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a b s t r a c t

Coaly source rocks have attracted considerable attention for their significant  hydrocarbon generation 
potential in recent years. However, limited study is performed on utilizing geochemical data and well 
log data to evaluate coaly hydrocarbon source rocks. In this study, geochemical data and well log data 
are selected from two key wells to conduct an evaluation of coaly hydrocarbon source rocks of Jurassic 
Kezilenuer Formation in Kuqa Depression of Tarim Basin. Initially, analysis was focused on geochemical 
parameters to assess organic matter type, source rock quality, and hydrocarbon generation potential. 
Lithology types of source rocks include mudstone, carbonaceous mudstone and coal. The predominant 
organic matter type identified was Type III and Type II2, indicating a favorable hydrocarbon generation 
potential. Well log data are integrated to predict total organic carbon (TOC) content, and the results 
indicate that multiple regression method is effective in predicting TOC of carbonaceous mudstone and 
coal. However, the ΔlgR method exhibited limited predictive capability for mudstone source rock. 
Additionally, machine learning methods including multilayer perceptron neural network (MLP), random 
forest (RF), and extreme gradient boosting (XGBoost) techniques are employed to predict TOC of 
mudstone source rock. The XGBoost performs best in TOC prediction with correlation coefficient (R2) of 
0.9517, indicating a close agreement between measured and predicted TOC values. This study provides a 
reliable prediction method of coaly hydrocarbon source rocks through machine learning methods, and 
will provide guidance for resource assessment.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

Source rocks are the essential petroleum systems element 
(Hunt, 1996; Sahoo et al., 2021). As global energy demand con
tinues to grow, the exploration and development of coal-bearing 
formation have become increasingly important (Lee et al., 2022; 
Mkono et al., 2023). Therefore, evaluation of quality and spatial 
distribution of coaly source rocks is essential for resource assess
ment and petroleum system analysis (Bolandi et al., 2015; Goliatt 
et al., 2023). The content of total organic carbon (TOC) is a crucial 

parameter in source rock evaluation (Aziz et al., 2020; Goliatt et al., 
2023; Lu et al., 2025). TOC not only reflects the hydrocarbon po
tential of source rocks, but also provides important inputs for 
petroleum system analysis (Hood et al., 1975; Mulashani et al., 
2021; Gao et al., 2022; Gordon et al., 2022). Conventional 
methods for measuring TOC primarily rely on core analysis and 
geochemical experiments such as pyrolysis. Though these exper
iment approaches are commonly accurate, experiment analysis are 
limited to cored intervals, limiting the comprehensive assessment 
of vertical continuity and changes (Zhu et al., 2018; Zhao et al., 
2019; Tenaglia et al., 2020; Sahoo et al., 2021). Additionally, py
rolysis is time consuming and expensive (Sahoo et al., 2021; Gao 
et al., 2022). As a result, the efficient  and precise estimation of 
TOC has become a key area of interest in hydrocarbon source rock 
analysis (Bolandi et al., 2015; Wang et al., 2020).
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In recent years, advancements in logging technology have 
sparked increasing interest in predicting TOC using well log data 
(Zhao et al., 2016; Zhu et al., 2018; Sêco et al., 2019; Tenaglia et al., 
2020; Mkono et al., 2023). Well log is characterized by vertical 
continuity and high resolution, providing valuable information 
about underground lithology, fluids,  TOC and other parameters 
(Mahmoud et al., 2017; Handhal et al., 2020; Mulashani et al., 
2021; Zeng et al., 2021; Lee et al., 2022). However, relationship 
between well log data and TOC is complex, making it challenging 
for traditional linear regression and empirical formulas to capture 
its non-linear features (Zhu et al., 2018; Sêco et al., 2019; Nyakilla 
et al., 2022; Ochoa et al., 2022). For instance, Schmoker (1979)
proposed a model for predicting organic carbon content based on 
density logging, while Passey et al. (1990) introduced the ΔlgR 
method for predicting organic carbon content (Passey et al., 1990). 
These widely adopted methods have shown limited applicability 
in coaly hydrocarbon source rocks compared to shallow buried 
sedimentary basins (Hu et al., 2015; Shi et al., 2016; Bolandi et al., 
2017; Lai et al., 2022).

