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ABSTRACT

Tight sandstone has become an important area in gas exploration. In this study, we propose a 3D seismic
reservoir parameter inversion method for tight gas-bearing sandstone reservoirs using dual neural
networks. The first network referred to as the inversion network, receives seismic data and predicts
reservoir parameters. At well locations, these predictions will be validated based on actual reservoir
parameters to evaluate errors. For non-well locations, synthetic seismic data are generated by the
application of rock physics forward modeling and seismic reflection coefficient equations. The errors are
then calculated by comparing synthetic seismic data with actual seismic data. During the rock physics
forward modeling, pseudo reservoir parameters are derived by perturbing the actual reservoir pa-
rameters, which are then used to generate pseudo elastic parameters through the modeling. Both the
actual and pseudo parameters are then used to train the second network, referred to as the rock physics
network. By incorporating the rock physics network, the method effectively alleviates issues such as
gradient explosion that may arise from directly integrating rock physics computations into the network,
while the inclusion of pseudo parameters enhances the network's generalization capability. The pro-
posed method enables the direct inversion of porosity, clay content, and water saturation from pre-stack
seismic data using deep learning, thereby achieving quantitative predictions of reservoir rock physical
parameters. The application to the field data from tight sandstone gas reservoirs in southwestern China
demonstrates the method has the good capability of indicating the gas-bearing areas and provide high

resolution.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

1. Introduction

Reservoir parameter prediction can be categorized into indirect
and direct methods based on the number of inversion steps, both

Changes in reservoir parameters influence elastic properties,
including P-wave velocity, S-wave velocity, and density, thereby
affecting seismic responses (Chiappa and Mazzotti, 2009; Luo
et al.,, 2019; Zhao et al., 2014). Reservoir parameter prediction is
a crucial step in characterizing oil and gas reservoirs, as it serves as
a fundamental basis for reservoir evaluation, influencing well se-
lection and development strategies (Grana et al., 2022). Seismic
data can be used to predict reservoir parameters, with pre-stack
seismic inversion and rock physics models playing critical roles.
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of which seek to create correlations between seismic data and
reservoir characteristics (Bosch et al.,, 2010). Indirect inversion
mainly involves two steps: seismic data are first inverted to obtain
elastic parameters, which are then used to predict reservoir pa-
rameters (Ba et al., 2017; Grana, 2016). Inversion processes are
frequently ill-posed due to constraints like noise and bandwidth,
which calls for the use of Bayesian theory for the assessment of
uncertainty (Buland and Omre, 2003; Junhwan et al., 2022; Wang
et al., 2022a). Some also use grid search or rock physics templates
for parameter prediction (Jiang and Spikes, 2016; Luo et al., 2019).
Direct inversion, on the other hand, enables the direct inversion of
intricate, nonlinear relationships between seismic data and
reservoir properties by incorporating reservoir parameters into
seismic reflection equations (Aleardi et al., 2017; Guo et al., 2022;
Li et al,, 2020; Pan et al., 2017; Pan and Zhang, 2019). Compared to
the indirect inversion methods, the direct inversion methods
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merge two steps into one, potentially reducing errors in the
inversion process.

Rock physics models serve as a bridge between reservoir pa-
rameters and elastic parameters. Building a robust rock physics
model is a critical part of the inversion process whether direct or
indirect inversion methods are being used. Rock physics models
can be broadly categorized into statistical and theoretical models
based on the construction approach. Statistical rock physics
models use statistical methods to establish the relationship be-
tween reservoir parameters and elastic properties (Bachrach,
2006; Grana and Rossa, 2010). These models are relatively sim-
ple to construct and do not require rigorous physical derivations,
but their applicability is often limited to specific regions. On the
other hand, theoretical rock physics models are based on rock
physics theories and are more accurate and widely applicable
(Gassmann, 1951; Hill, 1952; Kuster and Toks0z, 1974; Reuss, 1929;
Voigt, 1966; Wood, 1955; Xu and White, 1995). However, they are
more complex to calculate and present greater challenges during
inversion.

