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ABSTRACT

The Ordos Basin was recognized as the earliest terrestrial aquatic ecosystem to recover following
Permian-Triassic mass extinction, significantly contributing to organic carbon sequestration during the
early Mesozoic era. Volcanic activity has increased the organic carbon burial capacity of the third
submember of Ch7 (Ch73) within this basin, although it has both positive and negative effects on organic
carbon burial. In this study, we quantitatively characterized the organic carbon burial process by
calculating the organic carbon accumulation rate (OCAR) and proposed an optimal sedimentary model
influenced by volcanic activity. We conducted time series analysis on gamma ray (GR) data from Ch7; to
determine sedimentation rates (SRs) while measuring the density of each sample via hydrostatic
methods. By integrating these measurements with the total organic carbon (TOC) content, we estab-
lished a dynamic OCAR for Ch73 (X = 0.68 g/(cm?-kyr)) and estimated that it sequestered 0.27 Tt of
organic carbon. Our findings indicate that the OCAR under eunixic conditions (X = 1.02 g/(cm?kyr)) is
2.49 times greater than that under ferruginous conditions (X = 0.41 g/(cm?-kyr)). The geochemical
identification fingerprints of volcanism suggest that the top of Ch7s is influenced by volcanoes of
appropriate intensity. In this sedimentary model, the dilution of organic matter (OM) by rapidly
deposited volcanic ash is relatively low. Additionally, the cumulative effect of chemical weathering
intensity due to volcanic activity leads to the input of nutrients from continental sources into the lake
basin. This process promotes increased productivity, resulting in a significant increase in the OCAR
(X = 0.76 g/(cm?kyr)). This study provides new insights for dynamically assessing the impact of
geological events on the OCAR.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

1. Introduction

conditions, and sediment dynamics; it encapsulates significant
geological and biological processes from its formation and is often

Black shale is a distinctive stratigraphic layer characterized by
its high organic content and typically forms under anoxic condi-
tions. This sedimentary formation arises from the complex in-
teractions of materials and energy within the Earth's layers,
serving as a crucial medium for understanding geological changes
(Tissot and Welte, 1984; Galvez et al., 2020; Liang et al., 2021; Jin
et al., 2023). The formation and preservation of black shale are
influenced by various factors, including biological activity, aquatic
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enriched with valuable metals (Tissot and Welte, 1984; Jiang et al.,
2025). In the petroleum industry, black shales with total organic
carbon (TOC) contents exceeding 0.5 wt% are recognized as
effective hydrocarbon source rocks (Tissot and Welte, 1984; Zhao
et al,, 2019; Gao et al.,, 2023; Cao et al,, 2024). Understanding the
complexities of Earth's changing systems and the mechanisms
behind hydrocarbon and metal resource accumulation is essential.
Furthermore, black shale offers critical insights into past envi-
ronmental conditions and structural configurations.

Volcanic activity is intricately linked to biological extinction
and evolution. Increases in biological mortality rates are often
attributed to abrupt environmental changes, such as the eruptions
of large igneous provinces (LIPs) (Algeo and Shen, 2023). These
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events can trigger stress responses that lead to morphologically
observable abnormalities as well as mild genetic disturbances and
deformations (Bos et al., 2024). Additionally, the supply of phos-
phorus (P) is typically more limited than that of nitrogen (N),
which is accessible through autotrophic growth via photosyn-
thesis (Walton et al., 2023; Wang et al., 2023). This limitation may
hinder biological development in terrestrial river and lake eco-
systems (Chen, 2023). Consequently, the substantial release of P
associated with volcanic activity can significantly increase the ef-
ficiency of the N-P cycle within these ecosystems (Carrillo, 2021).
While volcanic activity appears to have both positive and negative
effects on organic matter (OM) sequestration, the optimal condi-
tions for enhancing organic carbon sequestration capacity remain
unclear.

Previous studies have indicated that the high concentrations of
OM in the Chang 7 Member (Ch7) of the Ordos Basin are linked to
volcanic activity (Liu et al., 2024). Volcanic influences were
observed at the base of the third submember of Ch7 (Ch73) (Zhang
et al., 2009), with increasing intensity and decreasing carbon
isotope values (Chen et al., 2020). Following volcanic events, the
OM content progressively increased. Notably, carbon isotope re-
covery occurred rapidly, underscoring the importance of organic
carbon sequestration during recovery phases, which is likely
driven by persistent anoxic conditions (Dal Corso et al., 2020; Sun
et al,, 2020; Lu et al., 2021; Tomimatsu et al., 2021). However,
excessive volcanic ash can trigger bacterial sulfate reduction (BSR)
and dilute OM, indicating that the degree of OM enrichment de-
pends on initial paleoproductivity levels and OM preservation (Liu
et al,, 2021). This illustrates both the positive and negative aspects
of organic carbon burial under volcanic activity in Ch73. However,
the precise influence process of volcanism on OM burial processes
remain unclear. We examine Ch73 of the Ordos Basin as a case
study to determine the optimal organic carbon deposition model
for lake basins influenced by volcanic activity, thereby providing a

better foundation for selecting favorable intervals.

