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Coaly source rocks have attracted considerable attention for their significant hydrocarbon generation
potential in recent years. However, limited study is performed on utilizing geochemical data and well
log data to evaluate coaly hydrocarbon source rocks. In this study, geochemical data and well log data
are selected from two key wells to conduct an evaluation of coaly hydrocarbon source rocks of Jurassic
Kezilenuer Formation in Kuga Depression of Tarim Basin. Initially, analysis was focused on geochemical
parameters to assess organic matter type, source rock quality, and hydrocarbon generation potential.
Lithology types of source rocks include mudstone, carbonaceous mudstone and coal. The predominant
organic matter type identified was Type III and Type II,, indicating a favorable hydrocarbon generation

Edited by Meng-Jiao Zhou

Keywords: potential. Well log data are integrated to predict total organic carbon (TOC) content, and the results
Source rock indicate that multiple regression method is effective in predicting TOC of carbonaceous mudstone and
Well logs coal. However, the AlgR method exhibited limited predictive capability for mudstone source rock.

Kuga Depression
Kezilenuer formation
Machine learning

Additionally, machine learning methods including multilayer perceptron neural network (MLP), random
forest (RF), and extreme gradient boosting (XGBoost) techniques are employed to predict TOC of
mudstone source rock. The XGBoost performs best in TOC prediction with correlation coefficient (R?) of
0.9517, indicating a close agreement between measured and predicted TOC values. This study provides a
reliable prediction method of coaly hydrocarbon source rocks through machine learning methods, and

will provide guidance for resource assessment.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

1. Introduction

Source rocks are the essential petroleum systems element
(Hunt, 1996; Sahoo et al., 2021). As global energy demand con-
tinues to grow, the exploration and development of coal-bearing
formation have become increasingly important (Lee et al., 2022;
Mkono et al., 2023). Therefore, evaluation of quality and spatial
distribution of coaly source rocks is essential for resource assess-
ment and petroleum system analysis (Bolandi et al., 2015; Goliatt
et al., 2023). The content of total organic carbon (TOC) is a crucial
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parameter in source rock evaluation (Aziz et al., 2020; Goliatt et al.,
2023; Lu et al.,, 2025). TOC not only reflects the hydrocarbon po-
tential of source rocks, but also provides important inputs for
petroleum system analysis (Hood et al., 1975; Mulashani et al.,
2021; Gao et al, 2022; Gordon et al., 2022). Conventional
methods for measuring TOC primarily rely on core analysis and
geochemical experiments such as pyrolysis. Though these exper-
iment approaches are commonly accurate, experiment analysis are
limited to cored intervals, limiting the comprehensive assessment
of vertical continuity and changes (Zhu et al., 2018; Zhao et al,,
2019; Tenaglia et al., 2020; Sahoo et al.,, 2021). Additionally, py-
rolysis is time consuming and expensive (Sahoo et al., 2021; Gao
et al,, 2022). As a result, the efficient and precise estimation of
TOC has become a key area of interest in hydrocarbon source rock
analysis (Bolandi et al., 2015; Wang et al., 2020).
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In recent years, advancements in logging technology have
sparked increasing interest in predicting TOC using well log data
(Zhao et al., 2016; Zhu et al., 2018; Séco et al., 2019; Tenaglia et al.,
2020; Mkono et al., 2023). Well log is characterized by vertical
continuity and high resolution, providing valuable information
about underground lithology, fluids, TOC and other parameters
(Mahmoud et al., 2017; Handhal et al., 2020; Mulashani et al.,
2021; Zeng et al., 2021; Lee et al., 2022). However, relationship
between well log data and TOC is complex, making it challenging
for traditional linear regression and empirical formulas to capture
its non-linear features (Zhu et al., 2018; Séco et al., 2019; Nyakilla
et al., 2022; Ochoa et al., 2022). For instance, Schmoker (1979)
proposed a model for predicting organic carbon content based on
density logging, while Passey et al. (1990) introduced the AlgR
method for predicting organic carbon content (Passey et al., 1990).
These widely adopted methods have shown limited applicability
in coaly hydrocarbon source rocks compared to shallow buried
sedimentary basins (Hu et al., 2015; Shi et al., 2016; Bolandi et al.,
2017; Lai et al., 2022).