The above methods are mostly grounded in Bayesian theory
and concentrate on 2D reservoir parameter inversion. Innovative
techniques in disciplines like computer vision have emerged in
deep learning, which has witnessed rapid progress in recent
years (Diakogiannis et al., 2020; Goodfellow et al., 2020; He et al.,
2015, 2016; Huang et al., 2018; Long et al., 2015; Ronneberger
et al,, 2015; Simonyan and Zisserman, 2015). The relationship
between reservoir parameters and seismic data in tight sand-
stone, meanwhile, is highly nonlinear. Deep learning excels in
fitting such complex relationships, leading to its increasing
application in geophysical inversion (Alfarraj and AlRegib, 2019;
Biswas et al., 2019; Das et al., 2018; Das and Mukerji, 2020;
Leite and Vidal, 2011; Sang et al., 2021; Sun et al., 2024a; Sun
et al.,, 2023, 2024b; Wang et al.,, 2022b, 2024; Zhang et al,,
2022a; Zhang et al., 2022a,b; Zhao et al., 2023; Zheng et al.,
2023; Zhu et al., 2022).

Building upon this background, we propose an intelligent
method for directly inverting reservoir parameters from 3D pre-
stack seismic data. The method generates pseudo elastic param-
eters by using the approximate Xu-White model and pseudo
reservoir parameters that are derived by perturbing actual reser-
voir parameters. The rock physics network (RP-Net) is trained
using pseudo parameters and actual parameters. During rock
physics modeling, this study considers variable aspect ratios
instead of fixed ones, which more accurately represent the true
pore structure of rocks. Equipped with the approximation Zoep-
pritz equation (Aki and Richards, 2009) and RP-Net, a forward
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operator between reservoir parameters and seismic data can be
constructed to enable reservoir parameter inversion. In this study,
we used the method of trace-by-trace inversion. After merging the
inline and xline of the 3D seismic data volume, we obtain multiple
1D time-domain seismic data. Then, after inputting the seismic
data into the Inv-Net, the output reservoir data is reorganized into
3D data. To better evaluate the effectiveness and improvements of
the proposed method, we introduce the method of directly
embedding the theoretical rock physics model (RP-Model) into the
inversion network (Inv-Net) for comparison. The proposed
method is called “RP-Net + Inv-Net”, and the method used for
comparison is called “RP-Model + Inv-Net”. The overall framework
of this study is as follows: initially, the steps involved in rock
physics modeling are introduced, with a brief analysis of the
impact of some reservoir parameters on rock elastic properties.
The construction of RP-Net and Inv-Net is then explained, and the
suggested method's efficacy is confirmed by applying it to a real-
world field case. A discussion of the results and conclusion are
finally made.

2. Method
2.1. RP-model

The Xu-White model is a rock physics model used to predict the
elastic properties of sand-shale mixtures. The model assumes that
the primary mineral components of the mixture are clay and
quartz, divides the pore space into shale pores and sandstone
pores, and considers the pore fluids as a mixture of brine and gas.
Four steps make up the calculation process: estimating the
equivalent elastic moduli of the rock matrix, estimating the
equivalent moduli of the dry rock frame, estimating the equivalent
modulus of the saturated fluid, and using fluid substitution to
estimate the final equivalent modulus of the saturated rock. We
use the Xu-White model for rock physics modeling, and the spe-
cific modeling process is illustrated in Fig. 1.

First, the equivalent modulus of the rock matrix is estimated.
For rocks with relatively homogeneous composition, the Voigt-
Reuss-Hill averaging method can be used to calculate the equiva-
lent modulus of the rock matrix. We follow this approach in this
paper, as shown by

(1)

My :fclay My + fquartz Mquartz

]/MR :fclay /Mclay +fquartz /Mquartz (2)

Mudstone pores
%\

-

Wood-Patchy Gassmann

Saturated
rock

Fig. 1. The process of rock physics modeling.
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Mygry = My +MR) /2 3)
where fq,y and M,y represent the volume fraction and elastic
modulus of clay, respectively, and fquartz and Mqyart, Tepresent the
volume fraction and elastic modulus of quartz, respectively. My
represents the elastic modulus of the rock matrix calculated us-
ing the Voigt average, Mg represents the elastic modulus calcu-
lated using the Reuss average, and Myry represents the elastic
modulus of the rock matrix calculated using the Voigt-Reuss-Hill
average.

