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a b s t r a c t

This study introduces a novel approach to addressing the challenges of high-dimensional variables and 
strong nonlinearity in reservoir production and layer configuration  optimization. For the first  time, 
relational machine learning models are applied in reservoir development optimization. Traditional 
regression-based models often struggle in complex scenarios, but the proposed relational and 
regression-based composite differential evolution (RRCODE) method combines a Gaussian naive Bayes 
relational model with a radial basis function network regression model. This integration effectively 
captures complex relationships in the optimization process, improving both accuracy and convergence 
speed. Experimental tests on a multi-layer multi-channel reservoir model, the Egg reservoir model, and 
a real-field reservoir model (the S reservoir) demonstrate that RRCODE significantly reduces water in
jection and production volumes while increasing economic returns and cumulative oil recovery. 
Moreover, the surrogate models employed in RRCODE exhibit lightweight characteristics with low 
computational overhead. These results highlight RRCODE's superior performance in the integrated 
optimization of reservoir production and layer configurations, offering more efficient and economically 
viable solutions for oilfield development.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The production strategies and layer control schemes of injec
tion and production wells are critical factors influencing  the 
displacement efficiency  and overall economic performance of 
reservoir development. By optimizing these schemes, it is possible 
to effectively control the underground flow  field,  thereby maxi
mizing cumulative oil production or net present value (NPV) 
throughout the development process (Desbordes et al., 2022; Du 
et al., 2023; Kim and Durlofsky, 2021; Wang Z.Z. et al., 2022, 
2023; Xu et al., 2023). In recent years, advanced optimization 

methods have gained considerable attention in reservoir devel
opment scheme design, promoting intelligent decision-making 
and enhancing economic performance (An et al., 2022; Kim and 
Durlofsky, 2023; Volkov and Bellout, 2017; Zhang et al., 2021). 
Traditional intelligent optimization methods typically rely on 
coupling reservoir numerical simulators with evolutionary algo
rithms, such as genetic algorithms (Emerick et al., 2009), differ
ential evolution (Nwankwor et al., 2013), and particle swarm 
optimization (Onwunalu and Durlofsky, 2010). While these 
methods have achieved some success, they require extensive 
reservoir simulations for evaluation, resulting in high computa
tional costs. This challenge has driven researchers to explore sur
rogate models that approximate reservoir responses (Dai et al., 
2023; Golzari et al., 2015; Liu and Reynolds, 2021; Ma et al., 
2021, 2022; Wang et al., 2024; Wang L. et al., 2023), giving rise 
to surrogate-assisted evolutionary algorithms (SAEAs), which have 
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been systematically reviewed and demonstrated across multiple 
domains (Jin et al., 2019).

In the field of reservoir development optimization, traditional 
machine learning surrogate models typically employ methods 
such as kriging models (Chen et al., 2020a), radial basis function 
networks (Chen et al., 2022), support vector machines (Guo and 
Reynolds, 2018), among others, to construct regression models. 
These models use individual reservoir development schemes as 
input parameters to predict specific outcomes, such as cumulative 
oil production or net present value, and are effectively combined 
with evolutionary algorithms to reduce reliance on direct nu
merical simulation evaluations during the optimization process 
(Gu et al., 2021; Zhao et al., 2020a, 2020b). However, the inherent 
nonlinearity and high dimensionality of reservoir development 
optimization problems often limit the performance of these 
regression models. Although regression models can provide 
reasonable accuracy and precision in simpler scenarios, their 
performance tends to degrade in more complex optimization 
tasks. Moreover, since evolutionary algorithms like differential 
evolution and particle swarm optimization rely on evaluating and 
selecting candidate solutions, a decline in the accuracy of regres
sion model evaluations can adversely impact the overall optimi
zation results.

Compared to regression models, relational models (Hao and 
Zhou, 2023; Hao et al., 2020, 2022) focus on the relative perfor
mance between different samples rather than predicting their 
specific  objective function values. This approach is highly 
compatible with the nature of evolutionary algorithms, which 
fundamentally operate by comparing and selecting potential 
candidate solutions to determine the optimal outcome, thereby 
driving the optimization process forward. Relational models offer 
several advantages, including the ability to generate larger training 
datasets, reduced reliance on extreme samples, and enhanced 
model stability and generalization capabilities (Hao et al., 2020). 
These characteristics make relational machine learning models 
particularly well-suited for addressing the high-dimensional and 
complex optimization problems typical in reservoir management.

Although relational models have significant  potential as sur
rogate models for reservoir development optimization, to the best 
of our knowledge, they have not yet been applied in this field. 
Current research in this domain still primarily relies on regression- 
based surrogate models, with a focus on optimizing either pro
duction schemes alone or jointly with well placement (Xue et al., 
2020, 2022; Zhao et al., 2020c). Layer configuration, which is a 
critical factor affecting reservoir development performance, has 
been studied less frequently, and research on the integrated 
optimization of production and layer schemes is even more scarce. 
This is partly due to the added complexity that integrated opti
mization of production and layer configurations entails, and partly 
because adjustments to production strategies are typically more 
frequent and straightforward compared to layer configurations. 
However, the impact of production schemes and layer configura
tions on reservoir displacement efficiency  is inherently interre
lated, making it essential and necessary to consider their 
integrated optimization. The interaction between these factors 
requires more advanced optimization algorithms capable of 
handling such complexity.

