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a b s t r a c t

Casing damage resulting from sand production in unconsolidated sandstone reservoirs can significantly
impact the average production of oil wells. However, the prediction task remains challenging due to the
complex damage mechanism caused by sand production. This paper presents an innovative approach that
combines feature selection (FS) with boosting algorithms to accurately predict casing damage in uncon-
solidated sandstone reservoirs. A novel TriScore FS technique is developed, combining mRMR, Random
Forest, and F-test. The approach integrates three distinct feature selection approaches—TriScore, wrapper,
and hybrid TriScore-wrapper and four interpretable Boosting models (AdaBoost, XGBoost, LightGBM,
CatBoost). Moreover, shapley additive explanations (SHAP) was used to identify the most significant
features across engineering, geological, and production features. The CatBoost model, using the Hybrid
TriScore-rapper G1G2 FS method, showed exceptional performance in analyzing data from the Gangxi
Oilfield. It achieved the highestaccuracy (95.5%) and recall rate (89.7%) compared to other tested models.
Casing service time, casing wall thickness, and perforation density were selected as the top three most
important features. This framework enhances predictive robustness and is an effective tool for policy-
makers and energy analysts, confirming its capability to deliver reliable casing damage forecasts.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

A casing system consists of interconnected steel pipes that
protect the wellbore against external forces exerted by the geolog-
ical formations (Shi et al., 2021). Casing integrity is critical for the
safe and efficient extraction of hydrocarbons (Deng et al., 2023).
Maintaining casing integrity remains a significant challenge despite
its importance due to various factors that can lead to casing damage.
Practical proof from oilfield development demonstrates that the
extended production period and continuous improvements to
development techniques have resulted in significant casing damage
in numerous oil and water wells worldwide. According to reports,
the percentage of casing failures can reach up to 50%, although this

information is rarely shared because of concerns about reputation,
business image, and privacy. In China, wells have experienced sig-
nificant damage to their casings, particularly in oilfields with clastic
sandstone reservoirs that have low natural energy. The inflicted
damage has resulted in the cessation of production and injection
activities in impacted oil and water wells and, in certain instances,
has prompted the abandonment of wells. Casing failures have a
pronounced effect on oil and gas exploration, with the major oil-
fields in the country, including Daqing, Shengli, Jilin, and Changqing,
reporting severe cases of casing damage since the 1970s. Therefore,
the failure to predict and mitigate casing damage can result in
significant economic losses, severe safety incidents, and harmful
environmental impacts.

1.2. Literature review

1.2.1. FS for casing damage
FS techniques play an essential role in enhancing the effec-

tiveness of predictive modeling, typically categorized into three
primary groups: filter, embedded, and wrapper methods (Cai et al.,
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2018; Pudjihartono et al., 2022). Filtermethods utilize statistical or
information-theoretic criteria such as mutual information, Pear-
son correlation, and Euclidean distance to evaluate and rank fea-
tures based solely on intrinsic data characteristics. These methods
are computationally efficient but might not necessarily yield the
most suitable feature subsets for specific predictive algorithms
(Theng and Bhoyar, 2024). Embedded methods, by contrast,
determine feature importance directly within the modeling pro-
cess, as demonstrated in algorithms like Gradient Boosting (GB)
and Random Forest (RF). Wrapper methods involve formulating
feature selection as an optimization task closely integrated with a
chosen machine learning (ML) model, thus generally achieving
high predictive accuracy but potentially incurring significant
computational costs. Simplified wrappers, however, can some-
times offer reduced computational demand while maintaining
sufficient predictive performance (Guyon and Elisseeff, 2003).
Hybrid methods merge multiple FS strategies to strike an optimal
balance between computational efficiency and feature selection
quality. A comprehensive understanding of these FS approaches is
essential for constructing robust forecasting models. In particular,
given the complexity and variability of casing damage phenomena
and the dependency of predictive performance on optimal subsets
of features, FS has emerged as a foundational step in numerous
studies applying ML techniques within diverse energy-related
contexts. Recent studies have demonstrated the growing utility
of ML in casing damage prediction by integrating multidisciplinary
well data and applying rigorous feature selection techniques.

For example, Zhao et al. (2020) developed a data-driven model
based on a RF algorithm to predict casing damage in the Daqing
Oilfield. The model was trained using diverse geological, engi-
neering, and production parameters, preceded by extensive data
preprocessing and domain-informed feature filtering. Notably, the
embedded feature importance mechanism within the RF model
identified key predictors, such as formation pressure, injection
profile, and cumulative injection volume, as principal contributors
to casing failure. Building on such efforts, Zhang et al. (2022)
adopted a more structured FS framework for casing damage risk
modeling in a waterflooding field. Their approach involved cate-
gorizing a broad set of candidate features into geological, engi-
neering, and development domains, and subsequently applying
two statistical filter methods, F-test and mutual information, to
quantify the discriminative power of each feature. Focusing on
“well-level” granularity, they systematically ranked features based
on their ability to differentiate damaged from undamaged wells,
thereby establishing a robust foundation for model training. In
conclusion, the reviewed research consistently shows that ML
models employing FS methods generally achieve better predictive
outcomes than models without FS. Systematically identifying and
choosing relevant features significantly enhanced these modelsʼ
accuracy and generalization capability.

1.2.2. Machine learning casing damage
Research has extensively analyzed casing failures, examining

the mechanisms, contributing factors, and evaluation methods for
affected wells (Yin et al., 2023). In unconsolidated sandstone res-
ervoirs, these failures are influenced by geological, production, and
engineering factors. Production factors relate to fluid dynamics
from formation to the wellbore, including production zones, peak
daily liquid output, maximumwater cut, and fluid production rate.
Engineering factors concern operational data, encompassing pa-
rameters such as perforation thickness. Geological factors, derived
from geologic studies and well assessments, include variables like
sand layer thickness, permeability, and porosity.

Scholars have developed methods to assess and predict casing
damage using geomechanics models, enhancing the understanding

of the mechanical underpinnings of such damage and forecasting
potential future risks (Lian et al., 2015; Lin et al., 2016; Mohamadian
et al., 2021; Yang et al., 2021). These methods encompass both
analytical and numerical analysis approaches. The analytical
method models the casing as an ideal circle to predict damage
under non-uniform external loads. In contrast, the numerical
method, grounded in finite element theory, uses commercial soft-
ware for spatial simulation to analyze casing deformation under
complex loads and evaluate stress and deformation via numerical
calculations. Despite their contributions, these methods face limi-
tations due to vague evaluation criteria and challenges in quanti-
tative assessment. For instance, Willson et al. (2003), Wang and
Samuel (2016) utilized numerical simulations and 3D finite
element models, respectively, to study casing stress under varying
geological conditions. Their findings highlight the progressive stress
increases on casings over time and in specific geologic scenarios.
However, traditional methods, constrained by idealized assump-
tions and a narrow focus on specific factors, are limited in their
ability to fully predict future casing damage (Mohamadian et al.,
2021). Consequently, there is a growing need for new detection
methods to pre-emptively identify casing damage more effectively
and economically (Zhang et al., 2022).

