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This study introduces a novel approach to addressing the challenges of high-dimensional variables and
strong nonlinearity in reservoir production and layer configuration optimization. For the first time,
relational machine learning models are applied in reservoir development optimization. Traditional
regression-based models often struggle in complex scenarios, but the proposed relational and
regression-based composite differential evolution (RRCODE) method combines a Gaussian naive Bayes
relational model with a radial basis function network regression model. This integration effectively
captures complex relationships in the optimization process, improving both accuracy and convergence
speed. Experimental tests on a multi-layer multi-channel reservoir model, the Egg reservoir model, and
a real-field reservoir model (the S reservoir) demonstrate that RRCODE significantly reduces water in-
jection and production volumes while increasing economic returns and cumulative oil recovery.
Moreover, the surrogate models employed in RRCODE exhibit lightweight characteristics with low
computational overhead. These results highlight RRCODE's superior performance in the integrated
optimization of reservoir production and layer configurations, offering more efficient and economically
viable solutions for oilfield development.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction methods have gained considerable attention in reservoir devel-

opment scheme design, promoting intelligent decision-making

The production strategies and layer control schemes of injec-
tion and production wells are critical factors influencing the
displacement efficiency and overall economic performance of
reservoir development. By optimizing these schemes, it is possible
to effectively control the underground flow field, thereby maxi-
mizing cumulative oil production or net present value (NPV)
throughout the development process (Desbordes et al., 2022; Du
et al,, 2023; Kim and Durlofsky, 2021; Wang Z.Z. et al., 2022,
2023; Xu et al., 2023). In recent years, advanced optimization
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and enhancing economic performance (An et al., 2022; Kim and
Durlofsky, 2023; Volkov and Bellout, 2017; Zhang et al., 2021).
Traditional intelligent optimization methods typically rely on
coupling reservoir numerical simulators with evolutionary algo-
rithms, such as genetic algorithms (Emerick et al., 2009), differ-
ential evolution (Nwankwor et al., 2013), and particle swarm
optimization (Onwunalu and Durlofsky, 2010). While these
methods have achieved some success, they require extensive
reservoir simulations for evaluation, resulting in high computa-
tional costs. This challenge has driven researchers to explore sur-
rogate models that approximate reservoir responses (Dai et al.,
2023; Golzari et al., 2015; Liu and Reynolds, 2021; Ma et al.,
2021, 2022; Wang et al., 2024; Wang L. et al., 2023), giving rise
to surrogate-assisted evolutionary algorithms (SAEAs), which have
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been systematically reviewed and demonstrated across multiple
domains (Jin et al., 2019).

In the field of reservoir development optimization, traditional
machine learning surrogate models typically employ methods
such as kriging models (Chen et al., 2020a), radial basis function
networks (Chen et al., 2022), support vector machines (Guo and
Reynolds, 2018), among others, to construct regression models.
These models use individual reservoir development schemes as
input parameters to predict specific outcomes, such as cumulative
oil production or net present value, and are effectively combined
with evolutionary algorithms to reduce reliance on direct nu-
merical simulation evaluations during the optimization process
(Gu et al., 2021; Zhao et al., 2020a, 2020b). However, the inherent
nonlinearity and high dimensionality of reservoir development
optimization problems often limit the performance of these
regression models. Although regression models can provide
reasonable accuracy and precision in simpler scenarios, their
performance tends to degrade in more complex optimization
tasks. Moreover, since evolutionary algorithms like differential
evolution and particle swarm optimization rely on evaluating and
selecting candidate solutions, a decline in the accuracy of regres-
sion model evaluations can adversely impact the overall optimi-
zation results.

Compared to regression models, relational models (Hao and
Zhou, 2023; Hao et al., 2020, 2022) focus on the relative perfor-
mance between different samples rather than predicting their
specific objective function values. This approach is highly
compatible with the nature of evolutionary algorithms, which
fundamentally operate by comparing and selecting potential
candidate solutions to determine the optimal outcome, thereby
driving the optimization process forward. Relational models offer
several advantages, including the ability to generate larger training
datasets, reduced reliance on extreme samples, and enhanced
model stability and generalization capabilities (Hao et al., 2020).
These characteristics make relational machine learning models
particularly well-suited for addressing the high-dimensional and
complex optimization problems typical in reservoir management.

Although relational models have significant potential as sur-
rogate models for reservoir development optimization, to the best
of our knowledge, they have not yet been applied in this field.
Current research in this domain still primarily relies on regression-
based surrogate models, with a focus on optimizing either pro-
duction schemes alone or jointly with well placement (Xue et al.,
2020, 2022; Zhao et al., 2020c). Layer configuration, which is a
critical factor affecting reservoir development performance, has
been studied less frequently, and research on the integrated
optimization of production and layer schemes is even more scarce.
This is partly due to the added complexity that integrated opti-
mization of production and layer configurations entails, and partly
because adjustments to production strategies are typically more
frequent and straightforward compared to layer configurations.
However, the impact of production schemes and layer configura-
tions on reservoir displacement efficiency is inherently interre-
lated, making it essential and necessary to consider their
integrated optimization. The interaction between these factors
requires more advanced optimization algorithms capable of
handling such complexity.

