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ABSTRACT

As oil and gas exploration continues to progress into deeper and unconventional reservoirs, the like-
lihood of kick risk increases, making kick warning a critical factor in ensuring drilling safety and effi-
ciency. Due to the scarcity of kick samples, traditional supervised models perform poorly, and significant
fluctuations in field data lead to high false alarm rates. This study proposes an unsupervised graph
autoencoder (GAE)-based kick warning method, which effectively reduces false alarms by eliminating
the influence of field engineer operations and incorporating real-time model updates. The method
utilizes the GAE model to process time-series data during drilling, accurately identifying kick risk while
overcoming challenges related to small sample sizes and missing features. To further reduce false
alarms, the weighted dynamic time warping (WDTW) algorithm is introduced to identify fluctuations in
logging data caused by field engineer operations during drilling, with real-time updates applied to
prevent normal conditions from being misclassified as kick risk. Experimental results show that the
GAE-based kick warning method achieves an accuracy of 92.7% and significantly reduces the false alarm
rate. The GAE model continues to operate effectively even under conditions of missing features and
issues kick warnings 4 min earlier than field engineers, demonstrating its high sensitivity and robust-
ness. After integrating the WDTW algorithm and real-time updates, the false alarm rate is reduced from
17.3% to 5.6%, further improving the accuracy of kick warnings. The proposed method provides an
efficient and reliable approach for kick warning in drilling operations, offering strong practical value and
technical support for the intelligent management of future drilling operations.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

is extremely important, as they can effectively reduce downhole
accidents and are critical for ensuring safe and efficient drilling

As the exploration and development of oil and gas resources
gradually shift toward deeper and unconventional reservoirs
fields, drilling faces challenges such as high temperature and high
pressure, narrow safe density windows, and other issues. These
challenges have significantly increased the kick risk and other
drilling hazards, which can easily trigger severe blowout accidents
(Vandenbussche et al., 2012). Therefore, early warning of kick risk
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operations (Griffin, 1967; Han et al., 2017). Currently, kick warning
methods mainly include traditional early warning methods and
intelligent early warning methods. Traditional methods suffer
from poor timeliness and insufficient accuracy, while intelligent
diagnostic methods, despite their broad application prospects, are
still rarely applied in actual field operations, primarily due to the
need for improved generalization capabilities. This situation
highlights the practical significance of conducting in-depth
research on intelligent early warning technologies for drilling kick.

Traditional early warning methods rely on kick warning by
setting thresholds for single parameters. Liu (2006) developed a
novel drilling fluid level monitoring and automatic grouting device
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that utilizes ultrasonic waves to monitor changes in the fluid level
of drilling mud tanks. Jiang et al. (2013) combined Coriolis mass
flow technology with mud logging processes to establish an early
kick detection (EKD) system. By comparing the flow rate changes
at the inlet and outlet, they achieved fast and accurate kick
warning and early warning. Wang et al. (2017) proposed an early
kick warning method based on changes in drilling fluid resistivity
(related to drilling fluid density and chloride ion content). This
method demonstrated high sensitivity and real-time performance.
Schafer et al. (1992) introduced an innovative rolling float flow-
meter for precise monitoring of pipeline flow, showing excellent
performance. Ablard et al. (2012) employed Coriolis flowmeters,
which operate under low to medium pressure conditions and
effectively eliminate temperature effects, allowing accurate mea-
surement of oil, gas, and water mass flow, temperature variations,
and density in pipelines. In recent years, with the significant ad-
vantages of artificial intelligence (Al) and big data technologies in
solving complex problems involving multiple parameters and
non-linear relationships, these technologies have achieved mature
applications and rapid promotion in the energy sector. Research on
kick early warning based on Al is currently in a stage of rapid
development (Li et al., 2022). Researchers primarily use supervised
and unsupervised learning algorithms for kick early warning,
achieving certain results. Liang and Wang (2019) and Liang et al.
(2020, 2019) predicted kick based on the correlation between
kick incidents and casing pressure variation trends, utilizing
clustering algorithms and neural network algorithms. Yin et al.
(2021, 2022) defined five risk levels using three key indicators:
flow rate difference, mud pit volume increment, and duration.
They compared the performance of three algorithms: Long short-
term memory neural networks (LSTM), recurrent neural networks
(RNN), and sparse autoencoder-support vector machines. Song
et al. (2021, 2022) conducted a comparative analysis of the kick
and loss early warning performance of random forest, support
vector machines, fully connected neural networks, and LSTM. They
proposed a formation pore pressure prediction model based on the
sequential characteristics of sedimentary sequences and drilling-
logging-measurement multivariate data, combined with LSTM
and BP neural networks, and successfully achieved accurate kick
risk prediction. Zhang et al. (2024) classified kick warning pa-
rameters into dominant and auxiliary ones, and used a parameter
adaptive neural network, which improved the accuracy by 12.8%.
Chen et al. (2024) proposed a convolutional neural network
(CNN)-based kick warning method for deepwater drilling, showing
that this method can identify kick more quickly and accurately,
with good model robustness. Zhu et al. (2023) utilized an unsu-
pervised time-series intelligent model for kick warning, achieving
an accuracy of 95%. Duan et al. (2023) first performed drilling
condition classification and developed an intelligent kick early
warning method based on random forest and artificial neural
networks. Zhang and Samuel (2024 ) proposed a CNN-LSTM hybrid
model for real-time early kick and loss prediction (EKLP),
demonstrating its effectiveness in enhancing detection accuracy
and operational safety during drilling operations. Sha et al. (2024)
developed a real-time kick detection system utilizing artificial
intelligence and real-time drilling data, achieving a 90% accuracy
in early kick prediction during field applications. Qiao et al. (2024)
developed a hybrid deep learning model combining convolutional
neural networks (CNNs), gated recurrent units (GRUs), and an
attention mechanism, with an accuracy of 98.64%.

In the early stages of a kick event, integrated field logging data
typically exhibit complex interdependent changes and nonlinear
fluctuations in time series. These features reflect the interactions
of multiple factors and reveal the key dynamic patterns during the
kick process. However, existing intelligent warning methods
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typically rely on non-sequential point data modeling or fail to fully
account for the interdependencies within multi-dimensional
time-series data, which limits their ability to capture the under-
lying temporal dynamics effectively. Moreover, field warning often
faces the issue of missing data features. For example, due to sensor
malfunctions or data transmission delays, the outflow rate char-
acteristics may be temporarily absent, which significantly impacts
the warning accuracy of traditional methods and may even lead to
model failure. Kick risk often suffer from a limited number of
effective data samples, making it a typical small-sample event. To
address these issues, the unsupervised learning-based graph
autoencoder offers an innovative solution for kick warning. It not
only captures the dynamic features of time-series data but also
integrates multi-dimensional information through graph-based
modeling. Additionally, even when some features are missing,
the model can compensate for the missing data by leveraging the
relationships between neighboring data nodes, ensuring its
robustness. By constructing a graph structure that incorporates
logging data nodes and their relationships, the graph autoencoder
effectively captures the dynamic patterns of time series and in-
tegrates the interdependencies between different nodes into a
unified graph representation. In comparison to other methods,
kick warning using the graph autoencoder can comprehensively
address both the dynamic nature of time-series data and the
challenge of local feature loss, enabling a more accurate identifi-
cation of the inherent correlations within multi-dimensional data.
However, the graph autoencoder method still presents certain
false alarm issues in practical applications. To address this, this
study utilizes the weighted dynamic time warping (WDTW)
method to identify pump on-off operations during the drilling
process. Based on the identified operational states, the false alarm
rate is further reduced. At the same time, false alarm samples are
fully leveraged to enable real-time model updates through
ensemble learning, thereby enhancing the practical value of the
model. This approach comprehensively improves the accuracy and
applicability of kick warning, providing more reliable technical
support for intelligent kick warning during the drilling process.

2. Methodology

This section aims to highlight the details of the framework,
including the description of the data preprocessing, the method of
graph neural networks, the method of real-time update, field en-
gineer operations, and evaluation metrics.

