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a b s t r a c t

Tight sandstone has become an important area in gas exploration. In this study, we propose a 3D seismic 
reservoir parameter inversion method for tight gas-bearing sandstone reservoirs using dual neural 
networks. The first  network referred to as the inversion network, receives seismic data and predicts 
reservoir parameters. At well locations, these predictions will be validated based on actual reservoir 
parameters to evaluate errors. For non-well locations, synthetic seismic data are generated by the 
application of rock physics forward modeling and seismic reflection coefficient equations. The errors are 
then calculated by comparing synthetic seismic data with actual seismic data. During the rock physics 
forward modeling, pseudo reservoir parameters are derived by perturbing the actual reservoir pa
rameters, which are then used to generate pseudo elastic parameters through the modeling. Both the 
actual and pseudo parameters are then used to train the second network, referred to as the rock physics 
network. By incorporating the rock physics network, the method effectively alleviates issues such as 
gradient explosion that may arise from directly integrating rock physics computations into the network, 
while the inclusion of pseudo parameters enhances the network's generalization capability. The pro
posed method enables the direct inversion of porosity, clay content, and water saturation from pre-stack 
seismic data using deep learning, thereby achieving quantitative predictions of reservoir rock physical 
parameters. The application to the field data from tight sandstone gas reservoirs in southwestern China 
demonstrates the method has the good capability of indicating the gas-bearing areas and provide high 
resolution.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

Changes in reservoir parameters influence  elastic properties, 
including P-wave velocity, S-wave velocity, and density, thereby 
affecting seismic responses (Chiappa and Mazzotti, 2009; Luo 
et al., 2019; Zhao et al., 2014). Reservoir parameter prediction is 
a crucial step in characterizing oil and gas reservoirs, as it serves as 
a fundamental basis for reservoir evaluation, influencing well se
lection and development strategies (Grana et al., 2022). Seismic 
data can be used to predict reservoir parameters, with pre-stack 
seismic inversion and rock physics models playing critical roles.

Reservoir parameter prediction can be categorized into indirect 
and direct methods based on the number of inversion steps, both 
of which seek to create correlations between seismic data and 
reservoir characteristics (Bosch et al., 2010). Indirect inversion 
mainly involves two steps: seismic data are first inverted to obtain 
elastic parameters, which are then used to predict reservoir pa
rameters (Ba et al., 2017; Grana, 2016). Inversion processes are 
frequently ill-posed due to constraints like noise and bandwidth, 
which calls for the use of Bayesian theory for the assessment of 
uncertainty (Buland and Omre, 2003; Junhwan et al., 2022; Wang 
et al., 2022a). Some also use grid search or rock physics templates 
for parameter prediction (Jiang and Spikes, 2016; Luo et al., 2019). 
Direct inversion, on the other hand, enables the direct inversion of 
intricate, nonlinear relationships between seismic data and 
reservoir properties by incorporating reservoir parameters into 
seismic reflection equations (Aleardi et al., 2017; Guo et al., 2022; 
Li et al., 2020; Pan et al., 2017; Pan and Zhang, 2019). Compared to 
the indirect inversion methods, the direct inversion methods 
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merge two steps into one, potentially reducing errors in the 
inversion process.

Rock physics models serve as a bridge between reservoir pa
rameters and elastic parameters. Building a robust rock physics 
model is a critical part of the inversion process whether direct or 
indirect inversion methods are being used. Rock physics models 
can be broadly categorized into statistical and theoretical models 
based on the construction approach. Statistical rock physics 
models use statistical methods to establish the relationship be
tween reservoir parameters and elastic properties (Bachrach, 
2006; Grana and Rossa, 2010). These models are relatively sim
ple to construct and do not require rigorous physical derivations, 
but their applicability is often limited to specific regions. On the 
other hand, theoretical rock physics models are based on rock 
physics theories and are more accurate and widely applicable 
(Gassmann, 1951; Hill, 1952; Kuster and Toks€oz, 1974; Reuss, 1929; 
Voigt, 1966; Wood, 1955; Xu and White, 1995). However, they are 
more complex to calculate and present greater challenges during 
inversion.