To address the aforementioned challenges, this paper in-
troduces relational machine learning models into reservoir
development optimization and proposes an innovative composite
differential evolution optimization method (RRCODE) that com-
bines relational and regression models. By leveraging the
comparative nature of relational models and the predictive capa-
bilities of regression models, RRCODE provides more accurate and
computationally efficient solutions for the integrated optimization
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of reservoir production and layer configuration. To the best of our
knowledge, this is the first application of relational models in the
field of reservoir development optimization. The remainder of this
paper is organized as follows: Section 2 presents the problem of
integrated optimization of production schemes and layer config-
urations. Section 3 details the proposed RRCODE method and
related works. Section 4 provides experimental results and dis-
cussion on two multi-layer reservoir models and a real reservoir
model, and Section 5 concludes with a summary and discussion.

2. Problem statement

As two critical factors determining the effectiveness of reser-
voir development, the production strategy directly affects the
lateral displacement efficiency, while the layer configuration
schemes of each well control the vertical distribution of the flow
field (Chang et al., 2020; Dong et al., 2023). These two factors
interact during the development process, collectively influencing
the dynamic changes in the subsurface flow field and the overall
economic returns. Coupling the optimization of production
schemes with layer configuration allows for a more comprehen-
sive regulation of the reservoir's flow field, thereby maximizing
the overall profitability of the development plan. Compared to
optimizing production or layer schemes independently, this inte-
grated optimization scheme can more effectively guide key
decision-making in oilfield development.

2.1. Integrated optimization problem and variable design

The integrated optimization of production and layer configu-
rations involves designing production schemes for m wells (each
well has n layers with opening and closing options) across T
timesteps. Additionally, before production begins at the first
timestep, the status (open or closed) of each layer for every well
should be determined. In this problem model, each potential in-
tegrated optimization scheme is represented by a sample x, with
the dimensionality of the sample variables denoted as d, which can
be calculated as follows:

(1)

The first m x T dimensions of the sample x represent the
opening and closing status of the m injection and production wells
over T timesteps, where 1 indicates the layer is open, and 0 in-
dicates the layer is closed. The remaining m x T dimensions
represent the production scheme for the m wells across T
timesteps.

The sample x is drawn from the decision space of the problem
model. The decision range for the optimization variables, [Ib, ub],
is determined by the practical constraints of the oilfield, including
the lower and upper injection or production limits of each well and
the number of layer configurations to be considered. The entire
integrated optimization problem can be formulated as the task of
finding the optimal sample x that maximizes the objective func-
tion within the decision space:

MaximizeF = f(x), x < [lb,ub)

d=mx (n+T)

(2)
where Frepresents the optimization objective, while Ib and ub are

the lower and upper bounds of the sample x, with each dimension
corresponding to those in x.

2.2. Optimization objective function

Net present value (NPV) is a key decision-making factor in the
design of oilfield development schemes and is widely used in
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reservoir development optimization problems (Yan et al., 2024;
Zhang et al., 2024). Therefore, in this study, NPV is chosen as the
objective function F for the integrated optimization of production
and layer configurations, and its calculation formula is as follows:

1

(1+by (3)

T
f(x) =NPV(x) =" At (roQo.c — rwQuw. — 1iQir)

t=1

where At represents the length of the t-th timestep; p is the cu-
mulative timestep; b is the annual discount rate; and r,, 1w, and r;
represent the oil price, water production cost, and water injection
cost, respectively; Qo,, Qw,, and Qi denote the oil production rate,
water production rate, and water injection rate during the t-th
timestep, respectively.

3. Methodology

The essence of evolutionary computation lies in generating a
certain number of candidate solutions within the decision space
through a series of operations, then evaluating the relative merits
of these candidates and selecting the better ones for the next
iteration. This process drives the optimization towards a global
optimum. Conventional machine learning-assisted evolutionary
optimization methods primarily rely on regression-based machine
learning models, which predict the objective function values of
candidate solutions (i.e., the integrated production and layer
configuration schemes) to replace the reservoir numerical simu-
lator. This allows comparison and selection between samples,
accelerating the convergence of the optimization process. How-
ever, the accuracy of regression models is crucial—any inaccura-
cies in the model's predictions can significantly impair the overall
optimization performance. In contrast, relational machine
learning models do not predict specific objective function values
for the candidates but instead focus on evaluating the relative
superiority between samples. This approach aligns more closely
with the fundamental nature of evolutionary algorithms, which
are inherently based on comparison and selection. By introducing
relational models as a complement to regression models, the de-
pendency on the latter can be reduced, thereby mitigating the
uncertainties in the optimization process and improving the
robustness and accuracy of the search.