In recent years, ML has emerged as a powerful tool for solving
complex forecasting and classification problems across diverse
domains, including geoscience, environmental engineering, and
resource extraction (Abu-Doush et al., 2023; Braik et al., 2024;
Doush et al., 2024). Within the oil and gas industry, several
scholars have utilized ML methods to tackle issues related to oil-
field production. For instance, Noshi et al. (2018) employed nine
unsupervised algorithms, such as Bootstrap, RF, and support vector
machine (SVM), to recognize the features of casing damage during
drilling and fracturing. In another study, Noshi et al. (2019) utilized
artificial neural network (ANN) and boosted ensemble trees to
construct a prognostic model for the chance of casing failure. The
framework was developed based on 26 attributes derived from
drilling, fracturing, and geology data. Additionally, Song and Zhou
(2019) designated ten significant parameters that affect casing
damage, such as a sand layer, casing, and perforation information.
They established a model for casing damage risk calculation using
Gradient Boosting Decision Tree (GBDT), and their model achieved
a prediction accuracy of 86.3%. In their study, Tang et al. (2019)
identified 19 influential factors related to casing damage and
developed a hazard prediction model employing ExtremeGradient
Boosting (XGBoost) and Light Gradient Boosting Machine
(LightGBM) algorithms. They used 23 distinct features to predict
casing damage occurrences in the Gangxi Oilfield. Among these
features, perforation density and manufacturing pressure differ-
ential emerged as critical determinants influencing casing integ-
rity. Comparative analysis revealed that XGBoost outperformed
LightGBM, achieving 99% and 94% prediction accuracies, respec-
tively. Li et al. (2024) developed a multi-factor casing damage
prediction method based on six ML models. Overall, these studies
demonstrate the effectiveness of data-driven methods for
addressing challenges in oilfield production.

Despite recent advancements, a critical gap remains in the
prevailing literature: a perceptible scarcity of sufficiently inter-
pretable ML models for forecasting casing damage, an essential
requirement for enabling transparent, data-driven decision-mak-
ing in well integrity management. Many existing studies overlook
feature selection entirely or adopt naïve, single-method ap-
proaches that may retain redundant or irrelevant variables,
thereby reducing model clarity and generalizability.

To address these limitations, this study proposes a compre-
hensive and interpretable ML framework for casing damage pre-
diction. The approach incorporates a multi-stage feature selection
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strategy, combining a novel TriScore filter method, a wrapper-
based selection, and their hybrid integration, to identify the
most relevant predictors while minimizing redundancy system-
atically. This is complemented by expert-driven refinement and
rigorous model development using multiple boosting algorithms
with hyperparameter optimization via Bayesian search. Model
performance is evaluated on training and test datasets using
standard classification metrics, and further enhanced through
shapley additive explanations (SHAP) analysis to ensure trans-
parency and interpretability. This framework addresses the
shortcomings of prior studies that rely on naïve or single-method
feature selection and ensures the development of robust, high-
performing, and explainable predictive models tailored to sup-
port informed well integrity decision-making.

1.3. Novelty and contributions

Our study comprehensively contributes to ML-based casing
damage forecasting, encompassing multiple aspects. Our primary
aims are to boost black-box ML modelsʼ interpretability and pre-
dictive precision.

(1) This study innovatively utilizes high-level casing damage
data, a complex task due to the generally limited dataset
availability across complete oil and gas sources, particularly
over casing damage. On the other hand, other researchers (e.
g., Mohamadian et al., 2021; Wang et al., 2023; Xue, 2020)
have primarily utilized low-level data with fewer features,
casting doubts on the reliability of their conclusions.

(2) This framework enhances the accuracy of our ML-driven
predictions and offers novel insights into their features. Our
study examines the use of many sources of casing data in
China, performing a detailed analysis of various aspects such
as engineering, geological, and production parameters. This
represents a notable deviation from past studies, which
usually depend on an inadequate group of pre-determined
features short of sufficient rationale.

(3) This research distinguished itself from this study (Li et al.,
2024) by performing a comprehensive and comparative FS
investigation. This unique framework integrates three Tri-
Score FS techniques, as described in this research, with a
wrapper method incorporating four Boosting ML models.
This enables a comprehensive comparison study.

The structure of the paper is as follows: Section 2 presents the
methodology employed in this study. Section 3 discusses the key
factors influencing casing damage and details the data pre-
processing steps undertaken prior to model training. Section 4
presents the results and discussion, compares the performance of
the proposed model with other ML approaches, summarizes key
findings, and outlines policy implications and study limitations.
Finally, Section 5 concludes the research and suggests directions
for future work.

2. Proposed approach

Fig. 1 presents a comprehensive workflow for predicting casing
damage using supervised ML, integrating domain expertise,
feature selection techniques, and performance evaluation mech-
anisms. The process begins with a literature review to identify
recent advancements in ML-based casing damage prediction, fol-
lowed by the development of a comprehensive list of candidate
features derived from engineering, geological, and production
datasets. After data collection, the dataset undergoes preprocess-
ing to address missing values, outliers, and inconsistencies. The

next stage involves applying three distinct FS approaches: (1)
TriScore FS (a hybrid filter-based method incorporating minimum
redundancy maximum relevance (mRMR), RF, and F-test), (2)
wrapper methods, and (3) a hybrid TriScore-wrapper strategy.

These methods reduce the feature space while retaining the
most relevant predictors. Expert input is also incorporated at this
stage, allowing for manual inclusion of domain-relevant features
that may have been filtered out algorithmically. The selected fea-
tures are then used to train various boosting-based ML models (e.
g., XGBoost, LightGBM, CatBoost), and Bayesian optimization is
employed to fine-tune model hyperparameters. Model perfor-
mance is evaluated on a training set, and the best-performing
models are identified based on metrics such as accuracy, preci-
sion, recall, and F1-score, followed by validation on a separate test
set. Finally, to enhance model interpretability, SHAP analysis is
applied to extract and visualize the importance of the selected
features, providing insights into their contribution to casing
damage prediction. This end-to-end framework ensures a balance
between model accuracy, robustness, and interpretability, which
are key requirements for informed decision-making in well
integrity management. This leads to the creation of a feature
subset that optimally balances the accuracy of the ML model with
its interpretability, as detailed by Chen et al. (2023).

