCT become increasingly evident 
as the dimensionality of the matrix increases. Especially in sce
narios involving large-scale geophysical data inversion and multi- 
channel data processing (Wang et al., 2024b), which necessitate 
the inversion of ultra-large matrices, IDCT is expected to offer 
substantial performance benefits.

5. Conclusions

A deep dimensionality reduction method named IDCT is pre
sented to address the challenge of inverting large sparse matrices 
in Bayesian inverse problem. The method is fundamentally based 
on DCT and innovatively performs an iterative and incremental 
DCT-based dimensionality reduction on large sparse matrices 
inversion. The key to its effectiveness lies in calibrating a reason
able reduction magnitude in the iteration process, thereby pre
serving essential matrix information to the greatest extent. In 
other words, the reduction intensity in each iteration of this 
method remains moderate. The proposed method presents two 
notable advantages over traditional dimensionality reduction 
techniques. First, it achieves a substantially higher reduction ratio 
compared to conventional approaches. Second, it introduces no 
additional computational burden to the inversion process. This 
study conducts both synthetic and field data tests, comparing the 
proposed approach with traditional DCT-based dimensionality 
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Fig. 17. The relative errors between the inversion results obtained by BLI and DCT-BLI 
for the (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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Fig. 18. The relative errors between the inversion results obtained by BLI and IDCT- 
BLI.
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reduction methods. The test results fully validate the effectiveness 
of the proposed method. This dimensionality reduction technique 
is particularly valuable for solving Bayesian inverse issue under the 
Kalman framework, where the inversion of large matrices is 
inevitable. Moreover, it has broader implications for geophysics 

and mathematical geology, providing a valuable reference for 
addressing large sparse matrix inversion problems in these fields.
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Appendix A

BLI is an excellent seismic stochastic inversion methodology, 
whose objective is estimating p(m|d) in Eq. (17) from the observed 
datasets. Generally, a Gaussian function is used herein to describe 
the prior distribution of the prestack elastic parameters including 
the P- and S-wave velocities and density: 

m ∼ N(Ψm;Cm) (A-1) 

where Ψm and Cm are the mean value and covariance matrix.
The seismic forward modeling based on the convolution the

orem is commonly expressed as the following formula, 

d=Gm + e; (A-2) 

where e is the forward error. G is a forward operator. Generally, G 
can both represent the linear and non-linear forward relation
ships. However, this research focuses on the matrix dimension 
reduction, hence, the linear forward equation constructed by Aki- 
Richards is utilized herein to quantify the relationship between the 
model parameters and the observed seismic data (Aki and 
Richards, 2002). Considering the linear Gaussian theorem, the 
distribution of the seismic data d can be written as 

d ∼ N
(

GΨm;GCmGT
+Ce

)
: (A-3) 

where Ce is the variance matrix for the seismic error, and it can 
represent the uncertainty of the seismic data. According the sta
tistical theory, the joint distribution of model parameters and 
seismic data can be expressed as, 
[

d
m

]

∼ N
([

GΨm
Ψm

]

;

[
GCmGT + Ce CmGT

GCm Cm

])

: (A-4) 

where CmGT and GCm are the transposition with each other, and 
they both present the statistical and spatial correlation between 
model parameters and seismic data. Using Eq. (A-4), the 
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conditional probability distribution of m constrained by d can be 
calculated and expressed as follows, 

m
⃒
⃒
⃒d ∼ N

(
Ψm|d;Cm|d

)
; (A-5) 

and it also includes a posterior mean term and a covariance 
matrix Ψm|d and Cm|d, and they can be expressed as 

Ψm|d =Ψm + CmGTC− 1
d (d − GΨm); (A-6) 

Cm|d =Cm − CmGTΣC− 1
d Cm: (A-7) 

where the core matrix for BLI is Cd = GCmGT + Ce. The objective of 
this research is improving the inverse efficiency of Cd.

References

Aki, K., Richards, P.G., 2002. Quantitative seismology.
Alemie, W., Sacchi, M.D., 2011. High-resolution three-term AVO inversion by means 

of a Trivariate Cauchy probability distribution. Geophysics 76 (3), R43–R55. 
https://doi.org/10.1190/1.3554627.

Aravkin, A., Friedlander, M.P., Herrmann, F.J., et al., 2012. Robust inversion, 
dimensionality reduction, and randomized sampling. Math. Program. 134, 
101–125. https://doi.org/10.1007/s10107-012-0571-6.

Atkinson, S., Zabaras, N., 2019. Structured Bayesian Gaussian process latent vari
able model: applications to data-driven dimensionality reduction and high- 
dimensional inversion. J. Comput. Phys. 383, 166–195. https://doi.org/ 
10.1016/j.jcp.2018.12.037.