3.1. Radial basis function network model

The radial basis function network (RBFN) is a regression model
widely used for high-dimensional and nonlinear problems
(Broomhead and Lowe, 1988; Park and Sandberg, 1993). The
fundamental idea behind the RBFN is to map input samples into a
feature space, where the samples are combined in a weighted
linear manner using radial basis functions to approximate the
target function values. For an input sample ¥, its predicted value

f(x) can be expressed as follows:

~ N
Fa =31 wiglx—cl) (4)
where w; represents the weight parameters; c; represents the
centers of the radial basis functions; ¢(x) is the radial basis func-
tion, which is typically expressed as a Gaussian function, with the
following formulation:

12 5

ry=exp| — =

#r)=exp( -5 (5)
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where ¢ represents the width parameter. Due to its strong
approximation capabilities and relatively simple structure, the
radial basis function network (RBFN) is widely used as a
regression-based machine learning model in reservoir develop-
ment optimization algorithms.

3.2. Gaussian naive Bayes model

Gaussian naive Bayes (GNB) is a simple, efficient, and widely
used classification algorithm with low computational complexity
(Zhang, 2004). It assumes that each feature follows a Gaussian
distribution and uses this assumption to calculate the conditional
probability of the sample's features for different categories. For
each class C and feature ' in the j-th dimension of the sample, the
conditional probability density function is expressed as

. 2
(XJ - Hck)

2
2O‘Ck

exp (6)

P(xj\Ck) -

1
A /ZTCU%k

where uc, and o¢, represent the mean and standard deviation of
the samples in class Cy for the j-th dimension, respectively; P(x|C)
is the likelihood function, which is the product of the conditional
probabilities of the sample x across all dimensions, and can be
expressed as

P(x|C,) :H}f’zlp(xﬂck) (7)

According to Bayes’ theorem, the posterior probability P(Ci|x)
can be calculated using the prior probability P(Cy) and the likeli-
hood function P(x|Cy) as follows:

P(x|Cy)-P(Cy)

P(Ck‘x) = P(X)

(8)
Thus, the class with the highest posterior probability can be
selected as the predicted class Cye for the sample x, as follows:

Cpre = arginaxP(Ck|x) 9)

In this study, the Gaussian naive Bayes model is used as part of
the relational surrogate model. It captures key relational features
in the optimization of integrated production and layer configura-
tion schemes by learning the relative superiority between sample
pairs. This approach allows the model to better adapt to the rapid
comparison of sample quality, which is crucial in evolutionary
algorithms.

3.3. Relational machine learning surrogate model

The relational machine learning surrogate model works by
forming a relational pair from two candidate solutions as training
input and directly predicting the relative superiority between the
two solutions (Hao et al., 2020). Unlike traditional regression
models, this model does not rely on the absolute values of the
samples, but rather learns the comparative results between
candidate solutions (i.e., determining whether one candidate so-
lution is superior to the other). The key advantage of this approach
is that it better aligns with the essential needs of evolutionary
algorithms, which rely on comparisons to select superior in-
dividuals for the next generation.

For the integrated production and layer configuration scheme
of reservoir development, a relational pair [x,, Xq] must first be
constructed as the input sample for the relational model. Here, x,
and x4 are development schemes that have been evaluated by the
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reservoir numerical simulator, i.e., X, Xq € D, where D represents
the dataset of samples with actual evaluations. By comparing their
net present values f{xp) and f{x), the label I for the relational pair
[*p, Xg] can be obtained and is defined as follow:

I — {—i—l, if f(xp) > f(%q)

—1, otherwise

If the net present value of the development scheme repre-
sented by x;, is higher than that of x4, the label I for the relational
pair [xp, X¢] is defined as +1. Otherwise, the label I is defined as —1.
Using the relational pairs to form a training dataset, a Gaussian
naive Bayes model is trained to predict whether the label for each
new relational pair is +1 or —1, thereby enabling the model to
assess the relative superiority of any two schemes.

Compared to traditional regression models, relational surrogate
models build a much larger training set by using relational pairs (if
n; samples are selected, the number of training samples becomes
nr x (ny — 1). This significantly increases the number of samples
available for learning. Expanding the training set in this way en-
hances the generalization ability of the relational model and
makes it more robust when handling complex, high-dimensional
optimization problems.

, Xp, XqeD (10)

3.4. Composite differential evolution algorithm

The composite differential evolution (CoDE) algorithm (Wang
et al,, 2011) is a population-based global optimization method
that has demonstrated significant performance across various
fields. By combining different mutation strategies and control
parameter settings, CoDE enhances the diversity and robustness of
traditional evolutionary algorithms, thereby improving their per-
formance in solving complex optimization problems.

