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a b s t r a c t

As oil and gas exploration continues to progress into deeper and unconventional reservoirs, the like
lihood of kick risk increases, making kick warning a critical factor in ensuring drilling safety and effi
ciency. Due to the scarcity of kick samples, traditional supervised models perform poorly, and significant 
fluctuations  in field  data lead to high false alarm rates. This study proposes an unsupervised graph 
autoencoder (GAE)-based kick warning method, which effectively reduces false alarms by eliminating 
the influence  of field  engineer operations and incorporating real-time model updates. The method 
utilizes the GAE model to process time-series data during drilling, accurately identifying kick risk while 
overcoming challenges related to small sample sizes and missing features. To further reduce false 
alarms, the weighted dynamic time warping (WDTW) algorithm is introduced to identify fluctuations in 
logging data caused by field  engineer operations during drilling, with real-time updates applied to 
prevent normal conditions from being misclassified  as kick risk. Experimental results show that the 
GAE-based kick warning method achieves an accuracy of 92.7% and significantly reduces the false alarm 
rate. The GAE model continues to operate effectively even under conditions of missing features and 
issues kick warnings 4 min earlier than field engineers, demonstrating its high sensitivity and robust
ness. After integrating the WDTW algorithm and real-time updates, the false alarm rate is reduced from 
17.3% to 5.6%, further improving the accuracy of kick warnings. The proposed method provides an 
efficient and reliable approach for kick warning in drilling operations, offering strong practical value and 
technical support for the intelligent management of future drilling operations.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As the exploration and development of oil and gas resources 
gradually shift toward deeper and unconventional reservoirs 
fields, drilling faces challenges such as high temperature and high 
pressure, narrow safe density windows, and other issues. These 
challenges have significantly  increased the kick risk and other 
drilling hazards, which can easily trigger severe blowout accidents 
(Vandenbussche et al., 2012). Therefore, early warning of kick risk 

is extremely important, as they can effectively reduce downhole 
accidents and are critical for ensuring safe and efficient  drilling 
operations (Griffin, 1967; Han et al., 2017). Currently, kick warning 
methods mainly include traditional early warning methods and 
intelligent early warning methods. Traditional methods suffer 
from poor timeliness and insufficient  accuracy, while intelligent 
diagnostic methods, despite their broad application prospects, are 
still rarely applied in actual field operations, primarily due to the 
need for improved generalization capabilities. This situation 
highlights the practical significance  of conducting in-depth 
research on intelligent early warning technologies for drilling kick.

Traditional early warning methods rely on kick warning by 
setting thresholds for single parameters. Liu (2006) developed a 
novel drilling fluid level monitoring and automatic grouting device 
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that utilizes ultrasonic waves to monitor changes in the fluid level 
of drilling mud tanks. Jiang et al. (2013) combined Coriolis mass 
flow technology with mud logging processes to establish an early 
kick detection (EKD) system. By comparing the flow rate changes 
at the inlet and outlet, they achieved fast and accurate kick 
warning and early warning. Wang et al. (2017) proposed an early 
kick warning method based on changes in drilling fluid resistivity 
(related to drilling fluid  density and chloride ion content). This 
method demonstrated high sensitivity and real-time performance. 
Schafer et al. (1992) introduced an innovative rolling float  flow
meter for precise monitoring of pipeline flow, showing excellent 
performance. Ablard et al. (2012) employed Coriolis flowmeters, 
which operate under low to medium pressure conditions and 
effectively eliminate temperature effects, allowing accurate mea
surement of oil, gas, and water mass flow, temperature variations, 
and density in pipelines. In recent years, with the significant ad
vantages of artificial intelligence (AI) and big data technologies in 
solving complex problems involving multiple parameters and 
non-linear relationships, these technologies have achieved mature 
applications and rapid promotion in the energy sector. Research on 
kick early warning based on AI is currently in a stage of rapid 
development (Li et al., 2022). Researchers primarily use supervised 
and unsupervised learning algorithms for kick early warning, 
achieving certain results. Liang and Wang (2019) and Liang et al. 
(2020, 2019) predicted kick based on the correlation between 
kick incidents and casing pressure variation trends, utilizing 
clustering algorithms and neural network algorithms. Yin et al. 
(2021, 2022) defined  five  risk levels using three key indicators: 
flow  rate difference, mud pit volume increment, and duration. 
They compared the performance of three algorithms: Long short- 
term memory neural networks (LSTM), recurrent neural networks 
(RNN), and sparse autoencoder-support vector machines. Song 
et al. (2021, 2022) conducted a comparative analysis of the kick 
and loss early warning performance of random forest, support 
vector machines, fully connected neural networks, and LSTM. They 
proposed a formation pore pressure prediction model based on the 
sequential characteristics of sedimentary sequences and drilling- 
logging-measurement multivariate data, combined with LSTM 
and BP neural networks, and successfully achieved accurate kick 
risk prediction. Zhang et al. (2024) classified  kick warning pa
rameters into dominant and auxiliary ones, and used a parameter 
adaptive neural network, which improved the accuracy by 12.8%. 
Chen et al. (2024) proposed a convolutional neural network 
(CNN)-based kick warning method for deepwater drilling, showing 
that this method can identify kick more quickly and accurately, 
with good model robustness. Zhu et al. (2023) utilized an unsu
pervised time-series intelligent model for kick warning, achieving 
an accuracy of 95%. Duan et al. (2023) first  performed drilling 
condition classification  and developed an intelligent kick early 
warning method based on random forest and artificial  neural 
networks. Zhang and Samuel (2024) proposed a CNN-LSTM hybrid 
model for real-time early kick and loss prediction (EKLP), 
demonstrating its effectiveness in enhancing detection accuracy 
and operational safety during drilling operations. Sha et al. (2024)
developed a real-time kick detection system utilizing artificial 
intelligence and real-time drilling data, achieving a 90% accuracy 
in early kick prediction during field applications. Qiao et al. (2024)
developed a hybrid deep learning model combining convolutional 
neural networks (CNNs), gated recurrent units (GRUs), and an 
attention mechanism, with an accuracy of 98.64%.

