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a b s t r a c t

Fluid identification and anisotropic parameters characterization are crucial for shale reservoir explora-
tion and development. However, the anisotropic reflection coefficient equation, based on the transverse
isotropy with a vertical axis of symmetry (VTI) medium assumption, involves numerous parameters to be
inverted. This complexity reduces its stability and impacts the accuracy of seismic amplitude variation
with offset (AVO) inversion results. In this study, a novel anisotropic equation that includes the fluid term
and Thomsen anisotropic parameters is rewritten, which reduces the equation's dimensionality and
increases its stability. Additionally, the traditional Markov Chain Monte Carlo (MCMC) inversion algo-
rithm exhibits a high rejection rate for random samples and relies on known parameter distributions
such as the Gaussian distribution, limiting the algorithm's convergence and sample randomness. To
address these limitations and evaluate the uncertainty of AVO inversion, the IADR-Gibbs algorithm is
proposed, which incorporates the Independent Adaptive Delayed Rejection (IADR) algorithm with the
Gibbs sampling algorithm. Grounded in Bayesian theory, the new algorithm introduces support points to
construct a proposal distribution of non-parametric distribution and reselects the rejected samples ac-
cording to the Delayed Rejection (DR) strategy. Rejected samples are then added to the support points to
update the proposal distribution function adaptively. The equation rewriting method and the IADR-Gibbs
algorithm improve the accuracy and robustness of AVO inversion. The effectiveness and applicability of
the proposed method are validated through synthetic gather tests and practical data applications.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Shale reservoirs typically display characteristics of VTI media
(Jones and Wang, 1981; Banik, 1984). The anisotropy of VTI media,
resulting from the finely layered sedimentary structures and the
aligned mineral composition, influences the seismic AVO response
(Crampin, 1981; Zhang et al., 2019; Lang et al., 2023). Considering
the impact of VTI anisotropy, precise inversion of fluid term and
anisotropic parameters establishes a theoretical basis for
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identifying and mapping the spatial distribution of fluids within
shale reservoirs and underpins the exploration and extraction of
unconventional hydrocarbons.

The fluid factor, or fluid indicator, is a key parameter that
characterizes fluid properties within the reservoir, playing a vital
role in the interpretation of oil and gas reservoirs and fluid iden-
tification (Pan et al., 2019). Smith and Gidlow (1987) introduced the
fluid factor concept, formulating it as a function of the rate of
change in P-wave and S-wave velocities. Building on Biot and
Gassmann's theory of saturated porous rocks, Russell et al. (2003,
2011) defined the fluid term as the difference between the product
of rock density and the square of P-wave velocity, and the product
of density and the square of S-wave velocity. The definition leads to
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the derivation of a broadly utilized approximate reflection coeffi-
cient equation. Yin and Zhang (2014) employed a linear approxi-
mation to separate the fluid term into the fluid bulk modulus,
coining it as the fluid indicator factor. Chen et al. (2018) suggested
that the ratio of the fluid term to porosity constitutes the fluid
factor. Feng et al. (2024) reformulated the fluid term by expressing
it in terms of the porosity and fluid bulk modulus, applying it in
frequency-dependent inversion in HTI media. Given that the fluid
factor is influenced by various elements such as reservoir and fluid
types, lithology, and pressure, it does not represent a singular
parameter. Instead, it is essential to deduce specific fluid factors
that accurately represent fluid types for a given study area,
involving a combination of different parameters, such as Poisson's
ratio, Poisson's impedance, and fluid bulk modulus (Li et al., 2022;
Ma et al., 2023; Feng et al., 2024; Chen et al., 2024b). In our
research, Russell's fluid term is adapted as the fluid factor to
develop a reliable seismic forward model.