In recent studies, with the increasing complexity and demands
of source rock evaluation, there has been a growing interest in
combining machine learning or deep learning techniques with
well logs to assess hydrocarbon source rock quality (Rui et al.,
2020; Aziz et al., 2020; Maroufi and Zahmatkesh, 2023; Mkono
et al., 2023). Numerous studies have highlighted the effective-
ness and accuracy of machine learning techniques in predicting
TOC content (Sfidari et al., 2012; Lee et al., 2022; Goliatt et al.,
2023). Machine learning-based TOC prediction methods have the
advantages of accuracy and efficiency than traditional approaches
(El Sharawy and Gaafar, 2012; Mkono et al., 2023; Maroufi and
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Zahmatkesh, 2023; Goliatt et al., 2023). Algorithms such as back
propagation (BP), group method of data handling (GMDH) neural
network, linear regression (LR), random forest (RF), and deep
learning (DL) have exhibited strong predictive performance for
TOC prediction across various geological conditions (Zhu et al.,
2018; Wang et al., 2019; Mulashani et al., 2021; Zhang et al.,
2023; Zhang et al., 2023).

This study focuses on the Jurassic source rocks located in the
Kuga Depression of the Tarim Basin, China. The aim of this study is
to optimize suitable methods for evaluating coaly hydrocarbon
source rocks. The organic matter type and hydrocarbon generation
potential are assessed from three different lithology types
(mudstone, coal and carbonaceous mudstone) (Zhao et al., 2005;
Huang et al.,, 2019). Various methods, including the multivariate
regression, AlgR method, MLP, RF, and XGBoost model, are applied
to predict TOC for different lithologies. This study will provide
insights into the coaly hydrocarbon source rocks evaluation using
well logs, and has implication for resource assessment and hy-
drocarbon exploration.

2. Geological setting

The Kuqga Depression, situated in the northern region of the
Tarim Basin and adjacent to the Tianshan Mountains, and is a
Mesozoic to Cenozoic foreland depression (Fig. 1) (Guo et al., 2018;
Gao et al,, 2022). The Kuqa Depression is categorized by four
distinct structural belts: namely the Northern Monocline Belt, the
Kelasu Structural Belt, the Qiulitage Structural Belt, and the
Southern Gentle Slope (Fig. 1) (Zhao et al., 2005; Lai et al., 2017,
2023a). Additionally, it includes three sags: Wushi Sag, Baicheng
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Fig. 1. Maps show the structural characteristics of the Kuga Depression in the Tarim Basin of western China, where the study area is located.
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Sag, and Yangxia Sag (Fig. 1) (Guo et al., 2018; Huang et al., 2019;
Lai et al., 2023a).

During the Late Triassic to Middle Jurassic, the relatively warm
and humid climate favored the formation of lacustrine and
lacustrine-swamp transitional sediments, which were accumu-
lated in the Kuqa Depression (Zhao et al., 2005; Lai et al., 2017;
Huang et al.,, 2019). The source rocks in the Kuga Depression
mainly consist of six sets, including the Triassic Kelamayi (T»-3k),
Huangshanjie (Tsh), Taligike Formation (Tst), as well as the
Jurassic Yangxia (J1y), Kezilenuer (Jkz), and Qiakemake Formation
(Joq) (Fig. 2) (Gao et al., 2022; Wan et al., 2022; Li et al., 2025). It is
worth noting that the Karamay, Huangshanjie, and Qiakemake
Formation are interpreted as lacustrine source rocks, while the
Taligike, Yangxia, and Kezilenuer Formation are coaly source rocks
(Zhao et al., 2005; Guo et al., 2018; Gao et al., 2022). Laterally, the
petroleum source rocks are characterized by their extensive dis-
tribution, substantial thicknesses (up to 320 m), and high organic
matter content (average TOC up to 2.15%) in the Kuga Depression
(Zhao et al., 2005; Wang et al., 2022). The petroleum source rocks
of the Kezilenuer Formation have attained an overall mature stage
(average R, > 0.7%), indicating that they are entering the oil gen-
eration phase (Guo et al., 2018).

This study focuses on source rocks of the Jurassic Kezilenuer
Formation, which was deposited in a braided river delta-swamp
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Fig. 2. Generalized Mesozoic stratigraphy of the Kuga Depression, Tarim Basin,
showing major oil and gas combinations.
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depositional system, and contain coaly strata (Zhao et al., 2005;
Gao et al, 2022). The lithology of Jurassic Kezilenuer source
rocks comprises mudstone, carbonaceous mudstone, and coal
(Fig. 2) (Zhao et al., 2005; Huang et al., 2019).