In the early stages of a kick event, integrated field logging data 
typically exhibit complex interdependent changes and nonlinear 
fluctuations in time series. These features reflect the interactions 
of multiple factors and reveal the key dynamic patterns during the 
kick process. However, existing intelligent warning methods 

typically rely on non-sequential point data modeling or fail to fully 
account for the interdependencies within multi-dimensional 
time-series data, which limits their ability to capture the under
lying temporal dynamics effectively. Moreover, field warning often 
faces the issue of missing data features. For example, due to sensor 
malfunctions or data transmission delays, the outflow rate char
acteristics may be temporarily absent, which significantly impacts 
the warning accuracy of traditional methods and may even lead to 
model failure. Kick risk often suffer from a limited number of 
effective data samples, making it a typical small-sample event. To 
address these issues, the unsupervised learning-based graph 
autoencoder offers an innovative solution for kick warning. It not 
only captures the dynamic features of time-series data but also 
integrates multi-dimensional information through graph-based 
modeling. Additionally, even when some features are missing, 
the model can compensate for the missing data by leveraging the 
relationships between neighboring data nodes, ensuring its 
robustness. By constructing a graph structure that incorporates 
logging data nodes and their relationships, the graph autoencoder 
effectively captures the dynamic patterns of time series and in
tegrates the interdependencies between different nodes into a 
unified  graph representation. In comparison to other methods, 
kick warning using the graph autoencoder can comprehensively 
address both the dynamic nature of time-series data and the 
challenge of local feature loss, enabling a more accurate identifi
cation of the inherent correlations within multi-dimensional data. 
However, the graph autoencoder method still presents certain 
false alarm issues in practical applications. To address this, this 
study utilizes the weighted dynamic time warping (WDTW) 
method to identify pump on-off operations during the drilling 
process. Based on the identified operational states, the false alarm 
rate is further reduced. At the same time, false alarm samples are 
fully leveraged to enable real-time model updates through 
ensemble learning, thereby enhancing the practical value of the 
model. This approach comprehensively improves the accuracy and 
applicability of kick warning, providing more reliable technical 
support for intelligent kick warning during the drilling process.

2. Methodology

This section aims to highlight the details of the framework, 
including the description of the data preprocessing, the method of 
graph neural networks, the method of real-time update, field en
gineer operations, and evaluation metrics.

2.1. Data preprocessing

The data used in this study were collected from 12 wells in 
western China oilfields. To ensure the reliability and generalization 
of the experimental results, we provide a detailed statistical 
summary of the dataset. The dataset contains a total of 94,320 
samples, of which 2635 are labeled as kick and 91,685 as normal, 
resulting in a class distribution ratio of approximately 1:34.8 (kick: 
normal). This high imbalance reflects real-world operational 
conditions and presents challenges typical in anomaly detection 
tasks. The data were acquired under diverse geological and oper
ational environments across different wells, supporting the 
robustness and generalization of the proposed model. During the 
collection and storage of integrated logging data, outliers may 
occur, which significantly deviate from the normal data distribu
tion and range of variation. To detect these outliers, a boxplot 
method is employed. This method identifies data points that fall 
outside the interquartile range (IQR) as outliers, ensuring that any 
abnormal values are effectively flagged  for further processing 
(Tukey, 1977). For handling missing values, spline interpolation is 
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applied. This method fits a smooth curve through the known data 
points, and uses this curve to estimate the missing values, 
providing a reliable approach to fill in gaps in the data. To further 
enhance the quality of the data, exponential weighted moving 
average (EWMA) is used for data smoothing and noise reduction. 
This method assigns exponentially decreasing weights to past 
observations, with more recent data points receiving higher 
weights. As a result, the data is smoothed, reducing random fluc
tuations and improving the accuracy of subsequent analyses. The 
calculation formula is shown in Eq. (1). 

St = a⋅xt + (1 − a)⋅St− 1 (1) 

where St is the EWMA value at the current time point, xt is the 
actual observed value at the current time point, St− 1 is the EWMA 
value at the previous time point, and a is the smoothing coeffi
cient, which ranges between 0 and 1. The larger the value of a, the 
greater the weight of recent data, and the smaller the value of a, 
the smaller the weight of recent data.

After analyzing the comprehensive engineering expertise and 
the Spearman correlation coefficient  feature selection method, 
this study ultimately selected the following 8 parameters as the 
input features for the construction of the intelligent model: hook 
load, weight on bit (WOB), torque, standpipe pressure, total pit 
volume, outlet density, outlet flow  rate, and inlet flow rate. The 
Spearman correlation method was applied to evaluate the mono
tonic relationships between each candidate parameter and kick 
occurrence. Parameters with relatively strong correlations were 
retained. Meanwhile, domain knowledge from experienced dril
ling engineers was used to ensure the selected features reflected 
key physical mechanisms related to kick events, such as pressure 
changes. The final  selection balances data-driven relevance and 
practical interpretability, ensuring robust and meaningful model 
inputs.

To eliminate the dimensional differences between different 
parameters and reduce their impact on the modelʼs performance, 
thereby providing a more robust and reliable data foundation for 
the subsequent construction and analysis of intelligent models, 
this study uses the Max-Min method to normalize the logging 
data. In real-time applications, since future data are unavailable, 
the normalization process in Eq. (2) is implemented using fixed 
normalization parameters. Specifically, xmax and xmin are pre- 
calculated from the training dataset and remain constant during 
online monitoring. This approach ensures stable and consistent 
normalization across different operational conditions and avoids 
potential instability caused by short-term fluctuations in real-time 
data. The calculation formula is shown in Eq. (2). 

xnew =
x − xmin

xmax − xmin
(2) 

where xnew represents the value after data normalization, x rep
resents the original value of the data, xmax represents the 
maximum value of all sample data under the selected feature, and 
xmin represents the minimum value of all sample data under the 
selected feature.

2.2. Graph neural network-based kick warning method

A graph structure is a mathematical representation widely used 
to describe complex relational data, consisting of nodes and edges 
to model the relationships between data points. A graph can be 
represented as G = (V; E), where V = {v1; v2;…; vN} is the set of 
nodes and E⫅V × V is the set of edges. The graph can be designed 
as a directed or undirected graph, as well as a weighted or un
weighted graph, depending on the application scenario. Each node 

vi ∈ V typically has an associated feature vector xi ∈ RF, where F 
represents the dimensionality of the features. The structural re
lationships of the entire graph can be represented by an adjacency 
matrix A ∈ RN×N , where Aij = 1 indicates that nodes vi and vj are 
connected by an edge, otherwise Aij = 0.

Graph neural networks (GNN) are a deep learning framework 
designed for graph-structured data. The concept of GNN was firstly 
proposed by Scarselli et al. (2008) in 2008. The core idea is to 
iteratively propagate messages, enabling each node to aggregate 
information from its local neighborhood, thus learning higher- 
order feature representations of the nodes. The basic process of 
GNN includes:

1) Neighbor feature aggregation: collecting information from 
neighboring nodes.