3.4.1. Construction of strategy and parameter candidate pools

The strategy candidate pool includes three strategies: rand/1/
bin, rand/2/bin, and current-to-best/1 (Das and Suganthan, 2011).
The rand/1/bin strategy is suitable for most optimization problems
and provides a good balance between exploration and exploita-
tion; the rand/2/bin strategy enhances the intensity of mutation
operations, which helps in escaping local optima and improving
global search ability; the current-to-best strategy exploits infor-
mation from the current best individual, accelerating convergence
during the later stages of evolution.

rand/1/bin:

Vi1 =X +F-(xr, —%,) (11)
rand/2/bin:

Vio =Xp, +F- (Xr, —Xp,) + F- (X, — Xr5) (12)
current-to-best/1:

Vi3 =X+ F- (Xpest — X;) + F-(Xr, —Xr,) (13)

where x; € D, x; is the i-th individual in the current parent popu-
lation; ry, 1o, 13, 14, 15€[1, N] are randomly selected sample indices
from 1 to N, with N representing the total number of parent
samples; Xpest is the current best-performing individual; v;s, vi2,
v;3 are the mutated individuals corresponding to x;, generated by
different mutation strategies; and F is the scaling factor.

For different mutation strategies and crossover operations, the
scaling factor F and the crossover control factor G are randomly
selected during each generation's mutation process from the
parameter candidate pools, which are composed of the following
three parameter ranges: (0.1, 1.0), (0.9, 1.0), and (0.2, 0.8).
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These combinations are adopted from the reference (Wang
et al.,, 2011), which validated their effectiveness across a wide
range of test functions. Specifically, the pair (1.0, 0.1) provides
strong mutation with minimal crossover, encouraging solution
diversity; the pair (1.0, 0.9) promotes active parameter mixing
through crossover, facilitating rapid exploration in the global
search space; the pair (0.8, 0.2) favors stability in exploitation
while maintaining moderate mutation strength. This combination
of strategies and parameter pools offers good robustness and en-
ables the algorithm to adaptively balance global and local
exploration.

3.4.2. Crossover and selection operations

Based on the composite mutation strategy, each individual in
the evolutionary process combines different strategies and pa-
rameters from the strategy and parameter candidate pools to
generate three mutated individuals: v;j, v;2, vi3. These mutated
individuals then undergo crossover operations with the current
individual across different dimensions, resulting in three trial in-
dividuals: w3, u;2, u;3. The trial individual with the highest
objective function value is selected as the offspring &} of the cur-
rent individual. In this study, a Gaussian naive Bayes model based
on relational comparisons is used to evaluate the relative superi-
ority between the trial individuals, selecting the best ¥; among the
remaining candidates. Eqs. (14) and (15) represent the crossover
and selection operations, respectively.

_ fv, if rand>C; orj = jiang
Ujj = {xi_j, otherwise o
X = max(u1, Wiy, U;3) (1)

In the equation, u;; represents the j-th dimension of the trial
individual u; after the mutation and crossover operations; rand is a
randomly generated number from the interval [0, 1), and jang is a
randomly chosen index that ensures at least one dimension of the
trial individual u; participates in the crossover operation.

3.5. Composite differential evolution optimization framework
coupling relational and regression models

In the integrated optimization of production and layer config-
urations, njpi; candidate schemes are first generated in the decision
space, which are then evaluated using the reservoir numerical
simulator, with the results stored in the dataset D =
[X1, X3, ..., Xn,,.]. Next, the top n, samples are selected from
dataset D and paired to form a total of n; x (n; —1) relational
sample pairs, which are used as the training set for the relational
surrogate model based on Gaussian naive Bayes.

The top np, samples from dataset D are selected as the parent
population for the composite differential evolution. Mutation
strategies and evolutionary hyperparameters from the strategy
and parameter candidate pools are combined to generate three
trial individuals u;1, u;5, u;3 for each parent sample x;. Using the
relational scoring mechanism, the relational surrogate model
sequentially compares the relative superiority of the three trial
individuals. That is, for each relational pair of trial individuals, the
superior individual is scored, and the scores are accumulated
during the comparison process. Once the comparisons are com-
plete, the trial individual ¥; with the highest score is selected as the
offspring for the corresponding parent.

After obtaining the offspring population through the relational
surrogate-assisted differential evolution, a radial basis function
network model is trained using npe,r Samples near the current best
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Fig. 1. Workflow of the composite differential evolution optimization algorithm based on relational and regression models (RRCODE).

sample Xpest. This model is then used to prescreen the offspring
individuals, identifying high-potential sample xp, which are sub-
sequently evaluated using the reservoir numerical simulator and
updated in dataset D. The RBFN surrogate model is retrained at
each iteration based on the current best solutions and their
neighboring samples, ensuring up-to-date predictive accuracy and
effective local exploration. Finally, the optimization process con-
tinues until the maximum number MaxFEs of evaluations is
reached, at which point the optimal solution is output. The
workflow is illustrated in Fig. 1.