In recent studies, with the increasing complexity and demands 
of source rock evaluation, there has been a growing interest in 
combining machine learning or deep learning techniques with 
well logs to assess hydrocarbon source rock quality (Rui et al., 
2020; Aziz et al., 2020; Maroufi  and Zahmatkesh, 2023; Mkono 
et al., 2023). Numerous studies have highlighted the effective
ness and accuracy of machine learning techniques in predicting 
TOC content (Sfidari  et al., 2012; Lee et al., 2022; Goliatt et al., 
2023). Machine learning-based TOC prediction methods have the 
advantages of accuracy and efficiency than traditional approaches 
(El Sharawy and Gaafar, 2012; Mkono et al., 2023; Maroufi  and 

Zahmatkesh, 2023; Goliatt et al., 2023). Algorithms such as back 
propagation (BP), group method of data handling (GMDH) neural 
network, linear regression (LR), random forest (RF), and deep 
learning (DL) have exhibited strong predictive performance for 
TOC prediction across various geological conditions (Zhu et al., 
2018; Wang et al., 2019; Mulashani et al., 2021; Zhang et al., 
2023; Zhang et al., 2023).

This study focuses on the Jurassic source rocks located in the 
Kuqa Depression of the Tarim Basin, China. The aim of this study is 
to optimize suitable methods for evaluating coaly hydrocarbon 
source rocks. The organic matter type and hydrocarbon generation 
potential are assessed from three different lithology types 
(mudstone, coal and carbonaceous mudstone) (Zhao et al., 2005; 
Huang et al., 2019). Various methods, including the multivariate 
regression, ΔlgR method, MLP, RF, and XGBoost model, are applied 
to predict TOC for different lithologies. This study will provide 
insights into the coaly hydrocarbon source rocks evaluation using 
well logs, and has implication for resource assessment and hy
drocarbon exploration.

2. Geological setting

The Kuqa Depression, situated in the northern region of the 
Tarim Basin and adjacent to the Tianshan Mountains, and is a 
Mesozoic to Cenozoic foreland depression (Fig. 1) (Guo et al., 2018; 
Gao et al., 2022). The Kuqa Depression is categorized by four 
distinct structural belts: namely the Northern Monocline Belt, the 
Kelasu Structural Belt, the Qiulitage Structural Belt, and the 
Southern Gentle Slope (Fig. 1) (Zhao et al., 2005; Lai et al., 2017, 
2023a). Additionally, it includes three sags: Wushi Sag, Baicheng 

Fig. 1. Maps show the structural characteristics of the Kuqa Depression in the Tarim Basin of western China, where the study area is located.
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Sag, and Yangxia Sag (Fig. 1) (Guo et al., 2018; Huang et al., 2019; 
Lai et al., 2023a).

During the Late Triassic to Middle Jurassic, the relatively warm 
and humid climate favored the formation of lacustrine and 
lacustrine–swamp transitional sediments, which were accumu
lated in the Kuqa Depression (Zhao et al., 2005; Lai et al., 2017; 
Huang et al., 2019). The source rocks in the Kuqa Depression 
mainly consist of six sets, including the Triassic Kelamayi (T2-3k), 
Huangshanjie (T3h), Taliqike Formation (T3t), as well as the 
Jurassic Yangxia (J1y), Kezilenuer (J2kz), and Qiakemake Formation 
(J2q) (Fig. 2) (Gao et al., 2022; Wan et al., 2022; Li et al., 2025). It is 
worth noting that the Karamay, Huangshanjie, and Qiakemake 
Formation are interpreted as lacustrine source rocks, while the 
Taliqike, Yangxia, and Kezilenuer Formation are coaly source rocks 
(Zhao et al., 2005; Guo et al., 2018; Gao et al., 2022). Laterally, the 
petroleum source rocks are characterized by their extensive dis
tribution, substantial thicknesses (up to 320 m), and high organic 
matter content (average TOC up to 2.15%) in the Kuqa Depression 
(Zhao et al., 2005; Wang et al., 2022). The petroleum source rocks 
of the Kezilenuer Formation have attained an overall mature stage 
(average Ro > 0.7%), indicating that they are entering the oil gen
eration phase (Guo et al., 2018).