The stability and precision of the forward operator significantly
influence the robustness and accuracy of prestack seismic inversion
in VTI media (Zong and Yin, 2017; Zong and Sun, 2022; Chen and
Zong, 2022). Seismic forward operators comprise both exact and
approximate seismic reflection coefficient equations, along with
seismic wavelets. Numerous scholars propose VTI media's exact
reflection coefficient equation (Daley and Hron, 1977; Carcione,
1997; Graebner, 1992; Schoenberg and Protazio, 1992). The exact
equation offers an accurate representation of the relationship be-
tween model parameters and seismic data. However, it is charac-
terized by a multitude of parameters, intricate formulation, and
pronounced nonlinearity. This complexity leads to significant un-
certainty and diminished computational efficiency when directly
applied to inversion processes. To address these challenges, many
researchers introduce approximate equations for VTI media pred-
icated based on the premises of weak anisotropy and weak contrast
interfaces (Ursin and Haugen, 1996; Rüger, 1998; Vavrycuk and
Psencík, 1998). Notably, Thomsen (1986) introduced the anisot-
ropy parameter, also referred to as the Thomsen anisotropy
parameter, based on the weakly anisotropic medium assumption,
leading to the derivation of a linearized anisotropic reflectivity
approximate equation. Rüger (1998) further developed a novel
approximate reflectivity equation to overcome the limitations of
Thomsen's equation at large incidence angles. Additionally,
simplified approximate equations are utilized for AVO or AVA
inversion due to their straightforward expressions (Plessix and
Bork, 2000; Zhang and Li, 2013; Lin and Thomsen, 2013; Lu et al.,
2018; Zhou et al., 2020; Yang et al., 2023; Fu, 2024). The approxi-
mate reflection coefficient equation reduces the complexity of the
equation and improves its stability. The approximate equation for
VTI media typically involves five parameters, potentially exacer-
bating the ill-condition of the equation. The differing contributions
of isotropic and anisotropic parameters to the equation can lead to
instability and multiple solutions during simultaneous inversion.
Luo et al. (2020) proposed a stepwise inversion strategy to mitigate
these issues, although this approach may introduce significant
cumulative errors. A more effective solution involves the equation
rewriting method, which consolidates parameter terms with
identical coefficients, merging less influential Thomsen parameters
into isotropic parameter terms (Zhang et al., 2019; Ge et al., 2021).
In this study, an approximate reflection coefficient equation is
derived incorporating the fluid term, shear modulus, density, and
Thomsen anisotropic parameters, simplifying the five parameters
into three combined attribute parameters. Given the complexity of
VTI media, achieving stable inversion of fluid term and Thomsen
anisotropic parameters necessitates a stable forward operator and
an appropriate AVO inversion algorithm.
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The seismic AVO inversion algorithms for VTI medium primarily
include deterministic and statistical inversion algorithms. Deter-
ministic inversion methods utilize various optimization algorithms
to identify the optimal solution. However, the VTI approximate
reflection coefficient equation has strong nonlinearity, which
makes the deterministic inversion algorithm difficult to solve and
easily falls into the local optimal solution. Statistical inversion al-
gorithms, founded on Bayesian theory, address the inversion
challenge by constructing the posterior probability density distri-
bution function (pdf) of model parameters, thereby quantifying the
uncertainty of inversion results (Buland and Omre, 2003; Li et al.,
2022; Grana et al., 2022; Yu et al., 2023; Chen et al., 2024a). The
maximum a posteriori probability (MAP) algorithm, a widely
adopted probabilistic approach, selects the solution with the
highest posterior probability as the inverse solution (Marroquin,
1985; Mosegaard and Tarantola, 1995; Luo et al., 2021). Neverthe-
less, the MAP algorithm's efficiency and accuracy decline when
dealing with complex or non-explicit posterior pdf. To overcome
these limitations, the MCMC algorithm randomly samples the
proposal distribution with the suitable Markov chain to ensure it
converges to the target posterior pdf when reaching a detailed
stable state. It is a global optimization statistical inversion algo-
rithm that can obtain the global optimal solution of the inversion
parameters (Sambridge and Mosegaard, 2002). However, the con-
ventional MCMC algorithm, using the Metropolis and Metropolis-
Hastings acceptance-rejection criteria, exhibits a high sample
rejection rate (Liang et al., 2011; Baffoun et al., 2017). In addition,
the traditional MCMC algorithm typically relies on simple proba-
bility distributions like the Gaussian and Cauchy distributions,
limiting the randomness of parameter sampling (Ayani and Grana,
2020). The high rejection probability and the known parameter
distribution function reduce the algorithm convergence and accu-
racy of AVO inversion. To solve the above problem, the Independent
Adaptive Delayed Rejection (IADR) algorithm integrated with Gibbs
sampling is proposed. It establishes a linear piecewise function
from the support points and uses it as the proposal distribution of
the non-parametric distribution. The approach, combined with
Gibbs sampling and a delayed rejection strategy, allows for the
acceptance of initially rejected samples with a certain probability
and the randomly simulation independent sample points for the
proposal distribution. The sample points rejected again are added
to new support points, which are used to update the proposal
distribution adaptively.

In this research, a novel approximate reflection coefficient
equation for VTI media is introduced, formulated with three syn-
thesized attribute parameters that encapsulate fluid term, shear
modulus, density, and Thomsen's anisotropy parameter. The com-
parison of the condition number and the approximate and exact
equations verifies the stability and accuracy of the derived equa-
tion. Furthermore, the improved IADR algorithm, integrated with
Gibbs sampling, is proposed to address the high rejection rates
encountered in traditional MCMC algorithms and the constraints
on random sampling due to predefined parameter distributions.
The efficacy of the proposed inversion method is corroborated
through the application of synthetic gathers and real data.
2. Theory

2.1. Derivation and rewriting of the anisotropic reflection coefficient
equation

After deriving and rewriting the equation, a novel approximate
reflectivity equation for VTI media is expressed as:
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Appendix A shows the specific derivation and simplification of
Eq. (1). A represents the combined parameter of fluid term, shear
modulus, and density. B represents the combined parameter of
shear modulus and Thomsen anisotropy parameters. C represents
the combined parameter of fluid term, shear modulus, density and
Thomsen anisotropy parameter ε. Its correlation with A is deter-
mined by ε. The rewritten Eq. (1) will be called the new equation,
and Eq. (A-12) without parameter merging and equation rewriting
will be called the original equation.

To verify the precision of the new equation, a four-layer model
representing four types of AVO is constructed, with the corre-
sponding isotropic and anisotropic parameters detailed in Table 1.
Fig. 1 shows that new equation is close to Ruger's approximate VTI
equation and the exact VTI equation based on the model parame-
ters for the four AVO types, particularly at small incident angles.
The congruence of equations confirms the suitability of the new
equation for prestack seismic inversion.

Fig. 2 demonstrates a comparison of the condition numbers for
the coefficient matrices of the new equation and the original
equation. The blue circle denotes the condition number for the
coefficient matrix of the original equation, while the red circle
signifies the condition number for the new equation. Notably, the
condition number for the new equation is significantly lower than
that of the original equation and diminishes as the maximum
incident angle increases. The trend suggests that the new equation
becomes more stable and the inversion more precise with larger
incident angles.