2) Feature update: fusing the aggregated neighbor information 
with the nodeʼs own features.

3) Multi-layer propagation: through successive aggregation and 
update operations, the feature representation of a node grad
ually captures relationships at further distances.

Similar to traditional convolutional neural networks (CNN) 
applying local convolutions on regular grids (such as images), GNN 
performs feature learning on irregular graph-structured data. 
However, the neighborhoods in graphs are dynamic and irregular. 
Variants of GNN mainly depend on how the neighborhood features 
are aggregated. Classic models, such as graph convolutional net
works (GCN), aggregate information from neighboring nodes using 
spectral methods, while graph attention networks (GAT) introduce 
attention mechanisms to assign different weights to neighboring 
nodes, allowing for more flexible modeling of the heterogeneous 
importance between nodes. Compared to traditional methods, 
GNN has inherent advantages in handling time series and feature 
missingness. Its feature aggregation mechanism allows for 
compensation using neighborhood information in the case of 
missing features, thus maintaining the robustness of the model.

2.2.1. Graph convolutional network (GCN)
Graph convolutional network is a deep learning model based 

on graph-structured data that can effectively capture the complex 
relationships between node features and their neighboring nodes 
(Chen et al., 2020). GCN performs graph convolution operations to 
aggregate the nodeʼs own features with those of its neighboring 
nodes. It also combines the adjacency matrix and the normalized 
degree matrix to normalize the features, alleviating the impact of 
uneven node degree distribution on feature updates. Its core 
mathematical expression is shown in Eq. (3). This study employs it 
as one of the supervised base learners to capture spatial correla
tions in the constructed logging data graph. By leveraging GCNʼs 
ability to extract topological information, it supports the classifi
cation of kick risk in complex operating environments. A standard 
two-layer GCN is shown in Fig. 1. 

H(l+1) = σ
(

~D
− 1

2 ~A~D
− 1

2H(l)W(l)
)

(3) 

where, H(l) represents the feature matrix of the nodes at the l-th 

layer, W(l) represents the weight matrix at the l-th layer, ~A = A + I 
represents the adjacency matrix plus the self-connection matrix, ~D 
represents the degree matrix plus the diagonal matrix of the self- 
connection matrix, and σ represents the activation function. By 
stacking convolution operations layer by layer, GCN is able to 
embed the node features into a lower-dimensional representation 
space, while also aggregating information from neighborhoods at 
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further distances, capturing multi-order structural relationships in 
the graph.

2.2.2. Graph attention network (GAT)
Graph attention network (GAT) is an improved graph neural 

network model that introduces an attention mechanism to 
dynamically adjust the aggregation weights of neighborhood in
formation, thereby more flexibly capturing local and global re
lationships within the graph structure (Velickovic et al., 2017). The 
core idea of GAT is to assign different attention weights to each 
node and its neighboring nodes, highlighting the importance of 
key nodes in feature aggregation. The GAT contributes to improved 
adaptability by assigning dynamic importance to logging param
eters under varying conditions. Its attention-based aggregation 
helps distinguish subtle feature patterns associated with kick 
events. The coefficients (Fig. 2) calculated by the attention mech
anism are shown in Eq. (4). 

αij =

exp
(

LeakyReLU
(

a→
T
[

W h
→

i

⃦
⃦
⃦
⃦W h

→
j

]))

∑
k∈Ni

exp
(

LeakyReLU
(

a→
T
[

W h
→

i

⃦
⃦
⃦
⃦W h

→
k

])) (4) 

where h
→

i represents the node feature vector, W represents the 

weight matrix, ‖ denotes the vector concatenation operation, a→
T 

denotes the parameter of a single-layer feedforward neural 
network, LeakyReLU( ⋅) represents the rectified linear unit activa
tion function with negative parts included, k means the neighbors 

of node i, and αij denotes the attention coefficient between node i 
and node j.

The attention coefficients  are used to compute the linear 
combination with their corresponding features, which serve as the 
final  output features for each node. These features are then 
concatenated to obtain the output feature representation, as 
shown in Eq. (5). The aggregation process of the multi-head graph 
attention layer is shown in Fig. 3. 

h
→ʹ

i =‖ K
k=1σ

⎛

⎝
∑

j∈Ni

αk
ijW

k h
→

j

)

(5) 

where αk
ij is the normalized attention coefficient calculated by the 

k-th attention mechanism. K means the number of multi-head 

attention, and h
→ʹ

i represents the finally  learned node 
representations.

2.2.3. Graph autoencoder (GAE)
Graph autoencoder (GAE) is a graph embedding model derived 

from neural networks (Rennard et al., 2021). In this study, a GCN 
encoder and an inner product decoder are used to obtain optimal 
representations through graph data reconstruction. The GCN 
encoder aggregates the features of neighboring nodes to generate 
optimal node representations, and its process is expressed as 
shown in Eq. (6). The overall framework of the model is shown in 
Fig. 4, which includes two methods: path graph construction and 
K-Nearest Neighbor (KNN) graph construction. It is adopted as the 
core unsupervised model in this study to address challenges such 
as data imbalance, missing labels, and evolving feature dynamics 
in real-time drilling operations. Using the sliding window tech
nique, the time series is divided into segments with a window 
length of 60 and a step size of 1. In the path graph construction, 
each time point is treated as a node, and edges are connected 
sequentially in time order, forming a chain-like graph structure. 
This approach is well-suited for capturing the sequential and dy
namic evolution characteristics of time series. In contrast, for KNN 
graph construction, nodes are connected based on similarity using 
the cosine similarity algorithm, with K set to 9. This generates a 
global, non-sequential graph structure designed to capture com
plex interaction patterns driven by similarity. 

Z=GCN(X;А) (6) 

Given the node feature matrix X ∈ RN×P and adjacency matrix 
A ∈ RN×N , they are fed into the GCN function to output Z ∈ RN×F , 
where zi ∈ RF represents the node embedding vector and F rep
resents the dimensionality of the node embeddings. The calcula
tion process of GCN is shown in Eq. (7). 

GCN(X;A)= ~AReLU(~AXW0)W1 (7) 

Fig. 1. The standard architecture of two-layer GCN.

Fig. 2. Attention mechanism diagram.
Fig. 3. Aggregation process of the multi-head graph attention layer (K = 3) (Li et al., 
2022).
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where ~A = D− 1
2AD− 1

2 , D is the degree matrix of the nodes, W0 and 
W1 are the parameters to be learned.