2.1. Data preprocessing

The data used in this study were collected from 12 wells in
western China oilfields. To ensure the reliability and generalization
of the experimental results, we provide a detailed statistical
summary of the dataset. The dataset contains a total of 94,320
samples, of which 2635 are labeled as kick and 91,685 as normal,
resulting in a class distribution ratio of approximately 1:34.8 (kick:
normal). This high imbalance reflects real-world operational
conditions and presents challenges typical in anomaly detection
tasks. The data were acquired under diverse geological and oper-
ational environments across different wells, supporting the
robustness and generalization of the proposed model. During the
collection and storage of integrated logging data, outliers may
occur, which significantly deviate from the normal data distribu-
tion and range of variation. To detect these outliers, a boxplot
method is employed. This method identifies data points that fall
outside the interquartile range (IQR) as outliers, ensuring that any
abnormal values are effectively flagged for further processing
(Tukey, 1977). For handling missing values, spline interpolation is
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applied. This method fits a smooth curve through the known data
points, and uses this curve to estimate the missing values,
providing a reliable approach to fill in gaps in the data. To further
enhance the quality of the data, exponential weighted moving
average (EWMA) is used for data smoothing and noise reduction.
This method assigns exponentially decreasing weights to past
observations, with more recent data points receiving higher
weights. As a result, the data is smoothed, reducing random fluc-
tuations and improving the accuracy of subsequent analyses. The
calculation formula is shown in Eq. (1).

St:a-xt+(1 7(1)-St71 (l)
where S; is the EWMA value at the current time point, x; is the
actual observed value at the current time point, S;_; is the EWMA
value at the previous time point, and a is the smoothing coeffi-
cient, which ranges between 0 and 1. The larger the value of a, the
greater the weight of recent data, and the smaller the value of a,
the smaller the weight of recent data.

After analyzing the comprehensive engineering expertise and
the Spearman correlation coefficient feature selection method,
this study ultimately selected the following 8 parameters as the
input features for the construction of the intelligent model: hook
load, weight on bit (WOB), torque, standpipe pressure, total pit
volume, outlet density, outlet flow rate, and inlet flow rate. The
Spearman correlation method was applied to evaluate the mono-
tonic relationships between each candidate parameter and kick
occurrence. Parameters with relatively strong correlations were
retained. Meanwhile, domain knowledge from experienced dril-
ling engineers was used to ensure the selected features reflected
key physical mechanisms related to kick events, such as pressure
changes. The final selection balances data-driven relevance and
practical interpretability, ensuring robust and meaningful model
inputs.

To eliminate the dimensional differences between different
parameters and reduce their impact on the model’s performance,
thereby providing a more robust and reliable data foundation for
the subsequent construction and analysis of intelligent models,
this study uses the Max-Min method to normalize the logging
data. In real-time applications, since future data are unavailable,
the normalization process in Eq. (2) is implemented using fixed
normalization parameters. Specifically, Xmax and x,;, are pre-
calculated from the training dataset and remain constant during
online monitoring. This approach ensures stable and consistent
normalization across different operational conditions and avoids
potential instability caused by short-term fluctuations in real-time
data. The calculation formula is shown in Eq. (2).

X — Xmin
Xnew =—_—

(2)

Xmax — Xmin

where xpew represents the value after data normalization, x rep-
resents the original value of the data, xmax represents the
maximum value of all sample data under the selected feature, and
Xmin represents the minimum value of all sample data under the
selected feature.

2.2. Graph neural network-based kick warning method

A graph structure is a mathematical representation widely used
to describe complex relational data, consisting of nodes and edges
to model the relationships between data points. A graph can be
represented as G = (V,E), where V = {vy,v5,...,vy} is the set of
nodes and ECV x V is the set of edges. The graph can be designed
as a directed or undirected graph, as well as a weighted or un-
weighted graph, depending on the application scenario. Each node
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v; € V typically has an associated feature vector x; € Rf, where F
represents the dimensionality of the features. The structural re-
lationships of the entire graph can be represented by an adjacency
matrix A € RV*N, where A;; = 1 indicates that nodes v; and v; are
connected by an edge, otherwise A;; = 0.

Graph neural networks (GNN) are a deep learning framework
designed for graph-structured data. The concept of GNN was firstly
proposed by Scarselli et al. (2008) in 2008. The core idea is to
iteratively propagate messages, enabling each node to aggregate
information from its local neighborhood, thus learning higher-
order feature representations of the nodes. The basic process of
GNN includes:

1) Neighbor feature aggregation: collecting information from
neighboring nodes.

2) Feature update: fusing the aggregated neighbor information
with the node’s own features.

3) Multi-layer propagation: through successive aggregation and
update operations, the feature representation of a node grad-
ually captures relationships at further distances.

Similar to traditional convolutional neural networks (CNN)
applying local convolutions on regular grids (such as images), GNN
performs feature learning on irregular graph-structured data.
However, the neighborhoods in graphs are dynamic and irregular.
Variants of GNN mainly depend on how the neighborhood features
are aggregated. Classic models, such as graph convolutional net-
works (GCN), aggregate information from neighboring nodes using
spectral methods, while graph attention networks (GAT) introduce
attention mechanisms to assign different weights to neighboring
nodes, allowing for more flexible modeling of the heterogeneous
importance between nodes. Compared to traditional methods,
GNN has inherent advantages in handling time series and feature
missingness. Its feature aggregation mechanism allows for
compensation using neighborhood information in the case of
missing features, thus maintaining the robustness of the model.

2.2.1. Graph convolutional network (GCN)

Graph convolutional network is a deep learning model based
on graph-structured data that can effectively capture the complex
relationships between node features and their neighboring nodes
(Chen et al., 2020). GCN performs graph convolution operations to
aggregate the node’s own features with those of its neighboring
nodes. It also combines the adjacency matrix and the normalized
degree matrix to normalize the features, alleviating the impact of
uneven node degree distribution on feature updates. Its core
mathematical expression is shown in Eq. (3). This study employs it
as one of the supervised base learners to capture spatial correla-
tions in the constructed logging data graph. By leveraging GCN'’s
ability to extract topological information, it supports the classifi-
cation of kick risk in complex operating environments. A standard
two-layer GCN is shown in Fig. 1.

H+D = a(ﬁ’%i\f)’%m”w(’)) (3)

where, HO represents the feature matrix of the nodes at the [-th
layer, W represents the weight matrix at the I-th layer, A= A +1
represents the adjacency matrix plus the self-connection matrix, D
represents the degree matrix plus the diagonal matrix of the self-
connection matrix, and o represents the activation function. By
stacking convolution operations layer by layer, GCN is able to
embed the node features into a lower-dimensional representation
space, while also aggregating information from neighborhoods at
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Input layers

L2
S

Hidden
layers
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Fig. 1. The standard architecture of two-layer GCN.

further distances, capturing multi-order structural relationships in
the graph.

2.2.2. Graph attention network (GAT)

Graph attention network (GAT) is an improved graph neural
network model that introduces an attention mechanism to
dynamically adjust the aggregation weights of neighborhood in-
formation, thereby more flexibly capturing local and global re-
lationships within the graph structure (Velickovic et al., 2017). The
core idea of GAT is to assign different attention weights to each
node and its neighboring nodes, highlighting the importance of
key nodes in feature aggregation. The GAT contributes to improved
adaptability by assigning dynamic importance to logging param-
eters under varying conditions. Its attention-based aggregation
helps distinguish subtle feature patterns associated with kick
events. The coefficients (Fig. 2) calculated by the attention mech-

anism are shown in Eq. (4).
wi))

wii]))

where ﬁ,» represents the node feature vector, W represents the

exp (LeakyReLU (E’T [WF,-

(4)

ajj =

S ken, €XP (LeakyReLU (ﬁT {Wﬁ,

weight matrix, || denotes the vector concatenation operation, a
denotes the parameter of a single-layer feedforward neural
network, LeakyReLU( -) represents the rectified linear unit activa-
tion function with negative parts included, k means the neighbors

Softmax; Q

Fig. 2. Attention mechanism diagram.
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of node i, and «; denotes the attention coefficient between node i
and node j.