The architecture of our proposed method comprises several
crucial steps. Fig. 2 illustrates the proposed hybrid feature selec-
tion framework used for developing interpretable and high-
performing ML models for casing damage prediction. The pro-
cess begins with the complete set of features denoted as G0, which
includes all available geological, engineering, and operational
variables. This initial feature pool undergoes a two-stage selection
process. First, the TriScore FS module employs a filter-based
approach to evaluate and reduce the original feature space,
resulting in a subset G1 of statistically relevant features. Awrapper
FS method refines this reduced set, which evaluates feature sub-
sets based on their performance within specific ML models. This
step yields an optimized feature group G2, balancing statistical
relevance and predictive contribution. The final selected feature
subsets (G1 and G2) are then input into a suite of supervised ML
models, including multiple boosting algorithms (e.g., Adaptive
Boosting (AdaBoost), XGBoost, LightGBM, CatBoost), to assess
predictive performance using training data. This framework aims
to ensure the resulting models are accurate and interpretable by
identifying the most informative and non-redundant features
through an integrated filter-wrapper selection pipeline.

2.1. Cross-correlation analysis

This study examined the relationships between affecting fac-
tors and each prediction target using 3 analytical opinions: PCC,
SCC, and KCC. The PCC (Dai et al., 2024; Fargalla et al., 2024; Liu
et al., 2024) correctly measures the degree of linear relationship
between two variables, X and Y . The equation provided below
serves as the definition:

P=
A(XY) − A(X)A\(Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A
(
X2

)
− A2(X)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A
(
Y2

)
− A2(Y)

√√ (1)

In this expression, A(X) and A(Y) denote the mean values of the
variables X and Y, respectively. A(XY) represents the mean of the
product of corresponding values of X and Y , while A(X2) and A(Y2)

represent the mean of the squared values of X and Y , respectively.
The terms A2(X) and A2(Y) refer to the square of the mean values
of X and Y.
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The SCC (Wang et al., 2024) evaluates the monotonic associa-
tion between variables by analyzing the linear relationship by
ranking the two factors. The equation for computing the SCC for an
individual data set with a sample size of n is given by:

β=1 −
6
∑

d2
i

n
(
n2 − 1

) (2)

Here, di is the rank variance among Xi and Yi.
The Kendall correlation coefficient denoted by σ, is a rank

relationship metric utilized to assess the overall relationship
among factors, encompassing bothmonotonic and non-monotonic
relationships. The formula for the Kendall correlation coefficient is
provided below:

σ=
C − D

1
2n(n − 1)

(3)

In this context, ‘C’ represents the number of couples of factors
in the instance data from X and Y that are concordant (two factors
forming a consistent pair). At the same time, ‘D’ stands for the
quantity of discordant pairs (elements in a pair that are inconsis-
tent). Each of the three correlation coefficients discussed analyzes
the correlations from distinct perspectives, providing a compre-
hensive overview of the relationships in the input data.

2.2. Feature selection methods

2.2.1. F-test
FS method ranks input features according to their implication

for a precise ML function by utilizing statistical investigation to

evaluate the importance and impact of each feature on the output.
The significance of features is quantified using the F-statistic (F).
The F-value quantifies the significance of a characteristic in ac-
counting for the inconsistency of the yield feature. The process of
FS using the F-test consists of three phases: determining F-values
for individual features, organizing these factors in a downward
order based on F-values, and choosing the top-k features with the
maximum F-values. The user can either specify the value of k or
select it over cross-validation. The F-test FS method identifies and
eliminates redundant or less significant features, resulting in an
added streamlined and precise ML model. This method is espe-
cially beneficial for handling datasets with many dimensions. FS
can improve the modelʼs performance and reduce the risk of
overfitting.

2.2.2. mRMR
Maximum relevance and minimum redundancy pertain to

minimizing unnecessary repetition or duplication in data. The
mRMR technique is employed to select features that optimize the
relevance of input characteristics concerning the output feature.
Concurrently, this method eliminates redundant inputs, thereby
enhancing the efficiency and effectiveness of feature selection
(Zhang et al., 2023). The method employs mutual information (MI)
to evaluate the significance and duplication of characteristics. The
MI is demarcated in the following manner:

I(A∕B) =
∫∫

p(a; b)log
p(a; b)
p(a)s(b)

(4)

In this formula, A and B denote vectors, p(a; b) represents the
shared probability density, and p(a) and p(b) are the marginal

Fig. 1. The proposed framework combines two FS techniques and interpretable ML models to predict casing damage.

Fig. 2. The methodology of FS employs three distinct techniques.
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probability densities. Given a feature group G with m features (xi;
i∈ (1;m)), the max relevance criterion seeks a subgroup with the
maximum importance to the output feature y, as illustrated below:

max D(G; y);D=
1
|G|

∑

xi∈G

I(xi; y) (5)

To detect irrelevant features, the minimum redundancy crite-
rion evaluates potential redundancies within the max relevance
selected features, as demonstrated below:

max R(S);R=
1
|S|

∑

xi∈S

I
(
xi; xj

)
(6)

An iterative search algorithm finds the best solution that meets
both restrictions. Given an existing feature set Sm− 1, the objective
is to select the mth feature from the set X

Sm− 1
, as described in Eq. (4).

maxxj∈X− Sm− 1

⎡

⎣I
(
xj; y

)
−

1
m − 1

∑

xi∈Sm− 1

I
(
xi; xj

)
⎤

⎦ (7)

2.2.3. Random Forest
RF is an incredibly efficient ensemble learning method utilized

in regression and classification assignments for FS. The training
procedure incorporates a collection of multiple Decision Trees
(DTs), with each DT making an independent contribution to the
feature selection. This independence helps reduce the overfitting
typically seen in single DT. Random Forest is particularly advan-
tageous for datasets with varied characteristics. In the Random
Forest framework, FS is achieved by distributing data subsets
across individual trees. The RF algorithm assesses the importance
of features and aids in choosing a feature by using fundamental
ideas from the DT approach, including variance Eq. (8) and
knowledge gain Eq. (9).

Entopy(p1; p2;…;pk) = −
∑

p1 log2(p1) (8)

IG =1 −
∑C

J=1

p2
J (9)

2.2.4. TriScore feature selection (TriSFS) proposed in this paper
One of the main difficulties in FS is selecting the best proper

filter and integrated feature selection FS algorithms for a particular
dataset. Due to the varied logic and statistical measures underlying
different FS techniques, they often select distinct feature sets. A
feature deemed significant by one method may be less important
in another. However, it is essential to note the inherent limitations
of these methods: filter methods may fail to recognize feature
interdependencies, and embedded methods depend heavily on ML
models. TriSFS is utilized to improve FS accuracy and robustness.
This technique integrates results from multiple FS methods to
better determine feature retention or exclusion, leveraging their
strengths and compensating for their weaknesses. The process of
the proposed ensemble feature selection technique is illustrated in
Fig. 3. The ensemble feature selection process involves.