4. Experimental results and discussion

To validate the effectiveness of the proposed relational and
regression-based composite differential evolution optimization
framework (RRCODE), it was compared with the global and local
surrogate-assisted model optimization algorithm (GLSADE) (Chen
et al, 2020b), which has shown outstanding performance in
reservoir production optimization, the well-established and
widely used surrogate-assisted differential evolution algorithm
(SADE), and the classical differential evolution algorithm (DE).
Each algorithm was applied to optimize the integrated production
and layer configuration schemes on both a designed multi-layer
multi-channel reservoir model and the Egg reservoir model. To

account for the potential impact of the initial population distri-
bution on the optimization performance, Latin hypercube sam-
pling was used to initialize all algorithms, generating and
evaluating njpj¢ initial schemes as the shared initial population. To
ensure fairness in comparison, all algorithms (RRCODE, GLSADE,
SADE, and DE) were allocated the same maximum number MaxFEs
(1000) of high-fidelity real evaluations in each optimization task,
thus eliminating any bias caused by varying evaluation budgets.
The setup details for the four compared algorithms are summa-
rized in Table 1 for clarity and reproducibility.

4.1. Multi-layer multi-channel reservoir case study

The multi-layer multi-channel model is a reservoir model with
regular boundaries and multiple high-permeability channels, as
shown in Fig. 2. The model contains 9 production wells and 4 in-
jection wells, with a grid size of 101 x 101 in the horizontal plane
and 3 effective layers in the vertical direction. The permeability
field for each layer is shown in Fig. 3. Each well requires optimized
configuration for the opening and closing of the three layers in the
vertical direction, involving 39 decision variables. The production
scheme optimization for each well is conducted over 10 timesteps,
with each timestep representing 365 days, resulting in 130 deci-
sion variables. The injection wells operate under a constant liquid

Table 1

Setup details of the compared algorithms.
Algorithm RRCODE GLSADE SADE DE
Surrogate model GNB (relation) + RBFN (regression) RBFN (global + local) RBFN None
Initial population size njpj 300 300 300 300
Surrogate training parameters Top samples of relational model n, 300 Global All All None

Neighbor samples for RBFN npear 300 Local 300

Maximum number of real evaluations 1000 1000 1000 1000
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Fig. 2. Multi-layer multi-channel model and well placement distribution.

injection mode, with the injection rate ranging from 500 to 3000
stb/day. The production wells are controlled by a bottom-hole
pressure mode, with the bottom-hole pressure limits set be-
tween 4800 and 5800 psi. The total number of decision variables
for the integrated optimization scheme is 169. In terms of eco-
nomic parameters, the oil price is set at 80 USD/stb, while the
water production and injection costs are set at 3 and 2 USD/stb,
respectively. The annual discount rate is set to 0.

The four algorithms were each run independently five times,
and the average convergence curves for the multi-layer multi-
channel model are shown in Fig. 4. As seen, the performance of the
RRCODE algorithm is significantly better than that of the other
three algorithms. With an increasing number of real evaluations,
RRCODE demonstrates a faster convergence trend. This indicates
that RRCODE is more efficient in optimizing this model, effectively
identifying and utilizing advantageous high-permeability chan-
nels to maximize development benefits.

The first layer

The second layer
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%108

Net present value, USD

T T T T T T T T

300 400 500 600 700 800 900 1000
Number of real evaluations

Fig. 4. Optimization curves of NPV for different algorithms in multi-layer multi-
channel reservoir model.

The optimal integrated production and layer configuration
schemes obtained by each algorithm are shown in Fig. 5. The so-
lution distribution of RRCODE is relatively more uniform; in
particular, the bottom-hole pressure distribution of the production
wells is more reasonable, resulting in smaller pressure fluctuations
for each production well across different timesteps, while also
avoiding the negative impacts of excessive water injection or ultra-
high-pressure production. In contrast, the GLSADE and SADE
schemes exhibit extreme water injection rates and production
pressure distributions in certain injection and production wells,
such as I1, 14, P4, and P6 in the GLSADE scheme, and I1 and P5 in
the SADE scheme, leading to imbalanced development. The DE
scheme, on the other hand, displays a more conservative strategy
for layer opening and closing, with many wells having most layers
closed, potentially leading to lower displacement efficiency.

Fig. 6 illustrates the changes in cumulative oil production, cu-
mulative water injection, cumulative water production, and water
cut. The difference in cumulative oil production between the
schemes obtained by RRCODE and GLSADE is minimal. However,
RRCODE demonstrates a significant advantage in terms of water

1200

1000

@
o
Is]
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Permeability, 10~ um?
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o
[s]

The third layer

Fig. 3. Permeability field of each layer in the multi-layer multi-channel model.
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Fig. 5. Production and layer development schemes optimized by different algorithms in multi-layer multi-channel reservoir model.

injection and water production, achieving similar oil production
with a lower water injection rate. This is crucial for reducing water
injection and production costs and improving economic efficiency.
Additionally, the water cut in the RRCODE scheme is lower than
that of GLSADE and SADE, indicating that RRCODE can better
control water breakthrough, thereby enhancing the sustainability
of its development scheme.