After obtaining the elastic modulus of the rock matrix, the dry
rock approximate equation (Keys and Xu, 2002) is used to calculate
the elastic modulus of the dry rock frame. Assuming the elastic
modulus of the inclusion is 0, the specific equations can be
expressed as

p=3 > i) (4)
15s.c

a=5 > uFa) (5)
1=S,C

Kary (9) = Ko(1 — ) (6)

by () =0 (1~ )" )

where p and q are a set of coefficients related to the sandstone
and mudstone pores (Berryman, 1980), with the detailed calcu-
lation process provided in Appendix A. Ky and yq represent the
bulk modulus and shear modulus of the rock matrix. K4, (¢) and
Hdry(¢) is the dry rock bulk modulus and shear modulus for
porosity ¢.

Next, the Wood-Patchy equation is used to calculate the elastic
modulus of the mixed fluid, and the specific equations can be
expressed as

K =1/ (Sw/Ku+(1-Sw) / Kg) (8)
KP =SwKw + (1 —Sw)Kg (9)
K= (KP+KY) /2 (10)

where Sy, represents the water saturation, Ky and Kg represent the
bulk modulus of water and gas, respectively, and K¢ and KF
represent the bulk modulus of the mixed fluid calculated using the
Wood equation and the Patchy model, respectively. K; represents
the final calculated bulk modulus of the mixed fluid.

Then, fluid substitution is performed using the Gassmann
equation to obtain the elastic modulus of the saturated rock, with
the specific equations can be expressed as

(1 Kary /1<m)2

¢/1<f +(1- ¢)/1<m +1<dry/K,%,

Ksat:Kdl-y“r (11)

Hsat = Hdry (12)
where ¢ represents the total porosity, which is the sum of sand-
stone and mudstone porosity. Ksar and ug,e represent the bulk
modulus and shear modulus of the saturated rock, respectively.
Finally, the P-wave and S-wave velocities and density of the
saturated rock are calculated using the following equations:
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Fig. 2. The influence of Sy and Vg, on elastic parameters. (a) The impact of Sy, and Vg,
on Vp. (b) The impact of Sy and Vg, on Vs. (¢) The impact of Sy and Vg, on p.
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Fig. 3. The influence of ¢ and V;, on elastic parameters. (a) The impact of ¢ and Vy;, on
Vp. (b) The impact of ¢ and Vg, on Vs. (¢€) The impact of ¢ and V, on p.
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Pm =fday Petay + fauartz pquartz (13)
pg=Swpw + (1 —Sw)pg (14)
p=dpt + (1 =¢)pm (15)

vp—\/ (Kt + 30 ) /0 (16)

Vs =/ #sat /P (17)

where pjay and pquart, represent the density of clay and quartz, p,,
and p, represent the density of formation water and gas, and pp,, p,
and p represent the density of the rock matrix, the mixed fluid, and
the saturated rock, respectively. Vp and Vs represent the P-wave
and S-wave velocities of the saturated rock.

Combining Eqs. (1)-(17), we can derive the corresponding
elastic parameters from the reservoir parameters, as shown in the
following equation:

Enmtodel (Vp, Vs, p) =Model®* (¢, Sw, Vgh, P) (18)

where P denotes other parameters required for rock physics
modeling, such as elastic modulus, pore aspect ratio, density, etc.
Model®"(.) denotes the RP-Model, and Emodel(-) represents the
elastic parameters derived through the RP-Model.