To address the aforementioned challenges, this paper in
troduces relational machine learning models into reservoir 
development optimization and proposes an innovative composite 
differential evolution optimization method (RRCODE) that com
bines relational and regression models. By leveraging the 
comparative nature of relational models and the predictive capa
bilities of regression models, RRCODE provides more accurate and 
computationally efficient solutions for the integrated optimization 

of reservoir production and layer configuration. To the best of our 
knowledge, this is the first application of relational models in the 
field of reservoir development optimization. The remainder of this 
paper is organized as follows: Section 2 presents the problem of 
integrated optimization of production schemes and layer config
urations. Section 3 details the proposed RRCODE method and 
related works. Section 4 provides experimental results and dis
cussion on two multi-layer reservoir models and a real reservoir 
model, and Section 5 concludes with a summary and discussion.

2. Problem statement

As two critical factors determining the effectiveness of reser
voir development, the production strategy directly affects the 
lateral displacement efficiency, while the layer configuration 
schemes of each well control the vertical distribution of the flow 
field  (Chang et al., 2020; Dong et al., 2023). These two factors 
interact during the development process, collectively influencing 
the dynamic changes in the subsurface flow field and the overall 
economic returns. Coupling the optimization of production 
schemes with layer configuration allows for a more comprehen
sive regulation of the reservoir's flow  field,  thereby maximizing 
the overall profitability of the development plan. Compared to 
optimizing production or layer schemes independently, this inte
grated optimization scheme can more effectively guide key 
decision-making in oilfield development.

2.1. Integrated optimization problem and variable design

The integrated optimization of production and layer configu
rations involves designing production schemes for m wells (each 
well has n layers with opening and closing options) across T 
timesteps. Additionally, before production begins at the first 
timestep, the status (open or closed) of each layer for every well 
should be determined. In this problem model, each potential in
tegrated optimization scheme is represented by a sample x, with 
the dimensionality of the sample variables denoted as d, which can 
be calculated as follows: 

d=m × (n+ T) (1) 

The first  m × T dimensions of the sample x represent the 
opening and closing status of the m injection and production wells 
over T timesteps, where 1 indicates the layer is open, and 0 in
dicates the layer is closed. The remaining m × T dimensions 
represent the production scheme for the m wells across T 
timesteps.

The sample x is drawn from the decision space of the problem 
model. The decision range for the optimization variables, [lb, ub], 
is determined by the practical constraints of the oilfield, including 
the lower and upper injection or production limits of each well and 
the number of layer configurations to be considered. The entire 
integrated optimization problem can be formulated as the task of 
finding the optimal sample x that maximizes the objective func
tion within the decision space: 

MaximizeF = f (x); x ∈ [lb;ub] (2) 

where F represents the optimization objective, while lb and ub are 
the lower and upper bounds of the sample x, with each dimension 
corresponding to those in x.

2.2. Optimization objective function

Net present value (NPV) is a key decision-making factor in the 
design of oilfield  development schemes and is widely used in 
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reservoir development optimization problems (Yan et al., 2024; 
Zhang et al., 2024). Therefore, in this study, NPV is chosen as the 
objective function F for the integrated optimization of production 
and layer configurations, and its calculation formula is as follows: 

f (x) = NPV(x) =
∑T

t=1

Δt
1

(1 + b)p
(
roQo;t − rwQw;t − riQi;t

)
(3) 

where Δt represents the length of the t-th timestep; p is the cu
mulative timestep; b is the annual discount rate; and ro, rw, and ri 
represent the oil price, water production cost, and water injection 
cost, respectively; Qo,t, Qw,t, and Qi,t denote the oil production rate, 
water production rate, and water injection rate during the t-th 
timestep, respectively.

3. Methodology

The essence of evolutionary computation lies in generating a 
certain number of candidate solutions within the decision space 
through a series of operations, then evaluating the relative merits 
of these candidates and selecting the better ones for the next 
iteration. This process drives the optimization towards a global 
optimum. Conventional machine learning-assisted evolutionary 
optimization methods primarily rely on regression-based machine 
learning models, which predict the objective function values of 
candidate solutions (i.e., the integrated production and layer 
configuration schemes) to replace the reservoir numerical simu
lator. This allows comparison and selection between samples, 
accelerating the convergence of the optimization process. How
ever, the accuracy of regression models is crucial—any inaccura
cies in the model's predictions can significantly impair the overall 
optimization performance. In contrast, relational machine 
learning models do not predict specific objective function values 
for the candidates but instead focus on evaluating the relative 
superiority between samples. This approach aligns more closely 
with the fundamental nature of evolutionary algorithms, which 
are inherently based on comparison and selection. By introducing 
relational models as a complement to regression models, the de
pendency on the latter can be reduced, thereby mitigating the 
uncertainties in the optimization process and improving the 
robustness and accuracy of the search.