The decoder consists of two parts: adjacency matrix decoding 
and node feature decoding. Accordingly, the GAE loss function 
combines the reconstruction loss of both the adjacency matrix and 
the node feature matrix. A cross-entropy loss measures how well 
the reconstructed adjacency matrix preserves the graph structure, 
while root mean square error (RMSE) evaluates the similarity be
tween the original and reconstructed node features. Smaller dif
ferences indicate that the latent representation Z retains both 
structural and attribute information effectively (Zhao et al., 2023). 
Since the GAE is trained only on risk-free samples in an unsuper
vised manner, it focuses on learning the normal patterns of the 
drilling process. Deviations in reconstruction errors during infer
ence are used to identify potential kick risks, making the method 
inherently suitable for handling rare-event scenarios without 
requiring a balanced dataset.

After training the model with risk-free data, it is used for kick 
warning by analyzing the features and patterns in the logging data 
through the difference between the reconstructed data and the 
original data. When the reconstruction error exceeds a preset 
threshold (0.5), it is determined that a risk is present. The recon
struction error for GAE is computed using Eqs. (8)–(10). 

L1 = −
1
N

∑N

i=1

yi log(1 − yi)+ ŷi log(1 − ŷi) (8) 

L2 =RMSE(X; X̂) (9) 

L= L1 + L2 (10) 

where y represents a specific  element (0 or 1) in the adjacency 
matrix A; ŷ represents the corresponding value (between 0 and 1) 

in the reconstructed matrix Â; X is the original node feature ma

trix; X̂ is the reconstructed node feature matrix; RMSE represents 
the calculation of the root mean square error; L1 is the loss 

function for the reconstructed adjacency matrix; L2 is the loss 
function for the reconstructed node features; and L is the total loss 
function.

As GAE is trained using only risk-free data, its output reflects 
deviations from normal operational patterns. However, an 
abnormal reconstruction error alone does not directly indicate a 
kick event. To improve interpretability and reduce false positives, 
this study further examines the trends of key parameter
s—specifically, outlet flow rate and total pit volume—around the 
abnormal time point. In particular, during the calculation of the L2 
reconstruction error, the model extracts the element-wise recon
struction differences for each parameter. If the reconstruction er
rors for both outlet flow rate and total pit volume are positive, it 
implies that the GAE underestimates the actual values, indicating 
an upward trend in these parameters. Such simultaneous rising 
trends are consistent with typical kick dynamics (e.g., influx  of 
formation fluid), and thus the anomaly is confirmed as a potential 
kick risk. This approach leverages not only the magnitude but also 
the sign of the reconstruction error to interpret latent represen
tation behaviors, allowing GAE to function as both an anomaly 
detector and a physically interpretable kick warning model.

2.3. Real-time update based on stacking ensemble learning

To further improve the accuracy and generalization perfor
mance of kick warning, this study designs and constructs a 
Stacking-based ensemble learning model. GCN, GAT, and GAE are 
selected as base learners, and the ensemble learning strategy is 
used to fully leverage the characteristics and advantages of each 
model. Additionally, a dynamic updating mechanism is introduced 
to continuously optimize the modelʼs performance, as shown in 
Fig. 5.

First, multidimensional temporal logging parameters are used 
as input and transformed into graph-structured data through the 
path graph construction method. This graph data is then fed into 
base learners (GCN, GAT, GAE) for feature extraction and pro
cessing to identify the key features of the logging data.

Fig. 4. GAE structure diagram.
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The features extracted by the base learners are passed to the 
meta-learner. In this study, extreme gradient boosting (XGBoost) 
is selected as the meta-learner, which integrates and analyzes 
these features to ultimately output a comprehensive kick risk 
probability. XGBoost, as an ensemble learning algorithm based on 
gradient boosting, exhibits highly efficient  feature fusion capa
bilities and excellent generalization performance, making it 
particularly effective in handling high-dimensional and hetero
geneous data (Chen and Guestrin, 2016). Furthermore, XGBoostʼs 
built-in regularization mechanism effectively prevents model 
overfitting,  enabling it to maintain stable warning performance 
even under complex operating conditions. These advantages make 
it an ideal choice as the meta-learner for integrating the results of 
multiple base learners in kick warning. During the model training 
process, the Stacking model is first  trained offline  using the 
available labeled data to initialize the parameters of the base 
learners and the meta-learner (Naimi and Balzer, 2018). Subse
quently, the weights of the base learners are dynamically adjusted 
during training, optimizing the parameter configuration of the 
Stacking framework based on their contributions to overall per
formance (Guo et al., 2017). This hierarchical learning and opti
mization mechanism fully leverages the characteristics of each 
base learner, combined with the meta-learnerʼs comprehensive 
evaluation capabilities, to achieve high-precision kick risk pre
diction. With this design, the model can not only effectively adapt 
to the learning of complex temporal features but also maintain 
stable warning performance under different operating conditions.

To adapt to the dynamic changes in drilling conditions, this 
study designs a real-time data-based dynamic update mechanism 
that continuously optimizes model performance by incorporating 
real-time confirmation and updates of false alarm samples. After a 
kick risk alarm is issued, field engineers confirm the alarm results 
and label false alarm samples in real-time, adding them to the 
dataset for retraining the supervised base learners, GCN and GAT. 
Normal samples are not included in this real-time update process. 
This selective update strategy focuses the modelʼs attention on 
addressing recent misjudgments and avoids introducing redun
dant or potentially noisy information. Through this mechanism, 
the model can correct its tendency to misjudge similar false alarm 
samples, thereby significantly  reducing the false alarm rate. The 
unsupervised GAE, which does not require labeled data, maintains 
unchanged parameters during the real-time update process, 
providing stable global feature support for the model. As false 
alarm samples are gradually incorporated, GCN and GAT continu
ously learn more operating condition characteristics, effectively 
improving the modelʼs accuracy and transferability, achieving 

adaptive optimization under complex drilling environments. This 
dynamic update strategy significantly  enhances the robustness 
and real-time performance of the model, ensuring the reliability of 
kick warning.

2.4. Field engineer operations

In drilling operations, to monitor kick risk, it is usually neces
sary to observe changes in the outlet flow rate of drilling fluid and 
the volume of the drilling fluid pit. However, these parameters are 
not only affected by kick but also exhibit significant fluctuations 
due to pump-on and pump-off operations. These fluctuations are 
often misinterpreted by monitoring systems as kick, leading to 
false alarms and affecting the accuracy of the judgment.