2.2. Effects of reservoir parameters

The pore aspect ratio of rocks, for example, is one reservoir
property that significantly affects elastic properties. In general, the
aspect ratio of the sand-related pores (as) typically has a bigger
value than that of the clay-related pores (ac), with the latter having
a greater impact on the elastic properties of the rock, especially in
sandstones that contain clay minerals (Sams and Andrea, 2001;
Smith and Gidlow, 1987). In most cases, the pore aspect ratio
cannot be directly measured. In this study, suitable pore aspect
ratios were optimized during the modeling process by minimizing
the difference between the predicted and actual P-wave and S-
wave velocities, as shown in the following equation:

(aa) — argmin|[ V'S (¢, Ve, Sw. s, ac) — V| (19)

V,, km/s
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where Vll,o_gs and Vl‘,’fgd represent the P-wave and S-wave velocities
from well data and rock physics modeling, respectively, while s
and @, represent the optimized aspect ratios of sandstone and
mudstone pores. Additionally, some studies have experimentally
obtained the following statistical relationship between as, ¢ and
Vsn (Sams and Andrea, 2001):

as=0.17114 — 0.24477-¢ + 0.004314-Vy, (20)

During the rock physics modeling, we use initial as obtained by
Eq. (20) and a given initial ac to optimize the most suitable as and
ac.

Next, we used the established rock physics model for forward
modeling analysis to illustrate the effects of changes in ¢, V, Sw,
and pore aspect ratio on the elastic properties. The results are
shown in Figs. 2-5, with the fixed parameters used in the forward
modeling presented in Table 1. Fig. 2 shows the influence of Sy
and Vy;, on elastic properties when ¢ = 0.1, as = 0.12, and ac =
0.05; Fig. 3 shows the influence of ¢ and Vj;, on elastic properties
when Sy, = 0.5, as = 0.12, and ac = 0.05; Fig. 4 shows the in-
fluence of Sw and ¢ on elastic properties when V, = 0.5, as =
0.12, and ac = 0.05; and Fig. 5 demonstrates the influence of as
and ac on P-wave and S-wave velocities when ¢ = 0.1, Sy = 0.5,
and Vsh =0.5.

From Figs. 2-4, it can be seen that V;, and ¢ have a significant
impact on elastic properties, with velocities and densities gradu-
ally decreasing as V;j, and ¢ increase. On the other hand, Sy has a
smaller impact, with P-wave and S-wave velocities remaining
almost unchanged as S, increases, while density slowly increases.
From Fig. 5, it is clear that as and a. have a considerable influence
on P-wave and S-wave velocities, and different combinations of as
and ac lead to significant variations in these velocities. Therefore,
in cases where the pore structure is complex, the impact of pore
aspect ratios on elastic properties needs to be carefully considered.

Table 1
The parameters for rock physics modeling.

Components Bulk modulus, GPa  Shear modulus, GPa Density, g/cm>
Quartz 48 30 2.79
Clay 39 7 2.53
Brine 2 \ 1.47
Gas 0.001 \ 0.13

Vi, kmfs

(b)

s

0.08

O

Fig. 5. The influence of a5 and ac on elastic parameters. (a) The impact of as and ac on Vj. (b) The impact of as and ac on Vs.
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Fig. 6. The process of the RP-Net. (a) The overall framework of the RP-Net. (b) The process of Conv Block. (c) The process of ResBlock.

2.3. RP-Net

To lessen the effects of insufficient real labels and improve the
model's capacity for generalization, pseudo labels can be created
and added to the training set when genuine labels are hard to
come by Lee (2013). Therefore, after completing the rock physics
modeling, we generate pseudo reservoir parameters by modifying
the existing reservoir parameters and then use these parameters

and the rock physics model to generate pseudo elastic parameters.
Fig. 6 shows the construction of the RP-Net, which is trained using
both the actual and pseudo parameters. In Fig. 6(a), the real
reservoir parameters are combined with the pseudo reservoir
parameters as input to the network. The input is processed
through a shared convolutional block, followed by two separate
residual blocks, to obtain the P-wave velocity, S-wave velocity, and
density, respectively. The final output is created by concatenating
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i \
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Fig. 7. The process of the Inv-Net. (a) The overall framework of the Inv-Net. (b) The process of Res-Attention Block.
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these outputs along the channel dimension. The structures of the
convolutional block and the residual block are shown in Fig. 6(b)
and (c), respectively. The output is then compared with the cor-
responding real elastic parameters and pseudo elastic parameters
for error analysis to update the network's gradient. The error
calculation process can be expressed as:

L}p _i=0 (21)

n-1

g(:) [ygeal (l)] ’

5 VhreaD = Vien®]”

n-1 . 2 . 2
[ypred (i) - yreal(l)]
12, =20 (22)
P n=lr 2
12) [yreal (l)]
Lip =ally + (1 - a)Lf, (23)

where, yéred, ylea» and L}, represent the output obtained by
putting the real reservoir parameters into the network, the real
elastic parameters, and the error between them, respectively.
Similarly, ylzm.ed, yZ.,» and L2, represent the output obtained by
putting the pseudo reservoir parameters into the network, the
pseudo elastic parameters, and their error, respectively. n rep-
resents the length of the data, and Ly, is the total error calculated
by weighted summation of L}p and L?p,
factor.

Once the RP-Net is obtained, it can be used to derive the cor-
responding elastic parameters from the reservoir parameters, as
shown in the following equation:

with « as the weighting

Enet (Vp. Vs, p) = Net® (¢, Sw. Vip) (24)

where, Net®P(.) denotes the RP-Net, and Ene((-) represents the
elastic parameters derived through the RP-Net. RP-Net is an
essential step in generating synthetic records at the non-well
locations, and serves as a bridge between reservoir parameters
and elastic parameters. Compared to Eq. (18), RP-Net can to
some extent learn parameters such as elastic modulus and pore
aspect ratio hidden at non-well locations, thus enabling the
conversion of reservoir parameters to elastic parameters
without knowing “P”.

2.4. Construction of the forward operator

Seismic amplitude can be represented as the convolution of the
seismic wavelet and the P-wave reflection coefficient (Robinson,
1985). The specific equation is shown below:

dcal :RPP(Q)*W"‘ n (25)

where d., represents the calculated seismic amplitude, W
represents the seismic wavelet, Rpp(0) represents the P-wave
reflection coefficient, n represents noise and errors, and the
symbol * represents convolution. The exact equation for the P-
wave reflection coefficient is complex, so it is generally
replaced by an approximate expression of the Zoeppritz
equations. In this paper, the Aki-Richards equation is used as a
substitute for the Zoeppritz equations, with the specific
equation as follows:
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2
11 AV 5, VAV,
Rpp(0) = (f+ftan2 9) —P_4sin® 9= —2
22 Vp Vf, Vs
=2
(2 2sinze¥s) 22 (26)
2 V; P

where V), Vs, and p represent the average values of Vj, Vs, and p
across the upper and lower reflecting interfaces, while AV, AV,
and Ap represent the differences in V,, Vs, and p between the in-
terfaces, and 0 represents the incident angle.

By combining Eqgs. (24)-(26), a forward operator linking reser-
voir parameters to seismic amplitude can be constructed, as
shown in the following equation:

0.4
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Fig. 8. Seismic data volume. (a) The small-angle seismic stacks with an average angle
of 10°. (b) The middle-angle seismic stacks with an average angle of 20°. (¢) The large-
angle seismic stacks with an average angle of 30°.
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dcal = F(ev ¢7SW7 VSh7 W7 n) (27)
where F(-) represents the forward operator, which is highly
nonlinear. Therefore, in this paper, an inversion network
is designed to directly invert reservoir parameters from seismic
data.

2.5. Inv-Net

The Inv-Net designed in this paper is shown in Fig. 7. The
network includes a convolutional block (as shown in Fig. 6(b)) and
three Res-Attention blocks (as shown in Fig. 7(b)). A channel
attention mechanism and a residual component make up each Res-
Attention block. Through max-pooling and average-pooling, the
channel attention mechanism dynamically weights the feature
channels, improving the model's performance by helping it better
learn significant feature representations (Hu et al., 2019; Woo et al.,
2018). Three sets of stacked seismic data—corresponding to small-
angle stacks with an average angle of 10°, medium-angle stacks
with an average angle of 20°, and large-angle stacks with an average
angle of 30°—combine to provide the network's input. The three
Res-Attention blocks come after the convolutional block, which
produces the predicted reservoir parameters.