3.1. Radial basis function network model

The radial basis function network (RBFN) is a regression model 
widely used for high-dimensional and nonlinear problems 
(Broomhead and Lowe, 1988; Park and Sandberg, 1993). The 
fundamental idea behind the RBFN is to map input samples into a 
feature space, where the samples are combined in a weighted 
linear manner using radial basis functions to approximate the 
target function values. For an input sample x, its predicted value 

f̂ (x) can be expressed as follows: 

f̂ (x)=
∑N

i=1
wiϕ(‖x − ci‖) (4) 

where wi represents the weight parameters; ci represents the 
centers of the radial basis functions; ϕ(x) is the radial basis func
tion, which is typically expressed as a Gaussian function, with the 
following formulation: 

ϕ(r)= exp
(

−
r2

2σ2

)

(5) 

where σ represents the width parameter. Due to its strong 
approximation capabilities and relatively simple structure, the 
radial basis function network (RBFN) is widely used as a 
regression-based machine learning model in reservoir develop
ment optimization algorithms.

3.2. Gaussian naive Bayes model

Gaussian naive Bayes (GNB) is a simple, efficient,  and widely 
used classification algorithm with low computational complexity 
(Zhang, 2004). It assumes that each feature follows a Gaussian 
distribution and uses this assumption to calculate the conditional 
probability of the sample's features for different categories. For 
each class Ck and feature xj in the j-th dimension of the sample, the 
conditional probability density function is expressed as 

P
(

xj|Ck

)
=

1
̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

Ck

√ exp

⎛

⎜
⎝ −

(
xj − μCk

)2

2σ2
Ck

⎞

⎟
⎠ (6) 

where μCk 
and σCk 

represent the mean and standard deviation of 
the samples in class Ck for the j-th dimension, respectively; P(x|Ck) 
is the likelihood function, which is the product of the conditional 
probabilities of the sample x across all dimensions, and can be 
expressed as 

P(x|Ck)=
∏d

j=1
P
(

xj|Ck

)
(7) 

According to Bayes’ theorem, the posterior probability P(Ck|x) 
can be calculated using the prior probability P(Ck) and the likeli
hood function P(x|Ck) as follows: 

P(Ck|x)=
P(x|Ck)⋅P(Ck)

P(x)
(8) 

Thus, the class with the highest posterior probability can be 
selected as the predicted class Cpre for the sample x, as follows: 

Cpre = argmax
k

P(Ck|x) (9) 

In this study, the Gaussian naive Bayes model is used as part of 
the relational surrogate model. It captures key relational features 
in the optimization of integrated production and layer configura
tion schemes by learning the relative superiority between sample 
pairs. This approach allows the model to better adapt to the rapid 
comparison of sample quality, which is crucial in evolutionary 
algorithms.

3.3. Relational machine learning surrogate model

The relational machine learning surrogate model works by 
forming a relational pair from two candidate solutions as training 
input and directly predicting the relative superiority between the 
two solutions (Hao et al., 2020). Unlike traditional regression 
models, this model does not rely on the absolute values of the 
samples, but rather learns the comparative results between 
candidate solutions (i.e., determining whether one candidate so
lution is superior to the other). The key advantage of this approach 
is that it better aligns with the essential needs of evolutionary 
algorithms, which rely on comparisons to select superior in
dividuals for the next generation.

For the integrated production and layer configuration scheme 
of reservoir development, a relational pair [xp, xq] must first  be 
constructed as the input sample for the relational model. Here, xp 
and xq are development schemes that have been evaluated by the 

Q.-Y. Dai, L.-M. Zhang, K. Zhang et al. Petroleum Science 22 (2025) 3745–3759

3747



reservoir numerical simulator, i.e., xp; xq ∈ D, where D represents 
the dataset of samples with actual evaluations. By comparing their 
net present values f(xp) and f(xq), the label l for the relational pair 
[xp, xq] can be obtained and is defined as follow: 

l =
{
+1; if f

(
xp

)
≥ f

(
xq

)

− 1; otherwise
; xp; xq ∈ D (10) 

If the net present value of the development scheme repre
sented by xp is higher than that of xq, the label l for the relational 
pair [xp, xq] is defined as +1. Otherwise, the label l is defined as − 1. 
Using the relational pairs to form a training dataset, a Gaussian 
naive Bayes model is trained to predict whether the label for each 
new relational pair is +1 or − 1, thereby enabling the model to 
assess the relative superiority of any two schemes.

Compared to traditional regression models, relational surrogate 
models build a much larger training set by using relational pairs (if 
nr samples are selected, the number of training samples becomes 
nr × (nr − 1). This significantly increases the number of samples 
available for learning. Expanding the training set in this way en
hances the generalization ability of the relational model and 
makes it more robust when handling complex, high-dimensional 
optimization problems.

3.4. Composite differential evolution algorithm

The composite differential evolution (CoDE) algorithm (Wang 
et al., 2011) is a population-based global optimization method 
that has demonstrated significant  performance across various 
fields.  By combining different mutation strategies and control 
parameter settings, CoDE enhances the diversity and robustness of 
traditional evolutionary algorithms, thereby improving their per
formance in solving complex optimization problems.