2. Geological setting

During the Middle to Late Triassic period, the North China Plate
became part of the northeastern region of Pangea. The Ordos Basin,
a large multicyclic cratonic basin covering approximately
320,000 km? (Yang et al., 2005), has been situated in the western
part of the North China Plate since the late Permian. Throughout
the Triassic, the basin was located at approximately 30 °N latitude,
within a temperate-subtropical climate zone (Ji et al., 2010). Today,
the Ordos Basin is bordered by the Yinshan Mountains to the
north, the Qinling Orogenic Belt to the south, the Taihang Moun-
tains to the east, and the Ordos Western Margin Thrust Belt to the
west (Fig. 1). By the end of the Triassic, the basin had undergone a
significant transition from marine to continental lacustrine sedi-
mentation (Wu et al., 2023).

The Upper Triassic Yanchang Formation is characterized by a
series of terrigenous clastic deposits derived from river-delta-lake
systems (Wu et al., 2023). This formation is subdivided into ten
submembers (Chang 1-Chang 10), which are identified by marker

beds, sedimentary cycles, and lithological associations, collectively
representing a notable Mesozoic petroleum system (Fig. 2). Ch7 is
particularly significant and consists of siltstone, mudstone,
organic-rich shale, and laminated volcanic ash layers, with total
thicknesses ranging from 80 to 120 m. Recent studies of the Yan-
chang Formation, particularly Ch7, have revealed sedimentary
features indicative of strong tectonic influences, including seis-
mites, volcanic ash deposits, and distinctive mineral formations (e.
g., pyrite veins, marcasite, gypsum, and manganese nodules)
associated with hydrothermal fluid dynamics.
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Fig. 1. Sedimentary facies distribution map of Ch7 in the Ordos Basin (Gao et al.,
2023).

The lower section of Ch73 is primarily composed of a thick layer
of black, organic-rich shale interspersed with tuff layers. In
contrast, the upper section of Ch7; features dark gray shale
interbedded with fine-grained sandstones and siltstones. The Ch7,
and Ch7; members consist of dark gray shale interleaved with silty
shale, siltstones, and fine-grained sandstones.

3. Samples and methods

The samples utilized in this study were sourced primarily from
Well B522 in the Ordos Basin, which is located in the western
region of the North China Craton (Fig. 1). The selected samples
were gray, gray-black, and black shale. Following polishing, these
samples were analyzed via optical microscopy (Fig. 2).

3.1. Total organic carbon (TOC)

For total organic carbon (TOC) analysis, sections of the samples
were treated with 4.5% hydrochloric acid to remove inorganic
carbon, while other portions were left untreated. The samples
were subsequently incinerated at a high temperature of 1250 °C in
an oxygen-rich environment to quantify the TOC. This analysis was
performed via a Skyray CS-188 carbon-sulfur analyzer at the
Laboratory of Organic Geochemistry, Institute of Geology and
Geophysics, Chinese Academy of Sciences.

3.2. Major and trace elements

The samples intended for major and trace element analysis
were first crushed and ground to a particle size of less than 200
mesh. The oxides of major elements were measured via X-ray
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Fig. 2. Stratigraphic column for Ch75 of the Upper Triassic Yanchang Formation in Well B522 (Gao et al., 2023).

fluorescence (XRF) spectrometry, which revealed an analytical
precision greater than 5%. Trace element concentrations were
determined via a Finnigan MAT-252 inductively coupled plasma
(ICP) mass spectrometry (MS) instrument. For trace element
analysis, 50 mg of each sample was accurately weighed and
reacted with 1 mL of HF and 0.5 mL of HNOs3 in screw-top poly-
tetrafluoroethylene (PTFE)-lined stainless steel bombs at 185 °C
for 24 h. The insoluble residues were then digested with 5 ml of
30% HNOs3 for 3 h at 130 °C and subsequently diluted to 25 mL,
achieving an analytical precision exceeding 0.1% (Li et al., 2020).
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3.3. Iron speciation

The weight percentage of pyrite sulfur extracted as a Ag)S
precipitate was used to stoichiometrically calculate Fepy via the
Cr-reduction method (Canfield et al., 1986). Fecarb, Feox, and Fepag
were obtained through a sequential extraction procedure as
described by Poulton and Canfield (Poulton and Canfield, 2005; Jin
et al., 2016). These procedures were conducted at the State Key
Laboratory of Biogeology and Environmental Geology, China Uni-
versity of Geosciences (Wuhan).
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3.4. Organic Carbon Accumulation Rate (OCAR)

Li et al. (2023) introduced a bottom-up methodology for
determining the OCAR. This approach utilized TOC and dry bulk
density (DBD) measurements from 81 stations under the Inter-
national Ocean Discovery Program (IODP), along with well-defined
age models, to establish global organic carbon burial rates for the
Neogene. (Li et al., 2023).

OCAR = SR x TOC% x DBD (1)
where SR is the sedimentation rate and where DBD is the dry bulk
density.