Bosch, M., Mukerji, T., Gonzalez, E.F., 2010. Seismic inversion for reservoir prop
erties combining statistical rock physics and geostatistics: A review. 
Geophysics 75 (5), 75A165–75A176. https://doi.org/10.1190/1.3478209.

Buland, A., Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics 68 (1), 
185–198. https://doi.org/10.1190/1.1543206.

Bunte, K., Schneider, P., Hammer, B., et al., 2012. Limited rank matrix learning, 
discriminative dimension reduction and visualization. Neural Netw. 26, 
159–173. https://doi.org/10.1016/j.neunet.2011.10.001.

Cao, Y., Zhou, H., Yu, B., et al., 2024. The estimation of petrophysical parameters 
based on ensemble smoother with correlation localization. IEEE Trans. Geosci. 
Rem. Sens. 62, 1–12. https://doi.org/10.1109/TGRS.2024.3403663.

Chen, F.B., Zong, Z.Y., Lang, K., et al., 2024a. Geofluid  discrimination in stress- 
induced anisotropic porous reservoirs using seismic AVAZ inversion. IEEE 
Trans. Geosci. Rem. Sens. 62, 1–14. https://doi.org/10.1109/TGRS.2024.3477943.

Chen, F.B., Zong, Z.Y., Yin, X.Y., 2024b. Seismic scattering inversion for multiple 
parameters of overburden-stressed isotropic media. Geophysics 89 (6), 
T319–T336. https://doi.org/10.1190/geo2023-0636.1.

Chen, S.Y., Wang, N., Shi, Y., et al., 2025. Sparse gabor transform and its application 
in seismic data analysis. IEEE Trans. Geosci. Rem. Sens. 63, 1–10. https://doi. 
org/10.1109/TGRS.2025.3560299.

Cunningham, J.P., Ghahramani, Z., 2015. Linear dimensionality reduction: survey, 
insights, and generalizations. J. Mach. Learn. Res. 16 (1), 2859–2900. https:// 
doi.org/10.48550/arXiv.1406.0873.

Ding, P.B., Gong, F., Zhang, F., et al., 2021. A physical model study of shale seismic 
responses and anisotropic inversion. Pet. Sci. 18 (4), 1059–1068. https://doi.org/ 
10.1016/j.petsci.2021.01.001.

Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. Ph.D. 
Thesis. University of Calgary.

Esser, E., Moller, M., Osher, S., et al., 2012. A convex model for nonnegative matrix 
factorization and dimensionality reduction on physical space. IEEE Trans. Im
age Process. 21 (7), 3239–3252. https://doi.org/10.1109/TIP.2012.2190081.

Gao, Z., Li, C., Liu, N., et al., 2020. Large-dimensional seismic inversion using global 
optimization with autoencoder-based model dimensionality reduction. IEEE 
Trans. Geosci. Rem. Sens. 59 (2), 1718–1732. https://doi.org/10.1109/ 
TGRS.2020.2998035.

Grana, D., de Figueiredo, L., Azevedo, L., 2019. Uncertainty quantification  in 
Bayesian inverse problems with model and data dimension reduction. 
Geophysics 84 (6), M15–M24. https://doi.org/10.1190/geo2019-0222.1.

Grana, D., Azevedo, L., de Figueiredo, L., et al., 2022. Probabilistic inversion of 
seismic data for reservoir petrophysical characterization: review and exam
ples. Geophysics 87 (5), M199–M216. https://doi.org/10.1190/geo2021-0776.1.

Jumah, B., Herrmann, F.J., 2014. Dimensionality-reduced estimation of primaries by 
sparse inversion. Geophys. Prospect. 62 (5), 972–993. https://doi.org/10.1190/ 
1.3627931, 2014. 

Liu, M., Grana, D., de Figueiredo, L., 2022. Uncertainty quantification in stochastic 
inversion with dimensionality reduction using variational autoencoder. 
Geophysics 87 (2), M43–M58. https://doi.org/10.1190/geo2021-0138.1.

Marzouk, Y.M., Najm, H.N., 2009. Dimensionality reduction and polynomial chaos 
acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228 
(6), 1862–1902. https://doi.org/10.1016/j.jcp.2008.11.024.

Penna, R., Lupinacci, W.M., 2024. Geostatistical seismic inversion and 3D modelling 
of metric flow units, porosity and permeability in Brazilian presalt reservoir. 
Pet. Sci. 21 (3), 1699–1718. https://doi.org/10.1016/j.petsci.2024.02.013.

Pereira, P., Bordignon, F., Azevedo, L., et al., 2019. Strategies for integrating un
certainty in iterative geostatistical seismic inversion. Geophysics 84 (2), 
R207–R219. https://doi.org/10.1190/geo2017-0758.1.
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