The effect of changes in model parameters on the reflection
coefficient based on the new equation and the original equation are
shown in Figs. 3 and 4. Fig. 3 indicates that at small incident angles,
the fluid term, shear modulus, and density significantly influence
the reflection coefficient, whereas the impact of the Thomsen
anisotropy parameter ε is minimal. The inversion result of ε based
on small-angle seismic data is unreliable and should be combined
with large-angle seismic data for inversion. Conversely, in the case
of the large incident angle, the density contribution is low
increasing the difficulty of inversion. Fig. 4 shows that when the
incident angle is small, the attribute parameters B and C have a
certain contribution to the reflection coefficient. When the incident
angle is large, the contribution of attribute parameters A, B, and C is
large. The contribution of B is greater than that of C. Similarly, the
contribution of C is greater than that of A. The different contribu-
tions of the three attribute parameters indicate that the new
equation applies to prestack seismic direct inversion and can be
Table 1
Model parameters of a four-layer theoretical model.

Layer Vp; m/s Vs; m/s r; kg/m3
ε d

1 5000 3000 2400 0 0
2e1 6000 4000 2400 0.07 0.05
2e2 5100 3300 2400 0.07 0.05
2e3 3900 2850 2400 0.07 0.05
2e4 3900 2550 2400 0.07 0.05
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inverted to obtain accurate inversion profiles. In addition, for the
sake of comparison, Fig. 5 shows the reflection coefficient of attri-
bute parameter B and Thomsen anisotropy parameter ε in the red
dashed area. When the incident angle is between 0� and 12�, the
contribution of ε to the reflection coefficient is small, while the
contribution of B is large. This shows that the method of parameter
merging is used to couple the Thomsen anisotropy parameter with
a small contribution and the isotropy parameter with a large
contribution as a combined parameter to improve the contribution
of parameters, thereby increasing the inversion accuracy.
2.2. IADR-Gibbs seismic inversion

The equation of the inverted parameters y and the prestack
seismic data DðqÞ is defined as:

DðqÞ¼ lðqÞ*Rppðq; yÞ þ r; (3)

where y refers to ½A; B; C�, lðqÞ denotes wavelet matrix, Rppðq; yÞ is
reflectivity equation, lðqÞ*Rppðq; yÞ is the forward operator linking
model parameter and seismic data, and r is the random noise in the
input data.

Within the Bayesian framework, the posterior pdf is constructed
by the prior function of model parameters and the likelihood
equation (Alemie and Sacchi, 2011; Li et al., 2022):

pðyjDðqÞÞfpðyÞ$pðDðqÞjyÞ; (4)

where pðyÞ denotes prior probability of the inverted parameters,
given by log data and geological information. pðDðqÞjyÞ denotes the
likelihood probability associated with the model parameters and
seismic data.

The inverted parameters are assumed to follow the mixed
Gaussian distribution and random noise adheres to the Gaussian
distribution (Li et al., 2022; Zuo et al., 2023), the posterior pdf is
simplified to

pðyjDðqÞ Þ ¼
XN
n¼1

lnG

 
y;mny ;

Xn

y

!
$G

 
DðqÞ

!

� lðqÞ*Rppðq; yÞ;0;
X

e

!
; (5)

where N denotes the quantity of model parameters, ln refers to the
weight assigned to each parameter within the Gaussian distribu-
tion, mny and

Pn
y represent the mean and the covariance matrix of

model parameters, and
P

e denotes the noise covariance.
The inherent correlation among model parameters often leads

to highly correlated random samples generated by the MCMC al-
gorithms during sampling. Moreover, the conventional MCMC al-
gorithm relies on random sampling from known pdf, such as the
Gaussian and Cauchy distribution. The reliance restricts the ability
to simulate random samples that align more closely with the target
distribution. To address these limitations, the IADR-Gibbs sampling
algorithm is proposed. The innovative approach constructs the
proposal distribution utilizing a non-parametric distribution and
employs support points for the adaptive updating of the proposal
distribution. The novel algorithm significantly diminishes the
constraints imposed by the known parameter distribution on
random simulations. Furthermore, the algorithm incorporates a
delayed rejection strategy, which reconsiders rejected samples
with a specified probability, thereby enhancing the acceptance rate
of random samples. The detailed workflow of the IADR-Gibbs al-
gorithm is outlined below.
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Firstly, set the initial parameters, the iteration number is T , the

original inversion parameters represent yð0Þ ¼ fyð0Þ1 ; yð0Þ2 ; ::::; yð0ÞL g,
where L represents the amount of model parameters.

As delineated by the Gibbs algorithm, the posterior pdf PðyðtÞl Þ of
the inverted parameters is defined as:
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P
�
yðtÞl

�
fp
�
yl
���yðtÞ1:ðl�1Þ; y

ðt�1Þ
ðlþ1Þ:ðLÞ;DðqÞ

�
; (6)

where the superscript t refers to the current iteration number, the
subscript l represents themodel parameter of the current sampling,

yðtÞl is the l th parameter of t th iteration, pðyl
���yðtÞ1:ðl�1Þ; y

ðt�1Þ
ðlþ1Þ:ðLÞ;DðqÞÞ

refers to the conditional probability between the seismic data and

other model parameters yðtÞ1:ðl�1Þ; y
ðt�1Þ
ðlþ1Þ:ðLÞ and the current sampling

parameter yðtÞl .
Secondly, the initial support point of t th iteration is given as:

SðtÞyl ¼
n
mlð1Þ;mlð2Þ; :::;mlðkÞ

o
; (7)

where k is the number of support points, which is gradually
increasing, expressed as mlð1Þ <mlð2Þ < ; :::; <mlðkÞ. Support points
refer to a discrete set of points used to construct the envelope
function. The envelope function serves as an upper bound for the
logarithmic density function of the posterior distribution, and it is
dynamically adjusted using the support points. The initial support
points are determined by the prior distribution of the model pa-
rameters and are updatedwhenever a candidate sample is rejected.
The envelope function is continuously optimized to better
approximate the posterior distribution.
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The introduction of support points can realize the adaptive
update of the proposal distribution. In the IADR algorithm, the
proposal distribution of the attribute parameter ½A;B;C� adopts a
non-parametric distribution, which is constructed by a linear
piecewise function shown in Fig. 6 in conjunction with support
points:
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where the proposal distributionQ ðtÞ
yl ðm

���SðtÞyl Þ is segmented into three

intervals, m2ð0;mlð1Þ� and m2ðmlðkÞ;þ∞� delineate the start and

finish of Q ðtÞ
yl ðm

���SðtÞyl Þ, and m2ðmlðvÞ;mlðvþ1Þ� is the central interval.