The sedimentation rate (SR, cm/kyr) is a critical component of
this calculation. A time series analysis of gamma-ray (GR) data
from Ch73; was conducted to determine the SR. To reduce distor-
tion in the low-frequency section of the spectra, long-term trends
were removed from the original GR series via the rLOWESS
method (smooth range: 20%-35%), as recommended by Cleveland
(1979). A logarithmic transformation was applied to narrow the
data range and minimize the influence of outliers in cases of
excessive GR value ranges. The correlation coefficient (COCO)
method was used to estimate the correlation between an astro-
nomical solution and the power spectrum of the GR series in the
depth domain, converting the raw GR data from depth measure-
ments into a time-domain SR analysis. The SR with the highest
correlation coefficient was deemed the most reliable. The evolu-
tionary correlation coefficient method (eCOCO) was refined to
track fluctuating SRs, integrating both COCO and sliding window
techniques (Li et al., 2018; Wang et al., 2020; Wei et al., 2023).
These analyses were performed via Acycle v 2.0 software (Li et al.,
2019). For the analysis, an age of 241 Ma was selected for the
bottom of Ch73;, which was determined through zircon U-Pb
dating via the ID-TIMS method (Zhu et al., 2019).

The DBDs of the core samples were measured via an electronic
scale. The sample mass (m) was first measured in air and then in
water, with a liquid density of 1 g/cm?, to calculate the density (p)
of the sample via the appropriate equation. Measurements were
conducted with an electronic scale (model ZZ-C30002) with a
maximum capacity of 3000 g, a minimum display time of 20 d, and
a precision of 0.01 g.

m
m —myq

(2)

P=Po

where p is the density of the sample, pg is the density of the water,
m is the mass of the sample measured in air, and m; is the mass of
the sample measured in water.

4. Results
4.1. Organic carbon burial

In the Ch73; samples, the TOC content varied from 0.37 to
23.10 wt% (X = 6.12 wt%) (Table 1). The density of the samples
decreased as the OM content increased, which reflects the lower
density of OM than that of the rock matrix. The sample densities
ranged from 2.07 to 2.64 g/cm? (X = 2.43 g/cm?) (Fig. 3(a)). The SRs
in Ch7; ranged between 1.20 and 13.00 cm/kyr (X = 5.51 cm/kyr)
(Fig. 3(b)). This finding aligns with previously reported average
sedimentation rates of approximately 4-6 cm/kyr (Chen et al,
2020; Zhang et al., 2017). Notably, when the sedimentation rate
exceeds 7 cm/kyr, there is a significant decrease in the OM content.
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Fig. 3. Analyses of TOC, density, SR, and OCAR data for Ch7s. (a) Crossplots of TOC
versus density. (b) Crossplots of TOC versus SR. (¢) Cross-plots of TOC versus OCAR.

The OCAR ranged from 0.04 to 1.90 g/(cm?kyr) (X = 0.63 g/
(cm?-kyr)) (Fig. 3(c)).

4.2. Iron speciation

The total highly reactive iron (Feyr), defined as the sum of Fepy,
Fecarb, Feox, and Fep,g, ranged from 0.44 to 12.08% (x = 3.62%)
(Table 1). Under reducing (anoxic) conditions, Feyr included
additional contributions from Feca, and Fepy, with Fecar, values
ranging from 0.22 to 3.45% (X = 0.99%) and Fepy values ranging
from 0.03 to 10.16% (x = 2.29%) (Fig. 4). The contents of Fe,x and
Femag Were relatively low, with Feoy ranging from 0.04 to 0.62 %
(x = 0.20%) and Fepag ranging from 0.01 to 0.40% (X = 0.13%). All
samples presented ratios of Feyr to total iron (Fer) (Fepgr/Fer)
exceeding 0.38. Some samples presented ratios of pyrite to Feyg
(Fepy/Fepr) exceeding 0.8. These ratios suggest sediment accu-
mulation over extended periods under an anoxic and iron-rich
(nonsulphidic) water column, with occasional accumulation un-
der sulphidic water columns.
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Table 1
The sample densities, SRs, OCAR and Bulk geochemical parameters of the Ch73 organic-rich shale in Well B522.

Sample Depth, m TOC, % Density, g/cm> SR, cm/kyr OCAR, g/(cm?-kyr) P/Ti Fepy/Fenr Mokgg Uk
No.