The attention coefficients are used to compute the linear
combination with their corresponding features, which serve as the
final output features for each node. These features are then
concatenated to obtain the output feature representation, as
shown in Eq. (5). The aggregation process of the multi-head graph
attention layer is shown in Fig. 3.

)

where as is the normalized attention coefficient calculated by the

— —
K 2 : kyark
hl:H k:]G (ZUW h]
JeN;

(5)

k-th attention mechanism. K means the number of multi-head

—y
attention, and h; represents the finally learned node
representations.

2.2.3. Graph autoencoder (GAE)

Graph autoencoder (GAE) is a graph embedding model derived
from neural networks (Rennard et al., 2021). In this study, a GCN
encoder and an inner product decoder are used to obtain optimal
representations through graph data reconstruction. The GCN
encoder aggregates the features of neighboring nodes to generate
optimal node representations, and its process is expressed as
shown in Eq. (6). The overall framework of the model is shown in
Fig. 4, which includes two methods: path graph construction and
K-Nearest Neighbor (KNN) graph construction. It is adopted as the
core unsupervised model in this study to address challenges such
as data imbalance, missing labels, and evolving feature dynamics
in real-time drilling operations. Using the sliding window tech-
nique, the time series is divided into segments with a window
length of 60 and a step size of 1. In the path graph construction,
each time point is treated as a node, and edges are connected
sequentially in time order, forming a chain-like graph structure.
This approach is well-suited for capturing the sequential and dy-
namic evolution characteristics of time series. In contrast, for KNN
graph construction, nodes are connected based on similarity using
the cosine similarity algorithm, with K set to 9. This generates a
global, non-sequential graph structure designed to capture com-
plex interaction patterns driven by similarity.

Z=GCN(X,A) (6)

Given the node feature matrix X € RV and adjacency matrix
A € RVN*N | they are fed into the GCN function to output Z € RN*F,
where z; € RF represents the node embedding vector and F rep-
resents the dimensionality of the node embeddings. The calcula-
tion process of GCN is shown in Eq. (7).

GCN(X,A) = AReLU(AXW;)W, (7)

— == =» Head 1

Head 2

= = = =» Head 3

y

Fig. 3. Aggregation process of the multi-head graph attention layer (K = 3) (Li et al.,
2022).
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Fig. 4. GAE structure diagram.

where A =D 2AD %, D is the degree matrix of the nodes, Wy and
W, are the parameters to be learned.

The decoder consists of two parts: adjacency matrix decoding
and node feature decoding. Accordingly, the GAE loss function
combines the reconstruction loss of both the adjacency matrix and
the node feature matrix. A cross-entropy loss measures how well
the reconstructed adjacency matrix preserves the graph structure,
while root mean square error (RMSE) evaluates the similarity be-
tween the original and reconstructed node features. Smaller dif-
ferences indicate that the latent representation Z retains both
structural and attribute information effectively (Zhao et al., 2023).
Since the GAE is trained only on risk-free samples in an unsuper-
vised manner, it focuses on learning the normal patterns of the
drilling process. Deviations in reconstruction errors during infer-
ence are used to identify potential kick risks, making the method
inherently suitable for handling rare-event scenarios without
requiring a balanced dataset.

After training the model with risk-free data, it is used for kick
warning by analyzing the features and patterns in the logging data
through the difference between the reconstructed data and the
original data. When the reconstruction error exceeds a preset
threshold (0.5), it is determined that a risk is present. The recon-
struction error for GAE is computed using Egs. (8)-(10).

1Y - -
Li=-5 ;Yi log(1—y;) +y; log(1-y;) (8)
L, =RMSE(X, X) (9)
L=L;+1L (10)

where y represents a specific element (0 or 1) in the adjacency
matrix A; y represents the corresponding value (between 0 and 1)

in the reconstructed matrix A; X is the original node feature ma-

trix; X is the reconstructed node feature matrix; RMSE represents
the calculation of the root mean square error; L is the loss
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function for the reconstructed adjacency matrix; L, is the loss
function for the reconstructed node features; and L is the total loss
function.

As GAE is trained using only risk-free data, its output reflects
deviations from normal operational patterns. However, an
abnormal reconstruction error alone does not directly indicate a
kick event. To improve interpretability and reduce false positives,
this study further examines the trends of key parameter-
s—specifically, outlet flow rate and total pit volume—around the
abnormal time point. In particular, during the calculation of the L,
reconstruction error, the model extracts the element-wise recon-
struction differences for each parameter. If the reconstruction er-
rors for both outlet flow rate and total pit volume are positive, it
implies that the GAE underestimates the actual values, indicating
an upward trend in these parameters. Such simultaneous rising
trends are consistent with typical kick dynamics (e.g., influx of
formation fluid), and thus the anomaly is confirmed as a potential
kick risk. This approach leverages not only the magnitude but also
the sign of the reconstruction error to interpret latent represen-
tation behaviors, allowing GAE to function as both an anomaly
detector and a physically interpretable kick warning model.

2.3. Real-time update based on stacking ensemble learning

To further improve the accuracy and generalization perfor-
mance of kick warning, this study designs and constructs a
Stacking-based ensemble learning model. GCN, GAT, and GAE are
selected as base learners, and the ensemble learning strategy is
used to fully leverage the characteristics and advantages of each
model. Additionally, a dynamic updating mechanism is introduced
to continuously optimize the model’s performance, as shown in
Fig. 5.

First, multidimensional temporal logging parameters are used
as input and transformed into graph-structured data through the
path graph construction method. This graph data is then fed into
base learners (GCN, GAT, GAE) for feature extraction and pro-
cessing to identify the key features of the logging data.
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Fig. 5. Real-time dynamic model update.

The features extracted by the base learners are passed to the
meta-learner. In this study, extreme gradient boosting (XGBoost)
is selected as the meta-learner, which integrates and analyzes
these features to ultimately output a comprehensive kick risk
probability. XGBoost, as an ensemble learning algorithm based on
gradient boosting, exhibits highly efficient feature fusion capa-
bilities and excellent generalization performance, making it
particularly effective in handling high-dimensional and hetero-
geneous data (Chen and Guestrin, 2016). Furthermore, XGBoost's
built-in regularization mechanism effectively prevents model
overfitting, enabling it to maintain stable warning performance
even under complex operating conditions. These advantages make
it an ideal choice as the meta-learner for integrating the results of
multiple base learners in kick warning. During the model training
process, the Stacking model is first trained offline using the
available labeled data to initialize the parameters of the base
learners and the meta-learner (Naimi and Balzer, 2018). Subse-
quently, the weights of the base learners are dynamically adjusted
during training, optimizing the parameter configuration of the
Stacking framework based on their contributions to overall per-
formance (Guo et al., 2017). This hierarchical learning and opti-
mization mechanism fully leverages the characteristics of each
base learner, combined with the meta-learner’s comprehensive
evaluation capabilities, to achieve high-precision kick risk pre-
diction. With this design, the model can not only effectively adapt
to the learning of complex temporal features but also maintain
stable warning performance under different operating conditions.

To adapt to the dynamic changes in drilling conditions, this
study designs a real-time data-based dynamic update mechanism
that continuously optimizes model performance by incorporating
real-time confirmation and updates of false alarm samples. After a
kick risk alarm is issued, field engineers confirm the alarm results
and label false alarm samples in real-time, adding them to the
dataset for retraining the supervised base learners, GCN and GAT.
Normal samples are not included in this real-time update process.
This selective update strategy focuses the model’s attention on
addressing recent misjudgments and avoids introducing redun-
dant or potentially noisy information. Through this mechanism,
the model can correct its tendency to misjudge similar false alarm
samples, thereby significantly reducing the false alarm rate. The
unsupervised GAE, which does not require labeled data, maintains
unchanged parameters during the real-time update process,
providing stable global feature support for the model. As false
alarm samples are gradually incorporated, GCN and GAT continu-
ously learn more operating condition characteristics, effectively
improving the model’s accuracy and transferability, achieving
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adaptive optimization under complex drilling environments. This
dynamic update strategy significantly enhances the robustness
and real-time performance of the model, ensuring the reliability of
kick warning.