F0ðmÞ and FkðmÞ correspond to the exponential components of the
piecewise linear function, F0ðmÞ denotes expðw0ðmÞÞ, w0ðxÞ is
defined as the linear function connecting ðmlð1Þ;logðPðmlð1ÞÞÞÞ;ðmlð2Þ;
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logðPðmlð1ÞÞÞÞ. Likewise, FkðmÞ denotes expðwkðmÞÞ, wkðmÞ is char-
acterized as the linear function that unites the support points ðmlðkÞ;
logðPðmlðkÞÞÞÞ; ðmlðkþ1Þ; logðPðmlðkþ1ÞÞÞÞ. Fv;vþ1ðmÞ represents the
straight line that links ðmlðvÞ;PðmlðvÞÞÞ; ðmlðvþ1Þ;Pðmlðvþ1ÞÞÞ.

Then, the initial m0 sample point and the current sample point
m0 are randomly simulated from the proposal distribution:

h
m0;m0

i
� Q ðtÞ

yl

�
m
���SðtÞyl

�
: (9)

The current acceptance probability aðm0
��m0Þ is defined as:

a1
�
m0
���m0
�
¼min

2
41; P

�
m0	min

�
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yl

�
m0
���SðtÞyl

��
Pðm0Þmin

�
P
�
m0
	
;Q ðtÞ

yl

�
m0
���SðtÞyl

��
3
5: (10)

Generating a random number r1 from a uniform distribution

Uð0;1Þ, if r1 � a1ðm0
��m0Þ, then yðtÞl ¼ m0;z ¼ m0. z is defined as the

sample points that are finally rejected. If r1 >a1ðm0
��m0Þ, the newly

generated sample point is rejected, then yðtÞl

* ¼m0; z* ¼m0, yðtÞl

* ¼
m0; z* ¼m0. yðtÞl

*
and z* represent the intermediate variables of the

rejected sample points, which are involved in the subsequent phase
of the acceptance and rejection process. The process for selecting
model parameters can be articulated as follows:

8><
>:

yðtÞl ¼ m
0
; z ¼ m0; r1 � a1

�
m0
���m0�

;

yðtÞl

* ¼ m0; z* ¼ m
0
; r1 >a1

�
m0
���m0�

:
(11)

Furthermore, the rejected samples are reselected and the sup-
port points are updated based on the DR strategy. The random
numbers r2 is generated from a uniform distribution Uð0; 1Þ,
r2 � Uð0; 1Þ. If r2 >a2, a2 ¼ Q ðtÞ

yl ðz*
���SðtÞyl Þ=Pðz*Þ, y

ðtÞ
l ¼ yðtÞl

*
; z ¼ z*,

Sðtþ1Þ
yl ¼ SðtÞyl ∪fzg, otherwise, yðtÞl ¼ z*; z ¼ yðtÞl

*
, Sðtþ1Þ

yl ¼ SðtÞyl . These
updated support points shown in Fig. 7 are then utilized in the
adaptive refinement of the proposed distribution during the sub-
sequent iteration. The methodology for constructing and reselect-
ing the model parameters can be delineated as follows:

Sðtþ1Þ
yl ¼

8<
: SðtÞyl ∪fzg; r2 >a2;

SðtÞyl ; r
2 � a2;

(12)

8<
: yðtÞl ¼ z*; z ¼ yðtÞl

*
; r2 � a2;

yðtÞl ¼ yðtÞl

*
; z ¼ z*; r2 >a2:

(13)

Integrating the IADR algorithm with Gibbs sampling enhances
the acceptance probability and reduces the correlation among
random sampling points in the MCMC algorithm. The approach
avoids the limitation of the known distribution of fixed parameters
on sampling randomness. Initially, the Gibbs algorithm facilitates
the generation of relatively independent sample points during
random sampling. Subsequently, the DR strategy conducts a sec-
ondary selection for sample points previously rejected and updates
the support points for rejected candidates. The updated support
points establish a new proposal distribution using a linear piece-
wise function, enabling the non-parametric construction and in-
dependent adaptive update of the proposal distribution. With
continuous iterations, the proposal distribution eventually con-
verges to the posterior pdf of the model parameters. The flowchart
of the algorithm is depicted in Fig. 8.
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Fig. 6. Piecewise linear function of proposal distribution construction.