1 1964.2 1.30 2.57 7.10 0.24 0.14 0.02 1.14 0.41
2 1961.6 4.93 2.47 7.20 0.88 0.53 0.59 4.50 231
3 1960.9 8.23 2.40 9.60 1.90 0.51 0.83 5.15 1.50
4 1960.2 8.27 2.46 1.50 0.31 0.54 0.68 5.61 2.25
5 1959.8 8.24 245 1.50 0.30 0.29 0.80 5.83 2.92
6 1959.5 1.29 2.50 1.50 0.05 0.20 0.19 0.36 1.29
7 1958.3 22.10 2.08 2.30 1.05 413 0.88 4417 20.83
8 1957.5 3.12 2.55 1.20 0.10 0.31 0.41 7.21 2.61
9 1956.8 5.01 2.38 1.20 0.14 0.46 0.74 13.19 6.18
10 1956.1 2.14 2.49 2.00 0.11 0.22 0.38 0.81 1.24
11 1955.7 1.51 245 2.80 0.10 0.21 0.16 0.74 1.94
12 1952.4 7.96 2.36 8.90 1.67 0.17 0.57 3.71 1.59
13 1951.5 23.10 2.12 3.20 1.57 1.61 0.78 155.94 59.52
14 1950.3 2.73 2.50 3.50 0.24 0.28 0.32 4.96 2.71
15 1950.0 6.08 2.23 3.50 0.47 0.32 0.80 27.02 5.17
16 1949.3 11.40 244 3.70 1.03 0.79 0.84 63.45 17.66
17 1947.3 6.45 2.46 4.30 0.68 0.46 0.86 28.50 8.17
18 1945.3 7.34 2.40 3.80 0.67 1.22 0.79 37.31 5.46
19 1944.8 11.90 2.18 3.70 0.96 1.34 0.79 38.67 13.15
20 1944.4 6.95 2.47 3.70 0.63 0.73 0.80 37.90 9.26
21 1943.2 20.90 2.08 3.90 1.70 1.37 0.79 103.64 30.28
22 1941.7 9.25 2.35 3.50 0.76 0.46 0.85 24.58 7.56
23 1941.0 0.37 2.60 3.80 0.04 0.20 2.78 249
24 1940.5 14.40 2.23 3.70 1.19 141 0.86 36.43 10.44
25 1939.8 0.85 2.63 3.80 0.08 0.21 0.04 1.00 1.02
26 1939.4 0.87 2.59 3.80 0.09 0.21 0.02 1.19 1.08
27 1938.4 0.85 2.62 12.00 0.27 0.21 0.03 1.09 1.04
28 1937.7 5.92 2.40 13.00 1.85 0.49 0.80 16.62 1.78
29 19314 2.62 2.52 7.10 047 0.30 0.08 6.12 1.58
30 1930.6 2.59 2.51 9.30 0.60 1.37 0.39 6.27 2.52
31 1929.8 0.75 2.63 8.20 0.16 0.28 0.03 2.00 0.99
32 1929.2 6.00 2.32 9.60 1.34 0.50 0.78 24.34 4.65
33 1928.4 0.99 2.61 10.30 0.27 0.23 0.14 2.79 1.06
34 1927.5 2.12 2.15 10.30 0.47 0.34 0.31 4.21 2.99
35 1927.0 1.01 2.61 10.30 0.27 0.23 0.05 1.30 1.09
36 1926.0 0.75 2.65 9.50 0.19 0.21 0.02 0.90 1.09

4.3. Major and trace element compositions

A total of 36 shale samples from Well B522 were analyzed for
their major element compositions (Table 1). The samples presented
variable concentrations of SiO; (31.51%-82.44%, X = 53.67%), Al,03
(7.75%-22.38%, x = 14.71%), Ca0 (0.49%-11.32%, X = 2.79%), K,0
(0.84%-6.88%, x = 2.86%), and NayO (0.49%-3.17%, X = 1.30%). The
loss on ignition (LOI) exhibited a wide range (5.18%-39.31%,
X = 15.43%) and was negatively correlated with CaO (Fig. 5(a)) but
positively correlated with total organic carbon (TOC) (Fig. 5(b)).
This suggests that variations in the LOI are related primarily to the
TOC content. Increases in both TOC and carbonate can lead to higher
LOI values, resulting in lower concentrations of Al;03, TiO3, SiO»,
K>0, and Na,0. However, changes in carbonate or TOC contents do
not affect the ratios of elements such as Al,03/SiO, and Al,03/TiO».
The Al,03/SiO, ratios of the mudrock samples varied within a
narrow range (0.09-0.40, x = 0.28) and were lower than those of the
sandstone samples. The Al,03/TiO; ratio also exhibited limited
variation across most samples (22.15-175.28,X = 42.68). In terms of
trace element concentrations, the samples contained Y in the range
of 3.63-45.80 ppm (x = 15.56 ppm), Th from 2.99 to 28.39 ppm
(x = 7.58 ppm), Sc from 0.73 to 10.55 ppm (X = 4.71 ppm), Zr from
56.18 to 201.55 ppm (x 107.84 ppm), and Nb from 7.69 to
17.42 ppm (X = 11.92 ppm). Most samples presented Th/Sc, Th/Nb,
Nb/Y, and La/Yb ratios ranging from 0.74 to 6.37 (x = 2.03), 0.22 to
1.98 (x = 0.64), 0.25 to 3.59 (x = 1.14), and 3.36 to 31.14 (x = 11.04),
respectively.

3501

5. Discussion
5.1. Dynamic carbon sequestration during Ch73

During hothouse periods, primary carbon repositories are
found in continental margins and specific deep ocean regions. For
example, marine environments accounted for approximately 82%
of organic carbon sequestration during Oceanic Anoxic Event 2
(Owens et al., 2018). Other potential carbon sinks include
contemporary lakes (such as the Oyubari area in Japan)
(Hasegawa, 1997), terrestrial soils and coalbeds (e.g., Alton coal in
Utah, US) (Laurin et al., 2019), and marine areas with moderate to
low TOC values (<1 wt¥%).