The above methods are mostly grounded in Bayesian theory 
and concentrate on 2D reservoir parameter inversion. Innovative 
techniques in disciplines like computer vision have emerged in 
deep learning, which has witnessed rapid progress in recent 
years (Diakogiannis et al., 2020; Goodfellow et al., 2020; He et al., 
2015, 2016; Huang et al., 2018; Long et al., 2015; Ronneberger 
et al., 2015; Simonyan and Zisserman, 2015). The relationship 
between reservoir parameters and seismic data in tight sand
stone, meanwhile, is highly nonlinear. Deep learning excels in 
fitting  such complex relationships, leading to its increasing 
application in geophysical inversion (Alfarraj and AlRegib, 2019; 
Biswas et al., 2019; Das et al., 2018; Das and Mukerji, 2020; 
Leite and Vidal, 2011; Sang et al., 2021; Sun et al., 2024a; Sun 
et al., 2023, 2024b; Wang et al., 2022b, 2024; Zhang et al., 
2022a; Zhang et al., 2022a,b; Zhao et al., 2023; Zheng et al., 
2023; Zhu et al., 2022).

Building upon this background, we propose an intelligent 
method for directly inverting reservoir parameters from 3D pre- 
stack seismic data. The method generates pseudo elastic param
eters by using the approximate Xu-White model and pseudo 
reservoir parameters that are derived by perturbing actual reser
voir parameters. The rock physics network (RP-Net) is trained 
using pseudo parameters and actual parameters. During rock 
physics modeling, this study considers variable aspect ratios 
instead of fixed ones, which more accurately represent the true 
pore structure of rocks. Equipped with the approximation Zoep
pritz equation (Aki and Richards, 2009) and RP-Net, a forward 

operator between reservoir parameters and seismic data can be 
constructed to enable reservoir parameter inversion. In this study, 
we used the method of trace-by-trace inversion. After merging the 
inline and xline of the 3D seismic data volume, we obtain multiple 
1D time-domain seismic data. Then, after inputting the seismic 
data into the Inv-Net, the output reservoir data is reorganized into 
3D data. To better evaluate the effectiveness and improvements of 
the proposed method, we introduce the method of directly 
embedding the theoretical rock physics model (RP-Model) into the 
inversion network (Inv-Net) for comparison. The proposed 
method is called “RP-Net + Inv-Net”, and the method used for 
comparison is called “RP-Model + Inv-Net”. The overall framework 
of this study is as follows: initially, the steps involved in rock 
physics modeling are introduced, with a brief analysis of the 
impact of some reservoir parameters on rock elastic properties. 
The construction of RP-Net and Inv-Net is then explained, and the 
suggested method's efficacy is confirmed by applying it to a real- 
world field  case. A discussion of the results and conclusion are 
finally made.

2. Method

2.1. RP-model

The Xu-White model is a rock physics model used to predict the 
elastic properties of sand-shale mixtures. The model assumes that 
the primary mineral components of the mixture are clay and 
quartz, divides the pore space into shale pores and sandstone 
pores, and considers the pore fluids as a mixture of brine and gas. 
Four steps make up the calculation process: estimating the 
equivalent elastic moduli of the rock matrix, estimating the 
equivalent moduli of the dry rock frame, estimating the equivalent 
modulus of the saturated fluid,  and using fluid  substitution to 
estimate the final equivalent modulus of the saturated rock. We 
use the Xu-White model for rock physics modeling, and the spe
cific modeling process is illustrated in Fig. 1.

First, the equivalent modulus of the rock matrix is estimated. 
For rocks with relatively homogeneous composition, the Voigt- 
Reuss-Hill averaging method can be used to calculate the equiva
lent modulus of the rock matrix. We follow this approach in this 
paper, as shown by 

MV = fclay Mclay + fquartz Mquartz (1) 

1
/

MR = fclay

/
Mclay + fquartz

/
Mquartz (2) 

Rock
matrix

Dry rock
skeleton

Saturated
rock

Quartz Clay
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Fig. 1. The process of rock physics modeling.
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MVRH =(MV +MR) =2 (3) 

where fclay and Mclay represent the volume fraction and elastic 
modulus of clay, respectively, and fquartz and Mquartz represent the 
volume fraction and elastic modulus of quartz, respectively. MV 
represents the elastic modulus of the rock matrix calculated us
ing the Voigt average, MR represents the elastic modulus calcu
lated using the Reuss average, and MVRH represents the elastic 
modulus of the rock matrix calculated using the Voigt-Reuss-Hill 
average.