Fig. 7. Theoretical support points of parameters A, B, and C.
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3. Numerical example

3.1. Synthetic case

The inversion method proposed above is applied to a shale gas
exploration area. The original logging data includes P-wave veloc-
ity, S-wave velocity, density, and Thomsen anisotropy parameters,
as illustrated in Fig. 9. Fig. 10(a) presents the synthetic seismic
gathers without noise. Subsequently, random noise following a
Gaussian distribution is added. The synthetic seismic gathers for
signal-to-noise ratio (SNR) of 10 and 5 are shown in Fig. 10(b) and
(c), respectively. SNR represents the relative ratio of the amplitude
of the effective signal to the noise. Since the order of magnitudes
between inverted parameters are different, leading to the estima-
tion errors. In this study, fluid term and shear modulus, computed
by the P-wave velocity, S-wave velocity, and density, are first
normalized. Subsequently, anisotropy parameters are normalized.
Finally, combined parameters A, B, and C, calculated from fluid
term, shear modulus, density, and anisotropy parameters, are also
normalized. Fig. 11(a)e(c) display themodel test results for without
noise, SNR ¼ 10 and SNR ¼ 5, respectively. The red curve denotes
the inversion result, the green curve represents the initial model,
the blue curve represents the original well data, and the grey dotted
line indicates the 95% confidence interval, reflecting the uncer-
tainty of the estimated results in probabilistic inversion. In the
noise-free case, the inversion results of the three combined pa-
rameters, A, B, and C alignwith thewell data. The uncertainty of the
combined parameter B is the smallest, indicating that B contributes
more significantly to the new equation, which corresponds to the
above analysis results of the new equation. Fig. 11(b)e(c) demon-
strate that the estimated results closely alignwith the logging curve
even with the addition of random noise to the synthetic seismic
gathers. The model test results validate the accuracy and noise
resistance of the proposed inversion method. The condition num-
ber of the coefficient matrix in the new equation is low, stabilizing
the equation and provides a certain degree of noise resistance. In
combination with the IADR-Gibbs algorithm, the stable probabi-
listic nonlinear inversion results are finally predicted.

After obtaining the stable inversion results for the combination
parameters, the prediction results for the fluid term, shear
modulus, density, and Thomsen anisotropy parameter can be
derived through algebraic operations. First, the shear modulus
calculated using the well data (blue curve) and the estimated result



Fig. 8. The workflow of the IADR-Gibbs algorithm.

Fig. 9. Well curves for the synthetic case test.
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of the combination parameter B (red curve) are compared, as
shown in Fig. 12(b). The difference between the two is minimal,
indicating that the inversion result of B can be approximately
characterized as the inversion result of the shear modulus. The
error in B impacts the accuracy of the shear modulus. Next, the fluid
factor can be obtained by calculating the combination parameter A,

shear modulus, and density, according to f ¼ A =



m

k2
k1r

1
k1

�
. The er-

rors in A and B impact the accuracy of the fluid factor. Since the
sensitivity of small-angle seismic data to anisotropy is less than that
of large-angle seismic data, we assume that the density changes
minimally at the junction of the elastic interface and the density
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can be estimated based on small-angle seismic data combined with
the isotropic AVO inversionmethod (Alkhalifah and Tsvankin,1995;
Zhang et al., 2019). Furthermore, according to the equation ε ¼
k1
2 ln

�
Cr

2
k1 =A

�
, the Thomsen anisotropy parameter ε can be calcu-

lated from the combination parameters A, C, and density. The errors
in A and C impact the accuracy of the ε. The prediction results for
the fluid term, density, and Thomsen anisotropy parameter are
shown in Fig. 12(a), (c), (d), where the red curve refers to the pre-
dicted result and the blue curve represents the well data. Relative
errors between inversion results and logging-data of various SNRs
are given in Table 2.

Furthermore, inversion results of A, B, and C without noise based
on the IADR-MCMC algorithm (in blue) and the MCMC algorithm
(in red) are displayed as Fig.13. Relative error convergence curves of
A, B, and C for the noise-free case are shown as Fig.14. The inversion
errors associated with the IADR-MCMC algorithm are smaller than
that of the MCMC algorithm, verifying the superiority of the pro-
posed algorithm.
3.2. Real case

To further demonstrate the reliability of the method in this
paper, actual data application is carried out based on the azimuthal
pre-stack seismic data of the shale working area in Fuling, which is
located in the Sichuan Basin of China. The reservoir targeted in this
study is located in the Lianggaoshan Formation, which is the gas-
saturated fracture reservoir. The prestack seismic data is pro-
cessed by denoising and removing multiple waves. Fig. 15 presents
the pre-stack seismic data with incident angles of 6�, 18�, and 30�,
where the vertical and horizontal axes represent the time and
common-depth-point (CDP) number of seismic data, respectively.
The seismic data has been processed to remove noise and maintain
amplitude. Fig. 16(a)e(c) show the estimated results for A, B, and C,
respectively. In the area enclosed by the white dotted line, all three
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Fig. 11. Inversion results of A, B, and C: (a) without noise, (b) SNR ¼ 10, (c) SNR ¼ 5.
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Fig. 12. Inversion results of the fluid term, shear modulus, density, and ε: (a) without noise, (b) SNR ¼ 10, (c) SNR ¼ 5.

Table 2
Relative errors between inversion results and logging-data of various SNRs.

SNR A B C f ; GPa m; GPa r; kg/m3
ε

Noise free 0.0158 0.0072 0.0190 0.0220 0.0085 0.0058 0.0520
10 0.0179 0.0091 0.0218 0.0291 0.0105 0.0083 0.0612
5 0.0198 0.0105 0.0242 0.0349 0.0120 0.0102 0.0698
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attribute parameters, A, B, and C, exhibit abnormally low values,
and the inversion results are consistent with the well-logging data.
Comparison of estimated results and logging data of the 113rd
seismic trace (CDP 113) are displayed in Fig. 17. Following the
algebraic operations and assumptions described above, the pre-
diction results for the fluid term, shear modulus, density, and
Thomsen anisotropy parameter are shown in Fig. 18(a)e(d),
respectively. The estimated results of four parameters align with
the well curves, particularly in the area enclosed by the white
3574
dotted line. The fluid term shows an abnormally low value, indi-
cating that the reservoir segment is fluid-filled. Meanwhile, the
Thomsen anisotropy parameter exhibits abnormally high values,
signifying strong anisotropy characteristics in the reservoir
segment. The application of actual data further validates the ac-
curacy of the IADR-Gibbs inversion method proposed in this paper
and its applicability in shale exploration areas.
4. Discussion

The stable and accurate inversion results of fluid factor and
Thomsen anisotropy parameter are crucial for guiding reservoir
fluid identification and evaluating engineering sweet spots, and are
of great significance for the exploration and development of shale
reservoirs.