Dynamic time warping (DTW) is a method for finding  the 
minimum path by providing a nonlinear alignment between two 
time series. In actual industrial processes, data measured by sen
sors are inevitably subject to interference or delays. Therefore, 
using DTW distance instead of the commonly used Euclidean 
distance often results in more accurate fault warning. Weighted 
dynamic time warping (WDTW) and derivative dynamic time 
warping (DDTW) are variant algorithms of DTW, each optimized 
and improved for addressing different issues in time series 
matching. In previous studies, Zhou et al. (2024) used DDTW for 
condition identification.  This method, by matching the first  de
rivatives of time series, is better able to capture the similarity of 
changing trends in drilling conditions. This study adapts WDTW as 
a preprocessing module to distinguish engineer-induced opera
tional changes from actual kick events. However, DDTWʼs sensi
tivity to noise and outliers limits its applicability in high-noise, 
complex condition datasets. Additionally, DDTW has limited 
capability to balance global and local alignments. To address the 
aforementioned issues, this study introduces a new algo
rithm—WDTW. WDTW incorporates a penalty factor into the 
distance metric, where the larger the time gap between two 
points, the greater the penalty; conversely, the smaller the time 
gap, the smaller the penalty. This weighting scheme allows WDTW 
to align short-term trends more accurately. By analyzing the 
relative variation trends between pump strokes and outlet flow 
rates, WDTW can effectively identify pump-on and pump-off 
conditions, thereby improving the reliability of operational inter
pretation. In our proposed framework, kick detection and engineer 
operation identification  are carried out simultaneously. When 
WDTW identifies  that a pump-on or pump-off operation is 
occurring and the kick detection module simultaneously raises an 
alert, the system treats this as a likely false alarm. In such cases, 
the warning is suppressed to avoid misclassification  caused by 
operational noise. This strategy enables the model to distinguish 
between genuine kick patterns and normal operation-induced 
fluctuations,  improving both the precision and robustness of the 
overall warning system.

For the two sequences A(a1; a2;⋯; ai;⋯; am) and B(b1;b2;⋯;bj;

⋯; bn), representing pump strokes and outlet flow rates, WDTW 
finds the minimum warping path, which is expressed as Eq. (11). 

Ep(A;B)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ*(i; j)p
√

(11) 

where γ*(i; j) is the accumulated warping path between sample 
points i and j, and their corresponding relationship can be recur
sively obtained through Eq. (12). 

Fig. 5. Real-time dynamic model update.
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γ*(i; j)=
⃒
⃒
⃒w|i− j|

(
ai − bj

)⃒
⃒
⃒
p

+ min
{

γ*(i − 1; j − 1); γ*
(

i − 1; jq
)

γ*(i; j − 1)
} (12) 

where w|i− j| represents the weight of the phase difference between 
sample points in A and B. The greater the distance between the 
sample points, the larger the value of w|i− j|. When w|i− j| is 
considered as a constant, the penalty between all sample points is 
the same, and in this case, the WDTW distance is no different from 
the DTW distance. However, when w|i− j| is set to be a very large 
value, the penalty for even closely spaced sample points becomes 
significant, and in this case, the WDTW distance is equivalent to 
the Euclidean distance.

By setting an appropriate threshold K, if the value of |i − j| ex
ceeds this threshold K, a larger weight w|i− j| is assigned to prevent 
matching between sample points with excessive phase differ
ences. If the value of |i − j| is smaller, the assigned weight w|i− j| will 
not affect the matching between sample points with similar am
plitudes. The definition of the WDTW distance is given in Eq. (13). 

WDTW(A;B)=
⃦
⃦
⃦w|i− j|

(
ai − bj

)⃦
⃦
⃦

p
(13) 

2.5. Evaluation metrics

The intelligent warning of kick risk studied in this study 
essentially belongs to a binary classification problem. Therefore, it 
is necessary to select relevant evaluation metrics for classification 
models. Accuracy, Recall, Precision, false alarm rate (FAR), and 
missed alarm rate (MAR) are adopted to evaluate the performance 
of the intelligent kick warning model. These evaluation metrics are 
calculated based on the confusion matrix, as shown in Table 1, and 
their definitions are provided in Eqs. (14)–(18).

TP represents the number of samples where the model 
correctly classifies the true positive class as positive; FN represents 
the number of samples where the model incorrectly classifies the 
true positive class as negative; FP represents the number of sam
ples where the model incorrectly classifies the true negative class 
as positive; and TN represents the number of samples where the 
model correctly classifies the true negative class as negative. 

Accuracy =
TP + TN

TP + FN + TN + FP
(14) 

Recall =
TP

TP + FN
(15) 

Precision =
TP

TP + FP
(16) 

FAR =
FP

TN + FP
(17) 

MAR =
FN

TP + FN
(18) 

3. Results and discussion

This section analyzes and discusses the proposed kick warning 
method through a series of experiments. It focuses on comparing 
the impact of different graph construction methods, model types, 
and time window size on warning performance, while further 
optimizing the FAR by incorporating pump on-off condition 
recognition. The experiments comprehensively evaluate the 
robustness and sensitivity of the method, providing strong support 
for its practical application in drilling operations.

3.1. Graph construction method analysis

In the experiment on kick warning based on the GAE model, we 
compared two graph construction methods: path gaph and KNN 
graph. By comparing the experimental results, the performance of 
different graph construction methods was comprehensively eval
uated using multiple metrics, including accuracy, recall, precision, 
FAR, and MAR. The experiments revealed that the overall perfor
mance of the path graph is superior to that of the KNN graph, 
especially demonstrating significant  advantages in terms of FAR 
and MAR. The results are shown in Table 2.

To determine the optimal value of K for the KNN graph, we 
conducted comparative experiments with K = 7, 9, and 11. The 
results show that when K = 9, the model achieves the best overall 
performance, with an accuracy of 84.9%, a recall of 83.4%, and a 
precision of 72.4%, while maintaining a lower FAR of 28.5% and a 
lower MAR of 16.6%. In contrast, K = 7 and 11 resulted in lower 
accuracy and higher error rates. Therefore, K = 9 was selected as 
the adjacency parameter, balancing both detection effectiveness 
and model robustness.

The accuracy of the path graph reached 92.3%, which is 7.4% 
higher than the 84.9% achieved by KNN graph construction, indi
cating higher reliability in overall classification  performance. In 
terms of recall and precision, the path graph achieved 95.7% and 
82.2%, respectively, compared to 83.4% and 72.4% for the KNN 
graph, showing improvements of 12.3% and 9.8%, respectively. This 
demonstrates the significant  advantage of the path graph in 
capturing true kick events and reducing the number of false 
alarms. Additionally, the FAR of the path graph is 17.8%, signifi
cantly lower than the 28.5% of the KNN graph, indicating fewer 
misclassifications in non-kick conditions, making it more suitable 
for practical warning needs. Meanwhile, the MAR of the path graph 
is only 4.3%, significantly lower than the 16.6% of the KNN graph, 
reflecting  its strong ability to reduce missed warnings of critical 
kick risk.