3. Data and methods

This study evaluates the source rocks of the Jurassic Kezilenuer
Formation using two primary datasets: geochemical analysis and
well log data. Geochemical analysis provides key parameters of
studied source rocks, while well log data is utilized for TOC pre-
diction for intervals without core control. Then, a correlation
analysis was conducted between TOC and logging parameters for
various lithology types, followed by the utilization of multiple
regression methods to predict the TOC content of source rocks.
Finally, this study attempted to employ AlgR, MLP, RF, and XGBoost
methods to predict total organic carbon content in mudstone
while assessing the predictive effects of these diverse methodol-
ogies. We used the coefficient of determination (R?) and root mean
square error (RMSE) to evaluate the performance of the different
models.

3.1. Data

A total of 103 samples from Wells A and B in the Kuqa
Depression were collected to study the source rocks of the Kezi-
lenuer Formation. The lithology of the samples includes mudstone,
carbonaceous mudstone, and coal. Pyrolysis analysis was con-
ducted using a Rock Eval OGE-V instrument under standard con-
ditions, yielding parameters such as TOC, S1 (free hydrocarbon), S2
(pyrolysed hydrocarbon), Tpax (temperature at the highest yield of
S2) and hydrogen index (HI) (Alizadeh et al., 2018; Shalaby et al.,
2019; Wang et al., 2022).

Geophysical well logs data include open-hole caliper (CAL),
acoustic transit time logs (DT), deep and medium resistivity (RT,
RM), natural gamma-ray (GR), bulk density (DEN), compensated
neutron porosity (CNC), and spontaneous potential (SP).

3.2. AlgR method

The AlgR method predicts TOC by overlaying deep resistivity
curve and porosity curve (Passey et al., 1990). The model is used to
predict TOC in shallow clastic and carbonate rocks (Hu et al., 2015;
Bolandi et al., 2017; Alizadeh et al., 2018; Lai et al., 2024). It cal-
culates AlgR, which correlates linearly with TOC and varies with
thermal maturity. The equations are as follows:

AlgR =10g(RT / RTgaseline) + k(AL — Atgasetine) (1)

TOC = AlgR-10(2'297_0'1688L0M) (2)
where RT is the resistivity log, Q-m, and At is the sonic transit time
log, ps/m; RTgaseline is the baseline of RT, Q-m; and Atgaseline iS the
baseline of DT, ps/m; LOM, linked to thermal maturity, can be
determined by the vitrinite reflectance; k is the coefficient (Passey
et al,, 1990; Aziz et al., 2020; Lai et al., 2022).

3.3. Multilayer perceptron neural network model (MLP)

The MLP is a type of feedforward neural network model that
comprises an input layer, one or more hidden layers, and an output
layer, with each layer containing interconnected neurons (Aziz
et al,, 2020; Goliatt et al., 2023). MLP model adjusts weights and
thresholds through backpropagation to minimize error. Due to its
adaptability and ability to model nonlinear relationships, MLP can
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be employed in classification and prediction tasks (Bolandi et al.,
2017; Liu et al,, 2021; Zhang et al., 2023). Additionally, the input
data includes six logging curves (GR, DT, CNC, RT, DEN, and SP), and
the output data is the measured TOC (Fig. 3). In this study, a two-
hidden-layer MLP was employed for TOC prediction (Fig. 3(a)).

3.4. Random forest (RF)

Random forest is an ensemble model composed of decision
trees (Breiman, 2001). It uses Bootstrap resampling to create
multiple subsets of the dataset, which are then used to construct
decision trees through random feature selection (Gordon et al,,
2022) (Fig. 3(b)). Predictions are aggregated through majority
voting or averaging, enhancing robustness and reducing over-
fitting (Safaei-Farouji and Kadkhodaie, 2022). This approach im-
proves prediction accuracy and is particularly effective for
handling large datasets with complex relationships (Cappuccio
et al., 2021).

3.5. Extreme gradient boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin (2016), is a gradient
boosting algorithm known for its high efficiency and flexibility. It
constructs multiple weak learners iteratively, combining them
into a strong predictive model. XGBoost reduces overfitting
through regularization and handles large datasets with high
computational efficiency (Liu et al., 2021). Its ability to model
complex nonlinear relationships has been demonstrated in various

network model
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regression and classification tasks (Liu et al., 2021). The model
architecture used to predict TOC is shown in Fig. 3(c).