2.4. Field engineer operations

In drilling operations, to monitor kick risk, it is usually neces-
sary to observe changes in the outlet flow rate of drilling fluid and
the volume of the drilling fluid pit. However, these parameters are
not only affected by kick but also exhibit significant fluctuations
due to pump-on and pump-off operations. These fluctuations are
often misinterpreted by monitoring systems as kick, leading to
false alarms and affecting the accuracy of the judgment.

Dynamic time warping (DTW) is a method for finding the
minimum path by providing a nonlinear alignment between two
time series. In actual industrial processes, data measured by sen-
sors are inevitably subject to interference or delays. Therefore,
using DTW distance instead of the commonly used Euclidean
distance often results in more accurate fault warning. Weighted
dynamic time warping (WDTW) and derivative dynamic time
warping (DDTW) are variant algorithms of DTW, each optimized
and improved for addressing different issues in time series
matching. In previous studies, Zhou et al. (2024) used DDTW for
condition identification. This method, by matching the first de-
rivatives of time series, is better able to capture the similarity of
changing trends in drilling conditions. This study adapts WDTW as
a preprocessing module to distinguish engineer-induced opera-
tional changes from actual kick events. However, DDTW's sensi-
tivity to noise and outliers limits its applicability in high-noise,
complex condition datasets. Additionally, DDTW has limited
capability to balance global and local alignments. To address the
aforementioned issues, this study introduces a new algo-
rithm—WDTW. WDTW incorporates a penalty factor into the
distance metric, where the larger the time gap between two
points, the greater the penalty; conversely, the smaller the time
gap, the smaller the penalty. This weighting scheme allows WDTW
to align short-term trends more accurately. By analyzing the
relative variation trends between pump strokes and outlet flow
rates, WDTW can effectively identify pump-on and pump-off
conditions, thereby improving the reliability of operational inter-
pretation. In our proposed framework, kick detection and engineer
operation identification are carried out simultaneously. When
WDTW identifies that a pump-on or pump-off operation is
occurring and the kick detection module simultaneously raises an
alert, the system treats this as a likely false alarm. In such cases,
the warning is suppressed to avoid misclassification caused by
operational noise. This strategy enables the model to distinguish
between genuine kick patterns and normal operation-induced
fluctuations, improving both the precision and robustness of the
overall warning system.

For the two sequences A(ay, ay, -, a;, -+, am) and B(by, by, -+, b;,
---, by), representing pump strokes and outlet flow rates, WDTW
finds the minimum warping path, which is expressed as Eq. (11).

Ep (A’ B) = \p/ 7*(17.])

where y*(i,j) is the accumulated warping path between sample
points i and j, and their corresponding relationship can be recur-
sively obtained through Eq. (12).

(11)
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r*(i,j) = ‘W\i—ﬂ (ai - bj) ‘p

(12)

+min{y*(i -1, = 1), (i- 1.jg)r*(@.j- 1)}
where w);_j; represents the weight of the phase difference between
sample points in A and B. The greater the distance between the
sample points, the larger the value of wj;_;. When w_; is
considered as a constant, the penalty between all sample points is
the same, and in this case, the WDTW distance is no different from
the DTW distance. However, when w);_; is set to be a very large
value, the penalty for even closely spaced sample points becomes
significant, and in this case, the WDTW distance is equivalent to
the Euclidean distance.

By setting an appropriate threshold K, if the value of |i —j| ex-
ceeds this threshold K, a larger weight w);_; is assigned to prevent
matching between sample points with excessive phase differ-
ences. If the value of |i —j| is smaller, the assigned weight w);_; will
not affect the matching between sample points with similar am-
plitudes. The definition of the WDTW distance is given in Eq. (13).

WDTW(4, B) =||wj;_j (; — b) Hp (13)

2.5. Evaluation metrics

The intelligent warning of kick risk studied in this study
essentially belongs to a binary classification problem. Therefore, it
is necessary to select relevant evaluation metrics for classification
models. Accuracy, Recall, Precision, false alarm rate (FAR), and
missed alarm rate (MAR) are adopted to evaluate the performance
of the intelligent kick warning model. These evaluation metrics are
calculated based on the confusion matrix, as shown in Table 1, and
their definitions are provided in Eqgs. (14)-(18).

TP represents the number of samples where the model
correctly classifies the true positive class as positive; FN represents
the number of samples where the model incorrectly classifies the
true positive class as negative; FP represents the number of sam-
ples where the model incorrectly classifies the true negative class
as positive; and TN represents the number of samples where the
model correctly classifies the true negative class as negative.

TP + TN

AcCuracy = N L IN + FP (14)
P
.. TP
Precision = P 1 FP (16)
FP
FAR = 1 7 (17)
FN
MAR = 75 FN (18)
Table 1
Confusion matrix.
True result Forecast result
Positive Negative
Positive TP FN
Negative FP N
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3. Results and discussion

This section analyzes and discusses the proposed kick warning
method through a series of experiments. It focuses on comparing
the impact of different graph construction methods, model types,
and time window size on warning performance, while further
optimizing the FAR by incorporating pump on-off condition
recognition. The experiments comprehensively evaluate the
robustness and sensitivity of the method, providing strong support
for its practical application in drilling operations.

3.1. Graph construction method analysis

In the experiment on kick warning based on the GAE model, we
compared two graph construction methods: path gaph and KNN
graph. By comparing the experimental results, the performance of
different graph construction methods was comprehensively eval-
uated using multiple metrics, including accuracy, recall, precision,
FAR, and MAR. The experiments revealed that the overall perfor-
mance of the path graph is superior to that of the KNN graph,
especially demonstrating significant advantages in terms of FAR
and MAR. The results are shown in Table 2.

To determine the optimal value of K for the KNN graph, we
conducted comparative experiments with K = 7, 9, and 11. The
results show that when K = 9, the model achieves the best overall
performance, with an accuracy of 84.9%, a recall of 83.4%, and a
precision of 72.4%, while maintaining a lower FAR of 28.5% and a
lower MAR of 16.6%. In contrast, K = 7 and 11 resulted in lower
accuracy and higher error rates. Therefore, K = 9 was selected as
the adjacency parameter, balancing both detection effectiveness
and model robustness.

The accuracy of the path graph reached 92.3%, which is 7.4%
higher than the 84.9% achieved by KNN graph construction, indi-
cating higher reliability in overall classification performance. In
terms of recall and precision, the path graph achieved 95.7% and
82.2%, respectively, compared to 83.4% and 72.4% for the KNN
graph, showing improvements of 12.3% and 9.8%, respectively. This
demonstrates the significant advantage of the path graph in
capturing true kick events and reducing the number of false
alarms. Additionally, the FAR of the path graph is 17.8%, signifi-
cantly lower than the 28.5% of the KNN graph, indicating fewer
misclassifications in non-kick conditions, making it more suitable
for practical warning needs. Meanwhile, the MAR of the path graph
is only 4.3%, significantly lower than the 16.6% of the KNN graph,
reflecting its strong ability to reduce missed warnings of critical
kick risk.