This study focuses on source rocks of the Jurassic Kezilenuer 
Formation, which was deposited in a braided river delta-swamp 

depositional system, and contain coaly strata (Zhao et al., 2005; 
Gao et al., 2022). The lithology of Jurassic Kezilenuer source 
rocks comprises mudstone, carbonaceous mudstone, and coal 
(Fig. 2) (Zhao et al., 2005; Huang et al., 2019).

3. Data and methods

This study evaluates the source rocks of the Jurassic Kezilenuer 
Formation using two primary datasets: geochemical analysis and 
well log data. Geochemical analysis provides key parameters of 
studied source rocks, while well log data is utilized for TOC pre
diction for intervals without core control. Then, a correlation 
analysis was conducted between TOC and logging parameters for 
various lithology types, followed by the utilization of multiple 
regression methods to predict the TOC content of source rocks. 
Finally, this study attempted to employ ΔlgR, MLP, RF, and XGBoost 
methods to predict total organic carbon content in mudstone 
while assessing the predictive effects of these diverse methodol
ogies. We used the coefficient of determination (R2) and root mean 
square error (RMSE) to evaluate the performance of the different 
models.

3.1. Data

A total of 103 samples from Wells A and B in the Kuqa 
Depression were collected to study the source rocks of the Kezi
lenuer Formation. The lithology of the samples includes mudstone, 
carbonaceous mudstone, and coal. Pyrolysis analysis was con
ducted using a Rock Eval OGE-V instrument under standard con
ditions, yielding parameters such as TOC, S1 (free hydrocarbon), S2 
(pyrolysed hydrocarbon), Tmax (temperature at the highest yield of 
S2) and hydrogen index (HI) (Alizadeh et al., 2018; Shalaby et al., 
2019; Wang et al., 2022).

Geophysical well logs data include open-hole caliper (CAL), 
acoustic transit time logs (DT), deep and medium resistivity (RT, 
RM), natural gamma-ray (GR), bulk density (DEN), compensated 
neutron porosity (CNC), and spontaneous potential (SP).

3.2. ΔlgR method

The ΔlgR method predicts TOC by overlaying deep resistivity 
curve and porosity curve (Passey et al., 1990). The model is used to 
predict TOC in shallow clastic and carbonate rocks (Hu et al., 2015; 
Bolandi et al., 2017; Alizadeh et al., 2018; Lai et al., 2024). It cal
culates ΔlgR, which correlates linearly with TOC and varies with 
thermal maturity. The equations are as follows: 

ΔlgR= log(RT =RTBaseline) + k(Δt − ΔtBaseline) (1) 

TOC=ΔlgR⋅10(2:297− 0:1688LOM) (2) 

where RT is the resistivity log, Ω⋅m, and Δt is the sonic transit time 
log, μs/m; RTBaseline is the baseline of RT, Ω⋅m; and ΔtBaseline is the 
baseline of DT, μs/m; LOM, linked to thermal maturity, can be 
determined by the vitrinite reflectance; k is the coefficient (Passey 
et al., 1990; Aziz et al., 2020; Lai et al., 2022).

3.3. Multilayer perceptron neural network model (MLP)

The MLP is a type of feedforward neural network model that 
comprises an input layer, one or more hidden layers, and an output 
layer, with each layer containing interconnected neurons (Aziz 
et al., 2020; Goliatt et al., 2023). MLP model adjusts weights and 
thresholds through backpropagation to minimize error. Due to its 
adaptability and ability to model nonlinear relationships, MLP can 

Fig. 2. Generalized Mesozoic stratigraphy of the Kuqa Depression, Tarim Basin, 
showing major oil and gas combinations.
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be employed in classification and prediction tasks (Bolandi et al., 
2017; Liu et al., 2021; Zhang et al., 2023). Additionally, the input 
data includes six logging curves (GR, DT, CNC, RT, DEN, and SP), and 
the output data is the measured TOC (Fig. 3). In this study, a two- 
hidden-layer MLP was employed for TOC prediction (Fig. 3(a)).