3.6. Workflow of TOC prediction

The workflow for TOC prediction is illustrated in Fig. 3. The
process begins with extracting well log curves (GR, DT, CNC, RT,
DEN, and SP) and TOC parameters derived from Pyrolysis. Subse-
quently, the dataset designated for TOC prediction is randomly
divided into a training and a test subset, adhering to a 7:3 ratio.
After normalization, the data are input into MLP, RF, and XGBoost
models. A 5-fold cross-validation approach is utilized during
training to enhance model generalization and minimize over-
fitting. Meanwhile, Bayesian optimization are used to optimize the
hyperparameters for each model. Finally, the models are evaluated
using the test set, and predictive results are generated.

4. Results

4.1. Organic matter type, source rock quantity, and hydrocarbon
generation potential

The lithology types of the Kezilenuer Formation samples consist
of mudstone, carbonaceous mudstone, and coal (Zhao et al., 2005;
Huang et al., 2019). Pyrolysis analysis results are shown in Supple-
mentary Table. Hydrogen index (HI) was plotted against the tem-
perature at which S2 hydrocarbons yield is highest (Tyax) to classify
organic matter type categories. As shown in Fig. 4(a), the source
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Fig. 4. Geochemical characteristics of Kezilenuer source rock. (a) Cross-plots of HI versus Tp,,x Showing organic matter type; (b) mudstone hydrocarbon potential distributions; (c)
carbonaceous mudstone hydrocarbon potential distribution; (d) coal hydrocarbon potential distribution.

rocks predominantly contain Type Il kerogen and minor occur-
rences of Type IlI,. Type Il kerogen indicates gas-prone organic
matter (Huang et al., 2019; Mkono et al., 2023; Hu et al., 2024).

Fig. 4(b), (c), and (d) illustrate the relationships between S1-+S2
and TOC, and HI and S1+-S2, to evaluate the hydrocarbon generation
potential of mudstone, carbonaceous mudstone, and coal. These
cross-plots reveal variations in hydrocarbon production potential
across different lithologies. Mudstone samples range from poor to
excellent source rocks (Fig. 4(b)), while carbonaceous mudstone
samples are mostly classified as poor to good, with one sample
rated as excellent (Fig. 4(c)). Coal samples, however, are categorized
as poor to fair source rocks in the Kezilenuer Formation (Fig. 4(d))
(Aziz et al., 2020; Gao et al., 2022; Nyakilla et al., 2022).

Overall, mudstone and carbonaceous mudstone exhibit fair to
excellent hydrocarbon generation potential, which is better than
coal. This phenomenon is mainly attributed to the intrinsically
lower HI values characteristic of Type IIl kerogen constituents in
the coal matrix, as well as post-sampling hydrocarbon volatiliza-
tion (S1 escape), exhibiting reduced hydrocarbon generation po-
tential of coal samples (Huang et al., 2019; Gao et al., 2022; Mkono
et al,, 2023).

4.2. Well log responses of source rocks

Mature source rocks are characterized by typical well log re-
sponses, such as high gamma-ray, resistivity, acoustic transit time,

3603

and compensated neutron porosity, along with reduced bulk
density (Tan et al., 2015; Sahoo et al., 2021; Lai et al., 2022; Goliatt
et al., 2023). These features result from the physical and chemical
attributes of organic matter (Bolandi et al., 2015; Aziz et al., 2020;
Lee et al., 2022). The Kezilenuer Formation, contains three lith-
ologies—mudstone, carbonaceous mudstone, and coal, resulting in
varying well log response characteristics.

Carbonaceous mudstone and coal, characterized by high organic
content, show strong correlations with well log curves (Fig. 5). They
exhibit negative correlations with gamma-ray, bulk density, and
spontaneous potential curves, while positive correlations with
acoustic transit time, neutron porosity, and resistivity curves (Fig. 5).
Among these, acoustic transit time and bulk density are particularly
sensitive to TOC (Fig. 5(b) and (c)), while showing weaker correla-
tions with resistivity and spontaneous potential (Fig. 5(e) and (f)).

In contrast, mudstone TOC shows weaker correlations with
most well log curves due to its lower organic content and intense
compaction (Fig. 6). However, resistivity and spontaneous poten-
tial curves display stronger correlations with TOC compared to
other curves (Fig. 6(e) and (f)).