The path graph construction method is directly based on the
time-series characteristics of logging data, treating each time step
as a node and establishing edges through the natural sequence of
time steps. This construction method effectively captures the dy-
namic variation patterns and temporal correlations of time-series
data, enabling the GAE model to uncover potential association
patterns along the temporal dimension. This characteristic is
particularly important for the warning of kick risk, as kick is
typically characterized by a series of dynamic feature changes. In
contrast, the KNN graph construction method establishes edges
based on feature similarity between nodes, but it has significant

Table 2

Experimental results of path graph and KNN graph construction.
Index Accuracy, % Recall, % Precision, % FAR,% MAR, %
KNN graph (K =7)  75.3 72.9 68.5 348 271
KNN graph (K=9) 84.9 834 724 28.5 16.6
KNN graph (K=11) 80.1 82.5 70.2 29.0 17.5
Path graph 92.3 95.7 82.2 17.8 43
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limitations when applied to time-series kick warning of logging
data. Firstly, KNN graph construction ignores the temporal char-
acteristics of logging data, connecting nodes purely based on static
feature similarity, and is therefore unable to capture the dynamic
evolution patterns of kick risk. Secondly, it may introduce erro-
neous connections between nodes that are feature-similar but not
actually related, which can reduce the model’s accuracy and
significantly increase the FAR.

3.2. Model comparison and optimization

After selecting the path graph construction method in Section
3.1, this section further compares the performance of four
models: multilayer perceptron-based autoencoder (MLP-AE), GCN,
GAT, and GAE. For the supervised models (GCN and GAT), a SMOTE-
Tomek hybrid sampling strategy was applied to balance the
training data and mitigate the impact of class imbalance. The
experimental results show that the GAE model, based on unsu-
pervised learning, achieved the best performance across all eval-
uation metrics.

A multilayer perceptron-based autoencoder (MLP-AE) model
was first established for kick warning. The network structure of
MLP-AE consists of an encoder and a decoder. The encoder con-
tains two hidden layers with 64 and 32 neurons, respectively,
compressing the input data into a 32-dimensional latent feature
space. The decoder reconstructs the latent features output by the
encoder and also includes two fully connected layers with 32 and
64 neurons, respectively. All hidden layers use the ReLU activation
function to introduce nonlinearity, while the optimizer is Adam
with a learning rate of 0.001. The experimental results, shown in
Fig. 6, reveal that the MLP-AE achieved an accuracy of 80.9%, a
precision of 75.4%, a recall of 78.6%, FAR of 29.2%, and MAR of 21.4%.
The underperformance of this model is mainly attributed to its
inability to effectively leverage the temporal characteristics of
logging data, as it relies solely on static global features for warning,
overlooking the critical dynamic changes associated with kick risk.
Additionally, the MLP-AE model is highly sensitive to short-term
noise and operational fluctuations in logging data, resulting in a
high false alarm rate and difficulty reducing the miss rate.
Although the MLP-AE model is simple to implement and

Accuracy
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Table 3
Optimal value selection for model parameters.

Model Parameter Parameter range Optimal value
GCN Number of layers 1,2,3,4 3
Learning rate 0.001, 0.003, 0.01 0.003
Activation function ReLU, Tanh ReLU
GAT Number of layers 1,2,3,4 2
Learning rate 0.001, 0.003, 0.01 0.01
Number of attention heads 2,3,5 3
Activation function RelLU, Tanh ReLU
GAE Number of layers 1,2,3,4 2
Learning rate 0.001, 0.003, 0.01 0.003
Activation function ReLU, Tanh Tanh
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Fig. 7. Comparison of GAE results before and after optimization.

computationally efficient, its lack of capability in capturing com-
plex temporal dynamics severely limits its applicability in practical
kick warning tasks.

To further improve model performance, key parameters of GCN,
GAT, and GAE were optimized using the Bayesian optimization
method. The optimized parameters include the number of
encoding layers, learning rate, and others, as shown in Table 3. By
applying Bayesian optimization to fine-tune the key parameters of
the GAE model, a slight improvement over the original perfor-
mance was achieved, as illustrated in Fig. 7.

Accuracy

Fig. 6. MLP-AE experimental results.

3620

Fig. 8. GCN experimental results.
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Accuracy

Fig. 9. GAT experimental results.

The model results based on the path graph construction
method are shown in Figs. 8-10. GAE outperforms all other models
across all evaluation metrics, with an accuracy of 92.7%, which is
3.8% higher than GCN (88.9%) and 2.1% higher than GAT (90.6%),
demonstrating its superiority in overall classification performance.
In terms of recall, GAE achieves 96.1%, an improvement of 10.6%
over GCN (85.5%) and 7.8% over GAT (88.3%), reflecting its stronger
ability to capture true kick events. Meanwhile, GAE’s precision is
83.0%, which is 4.2% higher than GCN (78.8%) and 2.5% higher than
GAT (80.5%), indicating its better performance in reducing false
alarms. Additionally, for FAR and MAR, GAE reaches 17.3% and 3.9%,
respectively, which are significantly lower than GCN (21.2%, 14.5%)
and GAT (19.5%, 11.7%), highlighting GAE’s comprehensive advan-
tage in reducing misclassifications in non-kick states and missed
warning of critical kick risk.

Accuracy

Fig. 10. GAE experimental results.

3621

Petroleum Science 22 (2025) 3613-3626

The unsupervised architecture of the GAE model allows for
training through the reconstruction of the adjacency matrix
without the need for large amounts of labeled data. This is of
significant importance in kick warning, as field logging data often
suffer from issues such as insufficient samples or difficulties in
labeling. Compared to GCN and GAT, which rely on supervised
learning and have a strong dependency on large amounts of
labeled data, GAE extracts information directly from the graph’s
structure and features through unsupervised learning, overcoming
the small sample problem and enhancing the model’s general-
ization ability in small sample scenarios. The encoder of the GAE
model generates low-dimensional node embeddings that preserve
the graph’s structural information while compressing the
complexity of high-dimensional features. This feature not only
reduces computational overhead but also strengthens the model’s
ability to represent multi-dimensional features. In contrast,
although GCN and GAT can also generate embeddings, their opti-
mization targets are more dependent on task labels, making the
models more susceptible to limitations imposed by the quality of
the labels.

3.3. Time window size optimization

In this section, different time windows (40, 50, 60, 70, 80) were
selected to construct path graph structured data, and the perfor-
mance of kick warning was tested based on the GAE model. The
experimental results show that when the time window is set to 60,
all evaluation metrics achieve optimal values, as shown in Fig. 11.
Specifically, with a time window of 60, the model exhibits the best
performance, achieving an accuracy of 92.7%, a recall of 96.1%, a
precision of 83.0%, and FAR and MAR of 17.3% and 3.9%,
respectively.

In contrast, smaller time windows, such as 40 and 50, while
capable of capturing short-term dynamic changes, are more sus-
ceptible to short-term fluctuations, increasing the likelihood of
misclassifying normal conditions as kick risk, resulting in higher
false alarm rates. On the other hand, larger time windows, such as
70 and 80, due to their longer time spans, may weaken the early
characteristics of kick risk, leading to an increase in missed alarm
rates and a decrease in recall. A time window of 60 achieves the
best balance between capturing short-term dynamic features and
long-term trend characteristics. Under this window size, the crit-
ical features of kick risk in the logging data (e.g., a drop in stand-
pipe pressure, an increase in outlet flow, and a rise in total pit
volume) can be fully captured. Compared to smaller time win-
dows, it effectively reduces the interference caused by data fluc-
tuations, while compared to larger time windows, it avoids the
signal weakening and warning delays caused by an excessively
long time span.
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Fig. 11. Comparison of results for different time window sizes.
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Therefore, the selection of a time window of 60 not only
significantly enhances the sensitivity and robustness of the model
but also ensures the timely warning of kick risk, effectively sup-
pressing the occurrence of false alarms.