The Ordos Basin presented an average OCAR (OCAR) of 0.68 g/
(cm?kyr) during the deposition of Ch7s, as calculated via Eq.
(1) (Fig. 6). Although the initial sedimentation of Ch7 occurred in
semideep to deep lake facies covering an area of approximately
65,000 km?, it sequestered an estimated 0.27 trillion tons (Tt) of
organic carbon, as determined via Eq. (3).

OC MAS (Tt) = OCAR x S x T x 107> (3)
where S (km?) represents the sedimentary area of the Ordos Basin,
and T (million years, Myr) denotes the sedimentation time for
Ch7;. According to previous analyses, Ch73 in well B522 was
deposited at a thickness of 33 m (1932-1965 m), with an average
SR of 5.51 cm/kyr. Consequently, the sedimentation time for Ch7;
in well B522 is estimated to be approximately 0.6 Myr.
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5.2. Environmental and biological drivers of OM enrichment in
Ch7s

5.2.1. Paleo-weathering conditions

The chemical index of alteration (CIA) is commonly used to
assess the degree of chemical weathering (Mclennan, 1993). The
CIA is calculated via the following formula:

CIA — ( Al,04
Al,03 + Na,0 + Ca0" + K50

) x 100 (4)

where CaO* represents the amount of CaO present in silicates
(Nesbitt and Young, 1982). According to McLennan and Taylor
(1991), if the adjusted CaO value [CaO(adjusted) = mol CaO—(10/
3 mol P205)] is greater than NayO. Otherwise, the CaO* value is
equivalent to the CaO(adjusted) value (Mclennan, 1993).

In this study, the CIA values of the samples decreased due to the
effects of K-metasomatism. Fedo et al. (1995) demonstrated that
"premetasomatic" compositions can be identified on A-CN-K di-
agrams by projecting each data point back to its original position
(Fedo et al., 1995). Following this interpretation, we applied the
calculations proposed by Panahi (Panahi et al., 2000) to determine
the corrected K;0 value K;0*. K,O* can be calculated as follows:

_ m x AO3 +m x (NayO + Ca0")

K,0 = 1-m (5)
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w]{ @
® ®
w9 ° °
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K,0* was then used to calculate the K-metasomatism-corrected
CIA* value.

Some samples deviate from the ideal weathering trend line on
the A-CN-K diagram. (Fig. 7), indicating that K-metasomatism
influenced the sediment (Fedo et al., 1995; Lu et al., 2020). This
phenomenon likely contributed to the reduced CIA values (Yang
et al.,, 2022) (Fig. 8(a)). Consequently, K-metasomatism was cor-
rected via the method proposed by previous researchers, resulting
in the CIA* (corrected CIA) (Fedo et al., 1995). Fedo demonstrated
that the preparental composition could be identified by projecting
data points back to their original positions on the A-CN-K dia-
gram. (Fedo et al., 1995).

High CIA* values typically indicate intense chemical weath-
ering conditions, which generally occur in warm and humid cli-
mates characterized by significant rainfall and continental runoff
(Montero-Serrano et al., 2015). Sediments with CIA values of
100-80, 80-70, and 70-50 reflect strong, intermediate, and weak
weathering conditions in the source area, respectively (Nesbitt and
Young, 1982). The CIA* values for Ch73 ranged from 73.6 to 83.8
(x = 78.2), suggesting that these sediments formed under inter-
mediate weathering conditions (Fig. 8(d)).

The interplay among global tectonics, climatic patterns, and
significant geological events is crucial in controlling OM enrich-
ment in the Ordos Basin. During the Triassic period, the northward
drift of the supercontinent Pangaea exposed more land to a warm
and humid climate (Landwehrs et al., 2022). In the Middle Triassic,
intensified chemical weathering processes within the Tethys
resulted in increased ratios of Al/Ti, K/Ti, Rb/Sr, Rb/K, and Fe/Mn in
the organic-rich shale of the Ch7 section of the Ordos Basin
(Trotter et al., 2015; Chu et al., 2020; Liu, 2021). The occurrence of
humid climatic events during the late Ladinian to Carnian periods
may have accelerated the release of latent heat from the Tethys
Ocean, thereby increasing monsoonal precipitation and conti-
nental weathering in the Tethys domain (Scotese et al., 2021; Liu
et al., 2024). This increased chemical weathering supplied addi-
tional nutrients to the lake, significantly increasing primary pro-
ductivity in Ch7;.

wherem = for the parent sample. The obtained

5.2.2. Primary productivity

Several trace elements, particularly phosphorus (P), serve as
useful proxies for reconstructing primary productivity
(Tribovillard et al., 2006; Schoepfer et al., 2015). P is a vital nutrient
for algal growth (Vink et al., 1997; Slomp et al., 2004). By elimi-
nating the influence of terrigenous clastic materials, the P/Ti ratio
is widely utilized as an indicator of paleoproductivity (Tribovillard

(b) 50

40 .