Actually, GR will show high correlation relationships with TOC
content, and high GR readings will imply a high TOC content (Tan
et al, 2015; Zhao et al, 2016). However, the source rocks
(mudstone) in the Kezilenuer Formation are deposited in shore-
shallow lake, and no enough radioactive elements (U) will be
absorbed in the source rocks, and the GR readings will not reflect
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Fig. 5. Cross-plots of logging curves versus TOC content of carbonaceous mudstone and coal.

the TOC content, but the shale content (Huang et al., 2019; Lai
et al.,, 2024; Lu et al,, 2025). Actually, U enrichment is not com-
mon in lacustrine source rocks (Tenaglia et al., 2020; Zheng et al.,
2021). Previous studies also indicate GR is not a good indicator of
TOC for lacustrine source rocks (Lai et al., 2024). In addition, the
mudstone will display low SP amplitudes, and the organic matter-
rich mudstone will further reduce the SP amplitudes (Shi et al.,
2016). Therefore, high TOC content will result in low SP readings
in the dark mudstone of the Kezilenuer Formation. As can be seen
From Fig. 6, SP shows a negative trend with TOC values.

As burial depth increases, the physical and chemical properties
of mudstones undergo significant transformations (Zhao et al,,
2005; Lai et al, 2023b). Intense compaction causes grain to
become more closely contact, thereby reducing sonic travel time
while increasing bulk density and resistivity (Hu et al., 2015; Lai
et al,, 2022; Lai et al., 2023b). As illustrated in Fig. 7, the same
relatively stable mudstone interval in the study area occurs at
shallower depths in Fig. 7(a) but extends deeper in Fig. 7(b). A
direct comparison of these intervals reveals that Fig. 7(b) exhibits
higher resistivity and bulk density values, along with reduced
sonic travel time. Source rocks will display markedly different log

responses compared to their different buried (Zhao et al., 2005; Hu
et al,, 2015; Lai et al., 2023b).

5. Discussion
5.1. Multivariate regression prediction

Multivariate regression, which integrates information from
multiple well log curves, is employed for TOC prediction as it
overcomes the limitations of relying on single curve (Shi et al.,
2016; Lai et al., 2024). In this study, multivariate regression was
applied to predict the TOC of carbonaceous mudstone and coal,
utilizing their strong correlations with density, gamma-ray, and
acoustic transit time curves. The TOC prediction results of all
methods are shown in Supplementary Table. The regression for-
mula is as follows:

TOC= —0.2953-GR — 31.5827-DEN + 0.1245-DT + 112.7018
(3)

The predicted TOC values show a moderate to strong
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Fig. 6. Cross-plots of logging curves versus TOC content of mudstone.

correlation with measured TOC (R?> = 0.7381), with most data
points aligning closely along the y = x line (Fig. 8(a)). This indicates
the reliability of the multivariate regression model for TOC pre-
diction for carbonaceous mudstone and coal.

5.2. AlgR method

In this study, acoustic and resistivity well log curves were used
with the AlgR method (Egs. (1) and (2)) to predict mudstone TOC.
As shown in Fig. 8(b), the AlgR method yielded a determination
coefficient of R* = 0.5466, indicating significant data dispersion
and poor predictive accuracy (Fig. 8(b)). The AlgR method tends to
underestimate low TOC values (<2 wt%) and fails to capture high
TOC values (>6 wt%) (Fig. 8(b)).

Though widely used for shallow clastic and carbonate rocks, the
AlgR method faces limitations in coaly source rocks of Kezilenuer
Formation due to compaction and fluid effects, which weaken the
responses of resistivity and acoustic logs, reducing predictive ac-
curacy (Hu et al.,, 2015; Liu et al., 2021; Lee et al., 2022). The poor
performance of the AlgR method is attributed to the weak
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correlation between acoustic transit time and TOC in this study
(Fig. 6(b)). The coaly source rocks of Kezilenuer Formation have
undergone significant compaction and stress, which reduces the
interaction between porosity curves, resistivity, and TOC (Fig. 6).
Consequently, the AlgR method, which relies on the overlay of
acoustic and resistivity curves, is less effective for coaly source
rocks of Kezilenuer Formation (Hu et al., 2015; Rui et al., 2020; Lai
et al., 2024). To address these challenges, machine learning tech-
niques have been increasingly employed to predict TOC by
leveraging nonlinear relationships in well log data (Rui et al., 2020;
Ochoa et al., 2022; Sahoo et al., 2021; Goliatt et al., 2023).