The path graph construction method is directly based on the 
time-series characteristics of logging data, treating each time step 
as a node and establishing edges through the natural sequence of 
time steps. This construction method effectively captures the dy
namic variation patterns and temporal correlations of time-series 
data, enabling the GAE model to uncover potential association 
patterns along the temporal dimension. This characteristic is 
particularly important for the warning of kick risk, as kick is 
typically characterized by a series of dynamic feature changes. In 
contrast, the KNN graph construction method establishes edges 
based on feature similarity between nodes, but it has significant 

Table 1 
Confusion matrix.

True result Forecast result

Positive Negative

Positive TP FN
Negative FP TN

Table 2 
Experimental results of path graph and KNN graph construction.

Index Accuracy, % Recall, % Precision, % FAR, % MAR, %

KNN graph (K = 7) 75.3 72.9 68.5 34.8 27.1
KNN graph (K = 9) 84.9 83.4 72.4 28.5 16.6
KNN graph (K = 11) 80.1 82.5 70.2 29.0 17.5
Path graph 92.3 95.7 82.2 17.8 4.3
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limitations when applied to time-series kick warning of logging 
data. Firstly, KNN graph construction ignores the temporal char
acteristics of logging data, connecting nodes purely based on static 
feature similarity, and is therefore unable to capture the dynamic 
evolution patterns of kick risk. Secondly, it may introduce erro
neous connections between nodes that are feature-similar but not 
actually related, which can reduce the modelʼs accuracy and 
significantly increase the FAR.

3.2. Model comparison and optimization

After selecting the path graph construction method in Section 
3.1, this section further compares the performance of four 
models: multilayer perceptron-based autoencoder (MLP-AE), GCN, 
GAT, and GAE. For the supervised models (GCN and GAT), a SMOTE- 
Tomek hybrid sampling strategy was applied to balance the 
training data and mitigate the impact of class imbalance. The 
experimental results show that the GAE model, based on unsu
pervised learning, achieved the best performance across all eval
uation metrics.

A multilayer perceptron-based autoencoder (MLP-AE) model 
was first  established for kick warning. The network structure of 
MLP-AE consists of an encoder and a decoder. The encoder con
tains two hidden layers with 64 and 32 neurons, respectively, 
compressing the input data into a 32-dimensional latent feature 
space. The decoder reconstructs the latent features output by the 
encoder and also includes two fully connected layers with 32 and 
64 neurons, respectively. All hidden layers use the ReLU activation 
function to introduce nonlinearity, while the optimizer is Adam 
with a learning rate of 0.001. The experimental results, shown in 
Fig. 6, reveal that the MLP-AE achieved an accuracy of 80.9%, a 
precision of 75.4%, a recall of 78.6%, FAR of 29.2%, and MAR of 21.4%. 
The underperformance of this model is mainly attributed to its 
inability to effectively leverage the temporal characteristics of 
logging data, as it relies solely on static global features for warning, 
overlooking the critical dynamic changes associated with kick risk. 
Additionally, the MLP-AE model is highly sensitive to short-term 
noise and operational fluctuations  in logging data, resulting in a 
high false alarm rate and difficulty  reducing the miss rate. 
Although the MLP-AE model is simple to implement and 

computationally efficient, its lack of capability in capturing com
plex temporal dynamics severely limits its applicability in practical 
kick warning tasks.

To further improve model performance, key parameters of GCN, 
GAT, and GAE were optimized using the Bayesian optimization 
method. The optimized parameters include the number of 
encoding layers, learning rate, and others, as shown in Table 3. By 
applying Bayesian optimization to fine-tune the key parameters of 
the GAE model, a slight improvement over the original perfor
mance was achieved, as illustrated in Fig. 7.

Fig. 6. MLP-AE experimental results.

Table 3 
Optimal value selection for model parameters.

Model Parameter Parameter range Optimal value

GCN Number of layers 1, 2, 3, 4 3
Learning rate 0.001, 0.003, 0.01 0.003
Activation function ReLU, Tanh ReLU

GAT Number of layers 1, 2, 3, 4 2
Learning rate 0.001, 0.003, 0.01 0.01
Number of attention heads 2, 3, 5 3
Activation function ReLU, Tanh ReLU

GAE Number of layers 1, 2, 3, 4 2
Learning rate 0.001, 0.003, 0.01 0.003
Activation function ReLU, Tanh Tanh

Fig. 7. Comparison of GAE results before and after optimization.

Fig. 8. GCN experimental results.

D.-T. Zhou, Z.-P. Zhu, T. Pan et al. Petroleum Science 22 (2025) 3613–3626

3620



The model results based on the path graph construction 
method are shown in Figs. 8–10. GAE outperforms all other models 
across all evaluation metrics, with an accuracy of 92.7%, which is 
3.8% higher than GCN (88.9%) and 2.1% higher than GAT (90.6%), 
demonstrating its superiority in overall classification performance. 
In terms of recall, GAE achieves 96.1%, an improvement of 10.6% 
over GCN (85.5%) and 7.8% over GAT (88.3%), reflecting its stronger 
ability to capture true kick events. Meanwhile, GAEʼs precision is 
83.0%, which is 4.2% higher than GCN (78.8%) and 2.5% higher than 
GAT (80.5%), indicating its better performance in reducing false 
alarms. Additionally, for FAR and MAR, GAE reaches 17.3% and 3.9%, 
respectively, which are significantly lower than GCN (21.2%, 14.5%) 
and GAT (19.5%, 11.7%), highlighting GAEʼs comprehensive advan
tage in reducing misclassifications in non-kick states and missed 
warning of critical kick risk.

The unsupervised architecture of the GAE model allows for 
training through the reconstruction of the adjacency matrix 
without the need for large amounts of labeled data. This is of 
significant importance in kick warning, as field logging data often 
suffer from issues such as insufficient  samples or difficulties  in 
labeling. Compared to GCN and GAT, which rely on supervised 
learning and have a strong dependency on large amounts of 
labeled data, GAE extracts information directly from the graphʼs 
structure and features through unsupervised learning, overcoming 
the small sample problem and enhancing the modelʼs general
ization ability in small sample scenarios. The encoder of the GAE 
model generates low-dimensional node embeddings that preserve 
the graphʼs structural information while compressing the 
complexity of high-dimensional features. This feature not only 
reduces computational overhead but also strengthens the modelʼs 
ability to represent multi-dimensional features. In contrast, 
although GCN and GAT can also generate embeddings, their opti
mization targets are more dependent on task labels, making the 
models more susceptible to limitations imposed by the quality of 
the labels.