3.4. Random forest (RF)

Random forest is an ensemble model composed of decision 
trees (Breiman, 2001). It uses Bootstrap resampling to create 
multiple subsets of the dataset, which are then used to construct 
decision trees through random feature selection (Gordon et al., 
2022) (Fig. 3(b)). Predictions are aggregated through majority 
voting or averaging, enhancing robustness and reducing over
fitting  (Safaei-Farouji and Kadkhodaie, 2022). This approach im
proves prediction accuracy and is particularly effective for 
handling large datasets with complex relationships (Cappuccio 
et al., 2021).

3.5. Extreme gradient boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin (2016), is a gradient 
boosting algorithm known for its high efficiency and flexibility. It 
constructs multiple weak learners iteratively, combining them 
into a strong predictive model. XGBoost reduces overfitting 
through regularization and handles large datasets with high 
computational efficiency  (Liu et al., 2021). Its ability to model 
complex nonlinear relationships has been demonstrated in various 

regression and classification  tasks (Liu et al., 2021). The model 
architecture used to predict TOC is shown in Fig. 3(c).

3.6. Workflow of TOC prediction

The workflow  for TOC prediction is illustrated in Fig. 3. The 
process begins with extracting well log curves (GR, DT, CNC, RT, 
DEN, and SP) and TOC parameters derived from Pyrolysis. Subse
quently, the dataset designated for TOC prediction is randomly 
divided into a training and a test subset, adhering to a 7:3 ratio. 
After normalization, the data are input into MLP, RF, and XGBoost 
models. A 5-fold cross-validation approach is utilized during 
training to enhance model generalization and minimize over
fitting. Meanwhile, Bayesian optimization are used to optimize the 
hyperparameters for each model. Finally, the models are evaluated 
using the test set, and predictive results are generated.

4. Results

4.1. Organic matter type, source rock quantity, and hydrocarbon 
generation potential

The lithology types of the Kezilenuer Formation samples consist 
of mudstone, carbonaceous mudstone, and coal (Zhao et al., 2005; 
Huang et al., 2019). Pyrolysis analysis results are shown in Supple
mentary Table. Hydrogen index (HI) was plotted against the tem
perature at which S2 hydrocarbons yield is highest (Tmax) to classify 
organic matter type categories. As shown in Fig. 4(a), the source 

Fig. 3. Schematic diagram for predicting mudstone total organic carbon content using machine learning methods. (a) Schematic diagram of MLP structure; (b) schematic diagram 
of RF model; (c) schematic diagram of XGBoost model.
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rocks predominantly contain Type III kerogen and minor occur
rences of Type II2. Type III kerogen indicates gas-prone organic 
matter (Huang et al., 2019; Mkono et al., 2023; Hu et al., 2024).

Fig. 4(b), (c), and (d) illustrate the relationships between S1+S2 
and TOC, and HI and S1+S2, to evaluate the hydrocarbon generation 
potential of mudstone, carbonaceous mudstone, and coal. These 
cross-plots reveal variations in hydrocarbon production potential 
across different lithologies. Mudstone samples range from poor to 
excellent source rocks (Fig. 4(b)), while carbonaceous mudstone 
samples are mostly classified  as poor to good, with one sample 
rated as excellent (Fig. 4(c)). Coal samples, however, are categorized 
as poor to fair source rocks in the Kezilenuer Formation (Fig. 4(d)) 
(Aziz et al., 2020; Gao et al., 2022; Nyakilla et al., 2022).

Overall, mudstone and carbonaceous mudstone exhibit fair to 
excellent hydrocarbon generation potential, which is better than 
coal. This phenomenon is mainly attributed to the intrinsically 
lower HI values characteristic of Type III kerogen constituents in 
the coal matrix, as well as post-sampling hydrocarbon volatiliza
tion (S1 escape), exhibiting reduced hydrocarbon generation po
tential of coal samples (Huang et al., 2019; Gao et al., 2022; Mkono 
et al., 2023).