3.4. Reducing false alarms by combining field engineer operations

In Section 3.2, although the GAE model demonstrated superior
performance in kick warning tasks, there was still a certain per-
centage of false alarms (17.3%). The primary cause of these false
alarms is the short-term sharp fluctuations in logging curves
triggered by operational changes during non-kick states in the
drilling process (e.g., pump-on and pump-off operations). As
shown in Fig. 12, after pump-off, the total pit volume shows an
upward trend, and during pump-on, the outlet flow rate exhibits a
significant increase. These changes resemble the characteristics of
kick risk, leading to misclassification by the model as kick risk. And
the identification result of “1” indicates that the intelligent model
has determined a kick risk has occurred, while “0” indicates that
no kick risk is identified. To further reduce the FAR, this section
uses the WDTW method based on pump strokes and outlet flow
rate data to identify pump-on and pump-off operations. Alerts
related to pump-on and pump-off operations are marked as false
alarms and filtered out, effectively reducing the FAR. To investigate
the impact of the threshold parameter K in the WDTW algorithm
for pump-on and pump-off operations identification, we con-
ducted experiments using three values: K = 5, 10, and 15. The
corresponding accuracy results were 81.3%, 88.6%, and 84.2%,
respectively. Among these, the best performance was observed at
K = 10, indicating that this value strikes a favorable balance be-
tween local sensitivity and general trend capture. A lower value
such as K = 5 tends to restrict the model’s flexibility in matching
sequences with minor phase shifts, while a higher value like K = 15
may lead to overly smoothed matching results that fail to reflect
important temporal patterns. Therefore, based on empirical anal-
ysis, K = 10 was selected as the optimal threshold for this appli-
cation, as it enables the WDTW algorithm to effectively model
temporal dynamics while maintaining strong overall predictive
performance.

Petroleum Science 22 (2025) 3613-3626

At the same time, a real-time updating method based on
ensemble learning is introduced to dynamically label and update
false alarm samples. Confirmed false alarm samples are immedi-
ately added to the training set of the supervised base learners (GCN
and GAT) to further optimize the model parameters. Through
continuous iteration, the model effectively learns the character-
istics of false alarm samples, thereby improving its ability to
recognize similar operating conditions and reducing false alarms.
On the other hand, the unsupervised learner GAE, which does not
rely on labeled data, keeps its parameters unchanged and con-
tinues to provide stable global feature support for the ensemble
model. Through this dynamic updating mechanism, the model’s
false alarm rate is significantly reduced, while its ability to
generalize and adapt to diverse drilling conditions is further
enhanced.

After introducing the WDTW pump on-off recognition and
real-time updating module, the experimental results show that
this method significantly reduces false alarms, with the false alarm
rate dropping from 17.3% to 5.6%, a decrease of 11.7%, effectively
minimizing misclassifications in non-kick states. At the same time,
the precision increased from 83.0% to 86.0%, an improvement of
3.0%, further demonstrating the effectiveness of this method in
suppressing false alarms. Accuracy also improved from 92.7% to
93.4%, reflecting an optimization in overall warning performance.
Although the recall rate slightly decreased from 96.1% to 95.8%,
and MAR slightly increased from 3.9% to 4.2%, these changes were
relatively minor and remained at a high level.

Based on the experimental results, it can be concluded that
the WDTW pump on-off recognition and real-time updating
method significantly reduces the model’s FAR while positively
impacting the overall model performance, providing higher
reliability and practical applicability for kick warning tasks. In
terms of practical deployment, the proposed real-time update
strategy was designed with computational efficiency in mind to
suit the resource-constrained environments commonly found in
oilfield operations. The dynamic update process only retrains the
supervised components (GCN and GAT) incrementally using a
limited number of newly confirmed false alarm samples, which
significantly reduces the computational load. The unsupervised
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Fig. 12. Pump-on and pump-off conditions causing false alarms in kick warning.
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GAE remains fixed during real-time updates, serving as a stable
global feature extractor without introducing additional training
overhead. Furthermore, the entire system is compatible with
standard edge computing units typically available at drilling
sites. In our testing, the model update cycle can be completed in
under 30 s using a mid-range GPU, and even on a CPU-only setup,
the latency remains within acceptable limits for field operations.
These features make the model feasible for real-time deploy-
ment, providing both adaptability and robustness without
requiring high-end hardware.

Petroleum Science 22 (2025) 3613-3626
4. Case analysis

This section selects two kick cases to validate the accuracy of
the proposed method. Real-time monitoring data from drilling
operations in western China oilfields were chosen, including
relevant logging parameters such as outlet flow rate and standpipe
pressure. By applying the unsupervised GAE model and the
method for reducing false alarms proposed in this study, the
effectiveness of kick event warning was evaluated. The model’s
reliance on trend information rather than absolute values enables
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it to adapt to percentage-based or lower-precision signals, such as
those from orifice-plate flowmeters commonly used in field
operations.

The logging data and kick warning results for Well 1 are shown
in Fig. 13. From the logging curve, it can be seen that starting at
19:37, the standpipe pressure begins to decrease, accompanied by
an increase in outlet flow rate and total pit volume. The field en-
gineer confirmed the occurrence of kick risk at 19:41:37. The kick
warning method proposed in this study issued an alert at 19:37:22,
approximately 4.25 min earlier than the field engineer’s confir-
mation. The GAE model, by considering the temporal nature of the
data, is able to capture early feature changes associated with kick
risk. Its high sensitivity allows for timely warning when the kick
risk first emerges. This temporal sensitivity enables the GAE model

Petroleum Science 22 (2025) 3613-3626

to provide sufficient time for the field engineer to take effective
countermeasures.

The logging data and kick warning results for Well 2 are shown
in Fig. 14. During the time period indicated in the figure, the outlet
flow rate was negative, while the inlet flow rate exceeded 30 L/s,
indicating that the outlet flow parameter measurement had failed.
During data processing, the missing outlet flow data was filled
with a value of 0, but this did not affect the timeliness of the early
kick warning method. The on-site engineers confirmed the
occurrence of a kick risk at 8:41:30, while the proposed kick
warning method issued an alert at 8:37:07, approximately
4.38 min earlier. Compared to Well 1, where the warning was is-
sued 4.24 min earlier than the engineers, the GAE model main-
tained a similar or even slightly better early warning performance
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in Well 2 despite the presence of missing features. This demon-
strates the strong robustness of the model in maintaining timely
detection. To further validate the effectiveness of GAE under
missing feature conditions, the MLP-AE model was tested on Well
2. The MLP-AE issued a kick warning 1.53 min later than the field
engineers, indicating a significant delay and highlighting its lower
resilience to missing key input parameters. The superior perfor-
mance of GAE can be attributed to its graph-based structure, which
enables multi-feature interaction and aggregation. Even when
certain critical features are missing, GAE can integrate correlated
information from other available parameters (such as inlet flow
rate, pit volume, and pressure) through neighborhood feature
propagation, preserving the overall dynamic patterns necessary
for accurate kick detection. This multi-feature compensation
mechanism is a key advantage of using graph-based models over
traditional fully connected architectures when dealing with
incomplete or noisy real-world data.

5. Conclusion

This study proposes a kick warning method based on an un-
supervised GAE and effectively reduces false alarms by incorpo-
rating pump-on and pump-off condition recognition. The results
indicate that the proposed method accurately identifies kick risk
while successfully minimizing false alarms caused by operational
changes. The specific conclusions are as follows:

1. Among different graph construction methods, the path graph
construction method demonstrated the best performance. The
path graph effectively captures the temporal characteristics in
logging data, ensuring early warning of kick risk and a low false
alarm rate. Experimental results show that the accuracy of the
path graph is 92.7%, highlighting its superiority in overall kick
warning performance.

. The kick warning method based on the unsupervised GAE
achieved the best performance among all models. By leveraging
temporal information, GAE overcomes the small sample prob-
lem and can operate effectively even in the presence of feature
missing, demonstrating its strong robustness and sensitivity.
The unsupervised learning nature of the GAE model enables it
to function effectively in scenarios where a large amount of
labeled data is unavailable, significantly improving its practical
applicability. GAE achieved an accuracy of 92.7%, a recall of
96.1%, and a precision of 83.0% across all test cases, out-
performing both GCN and GAT significantly.