4.2. Egg reservoir case study

The Egg reservoir model is a commonly used test model for
optimizing reservoir development schemes, consisting of 25,200

3751

grid blocks, 4 production wells, and 8 injection wells, shown as
Fig. 7. It is widely used for comparative studies of various opti-
mization algorithms (Feng et al., 2022; Wang J.L. et al., 2023;
Zhong et al., 2022). The model is divided into 7 layers in the ver-
tical direction, with the permeability fields of each layer shown in
Fig. 8. Based on the distribution characteristics of the permeability
field, the second and third layers, as well as the fifth and sixth
layers, exhibit similar permeability distributions. Therefore, when
designing the layer opening and closing schemes, the second and
third layers, as well as the fifth and sixth layers, are combined into
a single segment with the same opening and closing strategy. As a
result, the number of decision variables for vertical layer
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Fig. 6. Cumulative oil production, cumulative water injection, cumulative water production, and water cut curves for optimized schemes by different algorithms in multi-layer

multi-channel reservoir model.

configuration of each well is 5, and the total number of decision
variables related to the layer configuration is 60.

In this model, the injection wells operate under a constant
liquid injection mode, with injection rates ranging from O to
600 m>3/day, while ensuring that the bottom-hole pressure does
not exceed 420 bar. The production wells are controlled by a
bottom-hole pressure control mode, with the bottom-hole pres-
sure set between 350 and 450 bar. The oil price is set at 503.2 USD/
m?, and both water injection and water production costs are 18.87
USD/m?, with an annual discount rate of 0. The optimization
period for the development scheme is 10 years, divided into 5
timesteps, with one injection-production adjustment at each step.
As a result, the number of decision variables related to the pro-
duction scheme is 60, and the total number of decision variables
for the integrated optimization is 120, making this a high-
dimensional optimization problem for reservoir development.

In this study, each of the four algorithms was run indepen-
dently 10 times, and the average results were analyzed, as shown
in Fig. 9. The results demonstrate that the RRCODE method ach-
ieved significantly higher net present values (NPV) for the optimal
integrated production and layer configuration schemes across the
10 independent tests compared to the two other machine
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Fig. 7. Egg model and well placement distribution.
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Fig. 8. Permeability field of each layer in the Egg model.

learning-based surrogate models (GLSADE and SADE), as well as
the DE method based on classical optimization theory. Moreover,
an analysis of the convergence trends shows that the RRCODE
method consistently outperformed the other three methods
throughout the optimization process. This indicates that the
RRCODE method has strong potential for practical application in
oilfield operations, as it can still obtain relatively superior inte-
grated development schemes even when the number of real
evaluations is reduced, while maintaining comparable computa-
tional efficiency.

The optimal integrated production and layer configuration
schemes obtained by the various optimization methods are shown
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Fig. 9. Optimization curves of NPV for different algorithms in Egg reservoir model.
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in Fig. 10. In the DE and SADE optimization schemes, many of the
injection wells have most of their layers in the open state, such as
injection wells 13, 14, I5, and I8 in Fig. 10(a), and 12, 13, and 17 in
Fig. 10(b). Similarly, in the SADE and GLSADE optimization
schemes, many of the production wells have most of their layers
open, such as production wells P1 in Fig. 10(b) and P2 in Fig. 10(c).
In contrast, the RRCODE optimization scheme exhibits a more
balanced distribution of open and closed layers for both injection
and production wells, with no single well having most of its layers
open for injection or production. This indicates that the RRCODE
method can more effectively identify the interrelationships be-
tween layers and injection-production strategies, allowing for in-
jection and production to be conducted at the necessary layers.
Under the same injection-production volumes, this method max-
imizes the development potential of the more favorable layers,
avoiding the waste of displacement energy in areas that have
already been fully developed.

The changes in cumulative oil production, cumulative water
injection, cumulative water production, and water cut during the
production process are shown in Fig. 11. As seen in Fig. 11(a), the
difference in cumulative oil production among the four methods is
relatively small. However, Fig. 11(b) and (c) shows that the RRCODE
method results in significantly lower cumulative water injection
and cumulative water production compared to the other three
methods. This not only reduces the overall development costs,
thereby increasing economic benefits, but also maintains almost
the same cumulative oil production as the other methods with less
total water injection. This indicates that the RRCODE method
achieves a better displacement coordination between the layer
configuration scheme and the production strategy, enabling the
similar oil recovery effect with less water injection. Furthermore,
Fig. 11(d) shows that the water cut in the RRCODE method in-
creases more slowly during the early and middle stages of devel-
opment compared to the other three methods, and the final water
cut is also lower than in the SADE and GLSADE methods. Therefore,
the RRCODE method provides an integrated production and layer
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Fig. 10. Production and layer development schemes optimized by different algorithms in Egg reservoir model.

configuration scheme that is better suited to the actual needs of
oilfield operations.