The following equation is used to determine the error between
the predicted and real reservoir parameters for well locations
where real reservoir parameters are available:

n71 . . 2
Z {mpred(l) - mreal(l)]
Lilnv == (28)

n-1
Z [Mreal (i)]z
i=0

The predicted reservoir parameters are entered into Eq. (27) to

Petroleum Science 22 (2025) 4037-4051

create synthetic seismic data for locations where real reservoir
parameters are not accessible. The discrepancy between this
synthetic data and the corresponding real seismic data is then
calculated. The calculation is shown in the following equation:

n—1 _ _
_;0 (dcal(i) - dcal)(dreal(i) - dreal)

1
2, =-[1-
mv-2 n—1 . _ 2 n—1 . _ 2
% (dcal(l) - dcal) ZO (dreal(l) - dreal)
1= 1=l
(29)
Then, Lilnv and Liznv are combined with a weighted sum to obtain

the total error L;,,, as shown in the following equation:

Linv :ﬂLilnv + (1 _ﬂ)Liznv (30)

where mpeq and M, represent the predicted and actual reservoir
parameters, d., and d., represent the synthetic seismic data and
its mean, and d,.,; and d,., represent the actual seismic data and
its mean. Lilnv, Liznv. and L;,, represent the errors at well locations,
non-well locations, and the total error, respectively, with g
denoting the weight coefficient.

3. Results

To validate the effectiveness and feasibility of the proposed RP-
Net and Inv-Net, actual data from a work area in southwestern
China was used for testing. The selected work area mainly features
fluvial deposits with multiple stages of channel development. The
lithology consists of purple-red mudstone interbedded with
sandstone, and the target interval is primarily a tight sandstone
reservoir. The area is covered by a 3D pre-stack seismic dataset
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Fig. 9. Reservoir parameters used in rock physics modeling. (a) The pore aspect ratio of sand as used. (b) The pore aspect ratio of clay ac used. (c) The ¢ used. (d) The S,y used. (e)

The Vg, used.

4044



Y. Zhang and H. Yang

with horizon constraints, including six wells. The dataset contains
906 traces in the Inline direction and 738 traces in the xline di-
rection, as shown in Fig. 8.

We first perform rock physics modeling using the reservoir
parameters at the wells, the parameters in Table 1, and Eqgs. (1)-
(18). The pore aspect ratio used in the modeling was estimated
using Eq. (19), and the optimization algorithm was “trust-
constr”. The initial value for the sandstone pore aspect ratio was
obtained from Eq. (20), with a search range from 0.1 to 0.2,
while the initial value for the mudstone pore aspect ratio was
set to 0.05, with a search range from 0.01 to 0.1. Fig. 9 shows the
reservoir parameters and pore aspect ratios for Well 1 during
modeling, and Fig. 10 presents the modeled elastic parameters
compared to the actual elastic parameters. As can be seen, the
modeled elastic parameters closely match the actual ones,
indicating that the applied rock physics model is both effective
and feasible.

Next, we simulate the reservoir parameters of five wells (Well 1
to Well 5) in the work area. We create 10 sets of pseudo porosity
curves, 4 sets of pseudo water saturation curves, and 4 sets of
pseudo clay volume curves based on the real reservoir data of each
well. This results in 800 sets (5 x 10 x 4 x 4) of pseudo reservoir
parameter curves, as indicated in Table 2. Then, using these pseudo
reservoir parameters and the constructed rock physics model, we
calculate the pseudo elastic parameters. We use Well 6 as a blind
well to test the efficacy of the network after combining the real
and pseudo parameters to train the RP-Net. The hyperparameters
used in the training are listed in Table 3, and the optimization