After obtaining the elastic modulus of the rock matrix, the dry 
rock approximate equation (Keys and Xu, 2002) is used to calculate 
the elastic modulus of the dry rock frame. Assuming the elastic 
modulus of the inclusion is 0, the specific  equations can be 
expressed as 

p =
1
3

∑

l=S;C

vlTiijj(αl) (4) 

q=
1
5

∑

l=S;C

vlF(αl) (5) 

Kdry(ϕ)=K0(1 − ϕ)p (6) 

μdry(ϕ)= μ0(1 − ϕ)q (7) 

where p and q are a set of coefficients related to the sandstone 
and mudstone pores (Berryman, 1980), with the detailed calcu
lation process provided in Appendix A. K0 and μ0 represent the 
bulk modulus and shear modulus of the rock matrix. Kdry(ϕ) and 
μdry(ϕ) is the dry rock bulk modulus and shear modulus for 
porosity ϕ.

Next, the Wood-Patchy equation is used to calculate the elastic 
modulus of the mixed fluid,  and the specific  equations can be 
expressed as 

Kw
f =1

/ (
Sw
/

Kw +(1 − Sw)
/

Kg
)

(8) 

Kp
f = SwKw + (1 − Sw)Kg (9) 

Kf =
(

Kp
f +Kw

f

)/
2 (10) 

where Sw represents the water saturation, Kw and Kg represent the 
bulk modulus of water and gas, respectively, and Kw

f and Kp
f 

represent the bulk modulus of the mixed fluid calculated using the 
Wood equation and the Patchy model, respectively. Kf represents 
the final calculated bulk modulus of the mixed fluid.

Then, fluid  substitution is performed using the Gassmann 
equation to obtain the elastic modulus of the saturated rock, with 
the specific equations can be expressed as 

Ksat =Kdry +

(
1 − Kdry

/
Km

)2

ϕ
/

Kf + (1 − ϕ)
/

Km + Kdry

/
K2

m

(11) 

μsat = μdry (12) 

where ϕ represents the total porosity, which is the sum of sand
stone and mudstone porosity. Ksat and μsat represent the bulk 
modulus and shear modulus of the saturated rock, respectively.

Finally, the P-wave and S-wave velocities and density of the 
saturated rock are calculated using the following equations: 

Fig. 2. The influence of Sw and Vsh on elastic parameters. (a) The impact of Sw and Vsh 
on Vp. (b) The impact of Sw and Vsh on Vs. (c) The impact of Sw and Vsh on ρ.
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Fig. 3. The influence of ϕ and Vsh on elastic parameters. (a) The impact of ϕ and Vsh on 
Vp. (b) The impact of ϕ and Vsh on Vs. (c) The impact of ϕ and Vsh on ρ.

Fig. 4. The influence of ϕ and Sw on elastic parameters. (a) The impact of ϕ and Sw on 
Vp. (b) The impact of ϕ and Sw on Vs. (c) The impact of ϕ and Sw on ρ.
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ρm = fclay ρclay + fquartz ρquartz (13) 

ρf = Swρw + (1 − Sw)ρg (14) 

ρ=ϕρf + (1 − ϕ)ρm (15) 

VP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

Ksat +
4
3

μsat

)/

ρ

√

(16) 

VS =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μsat =ρ

√
(17) 

where ρclay and ρquartz represent the density of clay and quartz, ρw 
and ρg represent the density of formation water and gas, and ρm, ρf , 
and ρ represent the density of the rock matrix, the mixed fluid, and 
the saturated rock, respectively. VP and VS represent the P-wave 
and S-wave velocities of the saturated rock.

Combining Eqs. (1)–(17), we can derive the corresponding 
elastic parameters from the reservoir parameters, as shown in the 
following equation: 

EModel
(
Vp;Vs; ρ

)
=ModelRP

(ϕ; Sw;Vsh; P) (18) 

where P denotes other parameters required for rock physics 
modeling, such as elastic modulus, pore aspect ratio, density, etc. 
ModelRP

( ⋅) denotes the RP-Model, and EModel( ⋅) represents the 
elastic parameters derived through the RP-Model.