First, an anisotropic reflectivity equation for VTI media con-
taining three combined parameters, A, B, and C, is derived. The



Fig. 13. Inversion results of (a) A, (b) B, and (c) C without noise based on the IADR-
MCMC algorithm (in blue) and the MCMC algorithm (in red). The black curves
represent the logging-data, and the green curves indicate the initial models.

Fig. 14. Relative errors of (a) A, (b) B, and (c) C without noise based on the IADR-MCMC
algorithm (in black) and the MCMC algorithm (in red).

Fig. 15. Prestack seismic (seis) data from the shale exploration area with (a) incident
angle 6� , (b) incident angle 18� , (c) incident angle 30� .
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method of parameter merging and equation rewriting reduces the
number of inversion parameters in the new equation, thereby
improving its stability. Given that the new equation is highly
nonlinear and there is an implicit correlation between the model
3575
parameters, the IADR-Gibbs algorithm is proposed to achieve
multi-parameter stable inversion. The algorithm randomly simu-
lates relatively independent samples based on the Gibbs sampling
criterion and introduces support points to construct the proposal
distribution of the non-parametric function. Then, utilizing the
delayed rejection strategy, the rejected samples are reselected with



Fig. 16. Inversion results of (a) A, (b) B, (c) C.
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a certain probability, achieving an adaptive update of the proposal
distribution.

Second, the new equation, in comparison to the original equa-
tion, has fewer inversion parameters, and the condition number is
3576
significantly reduced, which greatly enhances the stability of the
equation. Additionally, the Thomsen anisotropy parameter ε that
contribute less to the reflection coefficient are incorporated into the
combined parameters A, B, and C, thereby increasing the parame-
ters' contribution and improving the accuracy of the inversion.
Zhang et al. (2019) proposed two strategies to predict the Thomsen
anisotropy parameter ε by decoupling the predicted results of A, B,
and C. The first strategy involves obtaining the inversion results of
the independent parameters from the linear relationship between
the combined parameters (such as attribute parameter A) and the
independent parameters (such as P-wave velocity). Subsequently,
the Thomsen anisotropy parameter ε is derived through algebraic
operations based on its relationship with the combined parame-
ters. The second strategy employs the isotropic AVO inversion
method to obtain the P-wave velocity, S-wave velocity, and density.
Then, it calculates the ε with the combined parameters. In this
study, both strategies are adopted. According to the logging rela-
tionship between the combined parameter B and the shear
modulus, the inversion result of B is approximately regarded as the
inversion result of the shear modulus. The density is inverted using
the isotropic AVO inversion method. The fluid term and Thomsen
anisotropy parameter can be obtained through algebraic operations
based on their relationship with the combined parameters A, B, and
C.

Furthermore, the improved IADR-Gibbs algorithm, in compari-
son to the Gibbs sampling with adaptive independent sticky (AISM)
MCMC algorithm (Zuo et al., 2024), introduce the DR strategy,
which reselects the samples rejected in the previous state. Take
parameter B as an example, Fig. 19(a)e(c) show the convergence
process of B with 30 Markov chains using the IADR-Gibbs algo-
rithm, Gibbs sampling with AISM algorithm, and traditional MCMC
algorithm, respectively. It can be seen that when the Pearson cor-
relation coefficient between the inversion result of B and the log-
ging data reaches 0.916, the convergence iterations are 926, 1095,
and 1165, respectively. The new algorithm converges faster than the
Gibbs sampling with AISM algorithm, and traditional MCMC algo-
rithm. Moreover, compared with the delayed rejection adaptive
Metropolis (DRAM) MCMC algorithm (Zuo et al., 2023), the
improved IADR-Gibbs algorithm employ the Gibbs sampling crite-
rion instead of the Metropolis sampling criterion, which ensures
the relative independence of random samples. In addition, the
novel algorithm adopt the non-parametric distribution to construct
the proposal distribution, which guarantees the randomness of
sampling. Fig. 20(a)e(c) display the inversion results of B based on
the IADR-Gibbs algorithm, DRAM-MCMC algorithm, and general
MCMC algorithm, respectively. In the white dashed area, the
inversion results of B using the new algorithm are in better
agreement with the well logging data than using the DRAM-MCMC
and general MCMC algorithm. And the lateral continuity of the
inversion result is also improved by the IADR-Gibbs algorithm.

However, our study contains the following assumptions. First, in
the process of stiffness matrix simplification and equation deriva-
tion, it is assumed that the anisotropy of the medium is weak, and
the elastic parameters exhibit minimal variation at the elastic
interface, so the equation is applicable to the inversion of reservoirs
with small Thomsen anisotropy parameters and weak contrast
interface. Second, the rock is saturated with fluid, and the stored
fluid is a mixture of gas and water. Third, the inverted B can
approximately characterize shear modulus under the premise of
the weakly anisotropic VTI medium. Thus, the anisotropy param-
eter d cannot be inverted using our method.

Besides, density is used to decouple fluid and anisotropy pa-
rameters from the inversion results of combined parameters A, B,



Fig. 17. Comparison of estimated results and logging data of the 113rd seismic trace (CDP 113). The blue curves indicate the true logging curves, the red curves indicate the predicted
results, and the grey curves indicate the predicted results of 30 realizations. (a) A, (b) B, (c) C.