(1) Parameter setting: initiate with N potential features and
choose a subset size (m) depending on the number of votes
(v) received from K basic FS techniques.

(2) Base FS method selection: select a combination of filter and
embedded feature selection algorithms.

(3) Feature ranking and scoring: calculate feature importance
scores and iteratively eliminate the least important until
reaching the desired feature count.

(4) Importance aggregation: integrate scores from various
feature selection methods through weighted averages.
Alternatively, a voting threshold is that the feature must
appear in at least two methods.

(5) Final selection: keep the top ‘m’ features as determined by
the highest scores and requisite votes, discarding others.

2.3. Wrapper feature selection

The SIFE method, renowned for its effectiveness, is explicitly
considered for FS in high- and low-dimensional spaces (Karasu
et al., 2020). SIFE enhances its search efficacy through a novel
triparental recombination technique based on set concept opera-
tions such as ‘union’ and ‘cross-section’. It integrates fuzzy gran-
ulation to facilitate population initialization and elite selection.
This integration fosters intergenerational variety and decreases
the necessity for comprehensive suitability assessments. The basic
objective of SIFE is to achieve an ideal equilibrium between
discovering novel results and exploiting established ones while
ensuring that the computational difficulty remains reasonable.
SIFEʼs effectiveness in navigating and optimizing diverse search
spaces underpins its selection for this study.

SIFE employs a methodical technique in every iteration to
assess the ranks of solutions for selection and repetition. One of
the significant aims of feature selection is to optimize a quality
metric that fulfills two fundamental aims of ML algorithms: min-
imalizing the algorithmʼs fault measured and selecting a concise
subset of significantly related and less duplicate features. In order
to accomplish this goal, the SIFE basis provides a purposeful
formula:

minimize F(di)=w1 × Er(di)+w2 × Ld(di)∀di ∈ Ω; (10)

This function assesses the factor subset di in the range of
possible factors Ω, since the metrical Er, and the ratio of certain
factors Ld. The weights w1 and w2 are assigned standards of 0.80
and 0.20, respectively, reflecting their relative rank, given the
studyʼs focus on a limited number of features.

2.4. ML models

This section examines four notable Boosting ML models: Cat-
Boost, XGBoost, AdaBoost, and LightGBM. A thorough literature
review has established these diverse ML models as effective for
classifying casing damage.

2.4.1. Adaptive Boosting (AdaBoost)
AdaBoost method enhances model performance by focusing on

areas where initial iterations underperform. AdaBoost performs an
iterative process to boost the performance of weak classifiers and
turn them into robust classifiers. It achieves this by applying a
Bayesian classifier strategy to effectively decrease the chances of
misclassification. This is done by combining many weak classifiers
(Wang et al., 2018). The procedure begins by constructing an initial
classifier from an unweighted training sample, such as a DT. Each
subsequent iteration adjusts to highlight and correct potential
misclassifications, increasing the weight of misclassified instances
to ensure they are addressed in the next cycle. This method iter-
atively combines several weak learners, adjusting the training
focus based on prior errors, to form a robust classifier that effec-
tively distinguishes between classes.

2.4.2. Extreme Gradient Boosting (XGBoost)
XGBoost represents a sophisticated version of the optimized

Gradient Boosting algorithm, which is noted for its high efficiency,
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flexibility, and portability. As a tree-based, supervisedML algorithm,
XGBoost is applicable to classification and regression tasks, with a
primary focus on its use for classification. XGBoost enhances the
conventional Gradient Boosting Machine (GBM) framework
through several system optimizations and algorithmic enhance-
ments: (1) It employs a parallelized tree-building process, con-
structing trees sequentially while utilizing parallel computations.
(2) It features a tree pruning technique where trees are grown to
maximum depth and then pruned back based on a loss function
threshold. (3) XGBoost utilizes cache awareness and out-of-core
computing techniques to handle computational time and memory
capacity effectively. (4) Regularization techniques are integrated to
prevent overfitting, regulating the model by constraining or
reducing coefficients towards zero (Li et al., 2024; Ren et al., 2023).
(5) It efficiently handles missing values, and (6) features an inherent
cross-validation mechanism, which obviates the need for external
cross-validation steps and helps specify the required number of it-
erations directly. Despite its advantages, XGBoost requires extensive
parameter tuning due to its high flexibility. It incorporates cutting-
edge regularization (L1 & L2) to enhance model generalization.
Furthermore, XGBoost offers superior performance relative to
traditional Gradient Boosting, with its training processes notably
faster and capable of parallelization across clusters.

2.4.3. Light Gradient Boosting Machine (LightGBM)
The LightGBM method integrates two novel techniques,

Gradient-based one-sided sampling (GOSS) and exclusive feature
bundling (EFB), to handle extensive datasets and high-dimensional
feature spaces. GOSS prioritizes instances with significant gradi-
ents while randomly selecting instances with lesser gradients. EFB
merges multiple exclusive features into fewer, reducing unnec-
essary computations for features with zero values. LightGBM

discretizes continuous features as a histogram-based algorithm,
enhancing training speed and efficiency and reducing memory
usage. Contrary to the traditional depth-wise expansion of deci-
sion trees, LightGBM grows tree leaf-wise (best-first), opting to
split leaves that can significantly reduce losses, thus potentially
yielding lower losses compared to level-wise tree growth.
Although more prone to overfitting, the leaf-wise approach is
advantageous for larger datasets due to its flexibility.

2.4.4. Categorical boosting (CatBoost)
CatBoost, a combination of the words ‘Category’ and ‘Boosting’,

is specifically developed to handle data that includes category,
numeric, and text elements. It demonstrates exceptional profi-
ciency in handling categorical data and datasets of limited size.
CatBoost utilizes a symmetric or oblivious tree structure where
every tree level applies the same characteristics to divide the
training sample into right and left partitions. This results in a tree
with a depth of k and precisely 2k leaves. The technique builds
decision trees sequentially, where each tree is designed to mini-
mize the loss compared to the previous one. The initial parameters
control the number of trees to help reduce overfitting. Based on
the specified training settings, CatBoost can also stop training early
if overfitting is detected (Zhou et al., 2024).

2.5. Bayesian optimization algorithm

The Bayesian optimization algorithm is recognized as a broad
optimization technique specifically designed to manage costly
objective functions. It sets itself apart fromconventional approaches
by functioning autonomously without relying on population-based
and genetic operators like selection, mutation, and crossover. This
approach uses a Gaussianmethod to estimate an acquiring function,

Fig. 3. The concept of the proposed TriSFS.
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accurately forecasting the performance of the goal function (Awal
et al., 2021). Moreover, Bayesian optimization improves its efficacy
over time by incorporating accumulated historical data and using
previously gathered statistics to refine its search for optimal solu-
tions. According to the literature, Bayesian optimization is more
effective than both grid search and random search, and it competes
favorably with modern evolutionary optimization algorithms.