2.2. Effects of reservoir parameters

The pore aspect ratio of rocks, for example, is one reservoir 
property that significantly affects elastic properties. In general, the 
aspect ratio of the sand-related pores (αs) typically has a bigger 
value than that of the clay-related pores (αc), with the latter having 
a greater impact on the elastic properties of the rock, especially in 
sandstones that contain clay minerals (Sams and Andrea, 2001; 
Smith and Gidlow, 1987). In most cases, the pore aspect ratio 
cannot be directly measured. In this study, suitable pore aspect 
ratios were optimized during the modeling process by minimizing 
the difference between the predicted and actual P-wave and S- 
wave velocities, as shown in the following equation: 
(

€αs; €αc

)

= argmin
⃦
⃦
⃦Vpred

P− S (ϕ;Vsh; Sw; αs; αc) − Vlog
P− S

⃦
⃦
⃦

2
(19) 

where V log
P S and Vpred

P S represent the P-wave and S-wave velocities 
from well data and rock physics modeling, respectively, while €αs 
and €αc represent the optimized aspect ratios of sandstone and 
mudstone pores. Additionally, some studies have experimentally 
obtained the following statistical relationship between αs, ϕ and 
Vsh (Sams and Andrea, 2001): 

αs =0:17114 − 0:24477⋅ϕ + 0:004314⋅Vsh (20) 

During the rock physics modeling, we use initial αs obtained by 
Eq. (20) and a given initial αc to optimize the most suitable αs and 
αc.

Next, we used the established rock physics model for forward 
modeling analysis to illustrate the effects of changes in ϕ, Vsh, Sw, 
and pore aspect ratio on the elastic properties. The results are 
shown in Figs. 2–5, with the fixed parameters used in the forward 
modeling presented in Table 1. Fig. 2 shows the influence of Sw 
and Vsh on elastic properties when ϕ = 0:1, αs = 0:12, and αc =

0:05; Fig. 3 shows the influence of ϕ and Vsh on elastic properties 
when Sw = 0:5, αs = 0:12, and αc = 0:05; Fig. 4 shows the in
fluence  of Sw and ϕ on elastic properties when Vsh = 0:5; αs =

0:12, and αc = 0:05; and Fig. 5 demonstrates the influence of αs 

and αc on P-wave and S-wave velocities when ϕ = 0:1, Sw = 0:5, 
and Vsh = 0:5.

From Figs. 2–4, it can be seen that Vsh and ϕ have a significant 
impact on elastic properties, with velocities and densities gradu
ally decreasing as Vsh and ϕ increase. On the other hand, Sw has a 
smaller impact, with P-wave and S-wave velocities remaining 
almost unchanged as Sw increases, while density slowly increases. 
From Fig. 5, it is clear that αs and αc have a considerable influence 
on P-wave and S-wave velocities, and different combinations of αs 
and αc lead to significant variations in these velocities. Therefore, 
in cases where the pore structure is complex, the impact of pore 
aspect ratios on elastic properties needs to be carefully considered.

Fig. 5. The influence of αs and αc on elastic parameters. (a) The impact of αs and αc on Vp. (b) The impact of αs and αc on Vs.

Table 1 
The parameters for rock physics modeling.

Components Bulk modulus, GPa Shear modulus, GPa Density, g/cm3

Quartz 48 30 2.79
Clay 39 7 2.53
Brine 2 \ 1.47
Gas 0.001 \ 0.13
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2.3. RP-Net

To lessen the effects of insufficient real labels and improve the 
model's capacity for generalization, pseudo labels can be created 
and added to the training set when genuine labels are hard to 
come by Lee (2013). Therefore, after completing the rock physics 
modeling, we generate pseudo reservoir parameters by modifying 
the existing reservoir parameters and then use these parameters 

and the rock physics model to generate pseudo elastic parameters. 
Fig. 6 shows the construction of the RP-Net, which is trained using 
both the actual and pseudo parameters. In Fig. 6(a), the real 
reservoir parameters are combined with the pseudo reservoir 
parameters as input to the network. The input is processed 
through a shared convolutional block, followed by two separate 
residual blocks, to obtain the P-wave velocity, S-wave velocity, and 
density, respectively. The final output is created by concatenating 

Fig. 6. The process of the RP-Net. (a) The overall framework of the RP-Net. (b) The process of Conv Block. (c) The process of ResBlock.