Log data - - - - RP-Model
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Time, ms
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Fig. 10. Comparison between the elastic parameters obtained from rock physics for-
ward modeling (red line) and the actual elastic parameters (black line) at Well 1. (a)
The comparison of the built V}, and the actual V. (b) The comparison of the built Vg
and the actual Vs. (c) The comparison of the built p and the actual p.
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Table 2
The generation process of pseudo reservoir parameters.
Components  Pseudo data Number
¢ ¢+05% p+1% ... ¢+ 5% 10 in total
Sw Sw— 5% Sw—10% Sw—15% Sy —20% 4 in total
Vsn Vsn + 3% Vg + 6% Vsh + 9% Vsn+ 12% 4 in total
Table 3
Parameters used in the RP-Net.
Learning rate Weight decay Batch size a
Value 0.008 le-5 10 0.75
— Log data - - - - RP-Net
1(e)

1145 A

1155 A

1165 A

Time, ms

1175 A

4.00 425 4.50 4.75 5.00

V,, km/s

22 24 26 28 30 22 24 26 2.8

V,, km/s p, glcm?®

Fig. 11. The elastic parameters predicted by the RP-Net (red line) and the actual
elastic parameters (black line) at the blind well. (a) The comparison of the predicted
Vp and the actual Vj,. (b) The comparison of the predicted Vs and the actual Vs. (c) The
comparison of the predicted p and the actual p.

algorithm is Adam. Fig. 11 shows the prediction performance at the
blind well. The viability of the network is demonstrated by the
observation that the predicted elastic parameters at the blind well
roughly match the actual elastic parameters.

Table 4
Parameters used in the Inv-Net.
Learning rate Weight decay Batch size B
Value 0.008 le—4 60 0.95
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- - - - RP-Net + Inv-Net - - - - RP-Model + Inv-Net
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Fig. 12. The reservoir parameters predicted by the “RP-Net + Inv-Net” (red line) the
“RP-Model + Inv-Net” (blue line) and the actual reservoir parameters (black line) at
the blind well. (a) The comparison of the predicted Vg, and the actual V. (b) The
comparison of the predicted ¢ and the actual ¢. (c) The comparison of the predicted
Sw and the actual S,.

We use the seismic data as input to train the Inv-Net after
integrating the trained RP-Net into the network depicted in Fig. 7.
To confirm the efficacy of the network, we employed Well 6 as a
blind well and Adam as the optimization algorithm. The hyper-
parameters used during training are listed in Table 4. The param-
eter “P” (in Eq. (18)) used in “RP-Model + Inv-Net” is shown in
Table 1 and Fig. 9(a) and (b). The inversion results at the blind
well are shown in Fig. 12 and Table 5, while the seismic profile and
inversion result profile along the xline at the blind well are shown
in Figs. 13 and 14, respectively. The seismic profile and inversion
result profile along the Inline at the blind well are shown in Figs. 15
and 16, respectively. The 2D slice of the maximum predicted, the
minimum predicted Sy, and Vg, along the time axis are shown in
Figs. 17-19.

From Fig. 12 and Table 5, the reservoir parameters obtained by
“RP-Net + Inv-Net” have a higher correlation with the actual

Table 5
The correlation coefficient and MSE between the inversion result and the actual log
curve.

Index Method Ven, VIV @, V[V Sw, V[V
Correlation coefficient ~ RP-Net + Inv-Net 0.8785 0.7812 0.7834
RP-Model + Inv-Net  0.3140 0.5566  0.7276
MSE RP-Net + Inv-Net 0.0041 0.0003  0.0205
RP-Model + Inv-Net  0.0135 0.0006  0.0305
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Fig. 13. Seismic profile along the xline direction at the blind well. (a) The small-angle
seismic stacks with an average angle of 10°. (b) The middle-angle seismic stacks with
an average angle of 20°. (c) The large-angle seismic stacks with an average angle of
30°.

reservoir parameters and smaller errors than those obtained by
“RP-Model + Inv-Net”. From Figs. 13-19, compared to “RP-
Model + Inv-Net”, the results obtained by “RP-Net + Inv-Net” have
better lateral continuity and better hierarchical relationship from
lithology, physical property to gas-bearing property. In addition,
the predicted 2D slices by “RP-Net + Inv-Net” effectively illustrate
the orientation and distribution of sedimentary channels, aiding in
the selection of well placements.