2.6. ML analysis by SHAP

The lack of interpretability in black-box ML models has
increased criticism, emphasizing the necessity for quantitative
examination of the correlation between input and output features
in decision-making processes. SHAP provides a thorough approach
to evaluating these models by utilizing the standard shapley value
in game theory to connect optimum credit distribution to local
reasons. The modelʼs predictions are delineated by aggregating the
impacts of different variables, boosting comprehension of the
relevance of each element and facilitating effective decision-
making. SHAP values are calculated using a linear clarification
model as an explainable proxy for the ML model.

g(ź )= γ0 +
∑M

j=1
γjźj (11)

Let g represent the explanation model. This point ź ∈ {0;1}M in-
dicates the coalition vector, M is the maximum coalition size, and
γj denotes feature attribution for a feature j-th. SHAP values assess
feature rank by associating the forecast of model performance
with and without separate features across different feature com-
binations, as illustrated in Eq. (12):

γ0 =
∑

G⫅zʹ{i}

|G|!(M − |G| − 1)
M!

[fx(G∪{i}) − fx(G)] (12)

In this formula, G represents the group of features for which z′ is
not equal to zero, and fx(G) = E[|f (x)xG|] denotes the predicted
model output of f(x) when impacted by the features in G.

3. Data preparation and preprocessing

3.1. Data description

The data utilized in this work comprises the geological pa-
rameters, engineering parameters, production data, and casing

damage information of 244 production layers in 133 wells
located in the Gangxi Oilfield. A total of 68 production layers in
64 wells had casing damage. The rate of casing damage for the
production layers was 27.9%. The data required in Table 1 are
obtained by extracting information from the current database of
the Gangxi Oilfield to create a sample set of casing damage. The
sample set includes text kinds for casing steel grade and oil
reservoir group, with each type represented by a distinct num-
ber. The numbers 1, 2, 3, and 4 correspond to the casings of steel
grades J55, K55, N80, and P110, respectively. The numbers 1 and
2 denote the Ming II and Ming III reservoir groupings. Further-
more, any missing data were fully incorporated, and any inac-
curate data were corrected. The data statistics overview of these
244 production tiers is presented in Table 1. Fig. 4 illustrates the
statistical distribution of the standardized dataset. It displays a
blue numeric data distribution diagram and an orange textual
data distribution diagram.

3.2. Data preprocessing

Although wells with relatively complete data were carefully
selected, missing data issues persisted, as illustrated in Fig. 5 and
Table 2. Therefore, additional data processing was necessary to
improve data quality. In this study, missing values and outliers
were managed using a combination of field expertise and standard
ML techniques. Minor missing values were addressed through
outlier correction methods, whereas extensive gaps were manu-
ally filled based on practical experience and oilfield-specific
knowledge. Despite being time-intensive, these steps were
crucial, as high-quality data directly underpins the accuracy and
reliability of predictive models. Data normalization is an essential
process that involves mapping data onto a unit sphere and dealing
with variances in the scales of feature dimensions. The normali-
zation process, denoted by xnorm = x− xmin

xmax − xmin
, standardizes data

points x within the range of minimum (xmin) and maximum (xmax)
values to improve the performance of ML algorithms that rely on
Euclidean distance metrics.

3.3. Model evaluation

After deploying a ML algorithm, it is crucial to assess its per-
formance using specific evaluation metrics. In this study, the met-
rics employed for classification are accuracy and recall. Accuracy

Table 1
Statistics of influencing factors of casing damage in production wells.

No. Abb. Feature name min_vals max_vals Range Variance Std. dev

1 F1 Perforation top 827 1408.7 581.7 11177.8 105.7
2 F2 Perforation bottom 833.8 1412.4 578.6 11178.2 105.7
3 F3 Perforation thickness 1 14 13 4.8 2.2
4 F4 Perforation density 10 32 22 18.3 4.3
5 F5 Perforator phasing 90 135 45 180.3 13.4
6 F6 Casing wall thickness 6.2 9.17 2.97 0.6 0.8
7 F7 Casing steel grade – – – – –
8 F8 Sand layer top 826.9 1408.7 581.8 11204 105.8
9 F9 Sand layer bottom 833.8 1412.4 578.6 11150.5 105.6
10 F10 Casing service time 0.48 50.34 49.86 141.3 11.9
11 F11 Sand layer thickness 1 19.2 18.2 10.1 3.2
12 F12 Permeability 162.9 5431.1 5268.2 561182.6 749.1
13 F13 Porosity 20.2 72.09 51.89 21.88086109 4.677698268
14 F14 Maximum daily liquid production of the single-layer 1.21 359.7 358.49 1158.6 34
15 F15 Maximum water cut 28.7 100 71.3 163 12.8
16 F16 Maximum fluid production intensity 0.311111111 67.36 67 84 9.2
17 F17 Qlcum 19.59 2123576 2123556.41 26882394301 163958.5
18 F18 Qlmax/H 7.99 7391.9 7383.9 294620.3 542.8
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measures the overall correctness of the model, while recall em-
phasizes the modelʼs ability to correctly identify positive cases.

Accuracy=
TP + TN

TP + FP + TN+ FN
(13)

Recall=
TP

TP + FN
(14)

where, TP (true positive) is the number of correctly predicted
positive cases. TN (true negative) is the number of correctly pre-
dicted negative cases. FP (false positive) is the number of negative
cases incorrectly predicted as positive. FN (false negative) is the
number of positive cases incorrectly predicted as negative.

Fig. 4. Statistical distributions of all features.

Fig. 5. Visualization of the missing data.
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4. Results and discussion

The experiments were conducted using a computer equipped
with an Intel(R) Core i7-12700u processor, 16.0 GB RAM, and
NVIDIA GeForce MX150 GPU, utilizing Python 3.9.13. The included
packages are NumPy 1.21.5, Pandas 1.4.4, Scikit-Learn 1.0.2, and
TensorFlow 2.11.0.

4.1. Hyperparameter setting

Hyperparameter optimization is an essential aspect of ML since
it is crucial for maximizing the possibility of forecast models and
achieving optimum performance. The systematic and sensible
exploration of the most appropriate hyperparameter scenarios is
vital in ML research. For this paper, we allocated 80% of the dataset
for training and adjusting the hyperparameters, while the residual
20% was set aside as the testing set. The process of tuning hyper-
parameters was carried out by utilizing Bayesian optimization,
which was implemented using the statistics and ML toolbox of
Python 3.9.13. The findings obtained from the hyperparameter
optimization technique using Bayesian optimization are presented
in Table 3. Overfitting is the phenomenon that occurs when the
model fits the training set excessively well. The cross-validation
technique prevents the ML model from being trapped in a sub-
optimal solution and mitigates the risk of overfitting. The study
employed K-fold cross-validation. The value of K in this study is 5.