Fig. 7. The process of the Inv-Net. (a) The overall framework of the Inv-Net. (b) The process of Res-Attention Block.
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these outputs along the channel dimension. The structures of the 
convolutional block and the residual block are shown in Fig. 6(b) 
and (c), respectively. The output is then compared with the cor
responding real elastic parameters and pseudo elastic parameters 
for error analysis to update the network's gradient. The error 
calculation process can be expressed as: 

L1
rp =

∑n− 1

i=0

[
y1

pred(i) − y1
real(i)

]2

∑n− 1

i=0

[
y1

real (i)
]2

(21) 

L2
rp =

∑n− 1

i=0

[
y2

pred(i) − y2
real(i)

]2

∑n− 1

i=0

[
y2

real (i)
]2

(22) 

Lrp =αL1
rp + (1 − α)L2

rp (23) 

where, y1
pred, y1

real, and L1
rp represent the output obtained by 

putting the real reservoir parameters into the network, the real 
elastic parameters, and the error between them, respectively. 
Similarly, y2

pred, y2
real, and L2

rp represent the output obtained by 

putting the pseudo reservoir parameters into the network, the 
pseudo elastic parameters, and their error, respectively. n rep
resents the length of the data, and Lrp is the total error calculated 
by weighted summation of L1

rp and L2
rp, with α as the weighting 

factor.
Once the RP-Net is obtained, it can be used to derive the cor

responding elastic parameters from the reservoir parameters, as 
shown in the following equation: 

ENet
(
Vp;Vs; ρ

)
=NetRP(ϕ; Sw;Vsh) (24) 

where, NetRP( ⋅) denotes the RP-Net, and ENet( ⋅) represents the 
elastic parameters derived through the RP-Net. RP-Net is an 
essential step in generating synthetic records at the non-well 
locations, and serves as a bridge between reservoir parameters 
and elastic parameters. Compared to Eq. (18), RP-Net can to 
some extent learn parameters such as elastic modulus and pore 
aspect ratio hidden at non-well locations, thus enabling the 
conversion of reservoir parameters to elastic parameters 
without knowing “P”.

2.4. Construction of the forward operator

Seismic amplitude can be represented as the convolution of the 
seismic wavelet and the P-wave reflection coefficient  (Robinson, 
1985). The specific equation is shown below: 

dcal =Rpp(θ)*W + n (25) 

where dcal represents the calculated seismic amplitude, W 
represents the seismic wavelet, Rpp(θ) represents the P-wave 
reflection  coefficient,  n represents noise and errors, and the 
symbol * represents convolution. The exact equation for the P- 
wave reflection  coefficient  is complex, so it is generally 
replaced by an approximate expression of the Zoeppritz 
equations. In this paper, the Aki-Richards equation is used as a 
substitute for the Zoeppritz equations, with the specific 
equation as follows: 

Rpp(θ)=
(

1
2
+

1
2

tan2 θ
)

ΔVp

Vp
− 4 sin2 θ

V
2
s

V
2
p

ΔVs

Vs

+

(
1
2
− 2 sin2 θ

V
2
s

V
2
p

)
Δρ
ρ

(26) 

where Vp, Vs, and ρ represent the average values of Vp, Vs, and ρ 
across the upper and lower reflecting interfaces, while ΔVp, ΔVs, 
and Δρ represent the differences in Vp, Vs, and ρ between the in
terfaces, and θ represents the incident angle.

By combining Eqs. (24)–(26), a forward operator linking reser
voir parameters to seismic amplitude can be constructed, as 
shown in the following equation: 

Fig. 8. Seismic data volume. (a) The small-angle seismic stacks with an average angle 
of 10◦ . (b) The middle-angle seismic stacks with an average angle of 20◦ . (c) The large- 
angle seismic stacks with an average angle of 30◦ .
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dcal = F(θ;ϕ; Sw;Vsh;W;n) (27) 

where F( ⋅) represents the forward operator, which is highly 
nonlinear. Therefore, in this paper, an inversion network 
is designed to directly invert reservoir parameters from seismic 
data.

2.5. Inv-Net

The Inv-Net designed in this paper is shown in Fig. 7. The 
network includes a convolutional block (as shown in Fig. 6(b)) and 
three Res-Attention blocks (as shown in Fig. 7(b)). A channel 
attention mechanism and a residual component make up each Res- 
Attention block. Through max-pooling and average-pooling, the 
channel attention mechanism dynamically weights the feature 
channels, improving the model's performance by helping it better 
learn significant feature representations (Hu et al., 2019; Woo et al., 
2018). Three sets of stacked seismic data—corresponding to small- 
angle stacks with an average angle of 10◦, medium-angle stacks 
with an average angle of 20◦, and large-angle stacks with an average 
angle of 30◦—combine to provide the network's input. The three 
Res-Attention blocks come after the convolutional block, which 
produces the predicted reservoir parameters.