Fig. 18. Inversion results of the (a) fluid term, (b) shear modulus, (c) density, (d) ε.

Y.-H. Zuo, Z.-Y. Zong, X.-Y. Yin et al. Petroleum Science 22 (2025) 3565e3582

3577



Fig. 19. Convergence process of B with 30 Markov chains using the (a) IADR-Gibbs
algorithm, (b) Gibbs sampling with AISM algorithm, and (c) traditional MCMC algo-
rithm. IB and CB represent iteration and Pearson correlation coefficient between the
inversion result and logging data of B, respectively.

Fig. 20. Inversion results of B based on the (a) IADR-Gibbs algorithm, (b) DRAM-MCMC
algorithm, and (c) general MCMC algorithm.
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and C. However, the stability and accuracy of density inversion are
influenced by its relatively small contribution to reflection co-
efficients and its strong correlation with other parameters. Addi-
tionally, the quality of seismic data significantly impacts the
precision of density inversion. The large-angle seismic data is more
prone to multiples and noise, requiring extensive preprocessing
and corrections before inversion. In contrast, high-quality small-
angle seismic data are better suited for density inversion. Therefore,
we use the small-angle data to estimate density.

Finally, the reflectivity equation on the basis of the anisotropic
medium assumption contains both isotropic and anisotropic
parameter terms. Multiple model parameters reduce the stability of
the equation and increase the uncertainty and decrease the accu-
racy of the inversion. Therefore, the equation rewritingmethod also
applies to the derivation of anisotropic reflection coefficient equa-
tions based on the assumptions of the horizontal transverse
isotropic medium, orthogonal transverse isotropic medium, and
tilted transverse isotropic medium.

5. Conclusions

In this research, an innovative PP wave anisotropic reflectivity
equation containing combined attribute parameters is derived us-
ing the equation rewriting method based on the VTI medium hy-
pothesis. The estimated results of the attribute parameters A, B, and
C can be used to obtain the prediction results for the fluid factor,
shear modulus, density, and Thomsen anisotropy parameter
through algebraic operations. The new equation reduces the coef-
ficient matrix's condition number and incorporates the Thomsen
anisotropy parameter, which has a lower contribution to the
reflection coefficient, into the combined parameters to increase the
prediction precision.

Additionally, the derived reflection coefficient equation retains
strong nonlinear characteristics, and there is an implicit strong
correlation between the combined parameters A, B, and C. To
address this issue, the IADR-Gibbs probabilistic nonlinear inversion
method is proposed. The method is based on the Gibbs sampling
algorithm and randomly simulates relatively independent samples
according to the conditional probability distribution between the
model parameters. Furthermore, to overcome the high rejection
probability of the traditional MCMC algorithm and the limitations
of the randomness of the proposal distribution using known pa-
rameters such as the Gaussian distribution, support points are
introduced to construct the proposal distribution using a linear
piecewise function. During the random simulation process, the
sample points rejected in the previous state are reselected with a
certain probability based on the delayed rejection strategy. The
rejected samples are finally added to the support points, and the
proposal distribution of the non-parametric distribution is adap-
tively updated. Model testing and actual data application verify the
accuracy of the equation derived in this paper, the proposed IADR-
Gibbs inversionmethod, and their applicability to shale exploration
areas.
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Appendix A

The stiffness matrix of VTI medium is expressed as:

CVTI ¼

2
6666664

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

3
7777775
; (A-1)

where C12 ¼ C11 � 2C66.
Operating under the premise of theweakly anisotropic medium,

Thomsen (1986) streamline the formulation of each element within
the stiffness matrix:

C11 ¼ rVp
2ðð1þ 2εÞÞ ¼ Msatð1þ 2εÞ;

C13 ¼ rVp
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 2dÞ

q
� rVs

2 ¼ Msat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 2dÞ

q
� m;

C33 ¼ rVp
2 ¼ Ms;

C55 ¼ rVs
2 ¼ m;

C66 ¼ rVs
2ð1þ 2gÞ ¼ mð1þ 2gÞ;

F ¼ 1� Vp
2
.
Vs

2;

(A-2)

where Vp
2 and Vs

2 denote the P-wave and S-wave velocity propa-
gating along the symmetry axis, r refers to the density of the me-
dium, ε, d, and g are parameters represents the anisotropy strength
of the VTI medium.

In the stiffness matrix component C13,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 2dÞ

p
cannot be

directly decoupled, complicating the subsequent derivation of the
reflection coefficient equation. To circumvent this complexity,
Taylor's first-order approximation is employed to streamline the
term, with the resulting simplified equation presented as Eq. (A-3).
As depicted in Fig. 21, the simplified equation closely aligns with
the original, exerting minimal impact on the component C13.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 2dÞ
q

z F þ d: (A-3)
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Fig. 21. Comparison of Eq. (A-3) and its approximation equation.

Then, C13 is simplified as:

C13 ¼ rVp
2ðF þ dÞ � rVs

2: (A-4)

According to the definition of Russell et al. (2003), the fluid term
f is given below:

f ¼
�
rVp

2
�
sat

� adry
2
�
rVs

2
�
sat

¼ Msat � adry
2m

adry
2 ¼ �Vp



Vs
	2
dry;asat

2 ¼ �Vp


Vs
	2
sat ¼ Msat

.
m:

(A-5)

where the subscripts sat and dry denote saturated rock and dry
rock, Msat and m represents P-wave modulus and shear modulus of
the saturated rock, respectively. adry2 and asat2 can be obtained
employing the method proposed by Chen and Zhang (2017).