3.4.1. Construction of strategy and parameter candidate pools
The strategy candidate pool includes three strategies: rand/1/ 

bin, rand/2/bin, and current-to-best/1 (Das and Suganthan, 2011). 
The rand/1/bin strategy is suitable for most optimization problems 
and provides a good balance between exploration and exploita
tion; the rand/2/bin strategy enhances the intensity of mutation 
operations, which helps in escaping local optima and improving 
global search ability; the current-to-best strategy exploits infor
mation from the current best individual, accelerating convergence 
during the later stages of evolution.

rand/1/bin: 

vi;1 = xr1 + F⋅(xr2 − xr3) (11) 

rand/2/bin: 

vi;2 = xr1 + F ⋅ (xr2 − xr3 )+ F⋅(xr4 − xr5 ) (12) 

current-to-best/1: 

vi;3 = xi + F ⋅ (xbest − xi)+ F⋅(xr1 − xr2 ) (13) 

where xi ∈ D, xi is the i-th individual in the current parent popu
lation; r1, r2, r3, r4, r5∈[1, N] are randomly selected sample indices 
from 1 to N, with N representing the total number of parent 
samples; xbest is the current best-performing individual; vi,1, vi,2, 
vi,3 are the mutated individuals corresponding to xi, generated by 
different mutation strategies; and F is the scaling factor.

For different mutation strategies and crossover operations, the 
scaling factor F and the crossover control factor Cr are randomly 
selected during each generation's mutation process from the 
parameter candidate pools, which are composed of the following 
three parameter ranges: (0.1, 1.0), (0.9, 1.0), and (0.2, 0.8).

These combinations are adopted from the reference (Wang 
et al., 2011), which validated their effectiveness across a wide 
range of test functions. Specifically, the pair (1.0, 0.1) provides 
strong mutation with minimal crossover, encouraging solution 
diversity; the pair (1.0, 0.9) promotes active parameter mixing 
through crossover, facilitating rapid exploration in the global 
search space; the pair (0.8, 0.2) favors stability in exploitation 
while maintaining moderate mutation strength. This combination 
of strategies and parameter pools offers good robustness and en
ables the algorithm to adaptively balance global and local 
exploration.

3.4.2. Crossover and selection operations
Based on the composite mutation strategy, each individual in 

the evolutionary process combines different strategies and pa
rameters from the strategy and parameter candidate pools to 
generate three mutated individuals: vi,1, vi,2, vi,3. These mutated 
individuals then undergo crossover operations with the current 
individual across different dimensions, resulting in three trial in
dividuals: ui,1, ui,2, ui,3. The trial individual with the highest 
objective function value is selected as the offspring x́i of the cur
rent individual. In this study, a Gaussian naive Bayes model based 
on relational comparisons is used to evaluate the relative superi
ority between the trial individuals, selecting the best x́i among the 
remaining candidates. Eqs. (14) and (15) represent the crossover 
and selection operations, respectively. 

ui;j =

{
vi;j; if rand > Cr or j = jrand
xi;j; otherwise (14) 

x
′

i = max
(
ui;1; ui;2; ui;3

)
(15) 

In the equation, ui,j represents the j-th dimension of the trial 
individual ui after the mutation and crossover operations; rand is a 
randomly generated number from the interval [0, 1), and jrand is a 
randomly chosen index that ensures at least one dimension of the 
trial individual ui participates in the crossover operation.

3.5. Composite differential evolution optimization framework 
coupling relational and regression models

In the integrated optimization of production and layer config
urations, ninit candidate schemes are first generated in the decision 
space, which are then evaluated using the reservoir numerical 
simulator, with the results stored in the dataset D =
[
x1; x2; :::; xninit

]
. Next, the top nr samples are selected from 

dataset D and paired to form a total of nr × (nr − 1) relational 
sample pairs, which are used as the training set for the relational 
surrogate model based on Gaussian naive Bayes.

The top np samples from dataset D are selected as the parent 
population for the composite differential evolution. Mutation 
strategies and evolutionary hyperparameters from the strategy 
and parameter candidate pools are combined to generate three 
trial individuals ui,1, ui,2, ui,3 for each parent sample xi. Using the 
relational scoring mechanism, the relational surrogate model 
sequentially compares the relative superiority of the three trial 
individuals. That is, for each relational pair of trial individuals, the 
superior individual is scored, and the scores are accumulated 
during the comparison process. Once the comparisons are com
plete, the trial individual x́i with the highest score is selected as the 
offspring for the corresponding parent.

After obtaining the offspring population through the relational 
surrogate-assisted differential evolution, a radial basis function 
network model is trained using nnear samples near the current best 
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sample xbest. This model is then used to prescreen the offspring 
individuals, identifying high-potential sample xh, which are sub
sequently evaluated using the reservoir numerical simulator and 
updated in dataset D. The RBFN surrogate model is retrained at 
each iteration based on the current best solutions and their 
neighboring samples, ensuring up-to-date predictive accuracy and 
effective local exploration. Finally, the optimization process con
tinues until the maximum number MaxFEs of evaluations is 
reached, at which point the optimal solution is output. The 
workflow is illustrated in Fig. 1.