4.2. Well log responses of source rocks

Mature source rocks are characterized by typical well log re
sponses, such as high gamma-ray, resistivity, acoustic transit time, 

and compensated neutron porosity, along with reduced bulk 
density (Tan et al., 2015; Sahoo et al., 2021; Lai et al., 2022; Goliatt 
et al., 2023). These features result from the physical and chemical 
attributes of organic matter (Bolandi et al., 2015; Aziz et al., 2020; 
Lee et al., 2022). The Kezilenuer Formation, contains three lith
ologies—mudstone, carbonaceous mudstone, and coal, resulting in 
varying well log response characteristics.

Carbonaceous mudstone and coal, characterized by high organic 
content, show strong correlations with well log curves (Fig. 5). They 
exhibit negative correlations with gamma-ray, bulk density, and 
spontaneous potential curves, while positive correlations with 
acoustic transit time, neutron porosity, and resistivity curves (Fig. 5). 
Among these, acoustic transit time and bulk density are particularly 
sensitive to TOC (Fig. 5(b) and (c)), while showing weaker correla
tions with resistivity and spontaneous potential (Fig. 5(e) and (f)).

In contrast, mudstone TOC shows weaker correlations with 
most well log curves due to its lower organic content and intense 
compaction (Fig. 6). However, resistivity and spontaneous poten
tial curves display stronger correlations with TOC compared to 
other curves (Fig. 6(e) and (f)).

Actually, GR will show high correlation relationships with TOC 
content, and high GR readings will imply a high TOC content (Tan 
et al., 2015; Zhao et al., 2016). However, the source rocks 
(mudstone) in the Kezilenuer Formation are deposited in shore- 
shallow lake, and no enough radioactive elements (U) will be 
absorbed in the source rocks, and the GR readings will not reflect 
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the TOC content, but the shale content (Huang et al., 2019; Lai 
et al., 2024; Lu et al., 2025). Actually, U enrichment is not com
mon in lacustrine source rocks (Tenaglia et al., 2020; Zheng et al., 
2021). Previous studies also indicate GR is not a good indicator of 
TOC for lacustrine source rocks (Lai et al., 2024). In addition, the 
mudstone will display low SP amplitudes, and the organic matter- 
rich mudstone will further reduce the SP amplitudes (Shi et al., 
2016). Therefore, high TOC content will result in low SP readings 
in the dark mudstone of the Kezilenuer Formation. As can be seen 
From Fig. 6, SP shows a negative trend with TOC values.

As burial depth increases, the physical and chemical properties 
of mudstones undergo significant  transformations (Zhao et al., 
2005; Lai et al., 2023b). Intense compaction causes grain to 
become more closely contact, thereby reducing sonic travel time 
while increasing bulk density and resistivity (Hu et al., 2015; Lai 
et al., 2022; Lai et al., 2023b). As illustrated in Fig. 7, the same 
relatively stable mudstone interval in the study area occurs at 
shallower depths in Fig. 7(a) but extends deeper in Fig. 7(b). A 
direct comparison of these intervals reveals that Fig. 7(b) exhibits 
higher resistivity and bulk density values, along with reduced 
sonic travel time. Source rocks will display markedly different log 

responses compared to their different buried (Zhao et al., 2005; Hu 
et al., 2015; Lai et al., 2023b).