3.3. Time window size optimization

In this section, different time windows (40, 50, 60, 70, 80) were 
selected to construct path graph structured data, and the perfor
mance of kick warning was tested based on the GAE model. The 
experimental results show that when the time window is set to 60, 
all evaluation metrics achieve optimal values, as shown in Fig. 11. 
Specifically, with a time window of 60, the model exhibits the best 
performance, achieving an accuracy of 92.7%, a recall of 96.1%, a 
precision of 83.0%, and FAR and MAR of 17.3% and 3.9%, 
respectively.

In contrast, smaller time windows, such as 40 and 50, while 
capable of capturing short-term dynamic changes, are more sus
ceptible to short-term fluctuations,  increasing the likelihood of 
misclassifying normal conditions as kick risk, resulting in higher 
false alarm rates. On the other hand, larger time windows, such as 
70 and 80, due to their longer time spans, may weaken the early 
characteristics of kick risk, leading to an increase in missed alarm 
rates and a decrease in recall. A time window of 60 achieves the 
best balance between capturing short-term dynamic features and 
long-term trend characteristics. Under this window size, the crit
ical features of kick risk in the logging data (e.g., a drop in stand
pipe pressure, an increase in outlet flow, and a rise in total pit 
volume) can be fully captured. Compared to smaller time win
dows, it effectively reduces the interference caused by data fluc
tuations, while compared to larger time windows, it avoids the 
signal weakening and warning delays caused by an excessively 
long time span.

Fig. 9. GAT experimental results.

Fig. 10. GAE experimental results. Fig. 11. Comparison of results for different time window sizes.
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Therefore, the selection of a time window of 60 not only 
significantly enhances the sensitivity and robustness of the model 
but also ensures the timely warning of kick risk, effectively sup
pressing the occurrence of false alarms.

3.4. Reducing false alarms by combining field engineer operations

In Section 3.2, although the GAE model demonstrated superior 
performance in kick warning tasks, there was still a certain per
centage of false alarms (17.3%). The primary cause of these false 
alarms is the short-term sharp fluctuations  in logging curves 
triggered by operational changes during non-kick states in the 
drilling process (e.g., pump-on and pump-off operations). As 
shown in Fig. 12, after pump-off, the total pit volume shows an 
upward trend, and during pump-on, the outlet flow rate exhibits a 
significant increase. These changes resemble the characteristics of 
kick risk, leading to misclassification by the model as kick risk. And 
the identification result of “1” indicates that the intelligent model 
has determined a kick risk has occurred, while “0” indicates that 
no kick risk is identified. To further reduce the FAR, this section 
uses the WDTW method based on pump strokes and outlet flow 
rate data to identify pump-on and pump-off operations. Alerts 
related to pump-on and pump-off operations are marked as false 
alarms and filtered out, effectively reducing the FAR. To investigate 
the impact of the threshold parameter K in the WDTW algorithm 
for pump-on and pump-off operations identification,  we con
ducted experiments using three values: K = 5, 10, and 15. The 
corresponding accuracy results were 81.3%, 88.6%, and 84.2%, 
respectively. Among these, the best performance was observed at 
K = 10, indicating that this value strikes a favorable balance be
tween local sensitivity and general trend capture. A lower value 
such as K = 5 tends to restrict the modelʼs flexibility in matching 
sequences with minor phase shifts, while a higher value like K = 15 
may lead to overly smoothed matching results that fail to reflect 
important temporal patterns. Therefore, based on empirical anal
ysis, K = 10 was selected as the optimal threshold for this appli
cation, as it enables the WDTW algorithm to effectively model 
temporal dynamics while maintaining strong overall predictive 
performance.

At the same time, a real-time updating method based on 
ensemble learning is introduced to dynamically label and update 
false alarm samples. Confirmed false alarm samples are immedi
ately added to the training set of the supervised base learners (GCN 
and GAT) to further optimize the model parameters. Through 
continuous iteration, the model effectively learns the character
istics of false alarm samples, thereby improving its ability to 
recognize similar operating conditions and reducing false alarms. 
On the other hand, the unsupervised learner GAE, which does not 
rely on labeled data, keeps its parameters unchanged and con
tinues to provide stable global feature support for the ensemble 
model. Through this dynamic updating mechanism, the modelʼs 
false alarm rate is significantly  reduced, while its ability to 
generalize and adapt to diverse drilling conditions is further 
enhanced.

After introducing the WDTW pump on-off recognition and 
real-time updating module, the experimental results show that 
this method significantly reduces false alarms, with the false alarm 
rate dropping from 17.3% to 5.6%, a decrease of 11.7%, effectively 
minimizing misclassifications in non-kick states. At the same time, 
the precision increased from 83.0% to 86.0%, an improvement of 
3.0%, further demonstrating the effectiveness of this method in 
suppressing false alarms. Accuracy also improved from 92.7% to 
93.4%, reflecting an optimization in overall warning performance. 
Although the recall rate slightly decreased from 96.1% to 95.8%, 
and MAR slightly increased from 3.9% to 4.2%, these changes were 
relatively minor and remained at a high level.

Based on the experimental results, it can be concluded that 
the WDTW pump on-off recognition and real-time updating 
method significantly reduces the modelʼs FAR while positively 
impacting the overall model performance, providing higher 
reliability and practical applicability for kick warning tasks. In 
terms of practical deployment, the proposed real-time update 
strategy was designed with computational efficiency in mind to 
suit the resource-constrained environments commonly found in 
oilfield operations. The dynamic update process only retrains the 
supervised components (GCN and GAT) incrementally using a 
limited number of newly confirmed false alarm samples, which 
significantly reduces the computational load. The unsupervised 

Fig. 12. Pump-on and pump-off conditions causing false alarms in kick warning.

D.-T. Zhou, Z.-P. Zhu, T. Pan et al. Petroleum Science 22 (2025) 3613–3626

3622



GAE remains fixed during real-time updates, serving as a stable 
global feature extractor without introducing additional training 
overhead. Furthermore, the entire system is compatible with 
standard edge computing units typically available at drilling 
sites. In our testing, the model update cycle can be completed in 
under 30 s using a mid-range GPU, and even on a CPU-only setup, 
the latency remains within acceptable limits for field operations. 
These features make the model feasible for real-time deploy
ment, providing both adaptability and robustness without 
requiring high-end hardware.