4. Experimental results and discussion

To validate the effectiveness of the proposed relational and 
regression-based composite differential evolution optimization 
framework (RRCODE), it was compared with the global and local 
surrogate-assisted model optimization algorithm (GLSADE) (Chen 
et al., 2020b), which has shown outstanding performance in 
reservoir production optimization, the well-established and 
widely used surrogate-assisted differential evolution algorithm 
(SADE), and the classical differential evolution algorithm (DE). 
Each algorithm was applied to optimize the integrated production 
and layer configuration schemes on both a designed multi-layer 
multi-channel reservoir model and the Egg reservoir model. To 

account for the potential impact of the initial population distri
bution on the optimization performance, Latin hypercube sam
pling was used to initialize all algorithms, generating and 
evaluating ninit initial schemes as the shared initial population. To 
ensure fairness in comparison, all algorithms (RRCODE, GLSADE, 
SADE, and DE) were allocated the same maximum number MaxFEs 
(1000) of high-fidelity real evaluations in each optimization task, 
thus eliminating any bias caused by varying evaluation budgets. 
The setup details for the four compared algorithms are summa
rized in Table 1 for clarity and reproducibility.

4.1. Multi-layer multi-channel reservoir case study

The multi-layer multi-channel model is a reservoir model with 
regular boundaries and multiple high-permeability channels, as 
shown in Fig. 2. The model contains 9 production wells and 4 in
jection wells, with a grid size of 101 × 101 in the horizontal plane 
and 3 effective layers in the vertical direction. The permeability 
field for each layer is shown in Fig. 3. Each well requires optimized 
configuration for the opening and closing of the three layers in the 
vertical direction, involving 39 decision variables. The production 
scheme optimization for each well is conducted over 10 timesteps, 
with each timestep representing 365 days, resulting in 130 deci
sion variables. The injection wells operate under a constant liquid 

Fig. 1. Workflow of the composite differential evolution optimization algorithm based on relational and regression models (RRCODE).

Table 1 
Setup details of the compared algorithms.

Algorithm RRCODE GLSADE SADE DE

Surrogate model GNB (relation) + RBFN (regression) RBFN (global + local) RBFN None
Initial population size ninit 300 300 300 300
Surrogate training parameters Top samples of relational model nr 300 Global All All None

Neighbor samples for RBFN nnear 300 Local 300
Maximum number of real evaluations 1000 1000 1000 1000
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injection mode, with the injection rate ranging from 500 to 3000 
stb/day. The production wells are controlled by a bottom-hole 
pressure mode, with the bottom-hole pressure limits set be
tween 4800 and 5800 psi. The total number of decision variables 
for the integrated optimization scheme is 169. In terms of eco
nomic parameters, the oil price is set at 80 USD/stb, while the 
water production and injection costs are set at 3 and 2 USD/stb, 
respectively. The annual discount rate is set to 0.

The four algorithms were each run independently five  times, 
and the average convergence curves for the multi-layer multi- 
channel model are shown in Fig. 4. As seen, the performance of the 
RRCODE algorithm is significantly  better than that of the other 
three algorithms. With an increasing number of real evaluations, 
RRCODE demonstrates a faster convergence trend. This indicates 
that RRCODE is more efficient in optimizing this model, effectively 
identifying and utilizing advantageous high-permeability chan
nels to maximize development benefits.

The optimal integrated production and layer configuration 
schemes obtained by each algorithm are shown in Fig. 5. The so
lution distribution of RRCODE is relatively more uniform; in 
particular, the bottom-hole pressure distribution of the production 
wells is more reasonable, resulting in smaller pressure fluctuations 
for each production well across different timesteps, while also 
avoiding the negative impacts of excessive water injection or ultra- 
high-pressure production. In contrast, the GLSADE and SADE 
schemes exhibit extreme water injection rates and production 
pressure distributions in certain injection and production wells, 
such as I1, I4, P4, and P6 in the GLSADE scheme, and I1 and P5 in 
the SADE scheme, leading to imbalanced development. The DE 
scheme, on the other hand, displays a more conservative strategy 
for layer opening and closing, with many wells having most layers 
closed, potentially leading to lower displacement efficiency.

Fig. 6 illustrates the changes in cumulative oil production, cu
mulative water injection, cumulative water production, and water 
cut. The difference in cumulative oil production between the 
schemes obtained by RRCODE and GLSADE is minimal. However, 
RRCODE demonstrates a significant  advantage in terms of water 

Fig. 2. Multi-layer multi-channel model and well placement distribution.

Fig. 3. Permeability field of each layer in the multi-layer multi-channel model.

Fig. 4. Optimization curves of NPV for different algorithms in multi-layer multi- 
channel reservoir model.
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injection and water production, achieving similar oil production 
with a lower water injection rate. This is crucial for reducing water 
injection and production costs and improving economic efficiency. 
Additionally, the water cut in the RRCODE scheme is lower than 
that of GLSADE and SADE, indicating that RRCODE can better 
control water breakthrough, thereby enhancing the sustainability 
of its development scheme.