The following equation is used to determine the error between 
the predicted and real reservoir parameters for well locations 
where real reservoir parameters are available: 

L1
inv =

∑n− 1

i=0

[
mpred(i) − mreal(i)

]2

∑n− 1

i=0
[mreal(i)]

2
(28) 

The predicted reservoir parameters are entered into Eq. (27) to 

create synthetic seismic data for locations where real reservoir 
parameters are not accessible. The discrepancy between this 
synthetic data and the corresponding real seismic data is then 
calculated. The calculation is shown in the following equation: 

L2
inv =

1
2

⎛

⎜
⎜
⎜
⎜
⎝

1 −

∑n− 1

i=0
(dcal(i) − dcal)(dreal(i) − dreal)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n− 1

i=0
(dcal(i) − dcal)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n− 1

i=0
(dreal(i) − dreal)

2

√

⎞

⎟
⎟
⎟
⎟
⎠

(29) 

Then, L1
inv and L2

inv are combined with a weighted sum to obtain 
the total error Linv, as shown in the following equation: 

Linv = βL1
inv + (1 − β)L2

inv (30) 

where mpred and mreal represent the predicted and actual reservoir 

parameters, dcal and dcal represent the synthetic seismic data and 

its mean, and dreal and dreal represent the actual seismic data and 
its mean. L1

inv, L2
inv, and Linv represent the errors at well locations, 

non-well locations, and the total error, respectively, with β 
denoting the weight coefficient.

3. Results

To validate the effectiveness and feasibility of the proposed RP- 
Net and Inv-Net, actual data from a work area in southwestern 
China was used for testing. The selected work area mainly features 
fluvial deposits with multiple stages of channel development. The 
lithology consists of purple-red mudstone interbedded with 
sandstone, and the target interval is primarily a tight sandstone 
reservoir. The area is covered by a 3D pre-stack seismic dataset 

Fig. 9. Reservoir parameters used in rock physics modeling. (a) The pore aspect ratio of sand αs used. (b) The pore aspect ratio of clay αc used. (c) The ϕ used. (d) The Sw used. (e) 
The Vsh used.
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with horizon constraints, including six wells. The dataset contains 
906 traces in the Inline direction and 738 traces in the xline di
rection, as shown in Fig. 8.

We first  perform rock physics modeling using the reservoir 
parameters at the wells, the parameters in Table 1, and Eqs. (1)– 
(18). The pore aspect ratio used in the modeling was estimated 
using Eq. (19), and the optimization algorithm was “trust- 
constr”. The initial value for the sandstone pore aspect ratio was 
obtained from Eq. (20), with a search range from 0.1 to 0.2, 
while the initial value for the mudstone pore aspect ratio was 
set to 0.05, with a search range from 0.01 to 0.1. Fig. 9 shows the 
reservoir parameters and pore aspect ratios for Well 1 during 
modeling, and Fig. 10 presents the modeled elastic parameters 
compared to the actual elastic parameters. As can be seen, the 
modeled elastic parameters closely match the actual ones, 
indicating that the applied rock physics model is both effective 
and feasible.

Next, we simulate the reservoir parameters of five wells (Well 1 
to Well 5) in the work area. We create 10 sets of pseudo porosity 
curves, 4 sets of pseudo water saturation curves, and 4 sets of 
pseudo clay volume curves based on the real reservoir data of each 
well. This results in 800 sets (5 × 10 × 4 × 4) of pseudo reservoir 
parameter curves, as indicated in Table 2. Then, using these pseudo 
reservoir parameters and the constructed rock physics model, we 
calculate the pseudo elastic parameters. We use Well 6 as a blind 
well to test the efficacy of the network after combining the real 
and pseudo parameters to train the RP-Net. The hyperparameters 
used in the training are listed in Table 3, and the optimization 

algorithm is Adam. Fig. 11 shows the prediction performance at the 
blind well. The viability of the network is demonstrated by the 
observation that the predicted elastic parameters at the blind well 
roughly match the actual elastic parameters.