5.3. Machine learning models

The TOC of mudstone shows a certain degree of correlation
with well log curves; however, these correlations are generally
weak (Fig. 6). Initially, the traditional AlgR method was applied to
predict TOC, but it demonstrated poor predictive performance in
the study area (Fig. 8(b)). To address this limitation, machine
learning methods, including MLP, RF, and XGBoost, were
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Table 1

Comparative analysis of mudstone TOC prediction models.

Methods Well log parameters Measured TOC All predicted TOC Train RMSE Test RMSE All samples RMSE
AlgR RT, AC 0.21 ~ 10.15 027 ~7.15 1.3996
2.43(79) 2.58(79) 0.6614
MLP DT, CNC, GR, RT, DEN, SP 0.21 ~ 10.15 0.44 ~9.32 ’ 0.8441 0.7211
2.43(79) 2.35(79) 04833
RF DT, CNC, GR, RT, DEN, SP 0.21 ~ 10.15 0.37 ~ 893 ’ 0.7988 0.5957
2.43(79) 2.36(79) 0.3848
XGBoost DT, CNC, GR, RT, DEN, SP 0.21 ~ 10.15 0.39 ~9.57 ’ 0.6003 0.4602
2.43(79) 2.38(79)

Note: The fraction represents the minimum ~ maximum/average value (number of samples) of TOC.

employed. These methods are able to capture complex nonlinear
relationships among variables, which are often beyond the scope
of the AlgR model (Zhu et al., 2018; Mulashani et al., 2021; Goliatt
et al., 2023; Lai et al., 2024). In addition, a 5-fold cross-validation
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approach and Bayesian optimization algorithm are used to pre-
vent overfitting and optimize the better parameters for each
model (Fig. 3). The RMSE values for the training set, testing set, and
all samples are summarized in Table 1.
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Table 2 Table 3

MLP neural network parameter settings. RF parameter settings.
Parameter Value Parameter or function Value
Number of neurons in input layer 6 Number of iterations 22
Hidden layer 1 3 Regression tree maximum depth 8
Hidden layer 2 6 Minimum sample of leaf nodes 1
Learning rate 0.1419 Minimum sample size required for leaf node division 3
Number of iterations 2845
Number of neurons in out layer 1

5.3.1. MLP model

The MLP model was optimized using Bayesian optimization to
adjust parameters. The optimal parameters for MLP are listed in

Table 2, and the MLP structure is illustrated in Fig. 3(a).

The MLP model demonstrated good predictive performance,
with R? values of 0.912, 0.8249, and 0.8846 for the training set, test

set, and all samples, respectively. Corresponding RMSE values
were 0.6614, 0.8414, and 0.7211 (Fig. 9(a)—(d), (g); Table 1). While
the model showed slight underperformance in predicting high

TOC values during training, the predicted and measured values
were generally well-aligned along the y = x line, indicating good
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Table 4

XGBoost parameter settings.
Parameter or function Value
Number of iterations 75
Learning rate 0.1
Regression tree maximum depth 2
Minimum loss reduction 0.1922

Minimum sample of leaf nodes

Variable importances

0.30 4

0.25 4

0.20

0.15 4

Importance

0.10 4

0.05 4

0 T
CNC

GR

DT

RT

SP DEN

Fig. 10. Permutation feature importance of XGBoost model for each input parameter.

generalization ability. In contrast to the AlgR method, the MLP
model successfully captured high TOC values, as illustrated by the
resulting TOC distribution (Fig. 9(g)).

5.3.2. RF model

The RF model, optimized using Bayesian methods, achieved
strong predictive performance with R? values of 0.9603, 0.8366,
and 0.9256 for the training set, test set, and all samples, respec-
tively. The optimal parameters for RF are listed in Table 3 corre-
sponding RMSE values were 0.4833, 0.7988, and 0.5967 (Fig. 9(b)-
(e), (h); Table 1). These results highlight the RF model's robust
predictive capabilities.

However, the model struggled to accurately predict high TOC
values, as evidenced by deviations from the y = x line for data
points corresponding to higher TOC values (Fig. 9(h)). This limi-
tation may be due to the scarcity of high TOC samples in the
dataset, which restricted the model's ability to learn from these
instances.