5. Discussion

5.1. Multivariate regression prediction

Multivariate regression, which integrates information from 
multiple well log curves, is employed for TOC prediction as it 
overcomes the limitations of relying on single curve (Shi et al., 
2016; Lai et al., 2024). In this study, multivariate regression was 
applied to predict the TOC of carbonaceous mudstone and coal, 
utilizing their strong correlations with density, gamma-ray, and 
acoustic transit time curves. The TOC prediction results of all 
methods are shown in Supplementary Table. The regression for
mula is as follows: 

TOC= − 0:2953⋅GR − 31:5827⋅DEN + 0:1245⋅DT + 112:7018
(3) 

The predicted TOC values show a moderate to strong 

Fig. 5. Cross-plots of logging curves versus TOC content of carbonaceous mudstone and coal.
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correlation with measured TOC (R2 = 0.7381), with most data 
points aligning closely along the y = x line (Fig. 8(a)). This indicates 
the reliability of the multivariate regression model for TOC pre
diction for carbonaceous mudstone and coal.

5.2. ΔlgR method

In this study, acoustic and resistivity well log curves were used 
with the ΔlgR method (Eqs. (1) and (2)) to predict mudstone TOC. 
As shown in Fig. 8(b), the ΔlgR method yielded a determination 
coefficient  of R2 = 0.5466, indicating significant  data dispersion 
and poor predictive accuracy (Fig. 8(b)). The ΔlgR method tends to 
underestimate low TOC values (<2 wt%) and fails to capture high 
TOC values (>6 wt%) (Fig. 8(b)).

Though widely used for shallow clastic and carbonate rocks, the 
ΔlgR method faces limitations in coaly source rocks of Kezilenuer 
Formation due to compaction and fluid effects, which weaken the 
responses of resistivity and acoustic logs, reducing predictive ac
curacy (Hu et al., 2015; Liu et al., 2021; Lee et al., 2022). The poor 
performance of the ΔlgR method is attributed to the weak 

correlation between acoustic transit time and TOC in this study 
(Fig. 6(b)). The coaly source rocks of Kezilenuer Formation have 
undergone significant compaction and stress, which reduces the 
interaction between porosity curves, resistivity, and TOC (Fig. 6). 
Consequently, the ΔlgR method, which relies on the overlay of 
acoustic and resistivity curves, is less effective for coaly source 
rocks of Kezilenuer Formation (Hu et al., 2015; Rui et al., 2020; Lai 
et al., 2024). To address these challenges, machine learning tech
niques have been increasingly employed to predict TOC by 
leveraging nonlinear relationships in well log data (Rui et al., 2020; 
Ochoa et al., 2022; Sahoo et al., 2021; Goliatt et al., 2023).

5.3. Machine learning models

The TOC of mudstone shows a certain degree of correlation 
with well log curves; however, these correlations are generally 
weak (Fig. 6). Initially, the traditional ΔlgR method was applied to 
predict TOC, but it demonstrated poor predictive performance in 
the study area (Fig. 8(b)). To address this limitation, machine 
learning methods, including MLP, RF, and XGBoost, were 

Fig. 6. Cross-plots of logging curves versus TOC content of mudstone.
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employed. These methods are able to capture complex nonlinear 
relationships among variables, which are often beyond the scope 
of the ΔlgR model (Zhu et al., 2018; Mulashani et al., 2021; Goliatt 
et al., 2023; Lai et al., 2024). In addition, a 5-fold cross-validation 

approach and Bayesian optimization algorithm are used to pre
vent overfitting  and optimize the better parameters for each 
model (Fig. 3). The RMSE values for the training set, testing set, and 
all samples are summarized in Table 1.

Fig. 7. Comparison of the well logging response characteristics of source rocks at different buried depth.

Fig. 8. (a) Cross-plots of measured TOC content of carbonaceous mudstone and coal versus TOC predicted from multiple regression, (b) cross-plots of measured TOC content of 
mudstone versus TOC predicted from ΔlgR method.

Table 1 
Comparative analysis of mudstone TOC prediction models.

Methods Well log parameters Measured TOC All predicted TOC Train RMSE Test RMSE All samples RMSE

ΔlgR RT, AC 0:21 ∼ 10:15
2:43(79)

0:27 ∼ 7:15
2:58(79)

1.3996

MLP DT, CNC, GR, RT, DEN, SP 0:21 ∼ 10:15
2:43(79)

0:44 ∼ 9:32
2:35(79)

0.6614
0.8441 0.7211

RF DT, CNC, GR, RT, DEN, SP 0:21 ∼ 10:15
2:43(79)

0:37 ∼ 8:93
2:36(79)

0.4833
0.7988 0.5957

XGBoost DT, CNC, GR, RT, DEN, SP 0:21 ∼ 10:15
2:43(79)

0:39 ∼ 9:57
2:38(79)

0.3848
0.6003 0.4602

Note: The fraction represents the minimum ~ maximum/average value (number of samples) of TOC.