4.3. Real reservoir case study

To further assess the robustness and generalization capability
of the proposed RRCODE framework under realistic conditions, a
case study was carried out on a real reservoir model, hereinafter
referred to as the S reservoir. The model features a complex, multi-
segmented geological architecture, partitioned into 10 distinct
zones labeled A through J, as depicted in Fig. 12. The corresponding

3754

permeability distribution, shown in Fig. 13, reveals substantial
heterogeneity and highlights the challenges posed by irregular
flow patterns across the reservoir.

The S reservoir model comprises a total of 19 production wells
and 11 injection wells, among which 4 production wells (P4, P8, P9,
and P19) have been shut-in, and 1 injection well (I1) is designated
as a gas injection well. Consequently, the remaining 15 active
production wells and 10 water injection wells were included in the
integrated optimization of production and layer configuration
schemes. This reservoir has already been in production for a
certain period under a historical production strategy. Thus, the
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Fig. 12. Geological segment division and well distribution in the S reservoir.
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Table 2
Optimizable geological segments for each well in S reservoir.

Well name Available geological segment Well name Available geological segment Well name Available geological segment
12 A D, G 13 AGlL] 14 B,E,F,H
15 B,E 1 16 B,E,F, H 17 A D,G
18 B,E F H, 1 19 AD,G,] 110 CEFI
111 B,E H, I P1 B,E,F, H, 1 P2 B,E,F,H
P3 B,E F H,I P5 A D,G,] P6 AD,G,]
P7 A D,G, 1] P10 B,E, F, H 1 P11 B,EF 1
P12 AlLJ P13 AGL] P14 A D,G1]
P15 AGlL] P16 B,E, F, H 1
P17 B,E I P18 CEFI
Table 3 As indicated in Table 3, the RRCODE framework attained the

Comparison of cumulative recovery in S reservoir.

Method Cumulative recovery, % Improvement over historical baseline, %
Historical 27.61 -

RRCODE  30.32 2.71

GLSADE 30.16 2.55

SADE 29.99 2.38

DE 29.14 1.53

optimization conducted here aimed at enhancing reservoir per-
formance over the subsequent 6-month period. Specifically, the
optimization focused on adjusting the injection rates of wells
[2-111 and the liquid production rates of the 15 active production
wells. The permissible injection rates ranged between 30 and
650 m>/day, while the liquid production rates were constrained
between 20 and 500 m3/day. Additionally, due to differing
completion intervals among wells across the ten distinct geolog-
ical segments (segments A-J), individualized layer configuration
schemes were optimized simultaneously over two consecutive
timesteps, each spanning 3 months. The specific geological seg-
ments available for optimization in each injection and production
well are detailed in Table 2.

The optimization performance of the proposed RRCODE
framework was benchmarked against GLSADE, SADE, and DE, us-
ing cumulative oil recovery as the evaluation metric. The historical
cumulative recovery prior to optimization served as a baseline
reference. Table 3 summarizes the cumulative recovery values
obtained by each optimization method and their respective im-
provements compared to the historical performance.
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highest cumulative recovery of 30.32%, representing a notable
improvement of 2.71% over the historical baseline of 27.61%
GLSADE and SADE also showed reasonable enhancements,
achieving cumulative recoveries of 30.16% and 29.99%, respec-
tively, corresponding to increases of 2.55% and 2.38% compared to
the historical scenario. DE provided the smallest improvement,
resulting in a cumulative recovery of 29.14% (1.53% above the
baseline). These outcomes clearly demonstrate that the integra-
tion of relational and regression surrogate models within the
proposed optimization framework effectively enhances oil recov-
ery, even when faced with the complexities of heterogeneous and
multi-segmented real reservoir conditions.

Overall, the results from this realistic case study of the S
reservoir reinforce the robustness and practical value of the pro-
posed RRCODE framework. The optimization performance dem-
onstrates that the proposed framework is not only effective for
economic indicators like NPV but also exhibits strong adaptability
and extensibility to other critical performance indicators, such as
cumulative oil recovery. Thus, this case study highlights the
broader applicability and versatility of the proposed optimization
framework in addressing diverse reservoir management
objectives.

4.4. Accuracy and computational efficiency of surrogate models

To illustrate the effectiveness and computational efficiency of
the surrogate models employed in the RRCODE framework, the
multi-layer multi-channel reservoir case described in Section 4.1 is
taken as a representative example. Based on the data generated
from this case, a detailed evaluation of both the relational
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Table 4
Performance evaluation of surrogate models used in RRCODE.
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Relational model

GNB accuracy GNB training time, s GNB prediction time, s

Regression model

RBFN R?