. The integration of the WDTW method effectively reduced false
alarms caused by short-term fluctuations in pump strokes,
outlet flow rates, and other operational changes induced by
field engineer activities. These fluctuations, often mistaken for
kick risk, were mitigated by the model. The real-time update
mechanism dynamically labels false alarm samples and in-
corporates them into training, further improving the model’'s
performance, reducing the false alarm rate by 11.7% (from 17.3%
to 5.6%) and increasing precision by 3.0%. Moreover, the GAE
model proved reliable even with missing data, issuing early
warnings 4.25 and 4.38 min earlier than field engineers in two
case studies, demonstrating its sensitivity and adaptability.

Although the kick warning method proposed in this study has
shown promising results, there is still room for improvement.
Future work will explore the integration of self-supervised
learning, reinforcement learning, and more advanced graph neu-
ral network structures to enhance model adaptability and perfor-
mance. We will also incorporate additional logging parameters to
improve the model’s ability to handle changing operating
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conditions and reduce false alarms. To address the computational
complexity of GAE and WDTW, more efficient algorithms and
optimization strategies will be investigated for real-time warning
applications. Furthermore, efforts will be made to promote the
application of this technology in drilling sites, aiming to improve
the safety and efficiency of drilling operations.
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Nomenclature

GNN graph neural networks

CNN convolutional neural networks

GCN graph convolutional networks

GAT graph attention networks

GAE graph autoencoder

DTW dynamic time warping

WDTW  weighted dynamic time warping

DDTW derivative dynamic time warping

FAR false alarm rate

MAR missed alarm rate

EWMA  exponential weighted moving average

KNN K-nearest neighbor

WOB weight on bit

RMSE root mean square error

St EWMA value at the current time point

HY the feature matrix of the nodes at the I-th layer

A the adjacency matrix

D the degree matrix

D the degree matrix plus the diagonal matrix of the self-
connection matrix

c the activation function

Fi the node feature vector

w the weight matrix

I the vector concatenation operation

ag. the normalized attention coefficient

Lq the loss function for the reconstructed adjacency
matrix

Ly he loss function for the reconstructed node features

L the total loss function

Wii_ji the weight of the phase difference between sample
points in A and B

References

Ablard, P, Bell, C., Cook, D., et al., 2012. The expanding role of mud logging. Oilfield
Rev. 24 (1), 24-41. https://scholar.google.com/scholar_lookup?title=The/
20Expanding/20Role/200f/20Mud/20Logging&amp;author=P./
20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_
year=2012&amp;journal=O0ilfield/20Review/20Spring&amp;
volume=24&amp;pages=.

Chen, G., Wang, X, Ji, P, et al.,, 2024. A kick monitoring method for deepwater
open-circuit drilling based on convolutional neural network. Geoenergy Sci.
Eng. 234, 212656. https://doi.org/10.1016/j.geoen.2024.212656.


https://scholar.google.com/scholar_lookup?title=The/20Expanding/20Role/20of/20Mud/20Logging&amp;author=P./20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_year=2012&amp;journal=Oilfield/20Review/20Spring&amp;volume=24&amp;pages=
https://scholar.google.com/scholar_lookup?title=The/20Expanding/20Role/20of/20Mud/20Logging&amp;author=P./20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_year=2012&amp;journal=Oilfield/20Review/20Spring&amp;volume=24&amp;pages=
https://scholar.google.com/scholar_lookup?title=The/20Expanding/20Role/20of/20Mud/20Logging&amp;author=P./20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_year=2012&amp;journal=Oilfield/20Review/20Spring&amp;volume=24&amp;pages=
https://scholar.google.com/scholar_lookup?title=The/20Expanding/20Role/20of/20Mud/20Logging&amp;author=P./20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_year=2012&amp;journal=Oilfield/20Review/20Spring&amp;volume=24&amp;pages=
https://scholar.google.com/scholar_lookup?title=The/20Expanding/20Role/20of/20Mud/20Logging&amp;author=P./20Ablard&amp;author=C./20Bell&amp;author=D./20Cook&amp;publication_year=2012&amp;journal=Oilfield/20Review/20Spring&amp;volume=24&amp;pages=
https://doi.org/10.1016/j.geoen.2024.212656

D.-T. Zhou, Z.-P. Zhu, T. Pan et al.

Chen, M., Wei, Z., Huang, Z., et al., 2020. Simple and Deep Graph Convolutional
Networks. International Conference on Machine Learning, 119. PMLR, Vienna,
Austria. https://doi.org/10.48550/arXiv.2007.02133.

Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. https://doi.org/10.1145/2939672.2939785.

Duan, S., Song, X., Cui, Y., et al., 2023. Intelligent kick warning based on drilling
activity classification. Geoenergy Sci. Eng. 222, 211408. https://doi.org/10.1016/
j-geoen.2022.211408.

Griffin, P., 1967. Early Kick Detection Holds Kill Pressure Lower. SPE Mechanical
Engineering Aspects of Drilling and Production Symposium, Fort Worth, Texas,
USA. https://doi.org/10.2118/1755-MS.

Guo, L., Wang, S., Cao, Z., 2017. An Ensemble Classifier Based on Stacked
Generalization for Predicting Membrane Protein Types. International
Congress on Image and Signal Processing, Biomedical Engineering and
Informatics (CISP-BMEI). https://doi.org/10.1109/cisp-bmei.2017.8302278.

Han, J., Yang, H., Zhang, J., 2017. Accurate discovery of overflow research and
field application in the northwest industrial area. Logging Engineering 28
(3), 69-74.  https://doi.org/10.3969/j.issn.1672-9803.2017.03.015  (in
Chinese).

Jiang, Z.Q., Wang, Y.S., Mao, M., et al., 2013. Early kick detection (EKD) system based
on coriolis mass flowmeter. Journal of Oil and Gas 35 (4), 158-160. https://doi.
0rg/10.3969/j.issn.1000-9752.2013.04.036 (in Chinese).

Li, G., Song, X., Tian, S., Zhu, Z., 2022a. Intelligent drilling and completion: a review.
Engineering 18, 33-48. https://doi.org/10.1016/j.eng.2022.07.014.

Li, T, Zhou, Z., Li, S., et al., 2022b. The emerging graph neural networks for intel-
ligent fault diagnostics and prognostics: a guideline and a benchmark study.
Mech. Syst. Signal Process. 168, 108653. https://doi.org/10.1016/j.
ymssp.2021.108653.

Liang, H., Liu, G., Gao, J., Khan, M.J., 2020. Overflow remote warning using
improved fuzzy c-means clustering in IoT monitoring system based on multi-
access edge computing. Neural Comput. Appl. 32 (19), 15399-15410. https://
doi.org/10.1007/s00521-019-04540-y.

Liang, H., Zou, J., Liang, W., 2019. An early intelligent diagnosis model for drilling
overflow based on GA-BP algorithm. Clust. Comput. 22, 10649-10668. https://
doi.org/10.1007/s10586-017-1152-5.

Liang, H.B., Wang, Z., 2019. Application of an intelligent early-warning method
based on DBSCAN clustering for drilling overflow accident. Clust. Comput. 22
(Suppl. 5), 12599-12608. https://doi.org/10.1007/s10586-017-1687-5.

Liu, SJ., 2006. Development of device for drilling fluid level detection and auto-
matic grout system. China Petroleum Machinery 34 (2), 29-30. https://doi.org/
10.3969/j.issn.1001-4578.2006.02.010 (in Chinese).

Naimi, AL, Balzer, L.B., 2018. Stacked generalization: an introduction to super
learning. Eur. ]. Epidemiol. 33, 459-464. https://doi.org/10.1007/s10654-018-
0390-z.

Qiao, Y., Tu, X., Zhou, L., Guo, X., 2024. Hybrid convolutional and gated recurrent
unit network with attention for drilling kick prediction. SPE J. 1-17. https://doi.
org/10.2118/223604-PA.

Rennard, V., Nikolentzos, G., Vazirgiannis, M., 2021. Graph auto-encoders for
Learning Edge Representations. Proceedings of the Ninth International Con-
ference on Complex Networks and their Applications Complex Networks 2020.
https://doi.org/10.1007/978-3-030-65351-4_10.