F. Zhao, J. Lai, Z.-L. Xia et al. Petroleum Science 22 (2025) 3599–3612

3606



5.3.1. MLP model
The MLP model was optimized using Bayesian optimization to 

adjust parameters. The optimal parameters for MLP are listed in 
Table 2, and the MLP structure is illustrated in Fig. 3(a).

The MLP model demonstrated good predictive performance, 
with R2 values of 0.912, 0.8249, and 0.8846 for the training set, test 
set, and all samples, respectively. Corresponding RMSE values 
were 0.6614, 0.8414, and 0.7211 (Fig. 9(a)–(d), (g); Table 1). While 
the model showed slight underperformance in predicting high 
TOC values during training, the predicted and measured values 
were generally well-aligned along the y = x line, indicating good 

Table 2 
MLP neural network parameter settings.

Parameter Value

Number of neurons in input layer 6
Hidden layer 1 3
Hidden layer 2 6
Learning rate 0.1419
Number of iterations 2845
Number of neurons in out layer 1

Fig. 9. A comparison of the predicted TOC and measured TOC for the different methods. (a), (d), and (g) are the cross-plots of the measured and predicted TOC values by the MLP 
model for the training, testing, and all samples, respectively. (b), (e), and (h) are the cross-plots of the measured and predicted TOC values by the RF model for the training, testing, 
and all samples, respectively. (c), (f), and (i) are the cross-plots of the measured and predicted TOC values by the XGBoost model for the training, testing, and all samples, 
respectively.

Table 3 
RF parameter settings.

Parameter or function Value

Number of iterations 22
Regression tree maximum depth 8
Minimum sample of leaf nodes 1
Minimum sample size required for leaf node division 3
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generalization ability. In contrast to the ΔlgR method, the MLP 
model successfully captured high TOC values, as illustrated by the 
resulting TOC distribution (Fig. 9(g)).

5.3.2. RF model
The RF model, optimized using Bayesian methods, achieved 

strong predictive performance with R2 values of 0.9603, 0.8366, 
and 0.9256 for the training set, test set, and all samples, respec
tively. The optimal parameters for RF are listed in Table 3 corre
sponding RMSE values were 0.4833, 0.7988, and 0.5967 (Fig. 9(b)– 
(e), (h); Table 1). These results highlight the RF model's robust 
predictive capabilities.

However, the model struggled to accurately predict high TOC 
values, as evidenced by deviations from the y = x line for data 
points corresponding to higher TOC values (Fig. 9(h)). This limi
tation may be due to the scarcity of high TOC samples in the 
dataset, which restricted the model's ability to learn from these 
instances.

5.3.3. XGBoost model
The XGBoost model, with optimized parameters listed in 

Table 4, outperformed all other methods in this study. It ach
ieved R2 values of 0.9693, 0.9073, and 0.9517 for the training set, 
testing set, and all samples, respectively, with RMSE values of 
0.3848, 0.6003, and 0.4602 (Fig. 9(c)–(f), (i); Table 1).

The XGBoost model demonstrated the highest predictive ac
curacy and lowest error among all models. Feature importance 
analysis revealed that resistivity (RT) had the greatest influence on 
TOC prediction, followed by SP, DEN, DT, CNC, and GR (Fig. 10). 
Notably, SP made a significant contribution, while GR had the least 
impact, aligning with the relationship between TOC and well log 

parameters illustrated in Fig. 6. This highlights the importance of 
incorporating SP in TOC prediction for coaly hydrocarbon source 
rocks.