RBFN training time, s RBFN prediction time, s

0.8864 4.4925 6.9702 x 10°°

0.8642 0.1456 3.9873 x 107°

surrogate model (GNB) and the regression surrogate model (RBFN)
was performed to demonstrate their lightweight characteristics
and suitability for high-dimensional and nonlinear optimization
problems. The overall results are summarized in Table 4.

The relational surrogate model, constructed using a Gaussian
naive Bayes (GNB) classifier, was trained on 300 high-quality
samples selected from a training set of 800 samples, which was
randomly drawn from the full simulation-evaluated dataset. To
assess the classification capability of the GNB model, 19,900 non-
redundant pairwise comparisons were generated using an inde-
pendently held-out test set of 200 samples. The model achieved a
classification accuracy of 0.8864, which is significantly higher than
the 0.5 baseline for random selection, indicating its ability to
reliably identify superior solutions and effectively guide the
evolutionary search direction. Notably, while the GNB model as-
sumes feature independence, experimental results demonstrate
that its classification accuracy remains high even under complex
inter-feature dependencies, validating its practical utility in
surrogate-assisted evolutionary optimization. The training process
required 4.4925 s, and the average prediction time per pair was
6.9702 x 107% s, demonstrating its suitability for large-scale
comparison tasks in population-based optimization.

The regression surrogate model, based on a radial basis func-
tion network (RBFN), was trained using 300 samples selected near
the best-performing solutions identified during the optimization
process. Testing was conducted on an independent set of 50
samples not used during training. The model achieved a coefficient
of determination of R* = 0.8642, reflecting a strong approximation
capability considering the problem dimensionality (169 decision
variables) and limited training data. The training process required
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Fig. 14. Comparison between RBFN-predicted and true NPV values on the test dataset.
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0.1456 s, and the average prediction time per sample was
3.9873 x 107> s, which is sufficiently fast for practical use in
simulation-based reservoir optimization tasks. Fig. 14 shows a
strong overall alignment between predicted and true NPV values,
with most samples lying near the diagonal line, confirming the
model's generalization ability.

While the R? value may appear moderate compared to those
reported in low-dimensional benchmark cases, it remains
competitive and satisfactory within the context of complex
reservoir optimization scenarios. It is worth noting that many of
the higher R? values reported in existing studies are obtained on
idealized mathematical test functions, which lack the complex
heterogeneity and operational constraints inherent in real-world
reservoir problems. In contrast, the present case involves 169 de-
cision variables and a limited number of high-fidelity simulation
samples, making the achieved performance particularly mean-
ingful. Moreover, the results also highlight the limitations of
relying solely on regression models in such high-dimensional,
nonlinear settings, thereby justifying the incorporation of a rela-
tional surrogate model. By leveraging accurate pairwise compari-
sons, the relational model complements the regression
component and more effectively guides the evolutionary search
process.

5. Conclusions

This study systematically introduced relational machine
learning surrogate models into the optimization of reservoir
development schemes, marking the first application of this
approach in the field. Unlike traditional regression model based
optimization methods, relational models directly learn the relative
superiority between samples, reducing reliance on specific target
values. This enhances the generalization ability of the model,
particularly in handling high-dimensional and nonlinear optimi-
zation problems. The results of this study highlight the potential of
relational models in reservoir development optimization.

In addition, a novel relational and regression based composite
differential evolutionary framework (RRCODE) was proposed,
which integrates a Gaussian naive Bayes-based relational model
with a radial basis function network regression model. This
approach leverages the comparative and selection properties of
evolutionary algorithms, expanding the number of training sam-
ples and learning the relationships between them. RRCODE
significantly improves both the efficiency and accuracy of the
optimization process, making it more adaptable to the complex-
ities of reservoir development.

The optimization tests on the multi-layer multi-channel model,
the Egg reservoir model, and a real-field reservoir model (the S
reservoir) further validated the superior performance of the
RRCODE method. Compared to leading machine learning-assisted
optimization methods for reservoir development, RRCODE pro-
vided better integrated development schemes, demonstrating its
potential for addressing complex and multifaceted reservoir
optimization challenges. Furthermore, the additional real-field
study illustrates the robustness and practical applicability of
RRCODE in realistic, heterogeneous reservoir conditions.
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Although this study primarily addresses static or pre-
determined reservoir development plans, the lightweight nature
and fast training capability of the employed surrogate models
indicate that RRCODE can feasibly support periodic optimization
tasks through repeated retraining when reservoir conditions
change. Future research could explore incorporating transfer
learning techniques or integrating deep learning approaches, to
potentially enhance the method's adaptability and effectiveness in
dynamic, data-rich scenarios. This lays the foundation for future
research into more scalable and intelligent reservoir optimization
systems.
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