5.3.3. XGBoost model

The XGBoost model, with optimized parameters listed in
Table 4, outperformed all other methods in this study. It ach-
ieved R? values of 0.9693, 0.9073, and 0.9517 for the training set,
testing set, and all samples, respectively, with RMSE values of
0.3848, 0.6003, and 0.4602 (Fig. 9(c)-(f), (i); Table 1).

The XGBoost model demonstrated the highest predictive ac-
curacy and lowest error among all models. Feature importance
analysis revealed that resistivity (RT) had the greatest influence on
TOC prediction, followed by SP, DEN, DT, CNC, and GR (Fig. 10).
Notably, SP made a significant contribution, while GR had the least
impact, aligning with the relationship between TOC and well log
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parameters illustrated in Fig. 6. This highlights the importance of
incorporating SP in TOC prediction for coaly hydrocarbon source
rocks.

Overall, the XGBoost model exhibited superior performance in
handling complex nonlinear relationships and multivariable in-
teractions, significantly outperforming the AlgR, MLP, and RF
models shown in Figs. 11 and 12. In addition, lithologies of
mudstone, carbonaceous mudstone and coal are frequently inter-
bedded; however, these figures present a comparison between
measured TOC and predicted TOC in the mudstone interval
(Figs. 11 and 12).

5.4. Implication for source rock prediction

Accurately predicting TOC in hydrocarbon source rocks is crit-
ical for evaluating hydrocarbon generation potential and guiding
oil and gas exploration (Zhao et al., 2005; Sahoo et al., 2021; Gao
et al.,, 2022; Mkono et al., 2023). However, complex geological
conditions and the limitations of traditional methods, such as the
AlgR model, hinder prediction accuracy (Shi et al., 2016; Lai et al.,
2024). The AlgR method, relying solely on acoustic and resistivity
curves, fails to capture the multifaceted relationship between TOC
and well log parameters, resulting in poor performance in coaly
hydrocarbon source rocks (Hu et al., 2015; Liu et al., 2021; Lee
et al., 2022; Lai et al., 2024). This study shows that incorporating
more comprehensive logging data, such as SP, DEN, and CNC, into
machine learning models significantly enhances TOC prediction
accuracy (Figs. 8(b) and 9).

Among the models employed, XGBoost demonstrated the best
predictive performance, accurately capturing both low and high
TOC values due to its capability of handling complex nonlinear
interactions and multivariable relationships (Figs. 11 and 12).
While MLP and RF models also outperformed the AlgR method,
they showed deficiencies in predicting high TOC values, likely due
to limited representation of high-value samples during training
(Fig. 9). These findings highlight the potential of advanced ma-
chine learning models, particularly XGBoost, for improving TOC
prediction in coaly hydrocarbon source rocks, providing more
reliable guidance for coal-bearing formation exploration.

In addition to predicting TOC, other source rock parameters—such
as Ry, Tmax, and hydrocarbon generation potential—are also
important indicators for source rock evaluation. Integration of ma-
chine learning with numerous geological data enables accurate pre-
diction of key reservoir indicators. These data-driven models
significantly enhance decision-making precision in coal-bearing
formation hydrocarbon exploration.

6. Conclusion

The evaluation of source rocks is critical for both conventional
and unconventional oil and gas exploration, as well as for coaly
hydrocarbon source rocks. This study focused on the Kezilenuer
Formation in the Kuqa Depression and yielded the following key
findings.

(1) Mudstone, carbonaceous mudstone, and coal are the pri-
mary lithology types of source rocks. The organic matter is
predominantly Type III, with minor Type II;. Mudstone ex-
hibits fair to good hydrocarbon generation potential, while
carbonaceous mudstone and coal range from fair to poor
source rocks.
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Fig. 11. TOC content predicted using AlgR method, MLP, RF, and XGBoost model of mudstone in Well A.

(2) The traditional AlgR method demonstrated poor accuracy to its ability to handle complex and nonlinear relationships
for predicting TOC in coaly source rocks due to its limited and multivariable interactions, making it the most suitable
input variables and inability to capture complex relation- method for TOC prediction in coaly source rocks of Kezi-
ships. The AlgR method is unsuitable for TOC prediction in lenuer Formation. For coaly source rocks, machine learning
coaly source rocks of Kezilenuer Formation. methods have the advantages for TOC prediction, and will

(3) Machine learning models (MLP, RF, and XGBoost) signifi- provide technical guidance for coal-bearing formation hy-
cantly improved TOC prediction accuracy. Among them, drocarbon exploration.

XGBoost demonstrated the highest predictive accuracy due
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