4.2. Cross-correlation analysis results

The findings of the cross-correlation analysis are displayed in
Figs. 6–8. Upon analyzing the data, utilizing three primary

correlation coefficients— linear, monotonic, and general correla-
tions, it became evident that the relationships between predicted
targets and impacting variables remained constant, despite being
assessed using distinct correlation coefficients.

Using Pearson (PCC), Spearman (SCC), and Kendall (KCC) cor-
relation matrices, we identified high correlations among several
feature pairs, notably (F1, F2) and (F8, F9), which consistently
exceeded a threshold of 0.90 (indicating “strong” or “high” corre-
lation). Despite these findings, an extended evaluation (see
Appendix A) confirmed that removing or retaining such corre-
lated features did not materially affect model accuracy or predic-
tive metrics. This outcome aligns with prior research showing that
tree-based ensemble methods (e.g., AdaBoost, XGBoost, LightGBM,
CatBoost) are relatively robust to multicollinearity, allowing us to
preserve these features based on their domain relevance.

4.3. Feature selection results

This section analyzes the results of the feature selection algo-
rithms, emphasizing the 12 essential aspects that should be
included in our model. Table 4 records the specific results of
different FS algorithms. This table displays the major characteris-
tics used in the study after eliminating any collinearity. It includes
columns for mRMR, RF, and F-test, which indicate the relative
relevance of features assessed by each feature selection method.

As an illustration, in the mRMR algorithm, the variable “casing
service time” (F10) has a relative importance of 0.281, suggesting
its utmost significance. The ʻmaximum water cutʼ (F15) follows
with a significance rating of 0.107, ranking it second. The “vote”
row emphasizes each featureʼs relevance, indicating its cumulative
importance across the FS methods: RF, mRMR, and F-test.
Furthermore, the ʻmean importanceʼ row calculates the average
relevance score of features across different methodologies. For
example, the variable “casing wall thickness” (F6) has a relevance
score of 0.024 in mRMR and much higher values in RF and F-test, at
0.237 and 1, respectively. By employing this improved process, the
ultimate assessment of feature significance, determined by
calculating average scores, yields a hierarchical arrangement of the
characteristics. The attributes “casing wall thickness” (F6), “casing
service time” (F10), and “casing steel grade” (F7) have been
determined to be the most important, ranking first, second, and
third accordingly, according to the aggregate rankings obtained
from the mRMR, RF, and F-test methodologies. The difference in
the importance of features emphasizes the crucial function of
ensemble feature selection strategies that utilize different filters
and integrated feature selection methods. Recognizing this varia-
tion, we aim to use the advantages of several approaches while
mitigating the potential of choosing an unfavourable combination
of characteristics. To enhance our research design, we have
expressly incorporated the 12 most significant features recognized
by the TriScore technique into the input feature subgroup for the

Table 2
Summary of the missing values.

Model feature Missing count Missing, % Non-missing count Non-missing, %

F1 0 0 244 100
F2 8 3 236 96.7
F3 0 0 244 100
F4 0 0 244 100
F5 0 0 244 100
F6 0 0 244 100
F7 0 0 244 100
F8 0 0 244 100
F9 0 0 244 100
F10 0 0 244 100
F11 0 0 244 100
F12 0 0 244 100
F13 0 0 244 100
F14 10 4 234 95.9
F15 9 3.6 235 96
F16 0 0 244 100
F17 0 0 244 100
F18 7 2 237 97
CD 0 0 244 100

Table 3
Boosting the hyperparameter setting.

Algorithm Parameter tuning Optimum parameter Advantage

AdaBoost n_estimators = {100–900}
learning_rate = [0.001,0.01,0.1]

n_estimators = 400
learning_rate = 0.1

Adaptively adjusts and tries to self-correct in each iteration of the boosting process.

XGBoost n_estimators = {100–900}
learning_rate = [0.001,0.01,0.1]
gamma = 0
max_depth = {2,6}

n_estimators = 400
learning_rate = 0.1
gamma = 0.6
max_depth = 4

Attractive for big and small data applications

LightGBM n_estimators = {100–900}
learning_rate = [0.001,0.01,0.1]
max_depth = {2,6}

n_estimators = 400
learning_rate = 0.002
max_depth = 4

Sensitive to overfitting

CatBoost n_estimators = {100–900}
learning_rate = [0.001,0.01,0.1]

n_estimators = 400
learning_rate = 0.1

Handle missing values and imbalanced data internally.
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TriScore-wrapper approach. This modification aligns our approach
with well-recognized best practices in feature selection.

The feature selection outcomes for the ML models designed to
predict casing damage are detailed in Table 6. The table uses the
sign “√” to indicate the insertion and “×” to mark the omission of
specific features. A consensus was established after identifying the
12 most crucial features (n) using a TriScore of F-test, mRMR, and

RF methods (as shown in Table 5). The efficacy of each of the four
ML models is assessed using a set of 12 important features derived
from the TriScore methodʼs selected feature subset (G1). In
contrast, the wrapper method (G2) often selects a smaller subset
from the 12 features yet displays a broader variety of features
across different ML algorithms. The voting threshold is that the
feature must appear in at least three methods. Notably, the ML

Fig. 6. Pearson correlation coefficient.

Fig. 7. Spearman correlation coefficient.
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algorithms identified casing service duration, casing steel grade,
casing wall thickness, and maximum water cut as crucial and
pertinent factors in this study, with at least four algorithms
selecting them.

The hybrid TriScore-wrapper method (G1G2) substantially
reduces the number of selected features, typically limiting the
final set to an average of 6 features. The results presented in
Table 5 illustrate a clear trend, demonstrating that integrating
the TriScore approach with the wrapper method (G1G2) consis-
tently results in a more concise feature selection. Features are
retained based on a voting threshold, requiring each to rank
within at least four selection methods. This criterion highlights a
strong consensus among the ML algorithms regarding feature
importance.

4.4. Model testing final results

Table 6 presents a comparative evaluation of three FS methods,
TriScore (G1), wrapper (G2), and a Hybrid TriScore-wrapper (G1G2),
using four boosting-based ML models: AdaBoost, XGBoost,
LightGBM, and CatBoost. Performance is assessed based on accu-
racy, recall, and the number of selected features. The results
indicate that the Hybrid TriScore-wrapper (G1G2) consistently
yields the highest predictive performance with fewer features
selected. Specifically, the CatBoost algorithm under this hybrid
method achieves the best overall accuracy (0.955) and recall
(0.897), using only six features. Notably, across all models, the
hybrid method significantly reduces feature dimensionality (from
8 to 13 features in individual methods to just 6 features) while
maintaining or enhancing performance metrics. In comparison,
both individual methods (TriScore G1 and wrapper G2) show
relatively similar accuracy and recall values. However, the wrapper
method (G2) exhibits variability in the number of features selected
(ranging from 8 to 13 features). The hybrid approach, however,
demonstrates superior stability and consensus among models
regarding feature selection. These findings highlight the effec-
tiveness of integrating TriScore with the wrapper method, sug-
gesting that the hybrid G1G2 method optimizes model
performance and interpretability by minimizing feature redun-
dancy and enhancing prediction accuracy.