Overall, the XGBoost model exhibited superior performance in 
handling complex nonlinear relationships and multivariable in
teractions, significantly  outperforming the ΔlgR, MLP, and RF 
models shown in Figs. 11 and 12. In addition, lithologies of 
mudstone, carbonaceous mudstone and coal are frequently inter
bedded; however, these figures present a comparison between 
measured TOC and predicted TOC in the mudstone interval 
(Figs. 11 and 12).

5.4. Implication for source rock prediction

Accurately predicting TOC in hydrocarbon source rocks is crit
ical for evaluating hydrocarbon generation potential and guiding 
oil and gas exploration (Zhao et al., 2005; Sahoo et al., 2021; Gao 
et al., 2022; Mkono et al., 2023). However, complex geological 
conditions and the limitations of traditional methods, such as the 
ΔlgR model, hinder prediction accuracy (Shi et al., 2016; Lai et al., 
2024). The ΔlgR method, relying solely on acoustic and resistivity 
curves, fails to capture the multifaceted relationship between TOC 
and well log parameters, resulting in poor performance in coaly 
hydrocarbon source rocks (Hu et al., 2015; Liu et al., 2021; Lee 
et al., 2022; Lai et al., 2024). This study shows that incorporating 
more comprehensive logging data, such as SP, DEN, and CNC, into 
machine learning models significantly  enhances TOC prediction 
accuracy (Figs. 8(b) and 9).

Among the models employed, XGBoost demonstrated the best 
predictive performance, accurately capturing both low and high 
TOC values due to its capability of handling complex nonlinear 
interactions and multivariable relationships (Figs. 11 and 12). 
While MLP and RF models also outperformed the ΔlgR method, 
they showed deficiencies in predicting high TOC values, likely due 
to limited representation of high-value samples during training 
(Fig. 9). These findings  highlight the potential of advanced ma
chine learning models, particularly XGBoost, for improving TOC 
prediction in coaly hydrocarbon source rocks, providing more 
reliable guidance for coal-bearing formation exploration.

In addition to predicting TOC, other source rock parameters—such 
as Ro, Tmax, and hydrocarbon generation potential—are also 
important indicators for source rock evaluation. Integration of ma
chine learning with numerous geological data enables accurate pre
diction of key reservoir indicators. These data-driven models 
significantly  enhance decision-making precision in coal-bearing 
formation hydrocarbon exploration.

6. Conclusion

The evaluation of source rocks is critical for both conventional 
and unconventional oil and gas exploration, as well as for coaly 
hydrocarbon source rocks. This study focused on the Kezilenuer 
Formation in the Kuqa Depression and yielded the following key 
findings.

(1) Mudstone, carbonaceous mudstone, and coal are the pri
mary lithology types of source rocks. The organic matter is 
predominantly Type III, with minor Type II2. Mudstone ex
hibits fair to good hydrocarbon generation potential, while 
carbonaceous mudstone and coal range from fair to poor 
source rocks.

Table 4 
XGBoost parameter settings.

Parameter or function Value

Number of iterations 75
Learning rate 0.1
Regression tree maximum depth 2
Minimum loss reduction 0.1922
Minimum sample of leaf nodes 1

Fig. 10. Permutation feature importance of XGBoost model for each input parameter.
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(2) The traditional ΔlgR method demonstrated poor accuracy 
for predicting TOC in coaly source rocks due to its limited 
input variables and inability to capture complex relation
ships. The ΔlgR method is unsuitable for TOC prediction in 
coaly source rocks of Kezilenuer Formation.

(3) Machine learning models (MLP, RF, and XGBoost) signifi
cantly improved TOC prediction accuracy. Among them, 
XGBoost demonstrated the highest predictive accuracy due 

to its ability to handle complex and nonlinear relationships 
and multivariable interactions, making it the most suitable 
method for TOC prediction in coaly source rocks of Kezi
lenuer Formation. For coaly source rocks, machine learning 
methods have the advantages for TOC prediction, and will 
provide technical guidance for coal-bearing formation hy
drocarbon exploration.

Fig. 11. TOC content predicted using ΔlgR method, MLP, RF, and XGBoost model of mudstone in Well A.
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