30 4
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20 4 @

TOC

Fig. 5. Analyses of LOI, CaO and TOC data for Ch7;. (a) Cross-plots of the LOI versus CaO. (b) Cross-plots of LOI versus TOC.
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A, % mineralization of some of this OM leads to reduced oxygen levels
10— — = = — — — — — = — = Kaolinite at the lake bottom, creating anoxic conditions that favor the
Strong preservation of OM, which may further evolve into euxinic
weathering @ shales of B522 conditions.
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Z50, Z66, L68, Zh8 and W25
5.2.3. Redox conditions
80— — = — — — — — The concentrations of certain elements, such as molybdenum
w:g;r:;:g Smectite gMg), uranium (U), and iror} (Fe), in sedimelntary rqcks serve as
Ilite indicators of the redox conditions that prevailed during sediment
0l-- - - deposition (Tribovillard et al., 2006). Consequently, the enrich-
o g ment and ratios of these elements can be used to reconstruct the
paleoenvironment (Algeo and Ingall, 2007; Montero-Serrano et al.,
2015).
Mo and U concentrations in sediments are particularly valuable
Plagioclase K-Feldspar as reglox proxifes, as the_ir uptake rates increase under more
reducing conditions (Tribovillard et al, 2006; Algeo and
CN, % K, %

Fig. 7. A-CN-K (Al,03-Ca0*+Na,0-K,0) diagram with the CIA scale of Ch7;. The red
circles represent the results of this study, while the black hollow circles represent the
data collected from the literature. Gray data points from references (Yuan et al., 2021,
2022; Liu et al., 2024). Image version modified from reference (Zhang et al., 2017)).

et al, 2006). Elevated P/Ti
paleoproductivity.

The P/Ti ratios of the lower Ch7;3 oil shale range from 0.14 to
4.13 (X = 0.62), which are significantly higher than the average P/Ti
ratio of the Post-Archean Australian shale (PAAS) (0.13) (McLennan
and Taylor, 1991), indicating high productivity (Fig. 8(b) and (e)).
This finding suggests that the lake in which the Upper Triassic Ch73
organic-rich deposits accumulated was characterized by high
primary productivity. In aquatic environments with high primary
productivity, a substantial amount of OM accumulates on the
lakebed following the death of numerous organisms. The

ratios are indicative of high
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Tribovillard, 2009). The enrichment factor (EF) is used to esti-
mate the degree of elemental enrichment in shale and is calculated
as follows:

_ (X/Al)sample
X/ Al ppns

where X and Al represent the weight percent concentrations of X
and Al, respectively (Tribovillard et al., 2006, 2012; Algeo and
Tribovillard, 2009; Little et al., 2015). The samples were normal-
ized to the post-Archean average shale (PAAS) compositions
(McLennan and Taylor, 1991). EFs > 1.0 indicate elemental
enrichment relative to the PAAS concentration. Specifically, EFs > 3
represent detectable enrichment, whereas EFs > 10 indicate
moderate to strong enrichment (Algeo and Tribovillard, 2009).
Previous discussions regarding the sulfidation boundaries of
Fepy/Feyr in marine basins have focused primarily on samples
from marine black shales, which limits the applicability of these

(6)
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boundaries to lacustrine basins (Poulton and Canfield, 2011;
Raiswell and Canfield, 2012; Raiswell et al., 2018). Compared
with marine basins, lacustrine basins are smaller, exhibit greater
structural diversity, and have more pronounced segmentation,
resulting in distinct environmental characteristics. In marine ba-
sins, pyrite formation primarily arises from two sources: the
occurrence of sulfate reduction reactions in iron-rich upper layers,
where OM is degraded, producing locally supersaturated H»S
zones that lead to pyrite precipitation (Canfield et al., 1996). The
vertical movement of water transports dissolved iron to lower
sulfide-containing layers or sulfides to iron-rich areas. For
example, eddy diffusion in the Black Sea facilitates the downward
transport of iron to the sulfide zone and the upward movement of
sulfides to iron-rich areas, thereby promoting pyrite precipitation
(Brewer and Spencer, 1974; Lewis and Landing, 1991). Compared
with lacustrine basins, the larger scale of vertical circulation in
marine basins contributes to a greater abundance of sulfide pha-
ses. Therefore, the sulfidation boundary of Fe,y/Feyr in lacustrine
basins should be considered lower than that in marine basins
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0 T T
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Fig. 10. Comparison of the OCAR between ferruginous and euxinic products for Ch7;.
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(Fig. 8(c) and (f)). In this study, Fepy/Fepyr > 0.6 is proposed as an
empirical index for identifying potential euxinic conditions based
on the Fepy and Feyg contents in the shale layers (Poulton, 2021).