Fig. 10. Comparison between the elastic parameters obtained from rock physics for
ward modeling (red line) and the actual elastic parameters (black line) at Well 1. (a) 
The comparison of the built Vp and the actual Vp. (b) The comparison of the built Vs 

and the actual Vs. (c) The comparison of the built ρ and the actual ρ.

Table 2 
The generation process of pseudo reservoir parameters.

Components Pseudo data Number

ϕ ϕ+ 0:5% ϕ+ 1% … … ϕ+ 5% 10 in total
Sw Sw − 5% Sw − 10% Sw − 15% Sw − 20% 4 in total
Vsh Vsh + 3% Vsh + 6% Vsh + 9% Vsh + 12% 4 in total

Fig. 11. The elastic parameters predicted by the RP-Net (red line) and the actual 
elastic parameters (black line) at the blind well. (a) The comparison of the predicted 
Vp and the actual Vp. (b) The comparison of the predicted Vs and the actual Vs. (c) The 
comparison of the predicted ρ and the actual ρ.

Table 4 
Parameters used in the Inv-Net.

Learning rate Weight decay Batch size β

Value 0.008 1e− 4 60 0.95

Table 3 
Parameters used in the RP-Net.

Learning rate Weight decay Batch size α

Value 0.008 1e− 5 10 0.75
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We use the seismic data as input to train the Inv-Net after 
integrating the trained RP-Net into the network depicted in Fig. 7. 
To confirm the efficacy of the network, we employed Well 6 as a 
blind well and Adam as the optimization algorithm. The hyper
parameters used during training are listed in Table 4. The param
eter “P” (in Eq. (18)) used in “RP-Model + Inv-Net” is shown in 
Table 1 and Fig. 9(a) and (b). The inversion results at the blind 
well are shown in Fig. 12 and Table 5, while the seismic profile and 
inversion result profile along the xline at the blind well are shown 
in Figs. 13 and 14, respectively. The seismic profile and inversion 
result profile along the Inline at the blind well are shown in Figs. 15 
and 16, respectively. The 2D slice of the maximum predicted, the 
minimum predicted Sw and Vsh along the time axis are shown in 
Figs. 17–19.

From Fig. 12 and Table 5, the reservoir parameters obtained by 
“RP-Net + Inv-Net” have a higher correlation with the actual 

reservoir parameters and smaller errors than those obtained by 
“RP-Model + Inv-Net”. From Figs. 13–19, compared to “RP- 
Model + Inv-Net”, the results obtained by “RP-Net + Inv-Net” have 
better lateral continuity and better hierarchical relationship from 
lithology, physical property to gas-bearing property. In addition, 
the predicted 2D slices by “RP-Net + Inv-Net” effectively illustrate 
the orientation and distribution of sedimentary channels, aiding in 
the selection of well placements.

4. Discussion

Most current seismic reservoir parameter inversion methods 
rely on 2D seismic data, which is unable to adequately guide well 
location selection since it does not give complete attribute in
formation for the whole work area. Furthermore, these methods 
frequently depend on algorithms—like inversion algorithms 
based on Bayesian theory—which adds complexity to the 
computation. Building on previous research, this paper proposes 
an intelligent method using deep learning to directly invert 
reservoir parameters from 3D seismic data. The inversion results 
obtained from this method can reveal the direction and distri
bution of the depositional channels in the selected work area, 
which is helpful for well location selection and indicating gas- 
bearing zones.

However, there are some drawbacks to this study. The pro
posed Inv-Net, firstly, is sensitive to certain hyperparameters 
(such as learning rate and regularization parameters), and there 
is still insufficient  theoretical support for choosing the appro
priate values for these hyperparameters. Therefore, achieving 
optimal inversion results necessitates careful tuning of some 
hyperparameters in the network or using automatic tuning 
tools to find suitable combinations. Secondly, it is possible that 
the network trained in this study would not generalize well to 
work locations where the depositional environment is different 
from the one that was chosen. Thus, for other work areas, it may 

Fig. 12. The reservoir parameters predicted by the “RP-Net + Inv-Net” (red line) the 
“RP-Model + Inv-Net” (blue line) and the actual reservoir parameters (black line) at 
the blind well. (a) The comparison of the predicted Vsh and the actual Vsh. (b) The 
comparison of the predicted ϕ and the actual ϕ. (c) The comparison of the predicted 
Sw and the actual Sw.