4.2. Egg reservoir case study

The Egg reservoir model is a commonly used test model for 
optimizing reservoir development schemes, consisting of 25,200 

grid blocks, 4 production wells, and 8 injection wells, shown as 
Fig. 7. It is widely used for comparative studies of various opti
mization algorithms (Feng et al., 2022; Wang J.L. et al., 2023; 
Zhong et al., 2022). The model is divided into 7 layers in the ver
tical direction, with the permeability fields of each layer shown in 
Fig. 8. Based on the distribution characteristics of the permeability 
field,  the second and third layers, as well as the fifth  and sixth 
layers, exhibit similar permeability distributions. Therefore, when 
designing the layer opening and closing schemes, the second and 
third layers, as well as the fifth and sixth layers, are combined into 
a single segment with the same opening and closing strategy. As a 
result, the number of decision variables for vertical layer 

Fig. 5. Production and layer development schemes optimized by different algorithms in multi-layer multi-channel reservoir model.
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configuration of each well is 5, and the total number of decision 
variables related to the layer configuration is 60.

In this model, the injection wells operate under a constant 
liquid injection mode, with injection rates ranging from 0 to 
600 m3/day, while ensuring that the bottom-hole pressure does 
not exceed 420 bar. The production wells are controlled by a 
bottom-hole pressure control mode, with the bottom-hole pres
sure set between 350 and 450 bar. The oil price is set at 503.2 USD/ 
m3, and both water injection and water production costs are 18.87 
USD/m3, with an annual discount rate of 0. The optimization 
period for the development scheme is 10 years, divided into 5 
timesteps, with one injection-production adjustment at each step. 
As a result, the number of decision variables related to the pro
duction scheme is 60, and the total number of decision variables 
for the integrated optimization is 120, making this a high- 
dimensional optimization problem for reservoir development.

In this study, each of the four algorithms was run indepen
dently 10 times, and the average results were analyzed, as shown 
in Fig. 9. The results demonstrate that the RRCODE method ach
ieved significantly higher net present values (NPV) for the optimal 
integrated production and layer configuration schemes across the 
10 independent tests compared to the two other machine 

Fig. 6. Cumulative oil production, cumulative water injection, cumulative water production, and water cut curves for optimized schemes by different algorithms in multi-layer 
multi-channel reservoir model.

Fig. 7. Egg model and well placement distribution.
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learning-based surrogate models (GLSADE and SADE), as well as 
the DE method based on classical optimization theory. Moreover, 
an analysis of the convergence trends shows that the RRCODE 
method consistently outperformed the other three methods 
throughout the optimization process. This indicates that the 
RRCODE method has strong potential for practical application in 
oilfield  operations, as it can still obtain relatively superior inte
grated development schemes even when the number of real 
evaluations is reduced, while maintaining comparable computa
tional efficiency.

The optimal integrated production and layer configuration 
schemes obtained by the various optimization methods are shown 

in Fig. 10. In the DE and SADE optimization schemes, many of the 
injection wells have most of their layers in the open state, such as 
injection wells I3, I4, I5, and I8 in Fig. 10(a), and I2, I3, and I7 in 
Fig. 10(b). Similarly, in the SADE and GLSADE optimization 
schemes, many of the production wells have most of their layers 
open, such as production wells P1 in Fig. 10(b) and P2 in Fig. 10(c). 
In contrast, the RRCODE optimization scheme exhibits a more 
balanced distribution of open and closed layers for both injection 
and production wells, with no single well having most of its layers 
open for injection or production. This indicates that the RRCODE 
method can more effectively identify the interrelationships be
tween layers and injection-production strategies, allowing for in
jection and production to be conducted at the necessary layers. 
Under the same injection-production volumes, this method max
imizes the development potential of the more favorable layers, 
avoiding the waste of displacement energy in areas that have 
already been fully developed.

The changes in cumulative oil production, cumulative water 
injection, cumulative water production, and water cut during the 
production process are shown in Fig. 11. As seen in Fig. 11(a), the 
difference in cumulative oil production among the four methods is 
relatively small. However, Fig. 11(b) and (c) shows that the RRCODE 
method results in significantly lower cumulative water injection 
and cumulative water production compared to the other three 
methods. This not only reduces the overall development costs, 
thereby increasing economic benefits, but also maintains almost 
the same cumulative oil production as the other methods with less 
total water injection. This indicates that the RRCODE method 
achieves a better displacement coordination between the layer 
configuration  scheme and the production strategy, enabling the 
similar oil recovery effect with less water injection. Furthermore, 
Fig. 11(d) shows that the water cut in the RRCODE method in
creases more slowly during the early and middle stages of devel
opment compared to the other three methods, and the final water 
cut is also lower than in the SADE and GLSADE methods. Therefore, 
the RRCODE method provides an integrated production and layer 

Fig. 8. Permeability field of each layer in the Egg model.

Fig. 9. Optimization curves of NPV for different algorithms in Egg reservoir model.

Q.-Y. Dai, L.-M. Zhang, K. Zhang et al. Petroleum Science 22 (2025) 3745–3759

3753



configuration scheme that is better suited to the actual needs of 
oilfield operations.