Fig. 9(a–c) present a comparative evaluation of the predictive
performance (accuracy and recall) for three feature selection
methods, wrapper (G2), TriScore (G1), and the hybrid TriScore-
wrapper (G1G2), applied across four boosting-based ML models:
AdaBoost, XGBoost, LightGBM, and CatBoost. In Fig. 9(a) (wrapper
G2), accuracy values are consistently high (~0.9), while recall is
slightly lower across all four models, with CatBoost and XGBoost
performing marginally better than AdaBoost and LightGBM. In
Fig. 9(b) (TriScore G1), the accuracy and recall are again consis-
tently strong, though slightly lower than the wrapper method. The
gap between accuracy and recall is relatively stable across all

Fig. 8. Kendall correlation coefficient.

Table 4
Ensemble FS scoring scheme results.

Real features mRMR RF F-test Vote Mean importance Final rank

F1 0 0 0 – – –
F2 0 0.0001 0 1 0.00003 –
F3 0.020 0.048 0.143 3 0.070 8
F4 0.075 0.049 0.387 3 0.170 5
F5 0 0 0 0 – –
F6 0.024 0.237 1 3 0.420 1
F7 0.037 0.020 0.621 3 0.226 3
F8 0 0 0.0002 1 0.00006 –
F9 0.0191 0.001 0.022 3 0.0140 12
F10 0.281 0.281 0.436 3 0.332 2
F11 0.020 0.011 0.031 1 0.021 11
F12 0.091 0.078 0.367 3 0.178 4
F13 0.020 0.072 0.363 3 0.152 7
F14 0.023 0.055 0.123 3 0.067 9
F15 0.107 0.101 0.287 3 0.165 6
F16 0.073 0.052 0.034 3 0.053 10
F17 0.001 0 0 1 – –
F18 0 0 0 0 – –
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algorithms, with CatBoost and XGBoost showing marginally su-
perior recall values. Fig. 9(c) (hybrid TriScore-wrapper G1G2) ex-
hibits the highest overall performance, demonstrating superior
accuracy and recall across all four models. The CatBoost model
particularly excels, achieving near-optimal accuracy and the
highest recall among the models shown. Importantly, the hybrid
methodʼs gap between accuracy and recall is smaller, highlighting
balanced predictive effectiveness.

The analysis demonstrates that the six features identified by
the hybrid TriScore-wrapper (G1G2) method constitute the most
informative predictors, as evidenced by increased predictive ac-
curacy and recall after removing redundant or less significant
features (Table 6). This indicates that excluded features likely
introduced noise rather than meaningful predictive value. Conse-
quently, employing a carefully refined subset of features enhances
both the predictive performance and interpretability of the model,
underscoring the critical role of rigorous feature selection in
developing practical and generalizable ML models.

4.5. SHAP analysis

Fig. 10(a) and (b) provide detailed SHAP values for feature
selection results across three distinct methodologies: Wrapper (G2),
TriScore (G1), and the hybrid TriScore-wrapper (G1G2) using
CatBoost. Each subplot ranks features according to relative scores,
reflecting their importance and selection frequency. Fig. 10(a),
representing the wrapper method (G2), shows a broader distribu-
tion of scores, highlighting feature F10 as highly significant,
followed by F6 and F4, while multiple features such as F16, F13, and
F14 exhibit minimal importance. Fig. 10(b), illustrating the TriScore
(G1) method, similarly identifies feature F10 as the most influential,
with F6 and F4 also demonstrating strong relevance.

However, this approach presents additional lower-ranked
features (F9, F11, F3) compared to the wrapper method. Fig. 10
(c), the hybrid TriScore-wrapper (G1G2), consolidates the out-
comes of both approaches, displaying a more refined and concise
feature selection set. It reinforces the dominance of feature F10
while retaining only themost consistently high-ranked predictors
(F6, F4, F15, F7, F12). Notably, fewer features aremaintained in this
hybrid approach, indicating increased consensus between the
methodologies. The figure generally emphasizes that the hybrid
method effectively identifies a smaller, more robust set of critical
predictors by integrating the strengths of both the wrapper and
TriScore methods. This focused selection is likely to contribute to
the improved predictive performance and model interpretability
previously documented.

4.6. Discussion

4.6.1. Policy implications
The research findings offer a foundation for constructing

models to estimate casing damage demand. They also serve as a
reference point for the Gangxi Oilfield, policymakers, and other
oilfield companies in their planning. Based on the research find-
ings above, we suggest the following policy recommendations.
First, this paperʼs forecast results show the most influential factors
on casing damage. Therefore, this cutting-edge predictive model,
which utilizes a novel feature selection process and SHAP analysis,
needs to be adopted. This model not only elucidates the most
critical factors contributing to casing damage but also enhances
decision-making processes by pinpointing specific operational and
material characteristics that warrant immediate attention. Poli-
cymakers should, therefore, advocate for and facilitate the inte-
gration of this predictive tool across the industry.

Table 5
The importance of features from three different FS methods.

Feature method ML models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Number of features

TriSFS All ML models × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × 12
Vote 0 0 4 4 0 4 4 0 4 4 4 4 4 4 4 4 0 0 12

Wrapper AdaBoost × × × ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ × × ✓ ✓ × × 8
XGBoost × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ 13
LightGBM × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × 11
CatBoost × × ✓ ✓ × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ × × × 9
Vote 0 0 3 4 ̶ 4 4 0 4 4 3 3 – 3 4 3 – – 10

Hybrid TriSFS-wrapper AdaBoost N/A N/A N/A ✓ N/A ✓ ✓ N/A N/A ✓ N/A N/A N/A ✓ ✓ N/A N/A N/A 6
XGBoost ✓ ✓ ✓ ✓ ✓ ✓ 6
LightGBM ✓ ✓ ✓ ✓ ✓ ✓ 6
CatBoost ✓ ✓ ✓ ✓ ✓ ✓ 6
Vote 4 4 4 4 4 4 6

Table 6
Performance metrics of different FS methods along with the four Boosting ML methods.