Based on the criteria established for identifying sulfidic envi-
ronments, the sedimentary environments of the samples were
classified into weakly oxidizing conditions (Feyg/Fer < 0.38,
Mogr < 1, and Ugr < 1), ferruginous conditions (Fepy/Feyr < 0.6,
Feyr/Fer > 0.38, Mogr > 1, and Ugr > 1), and eunixic conditions
(Fepy/Fenr > 0.6, Feyr/Fer > 0.38, Mogr > 10, and Ugr > 10) (Fig. 9).
The OCAR under euxinic conditions ranged from 0.14 to 1.90 g/
(cm?-kyr) (X = 1.02 g/(cm?-kyr)), whereas under ferruginous con-
ditions, it ranged from 0.08 to 0.96 g/(cm?kyr) (X = 0.40 g/
(cm?-kyr)) (Fig. 10). Although the average OCAR under euxinic
conditions is approximately twice that under ferruginous condi-
tions, euxinic conditions may have existed only in the sedimentary
center during the deposition of Ch73 (Wang et al., 2024). Conse-
quently, the extensive area of ferruginous conditions throughout
the lake basin results in a significantly greater amount of organic
carbon burial under ferruginous conditions than under euxinic
conditions.

5.3. Impact of volcanism on the OCAR of Ch73

Intense volcanism is frequently linked to black shales in the
Ordos Basin, indicating that tuff layers may affect the organic
carbon content of these shales (Yuan et al., 2019; Gou and Xu,
2023; Liu et al., 2024; Wang et al., 2024). Previous research has
demonstrated that volcanic eruptions and tephra can enhance the
preservation of OM in ancient black shales (Liu et al., 2022b; Jin
et al.,, 2023) (Fig. 11).

There are no universally applicable indicators for identifying
volcanism; rather, a combination of multiple indicators is neces-
sary to confirm its presence (Kiipli et al., 2013). Compared with the
surrounding shale, bentonite has significantly different material
sources and mineral compositions. Volcanic ash typically contains
relatively high concentrations of elements such as Zr, Hf, Al, K, and
Mg, whereas Si, Ni, and V are present in relatively low abundances.
The presence of volcanism can be assessed via the following
criteria: Zr > 160 ppm, Hf > 2.8 ppm, Zr/Cr > 1.0, K;O/Rb > 0.02, Zr/
A1203 > 6.0, CI'/A1203 < 10, V/A]203 < 20, Ni/Ale?, < 10, and SiOz/
Al,03 < 5.0 (Yang et al., 2022) (Fig. 12). These nine indicators are
categorized into two groups. One category exhibits a positive
correlation with the input of volcanic materials, while the other
demonstrates a negative correlation. By applying dimensionality
reduction to the indicators, a single representative indicator can be
derived to quantify volcanic intensity (Fig. 13). Following principal

@ (b) __— Volcanic ash

Volcanic ash

Volcanic ash

Volcanic ash

/

(e

— Volcanic ash

1om

Fig. 11. Samples with tuffaceous banding for Ch75 of Well B522: (a)-(f) The visual
record of volcanic activity in Ch7; is evident in the development of tuff layers within
the shale, with some layers reaching millimeter-scale thickness.
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component analysis (PCA) on data collected from 36 shale samples
and volcanic ash samples obtained during the survey, the volcanic
intensity index (F) derived from dimensionality reduction (Fig. 14),

is calculated as follows:

F=0.74 x F;+0.26 x F,

F1 = 0.18 x Zr/Cr+0.19 x Zr/Al;03-0.10 x Ni/Al,03-0.10 x V/AL,O3-
CI'/A1203—0.1O

0.03 X

K,0/Rb-0.17

X

Al;03+0.20 x Hf+0.20 x Zr

X

Si0,/

F, = 0.08 x Zr/Cr+0.07 x Zr/A,03+0.48 x Ni/Al,03+0.48 x V/
Al,03+0.04 x K,0/Rb-0.02 x Cr/Al;03-0.30 x SiOs/
Al,03+0.08 x Hf + 0.10 x Zr

where F; and F, represent the principal component 1 and principal
component 2. The volcanic ash data comes from reference (Yang

et al., 2019).

A comprehensive analysis of geochemical signatures reveals
that Ch7; has been influenced by varying degrees of volcanic
material input. Most sample data points plot within the volcanic
material input zone. However, the Zr contents of the majority of

Petroleum Science 22 (2025) 3497-3511

samples are less than 160 ppm, which is likely due to lower
sedimentation rates and the presence of volcanic arc magmatic
rocks as the source. During the MiddleLate Triassic Qinling
orogeny, extensive magmatic activity occurred, which was divided
into two distinct phases (approximately 235-250 Ma and
185-235 Ma) (Cohen et al., 2013). Ch735 was deposited during the
early stage of this magmatic activity. The early granitic rocks
predominantly exhibit I-type characteristics, primarily consisting
of quartz diorite and tonalite, some of which have elevated Sr/Y
ratios, indicative of products resulting from the northward sub-
duction of the Mianlue Ocean (Dong et al., 2012; Wang et al., 2013).

Zr, Zr/Al;03, and Zr/Cr exhibit similar variation patterns. Spe-
cifically, from the bottom to the top of Ch7s, the occurrence of Zr,
Zr/Cr, and Zr/Al,03 gradually decreases (Fig. 13). The high peak at
the bottom of Ch7;3 indicates intensive volcanic material input.
During Ch7,, these indicators gradually decreased to levels typical
of normal shales, suggesting weak volcanism. These findings
indicate that the Ordos region experienced strong volcanism
during Ch7s, followed by much weaker volcanic activity.