4.3. Real reservoir case study

To further assess the robustness and generalization capability 
of the proposed RRCODE framework under realistic conditions, a 
case study was carried out on a real reservoir model, hereinafter 
referred to as the S reservoir. The model features a complex, multi- 
segmented geological architecture, partitioned into 10 distinct 
zones labeled A through J, as depicted in Fig. 12. The corresponding 

permeability distribution, shown in Fig. 13, reveals substantial 
heterogeneity and highlights the challenges posed by irregular 
flow patterns across the reservoir.

The S reservoir model comprises a total of 19 production wells 
and 11 injection wells, among which 4 production wells (P4, P8, P9, 
and P19) have been shut-in, and 1 injection well (I1) is designated 
as a gas injection well. Consequently, the remaining 15 active 
production wells and 10 water injection wells were included in the 
integrated optimization of production and layer configuration 
schemes. This reservoir has already been in production for a 
certain period under a historical production strategy. Thus, the 

Fig. 10. Production and layer development schemes optimized by different algorithms in Egg reservoir model.
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Fig. 11. Cumulative oil production, cumulative water injection, cumulative water production, and water cut curves for optimized schemes by different algorithms in Egg reservoir 
model.

Fig. 12. Geological segment division and well distribution in the S reservoir.

Q.-Y. Dai, L.-M. Zhang, K. Zhang et al. Petroleum Science 22 (2025) 3745–3759

3755



optimization conducted here aimed at enhancing reservoir per
formance over the subsequent 6-month period. Specifically, the 
optimization focused on adjusting the injection rates of wells 
I2–I11 and the liquid production rates of the 15 active production 
wells. The permissible injection rates ranged between 30 and 
650 m3/day, while the liquid production rates were constrained 
between 20 and 500 m3/day. Additionally, due to differing 
completion intervals among wells across the ten distinct geolog
ical segments (segments A–J), individualized layer configuration 
schemes were optimized simultaneously over two consecutive 
timesteps, each spanning 3 months. The specific  geological seg
ments available for optimization in each injection and production 
well are detailed in Table 2.

The optimization performance of the proposed RRCODE 
framework was benchmarked against GLSADE, SADE, and DE, us
ing cumulative oil recovery as the evaluation metric. The historical 
cumulative recovery prior to optimization served as a baseline 
reference. Table 3 summarizes the cumulative recovery values 
obtained by each optimization method and their respective im
provements compared to the historical performance.

As indicated in Table 3, the RRCODE framework attained the 
highest cumulative recovery of 30.32%, representing a notable 
improvement of 2.71% over the historical baseline of 27.61%. 
GLSADE and SADE also showed reasonable enhancements, 
achieving cumulative recoveries of 30.16% and 29.99%, respec
tively, corresponding to increases of 2.55% and 2.38% compared to 
the historical scenario. DE provided the smallest improvement, 
resulting in a cumulative recovery of 29.14% (1.53% above the 
baseline). These outcomes clearly demonstrate that the integra
tion of relational and regression surrogate models within the 
proposed optimization framework effectively enhances oil recov
ery, even when faced with the complexities of heterogeneous and 
multi-segmented real reservoir conditions.

Overall, the results from this realistic case study of the S 
reservoir reinforce the robustness and practical value of the pro
posed RRCODE framework. The optimization performance dem
onstrates that the proposed framework is not only effective for 
economic indicators like NPV but also exhibits strong adaptability 
and extensibility to other critical performance indicators, such as 
cumulative oil recovery. Thus, this case study highlights the 
broader applicability and versatility of the proposed optimization 
framework in addressing diverse reservoir management 
objectives.

4.4. Accuracy and computational efficiency of surrogate models

To illustrate the effectiveness and computational efficiency of 
the surrogate models employed in the RRCODE framework, the 
multi-layer multi-channel reservoir case described in Section 4.1 is 
taken as a representative example. Based on the data generated 
from this case, a detailed evaluation of both the relational 

Fig. 13. Permeability field distribution of the S reservoir.

Table 2 
Optimizable geological segments for each well in S reservoir.

Well name Available geological segment Well name Available geological segment Well name Available geological segment

I2 A, D, G I3 A, G, I, J I4 B, E, F, H
I5 B, E, I I6 B, E, F, H I7 A, D, G
I8 B, E, F, H, I I9 A, D, G, J I10 C, E, F, I
I11 B, E, H, I P1 B, E, F, H, I P2 B, E, F, H
P3 B, E, F, H, I P5 A, D, G, J P6 A, D, G, J
P7 A, D, G, I, J P10 B, E, F, H, I P11 B, E, F, I
P12 A, I, J P13 A, G, I, J P14 A, D, G, I, J
P15 A, G, I, J P16 B, E, F, H, I
P17 B, E, I P18 C, E, F, I

Table 3 
Comparison of cumulative recovery in S reservoir.