FS method Model Accuracy Recall Number of features

TriScore G1 AdaBoost 0.92 0.823 12
XGBoost 0.94 0.85 12
LightGBM 0.935 0.837 12
CatBoost 0.944 0.852 12

Wrapper G2 AdaBoost 0.922 0.825 8
XGBoost 0.943 0.854 13
LightGBM 0.939 0.838 11
CatBoost 0.947 0.855 9

Hybrid TriScore-wrapper G1G2 AdaBoost 0.943 0.867 6
XGBoost 0.947 0.88 6
LightGBM 0.943 0.871 6
CatBoost 0.955 0.897 6
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Fig. 11(a) and (b)present the temporal evolution of casing
damage probability as a function of service time for two repre-
sentative wells. In Fig. 11(a) (Well 2), the probability of casing
damage remains relatively stable (~0.65) during the early service
period but rises sharply after approximately 15 years, reaching over
0.85 after 20 years. This suggests a strong age-related degradation
pattern, where prolonged exposure to operational stresses likely
accelerates the risk of casing failure. In contrast, Fig. 11(b) (Well 1)
displays a lower overall probability curve, beginning around 0.15
and gradually increasing. A noticeable inflection point occurs after
16 years, after which the damage probability stabilizes near 0.4.
These trends emphasize that casing damage is a cumulative pro-
cess, with service time as a significant predictor. However, the risk
escalation rate and severity may vary depending on construction
quality, formation pressure, or operational conditions.

Fig. 12 explores the influence of casing wall thickness on the
predicted probability of casing damage across twowell categories:
damaged and non-damaged. For damaged wells (blue lines), the
probability of failure consistently declines as wall thickness in-
creases, with probabilities falling from above 0.70 at 7.0 mm to
around 0.50 at 9.5 mm. This inverse relationship confirms the
protective role of a thicker casing in resisting mechanical failure.

Fig. 9. Evaluation metrics (accuracy and recall) for: (a) Wrapper G2; (b) TriScore G1;
(c) Hybrid TriScore-wrapper G1G2.

Fig. 10. Shapley analysis for different FS methods using CatBoost.
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For non-damaged wells (red lines), the probability remains
significantly lower throughout, further decreasing as wall thickness
increases, suggesting that wall thickness contributes to long-term
integrity even in initially healthy wells. The clear separation be-
tween damaged and non-damaged well profiles across all wall
thicknesses supports the conclusion that wall thickness is a critical
structural parameter influencing casing longevity, with design
optimization offering a viable strategy for mitigating future failure
risks.

4.6.2. Limitations of the framework
Our model has shown good generalizability; however, the

dataset utilized for training and testing the predictive model
comprised 244 oil and water wells, which presents certain con-
straints regarding data scale. Expanding the dataset to include
more wells could enhance the modelʼs accuracy and generaliz-
ability by providing a more comprehensive representation of

varying operational conditions. Additionally, the quality of the
dataset poses notable challenges. Specifically, some fields
exhibited missing or aberrant data, necessitating the application
of expert judgment and advanced ML techniques for imputation
and correction. While these methods help maintain the conti-
nuity and usability of the data, they may introduce slight de-
viations from actual values, potentially affecting the modelʼs
predictions. Future data collection and preprocessing improve-
ments may mitigate these issues, leading to more robust and
reliable outcomes.

5. Conclusion

This paper presents a novel framework that successfully com-
bines innovative feature selection (FS) approaches with boosting
techniques, significantly enhancing the prediction of casing dam-
age. The framework incorporates three FS approaches, TriScore,
wrapper, and hybrid TriScore-wrapper, with four interpretable
machine learning (ML) models that enhance performance: Ada-
Boost, XGBoost, LightGBM, and CatBoost. This combination de-
termines the models with the maximum prediction accuracy and
assurance of transparency in the prediction process. The approach
demonstrates exceptional proficiency in quantifying the compara-
tive significance of features and their influence on casing damage. It
achieves a harmonious blend of model reliability and interpret-
ability, augmenting the forecastsʼ dependability and practicality.
This study sets itself apart by considering various engineering,
geological, and production aspects and introducing a generalizable
TriScore FS approach. It also includes a detailed comparative FS
analysis and a SHAP analysis using data from the Gangxi Oilfield.

The studyʼs main findings are as follows.

(1) The CatBoost model, using the hybrid TriScore-wrapper G1G2
method, showed excellent predictive performance.
Compared to other ML models assessed in the study, it ach-
ieved the greatest accuracy (95.5%) and recall rate (89.7%) for
casing-damaged wells. The suggested hybrid TriScore-
wrapper G1G2 FS technique effectively reduces dimension-
ality without compromising important forecasting accuracy.

Fig. 11. Sensitivity analysis of casing service time. (a) Damaged well, (b) non-damaged well.

Fig. 12. Sensitivity analysis of casing wall thickness.
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(2) The analysis of casing damage causes in the Gangxi Oilfield
revealed 12 main elements that influence casing damage.
This led to development of a comprehensive set of metrics
for evaluating casing damage.

(3) The Bayesian optimization algorithmwas creatively utilized
to assess the influence of hyperparameters on model per-
formance and to identify the most optimal combination of
these parameters.

(4) The assessment of casing damage identified significant
factors like the casing service time, casing wall thickness,
and perforation density.

While the present model attains high predictive accuracy using
routinely logged parameters, its performance could be further
strengthened by incorporating direct measurements of buckling
and collapse stress, sand-transport velocity, Reynolds number,
high-resolution down-hole velocity, and stress-profile logs. Tar-
geted data-collection campaigns aimed at acquiring these vari-
ables, particularly during work-over or logging-while-drilling
operations, would enable more explicit physics-based descriptors,
reduce reliance on proxy features, and refine mechanistic under-
standing of casing integrity. Integrating such enriched datasets
into the proposed workflow constitutes a valuable next step for
field diagnostics and model generalizability.
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Appendix A. Multicollinearity assessment

During our exploratory data analysis, we identified several
pairs of highly correlated (multicollinear) features, such as (F1,
F2) and (F8, F9). To gauge their effect on model performance
and interpretability, we conducted an ablation study where
we systematically removed these correlated features and
compared results against the complete feature set. Interest-
ingly, rather than improving or leaving accuracy unchanged,
removing the correlated features produced a noticeable drop
in performance across all four ensemble methods (AdaBoost,
XGBoost, LightGBM, CatBoost), as illustrated in Fig. A1(a) and
(b).

This outcome supports the position in the literature that tree-
based boosting algorithms are robust to multicollinearity and
may even derive subtle benefits from partially redundant signals.
Consequently, while correlated features might affect interpret-
ability in linear models (e.g., unstable coefficients), they did not
impair performance in our experiments, and indeed, retaining
them often improved predictive power (Fig. A2(a–d)). We there-
fore elected to keep these features, guided by both their domain
relevance and the evidence that removing them could diminish
model accuracy, recall, and F1.

Fig. A1. Multicollinearity assessment.
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