4. Case analysis

This section selects two kick cases to validate the accuracy of 
the proposed method. Real-time monitoring data from drilling 
operations in western China oilfields  were chosen, including 
relevant logging parameters such as outlet flow rate and standpipe 
pressure. By applying the unsupervised GAE model and the 
method for reducing false alarms proposed in this study, the 
effectiveness of kick event warning was evaluated. The modelʼs 
reliance on trend information rather than absolute values enables 

Fig. 13. Real-time logging data and kick risk warning results for Well 1 (the red dashed line represents the time when the field engineer issued the kick alarm).
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it to adapt to percentage-based or lower-precision signals, such as 
those from orifice-plate  flowmeters commonly used in field 
operations.

The logging data and kick warning results for Well 1 are shown 
in Fig. 13. From the logging curve, it can be seen that starting at 
19:37, the standpipe pressure begins to decrease, accompanied by 
an increase in outlet flow rate and total pit volume. The field en
gineer confirmed the occurrence of kick risk at 19:41:37. The kick 
warning method proposed in this study issued an alert at 19:37:22, 
approximately 4.25 min earlier than the field  engineerʼs confir
mation. The GAE model, by considering the temporal nature of the 
data, is able to capture early feature changes associated with kick 
risk. Its high sensitivity allows for timely warning when the kick 
risk first emerges. This temporal sensitivity enables the GAE model 

to provide sufficient  time for the field engineer to take effective 
countermeasures.

The logging data and kick warning results for Well 2 are shown 
in Fig. 14. During the time period indicated in the figure, the outlet 
flow rate was negative, while the inlet flow rate exceeded 30 L/s, 
indicating that the outlet flow parameter measurement had failed. 
During data processing, the missing outlet flow  data was filled 
with a value of 0, but this did not affect the timeliness of the early 
kick warning method. The on-site engineers confirmed  the 
occurrence of a kick risk at 8:41:30, while the proposed kick 
warning method issued an alert at 8:37:07, approximately 
4.38 min earlier. Compared to Well 1, where the warning was is
sued 4.24 min earlier than the engineers, the GAE model main
tained a similar or even slightly better early warning performance 

Fig. 14. Real-time logging data and kick risk warning results for Well 2 (the red dashed line represents the time when the field engineer issued the kick alarm).
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in Well 2 despite the presence of missing features. This demon
strates the strong robustness of the model in maintaining timely 
detection. To further validate the effectiveness of GAE under 
missing feature conditions, the MLP-AE model was tested on Well 
2. The MLP-AE issued a kick warning 1.53 min later than the field 
engineers, indicating a significant delay and highlighting its lower 
resilience to missing key input parameters. The superior perfor
mance of GAE can be attributed to its graph-based structure, which 
enables multi-feature interaction and aggregation. Even when 
certain critical features are missing, GAE can integrate correlated 
information from other available parameters (such as inlet flow 
rate, pit volume, and pressure) through neighborhood feature 
propagation, preserving the overall dynamic patterns necessary 
for accurate kick detection. This multi-feature compensation 
mechanism is a key advantage of using graph-based models over 
traditional fully connected architectures when dealing with 
incomplete or noisy real-world data.

5. Conclusion

This study proposes a kick warning method based on an un
supervised GAE and effectively reduces false alarms by incorpo
rating pump-on and pump-off condition recognition. The results 
indicate that the proposed method accurately identifies kick risk 
while successfully minimizing false alarms caused by operational 
changes. The specific conclusions are as follows:

1. Among different graph construction methods, the path graph 
construction method demonstrated the best performance. The 
path graph effectively captures the temporal characteristics in 
logging data, ensuring early warning of kick risk and a low false 
alarm rate. Experimental results show that the accuracy of the 
path graph is 92.7%, highlighting its superiority in overall kick 
warning performance.

2. The kick warning method based on the unsupervised GAE 
achieved the best performance among all models. By leveraging 
temporal information, GAE overcomes the small sample prob
lem and can operate effectively even in the presence of feature 
missing, demonstrating its strong robustness and sensitivity. 
The unsupervised learning nature of the GAE model enables it 
to function effectively in scenarios where a large amount of 
labeled data is unavailable, significantly improving its practical 
applicability. GAE achieved an accuracy of 92.7%, a recall of 
96.1%, and a precision of 83.0% across all test cases, out
performing both GCN and GAT significantly.

3. The integration of the WDTW method effectively reduced false 
alarms caused by short-term fluctuations  in pump strokes, 
outlet flow  rates, and other operational changes induced by 
field engineer activities. These fluctuations, often mistaken for 
kick risk, were mitigated by the model. The real-time update 
mechanism dynamically labels false alarm samples and in
corporates them into training, further improving the modelʼs 
performance, reducing the false alarm rate by 11.7% (from 17.3% 
to 5.6%) and increasing precision by 3.0%. Moreover, the GAE 
model proved reliable even with missing data, issuing early 
warnings 4.25 and 4.38 min earlier than field engineers in two 
case studies, demonstrating its sensitivity and adaptability.

Although the kick warning method proposed in this study has 
shown promising results, there is still room for improvement. 
Future work will explore the integration of self-supervised 
learning, reinforcement learning, and more advanced graph neu
ral network structures to enhance model adaptability and perfor
mance. We will also incorporate additional logging parameters to 
improve the modelʼs ability to handle changing operating 

conditions and reduce false alarms. To address the computational 
complexity of GAE and WDTW, more efficient  algorithms and 
optimization strategies will be investigated for real-time warning 
applications. Furthermore, efforts will be made to promote the 
application of this technology in drilling sites, aiming to improve 
the safety and efficiency of drilling operations.
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Nomenclature

GNN graph neural networks
CNN convolutional neural networks
GCN graph convolutional networks
GAT graph attention networks
GAE graph autoencoder
DTW dynamic time warping
WDTW weighted dynamic time warping
DDTW derivative dynamic time warping
FAR false alarm rate
MAR missed alarm rate
EWMA exponential weighted moving average
KNN K-nearest neighbor
WOB weight on bit
RMSE root mean square error
St EWMA value at the current time point
H(l) the feature matrix of the nodes at the l-th layer
A the adjacency matrix
D the degree matrix
~D the degree matrix plus the diagonal matrix of the self- 

connection matrix
σ the activation function

h
→

i the node feature vector
W the weight matrix
‖ the vector concatenation operation
αk

ij the normalized attention coefficient
L1 the loss function for the reconstructed adjacency 

matrix
L2 he loss function for the reconstructed node features
L the total loss function
w|i− j| the weight of the phase difference between sample 

points in A and B
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