Method Cumulative recovery, % Improvement over historical baseline, %

Historical 27.61 –
RRCODE 30.32 2.71
GLSADE 30.16 2.55
SADE 29.99 2.38
DE 29.14 1.53
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surrogate model (GNB) and the regression surrogate model (RBFN) 
was performed to demonstrate their lightweight characteristics 
and suitability for high-dimensional and nonlinear optimization 
problems. The overall results are summarized in Table 4.

The relational surrogate model, constructed using a Gaussian 
naive Bayes (GNB) classifier, was trained on 300 high-quality 
samples selected from a training set of 800 samples, which was 
randomly drawn from the full simulation-evaluated dataset. To 
assess the classification capability of the GNB model, 19,900 non- 
redundant pairwise comparisons were generated using an inde
pendently held-out test set of 200 samples. The model achieved a 
classification accuracy of 0.8864, which is significantly higher than 
the 0.5 baseline for random selection, indicating its ability to 
reliably identify superior solutions and effectively guide the 
evolutionary search direction. Notably, while the GNB model as
sumes feature independence, experimental results demonstrate 
that its classification accuracy remains high even under complex 
inter-feature dependencies, validating its practical utility in 
surrogate-assisted evolutionary optimization. The training process 
required 4.4925 s, and the average prediction time per pair was 
6.9702 × 10− 6 s, demonstrating its suitability for large-scale 
comparison tasks in population-based optimization.

The regression surrogate model, based on a radial basis func
tion network (RBFN), was trained using 300 samples selected near 
the best-performing solutions identified during the optimization 
process. Testing was conducted on an independent set of 50 
samples not used during training. The model achieved a coefficient 
of determination of R2 = 0.8642, reflecting a strong approximation 
capability considering the problem dimensionality (169 decision 
variables) and limited training data. The training process required 

0.1456 s, and the average prediction time per sample was 
3.9873 × 10− 5 s, which is sufficiently  fast for practical use in 
simulation-based reservoir optimization tasks. Fig. 14 shows a 
strong overall alignment between predicted and true NPV values, 
with most samples lying near the diagonal line, confirming  the 
model's generalization ability.

While the R2 value may appear moderate compared to those 
reported in low-dimensional benchmark cases, it remains 
competitive and satisfactory within the context of complex 
reservoir optimization scenarios. It is worth noting that many of 
the higher R2 values reported in existing studies are obtained on 
idealized mathematical test functions, which lack the complex 
heterogeneity and operational constraints inherent in real-world 
reservoir problems. In contrast, the present case involves 169 de
cision variables and a limited number of high-fidelity simulation 
samples, making the achieved performance particularly mean
ingful. Moreover, the results also highlight the limitations of 
relying solely on regression models in such high-dimensional, 
nonlinear settings, thereby justifying the incorporation of a rela
tional surrogate model. By leveraging accurate pairwise compari
sons, the relational model complements the regression 
component and more effectively guides the evolutionary search 
process.

5. Conclusions

This study systematically introduced relational machine 
learning surrogate models into the optimization of reservoir 
development schemes, marking the first  application of this 
approach in the field.  Unlike traditional regression model based 
optimization methods, relational models directly learn the relative 
superiority between samples, reducing reliance on specific target 
values. This enhances the generalization ability of the model, 
particularly in handling high-dimensional and nonlinear optimi
zation problems. The results of this study highlight the potential of 
relational models in reservoir development optimization.

In addition, a novel relational and regression based composite 
differential evolutionary framework (RRCODE) was proposed, 
which integrates a Gaussian naive Bayes-based relational model 
with a radial basis function network regression model. This 
approach leverages the comparative and selection properties of 
evolutionary algorithms, expanding the number of training sam
ples and learning the relationships between them. RRCODE 
significantly  improves both the efficiency  and accuracy of the 
optimization process, making it more adaptable to the complex
ities of reservoir development.

The optimization tests on the multi-layer multi-channel model, 
the Egg reservoir model, and a real-field  reservoir model (the S 
reservoir) further validated the superior performance of the 
RRCODE method. Compared to leading machine learning-assisted 
optimization methods for reservoir development, RRCODE pro
vided better integrated development schemes, demonstrating its 
potential for addressing complex and multifaceted reservoir 
optimization challenges. Furthermore, the additional real-field 
study illustrates the robustness and practical applicability of 
RRCODE in realistic, heterogeneous reservoir conditions.Fig. 14. Comparison between RBFN-predicted and true NPV values on the test dataset.

Table 4 
Performance evaluation of surrogate models used in RRCODE.

Relational model Regression model

GNB accuracy GNB training time, s GNB prediction time, s RBFN R2 RBFN training time, s RBFN prediction time, s

0.8864 4.4925 6.9702 × 10− 6 0.8642 0.1456 3.9873 × 10− 5
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Although this study primarily addresses static or pre
determined reservoir development plans, the lightweight nature 
and fast training capability of the employed surrogate models 
indicate that RRCODE can feasibly support periodic optimization 
tasks through repeated retraining when reservoir conditions 
change. Future research could explore incorporating transfer 
learning techniques or integrating deep learning approaches, to 
potentially enhance the method's adaptability and effectiveness in 
dynamic, data-rich scenarios. This lays the foundation for future 
research into more scalable and intelligent reservoir optimization 
systems.
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