3626

Petroleum Science 22 (2025) 3613-3626

Scarselli, F.,, Gori, M., Tsoi, A.C., et al., 2008. The graph neural network model. IEEE
Trans. Neural Network. 20 (1), 61-80. https://dl.acm.org/doi/10.1109/TNN.
2008.2005605.

Schafer, D.M., Loeppke, G.E., Glowka, D.A., Scott, D.D., Wright, E.K., 1992. An
Evaluation of Flowmeters for the Detection of Kicks and Lost Circulation
During Drilling. SPE/IADC Drilling Conference and Exhibition, New Orleans,
Louisiana, USA. https://doi.org/10.2118/23935-MS.

Sha, Q., Ding, Y., Cui, M,, et al.,, 2024. Automatic Kick Detection Using Artificial
Intelligence. International Petroleum Technology Conference. https://doi.org/
10.2523/IPTC-23603-EA.

Song, X., Duan, S., Pei, Z., Zhu, Z., 2021. Research on Kick Detection Model Based
on Machine Learning. International Conference on Offshore Mechanics and
Arctic Engineering, Virtual. https://doi.org/10.1115/OMAE2021-62785.

Song, X.Z., Yao, X.Z., Li, G.S., et al., 2022. A novel method to calculate formation
pressure based on the LSTM-BP neural network. Petroleum Science Bulletin 7
(1), 12-23. https://doi.org/10.3969/j.issn.2096-1693.2022.01.002 (in Chinese).

Tukey, J.W., 1977. Exploratory Data Analysis, vol. 2. Addison-Wesley Pub. Co,
Reading, Mass. https://archive.org/details/exploratorydataa0000tuke_7616/
mode/2up.

Vandenbussche, V., Bergsli, A., Brandt, H., et al., 2012. Well-Specific Blowout Risk
Assessment. International Conference on Health, Safety and Environment in
Oil and Gas Exploration and Production. https://doi.org/10.2118/157319-MS.

Velickovic, P., Cucurull, G., Casanova, A, et al., 2017. Graph attention networks. Stat
1050 (20), 10-48550. https://doi.org/10.48550/arXiv.1710.10903.

Wang, ].B., Sun, BJ., Li, H,, et al., 2017. Early gas kick detection based on the LWD
resistivity in deepwater drilling. Journal of China University of Petroleum
(Edition of Natural Science) 41 (6), 94-100. https://doi.org/10.3969/j.issn.1673-
5005.2017.06.011 (in Chinese).

Yin, Q. Yang, J., Tyagi, M., et al., 2021. Field data analysis and risk assessment of gas
kick during industrial deepwater drilling process based on supervised learning
algorithm. Process Saf. Environ. Prot. 146, 312-328. https://doi.org/10.1016/j.
psep.2020.08.012.

Yin, Q. Yang, J., Tyagi, M,, et al., 2022. Downhole quantitative evaluation of gas kick
during deepwater drilling with deep learning using pilot-scale rig data.
J. Petrol. Sci. Eng. 208, 109136. https://doi.org/10.1016/j.petrol.2021.109136.

Zhang, D., Sun, W,, Daj, Y., et al., 2024. Intelligent kick detection using a parameter
adaptive neural network. Geoenergy Sci. Eng. 234, 212694. https://doi.org/
10.1016/j.geoen.2024.212694.

Zhang, S., Samuel, R., 2024. A Machine Learning Model for Real-Time Early Kick and
Loss Prediction EKLP Application. The Abu Dhabi International Petroleum
Exhibition and Conference. https://doi.org/10.2118/221948-MS.

Zhao, D., Du, P, Liu, T,, et al,, 2023. Spatio-temporal distribution prediction model of
urban theft by fusing graph autoencoder and GRU. Journal of Geo-Information
Science 25 (7), 1448-1463. https://doi.org/10.12082/dqxxkx.2023.220584 (in
Chinese).

Zhou, D., Zhu, Z., Li, G., et al., 2024. Combining Drilling Condition Analysis with
Unsupervised Time Series Models for Kick Monitoring. International Confer-
ence on Offshore Mechanics and Arctic Engineering, Singapore EXPO,
Singapore. https://doi.org/10.1115/0MAE2024-128411.

Zhu, Z., Zhou, D., Yang, D., et al., 2023. Early gas kick warning based on temporal
autoencoder. Energies 16 (12), 4606. https://doi.org/10.3390/en16124606.


https://doi.org/10.48550/arXiv.2007.02133
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.geoen.2022.211408
https://doi.org/10.1016/j.geoen.2022.211408
https://doi.org/10.2118/1755%2DMS
https://doi.org/10.1109/cisp%2Dbmei.2017.8302278
https://doi.org/10.3969/j.issn.1672%2D9803.2017.03.015
https://doi.org/10.3969/j.issn.1000%2D9752.2013.04.036
https://doi.org/10.3969/j.issn.1000%2D9752.2013.04.036
https://doi.org/10.1016/j.eng.2022.07.014
https://doi.org/10.1016/j.ymssp.2021.108653
https://doi.org/10.1016/j.ymssp.2021.108653
https://doi.org/10.1007/s00521%2D019%2D04540%2Dy
https://doi.org/10.1007/s00521%2D019%2D04540%2Dy
https://doi.org/10.1007/s10586%2D017%2D1152%2D5
https://doi.org/10.1007/s10586%2D017%2D1152%2D5
https://doi.org/10.1007/s10586%2D017%2D1687%2D5
https://doi.org/10.3969/j.issn.1001%2D4578.2006.02.010
https://doi.org/10.3969/j.issn.1001%2D4578.2006.02.010
https://doi.org/10.1007/s10654%2D018%2D0390%2Dz
https://doi.org/10.1007/s10654%2D018%2D0390%2Dz
https://doi.org/10.2118/223604%2DPA
https://doi.org/10.2118/223604%2DPA
https://doi.org/10.1007/978%2D3%2D030%2D65351%2D4_10
https://dl.acm.org/doi/10.1109/TNN.2008.2005605
https://dl.acm.org/doi/10.1109/TNN.2008.2005605
https://doi.org/10.2118/23935%2DMS
https://doi.org/10.2523/IPTC%2D23603%2DEA
https://doi.org/10.2523/IPTC%2D23603%2DEA
https://doi.org/10.1115/OMAE2021%2D62785
https://doi.org/10.3969/j.issn.2096%2D1693.2022.01.002
https://archive.org/details/exploratorydataa0000tuke_7616/mode/2up
https://archive.org/details/exploratorydataa0000tuke_7616/mode/2up
https://doi.org/10.2118/157319%2DMS
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.3969/j.issn.1673%2D5005.2017.06.011
https://doi.org/10.3969/j.issn.1673%2D5005.2017.06.011
https://doi.org/10.1016/j.psep.2020.08.012
https://doi.org/10.1016/j.psep.2020.08.012
https://doi.org/10.1016/j.petrol.2021.109136
https://doi.org/10.1016/j.geoen.2024.212694
https://doi.org/10.1016/j.geoen.2024.212694
https://doi.org/10.2118/221948%2DMS
https://doi.org/10.12082/dqxxkx.2023.220584
https://doi.org/10.1115/0MAE2024%2D128411
https://doi.org/10.3390/en16124606

	An unsupervised intelligent warning model for drilling kick risk based on multi-temporal feature coupling
	1. Introduction
	2. Methodology
	2.1. Data preprocessing
	2.2. Graph neural network-based kick warning method
	2.2.1. Graph convolutional network (GCN)
	2.2.2. Graph attention network (GAT)
	2.2.3. Graph autoencoder (GAE)

	2.3. Real-time update based on stacking ensemble learning
	2.4. Field engineer operations
	2.5. Evaluation metrics

	3. Results and discussion
	3.1. Graph construction method analysis
	3.2. Model comparison and optimization
	3.3. Time window size optimization
	3.4. Reducing false alarms by combining field engineer operations

	4. Case analysis
	5. Conclusion
	Declaration of competing interest
	Acknowledgments
	Nomenclature
	References