4. Discussion

Most current seismic reservoir parameter inversion methods
rely on 2D seismic data, which is unable to adequately guide well
location selection since it does not give complete attribute in-
formation for the whole work area. Furthermore, these methods
frequently depend on algorithms—Ilike inversion algorithms
based on Bayesian theory—which adds complexity to the
computation. Building on previous research, this paper proposes
an intelligent method using deep learning to directly invert
reservoir parameters from 3D seismic data. The inversion results
obtained from this method can reveal the direction and distri-
bution of the depositional channels in the selected work area,
which is helpful for well location selection and indicating gas-
bearing zones.

However, there are some drawbacks to this study. The pro-
posed Inv-Net, firstly, is sensitive to certain hyperparameters
(such as learning rate and regularization parameters), and there
is still insufficient theoretical support for choosing the appro-
priate values for these hyperparameters. Therefore, achieving
optimal inversion results necessitates careful tuning of some
hyperparameters in the network or using automatic tuning
tools to find suitable combinations. Secondly, it is possible that
the network trained in this study would not generalize well to
work locations where the depositional environment is different
from the one that was chosen. Thus, for other work areas, it may
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Fig. 14. The inversion result profile along the xline direction at the blind well. (a) The predicted Vy, by “RP-Model + Inv-Net”. (b) The predicted Vy, by “RP-Net + Inv-Net”. (¢) The
predicted ¢ by “RP-Model + Inv-Net”. (d) The predicted ¢ by “RP-Net + Inv-Net”. (e) The predicted Sy by “RP-Model + Inv-Net”. (f) The predicted Sy by “RP-Net + Inv-Net”.
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Fig. 15. Seismic profile along the Inline direction at the blind well. (a) The small-angle
seismic stacks with an average angle of 10°. (b) The middle-angle seismic stacks with
an average angle of 20°. (c) The large-angle seismic stacks with an average angle of
30°.

be necessary to retrain a new network using seismic and well
data from the specific area. Thirdly, the nonlinear relationship
between the reservoir parameters and the corresponding
seismic data in the selected work area is highly complex, and
the seismic data is affected by noise, leading to a relatively low
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signal-to-noise ratio. As a result, the resolution of the inverted
seismic sections may not be as high as expected. Fourth, the
rock physics models used in this paper (such as the Gassmann
equation) involve many theoretical assumptions, and anisotropy
within the rock was not considered during modeling, which
may cause discrepancies between the modeled elastic parame-
ters and the corresponding actual well log curves. Lastly, like
most intelligent inversion methods, the proposed method
carries a risk of overfitting to some extent. In future work, we
will focus on addressing these issues.

5. Conclusion

In this study, we proposed an intelligent method to directly
invert porosity, clay content, and water saturation from 3D seismic
data. The method uses a rock physics model that considers variable
pore aspect ratios to generate pseudo data, which are then com-
bined with actual data to train a rock physics network. We incor-
porated this rock physics network with the Aki-Richards equation to
build a forward operator that links reservoir parameters to seismic
data. Using this forward operator, along with an inversion network,
we achieved the direct inversion of reservoir parameters from 3D
seismic data. To verify the feasibility of the proposed method, we
tested it using real seismic data from a tight gas-bearing sandstone
formation in Southwest China. The results show that the inversion
results at the blind well match well with the actual data, and the
inverted profiles and slices effectively indicate the lithology and
gas-bearing properties of the selected work area, realizing a quan-
titative prediction of reservoir parameters for this region.
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Fig. 16. The inversion result profile along the Inline direction at the blind well. (a) The predicted V;, by “RP-Model + Inv-Net". (b) The predicted V, by “RP-Net -+ Inv-Net”. (¢) The
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Fig. 18. The slices of the maximum ¢ between horizons obtained by inversion. (a) The result of “RP-Model + Inv-Net”. (b) The result of “RP-Net + Inv-Net”.
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