Then, the stiffness matrix components in Eq. (A-1) are defined
as:

C11 ¼
�
f þ adry

2m
�
ð1þ 2εÞ

C12 ¼ f þ
�
adry

2 � 2
�
mþ

�
f þ adry

2m
�
2ε� 4mg

C13 ¼ f þ
�
adry

2 � 2
�
mþ

�
f þ adry

2m
�
d

C33 ¼ f þ adry
2m;

C55 ¼ m;
C66 ¼ mð1þ 2gÞ:

(A-6)

The perturbation matrix of the stiffness parameters is:
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DC11 ¼ Df þ adry
2Dmþ 2εDf þ 2Dεf þ 2adry

2
εDmþ 2adry

2mDε

DC12 ¼ Df þ
�
adry

2 � 2
�
Dmþ 2εDf þ 2Dεf þ 2adry

2
εDmþ 2adry

2mDε� 4Dmg� 4mDg

DC13 ¼ Df þ
�
adry

2 � 2
�
Dmþ dDf þ Ddf þ adry

2mDdþ adry
2Dmd

DC33 ¼ Df þ adry
2Dm

DC55 ¼ Dm
DC66 ¼ Dmþ 2Dmgþ 2mDg:

(A-7)
Df ; Dm, Dr, Dε, and Dd refer to the variation of fluid term, shear
modulus, density, and Thomsen anisotropy parameter at the me-
dium interface.
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Under the premise that the fluid term and shear modulus
exhibit minimal variation at the elastic interface due to weak
anisotropic media, the terms proportional to εDf , εDm,Dmg, dDf , and
Dmd are omitted and the matrix components are simplified to:

DC11 ¼ Df þ adry
2Dmþ 2Dεf þ 2adry

2mDε

DC12 ¼ Df þ
�
adry

2 � 2
�
Dmþ 2Dεf þ 2adry

2mDε� 4mDg

DC13 ¼ Df þ
�
adry

2 � 2
�
Dmþ Ddf þ adry

2mDd

DC33 ¼ Df þ adry
2Dm

DC55 ¼ Dm
DC66 ¼ Dmþ 2mDg:

(A-8)

Based on the scattering theory and Born approximation (Shaw
and Sen, 2004), the PP wave reflection coefficient of VTI medium
is defined as:

Rppðq;4Þ¼ 1
4r cos2 q

Sðr0Þ; (A-9)

where q denotes the incident angle, Sðr0Þ represents the scatter
function which is expressed as:

Sðr0Þ¼Dr cos 2qþ DC2; (A-10)

where Dr is the perturbation of the density at the interface, DC is
the perturbationmatrix of the stiffness parameters derived above, 2
is the function of slowness and polarization, which is defined as:

h11 ¼ r cos4 4 sin4 q
.
Msat;

h12 ¼ h21 ¼ r sin2
4 cos2 4 sin4 q

.
Msat;

h13 ¼ h31 ¼ r cos2 4 sin2 q cos2 q
.
Msat;

h22 ¼ r sin4
4 sin4 q

.
Msat;

h23 ¼ h32 ¼ r sin2
4 sin2 q cos2 q

.
Msat;

h33 ¼ r cos4 4
.
Msat;

h44 ¼ �4r sin2
4 sin2 q cos2 q

.
Msat;

h55 ¼ �4r cos2 4 sin2 q cos2 q
.
Msat;

h66 ¼ 4r sin2
4 cos2 4 sin4 q

.
Msat:

(A-11)

where 4 represents the azimuth angle, which is 0� here. Combining
Eqs. (A-8) to (A-11), the approximate VTI medium reflection coef-
ficient equation including the fluid factor and anisotropic param-
eters is derived as follows:



Y.-H. Zuo, Z.-Y. Zong, X.-Y. Yin et al. Petroleum Science 22 (2025) 3565e3582
RppðqÞ¼ aðqÞDf
f

þ bðqÞDm
m

þ cðqÞDr
r

þ dðqÞDεþ eðqÞDd;

(A-12)

aðqÞ ¼
 
1� adry

2

asat2

!
sec2 q

4
;

bðqÞ ¼
 
adry

2

asat2
sec2 q

4
� 2
asat2

sin2 q

!
;

cðqÞ ¼


1
2
� sec2 q

4

�
;

dðqÞ ¼ sin4 q

2 cos2 q
;

eðqÞ ¼ sin2 q

2
:

(A-13)

Letting k1 ¼ 1� adry
2

asat
2 ;k2 ¼ adry

2

asat
2 ;k3 ¼ 2

asat
2 , we can get:

aðqÞ ¼ k1



1
4
þ 1
4
tan2 q

�
;

bðqÞ ¼ 1
4
k2 þ

1
4
k2 tan2 q� k3 sin2 q;

cðqÞ ¼ 1
4
� 1
4
tan2 q;

dðqÞ ¼ tan2 q

2
� sin2 q

2
;

eðqÞ ¼ sin2 q

2
:

(A-14)

Rewriting Eq. (A-12), it can be expressed as:

A1 ¼ 1
4
k1



Df
f

þ k2
k1

Dm
m

þ 1
k1

Dr
r

�
;

A2 ¼ �k3 sin2 q



Dm
m

þ 1
2k3

Dε� 1
2k3

Dd
�
;

A3 ¼ 1
4
k1 tan2 q



Df
f

þ k2
k1

Dm
m

� 1
k1

Dr
r

þ 2
k1
Dε
�
:

(A-15)

We introduce the approximate equation:

Df
f
zln



fiþ1
fi

�
;
Dm
m
zln



miþ1
mi

�
;
Dr
r
zln



riþ1
ri

�
: (A-16)

The subscripts iþ1 and i represent the (iþ1)th layer and the ith
layer, respectively.

Then, Eq. (A-12) is simplified to:

RppðqÞ ¼ 1
4
k1 ln

2
664


fm
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