Based on a comprehensive analysis of the geochemical finger-
prints, the volcanic eruptions in Ch73 and Ch7; of Well B522 were
characterized by three distinct stages. Intensive volcanism
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occurred at the base of Ch7; (1964.2-1952.4 m, indicated by red
shading in Fig. 13), followed by a period of weaker eruptions
during the upper section of Ch73 (1952.4-1937.7 m, indicated by
orange shading in Fig. 13). The lowest Zr/Al,03 and Zr/Cr ratios
indicate the weakest volcanic activity at the base of Ch7,
(1937.7-1926.0 m, indicated by the green shading in Fig. 13).
During periods of intense volcanic activity, the average OCAR at
the bottom reaches 0.57 g/(cm?-kyr) (red shading, ranging from
0.05 to 1.90 g/(cm?-kyr)). In contrast, during subsequent periods of
weaker volcanic activity, the average OCAR peaks at 0.76 g/
(cm?-kyr) (yellow shading, ranging from 0.04 to 1.84 g/(cm?-kyr)).
When volcanic activity is at its lowest level, the average OCAR also
diminishes, reaching a minimum of 0.47 g/(cm?kyr) (green
shading, ranging from 0.16 to 1.34 g/(cm?kyr)). The boundary of
stages could be separated through the carbon isotope excursion
(CIE) event (Fig. 14).

The differences in OCAR across various modes of volcanic ac-
tivity may be attributed to both short-term and delayed effects on
shale. The rapid deposition of volcanic ash during intense volcanic
activity at the bottom of Ch7; led to the dilution of OM, which
results in high &7Li values (Fig. 14). During this period, the water

(@)
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column experiences brief turbulence (Lu et al., 2021), which re-
sults in a lower OCAR during periods of airborne volcanic ash
deposition (Lin et al., 2022). Concurrently, volcanic activity directly
introduces nutrients and screens primary producers, creating a
stress-free environment conducive to the emergence of screened
algae (Yin et al., 2024). Although the high productivity triggered in
a short time frame is offset by the negative impacts of volcanic
activity, this results in a net increase in the OCAR (Fig. 15(c)). The
moderate volcanic activity at the top of Ch73 can be considered
influenced by volcanoes of appropriate intensity. The negative
impact of volcanic activity is relatively low. The accumulated
impact of volcanic activity on the intensity of chemical weathering
has facilitated the input of nutrients from continental weathering
into the lake basin, thereby promoting increased productivity (Liu
et al., 2024), which results in high Li contents (Fig. 14). This
extremely high productivity transformed the water column into
euxinic conditions or led to the formation of the metalimnetic
oxygen minimum (MOM) areas (Bian et al., 2025). Even though
BSR consumes a greater amount of OM under euxinic conditions
(Liu et al., 2021), extensive euxinic conditions provide favorable
preservation conditions for OM deposition, resulting in a
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significant increase in the OCAR (Fig. 15(b)) (Lu et al., 2019). At the
bottom of Ch7;, volcanic activity is the weakest. The continuous
decline in volcanic activity results in reduced weathering intensity,
which limits nutrient input. As productivity gradually decreases,
the extent of euxinic conditions also decreases, thereby con-
straining OM deposition to some degree (Fig. 15(a)). Under the
influence of volcanic activity, Ch73 has developed a unique sedi-
mentary pattern in which intense volcanic activity has led to a
limited increase in the OCAR due to rapid sedimentation and
dilution of OM. However, the combination of appropriate volcanic
activity and nutrient input from continental weathering has
resulted in a significant increase in the OCAR.

6. Conclusion

1) The SRs obtained from the time series analysis of the GR data
and the measured sample density indicate a dynamic OCAR
ranging from 0.04 to 1.90 g/(cm?-kyr) for Ch7s. Based on the
average OCAR (0.68 g/(cm?kyr)) of Ch7s, the total amount of
organic carbon burial is estimated to be 0.27 Tt, considering the
semideep to deep lake facies area (65,000 km?) and sedimen-
tation duration (~0.6 Myr).

2) Volcanic activity and high productivity can lead to the forma-
tion of eunixic conditions, thereby increasing the OCAR. Ac-
cording to the classification of iron speciation into ferruginous
conditions and eunixic conditions, the OCAR was 2.49 times
greater under eunixic conditions (ranging from 0.14 to 1.90 g/
(cm?-kyr), X = 1.02 g/(cm?-kyr)) than under ferruginous con-
ditions (ranging from 0.08 to 0.96 g/(cm?kyr), X = 0.41 g/
(cm?-kyr)).

3) The volcanic intensity index and corresponding OCAR suggest
that when the intensity of volcanic activity is moderate, it is
more conducive to the burial of OM in the lake basin. The more
developed the layers of tuff are, the stronger the dilution of OM
by rapidly deposited volcanic ash, and the water column during
this period experiences brief turbulence, which is not condu-
cive to the enrichment of OM. However, the direct input of
nutrients from volcanic activity and the input of continental
nutrients that promote weathering are beneficial for improving
productivity. Based on the short-term and delayed effects of
volcanic activity on shale, priority should be given to devel-
oping layers with moderately developed tuff laminations in the
process of oil and gas development.
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