Table 5 
The correlation coefficient and MSE between the inversion result and the actual log 
curve.

Index Method Vsh, v/v ϕ, v/v Sw, v/v

Correlation coefficient RP-Net + Inv-Net 0.8785 0.7812 0.7834
RP-Model + Inv-Net 0.3140 0.5566 0.7276

MSE RP-Net + Inv-Net 0.0041 0.0003 0.0205
RP-Model + Inv-Net 0.0135 0.0006 0.0305

Fig. 13. Seismic profile along the xline direction at the blind well. (a) The small-angle 
seismic stacks with an average angle of 10◦ . (b) The middle-angle seismic stacks with 
an average angle of 20◦ . (c) The large-angle seismic stacks with an average angle of 
30◦ .
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be necessary to retrain a new network using seismic and well 
data from the specific  area. Thirdly, the nonlinear relationship 
between the reservoir parameters and the corresponding 
seismic data in the selected work area is highly complex, and 
the seismic data is affected by noise, leading to a relatively low 

signal-to-noise ratio. As a result, the resolution of the inverted 
seismic sections may not be as high as expected. Fourth, the 
rock physics models used in this paper (such as the Gassmann 
equation) involve many theoretical assumptions, and anisotropy 
within the rock was not considered during modeling, which 
may cause discrepancies between the modeled elastic parame
ters and the corresponding actual well log curves. Lastly, like 
most intelligent inversion methods, the proposed method 
carries a risk of overfitting  to some extent. In future work, we 
will focus on addressing these issues.

5. Conclusion

In this study, we proposed an intelligent method to directly 
invert porosity, clay content, and water saturation from 3D seismic 
data. The method uses a rock physics model that considers variable 
pore aspect ratios to generate pseudo data, which are then com
bined with actual data to train a rock physics network. We incor
porated this rock physics network with the Aki-Richards equation to 
build a forward operator that links reservoir parameters to seismic 
data. Using this forward operator, along with an inversion network, 
we achieved the direct inversion of reservoir parameters from 3D 
seismic data. To verify the feasibility of the proposed method, we 
tested it using real seismic data from a tight gas-bearing sandstone 
formation in Southwest China. The results show that the inversion 
results at the blind well match well with the actual data, and the 
inverted profiles  and slices effectively indicate the lithology and 
gas-bearing properties of the selected work area, realizing a quan
titative prediction of reservoir parameters for this region.

Fig. 14. The inversion result profile along the xline direction at the blind well. (a) The predicted Vsh by “RP-Model + Inv-Net”. (b) The predicted Vsh by “RP-Net + Inv-Net”. (c) The 
predicted ϕ by “RP-Model + Inv-Net”. (d) The predicted ϕ by “RP-Net + Inv-Net”. (e) The predicted Sw by “RP-Model + Inv-Net”. (f) The predicted Sw by “RP-Net + Inv-Net”.

Fig. 15. Seismic profile along the Inline direction at the blind well. (a) The small-angle 
seismic stacks with an average angle of 10◦ . (b) The middle-angle seismic stacks with 
an average angle of 20◦ . (c) The large-angle seismic stacks with an average angle of 
30◦ .
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Fig. 16. The inversion result profile along the Inline direction at the blind well. (a) The predicted Vsh by “RP-Model + Inv-Net”. (b) The predicted Vsh by “RP-Net + Inv-Net”. (c) The 
predicted ϕ by “RP-Model + Inv-Net”. (d) The predicted ϕ by “RP-Net + Inv-Net”. (e) The predicted Sw by “RP-Model + Inv-Net”. (f) The predicted Sw by “RP-Net + Inv-Net”.

Fig. 17. The slices of the minimum Vsh between horizons obtained by inversion. (a) The result of “RP-Model + Inv-Net”. (b) The result of “RP-Net + Inv-Net”.
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Fig. 18. The slices of the maximum ϕ between horizons obtained by inversion. (a) The result of “RP-Model + Inv-Net”. (b) The result of “RP-Net + Inv-Net”.

Fig. 19. The slices of the minimum Sw between horizons obtained by inversion. (a) The result of “RP-Model + Inv-Net”. (b) The result of “RP-Net + Inv-Net”.
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