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ABSTRACT

Measurement-while-drilling (MWD) and guidance technologies have been extensively deployed in the
exploitation of oil, natural gas, and other energy resources. Conventional control approaches are plagued
by challenges, including limited anti-interference capabilities and the insufficient generalization of
decision-making experience. To address the intricate problem of directional well trajectory control, an
intelligent algorithm design framework grounded in the high-level interaction mechanism between
geology and engineering is put forward. This framework aims to facilitate the rapid batch migration and
update of drilling strategies. The proposed directional well trajectory control method comprehensively
considers the multi-source heterogeneous attributes of drilling experience data, leverages the genera-
tive simulation of the geological drilling environment, and promptly constructs a directional well tra-
jectory control model with self-adaptive capabilities to environmental variations. This construction is
carried out based on three hierarchical levels: “offline pre-drilling learning, online during-drilling
interaction, and post-drilling model transfer”. Simulation results indicate that the guidance model
derived from this method demonstrates remarkable generalization performance and accuracy. It can
significantly boost the adaptability of the control algorithm to diverse environments and enhance the

Well drilling simulation

penetration rate of the target reservoir during drilling operations.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Currently, the development trend of oil and gas drilling in
complex oil and gas reservoirs is characterized by ultra-deep wa-
ter, ultra-deep strata, low permeability, and unconventionality.
The 14th Five-Year Plan issued in 2021 and the outline document
of the 2035 vision goal have made a comprehensive arrangement
for the further development of the petroleum exploration in-
dustry. They proposed key core technologies to concentrate su-
perior resources on oil and gas exploration and development, and
promoted the intelligent upgrading of oil and gas field exploration
(Zhao et al., 2021; Wang, 2020). As a pivotal technology in the field
of drilling engineering, borehole trajectory control is confronted
with the imperative of resolving a series of complex challenges.
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These challenges encompass nonlinear characteristics, severe
interference, high-degree coupling, time-delay effects, and the
timely degradation phenomenon that occur during the drilling
process (Wang et al., 2021). The objective is to achieve the precise
alignment between the actual drilling trajectory and the pre-
designed borehole trajectory through the regulation of drilling
trajectory parameters.

Traditional borehole trajectory control predominantly centers
around mechanism-based modeling and numerical solutions. The
control command is usually based on open-loop or closed-loop
proportional integral differential (PID) method (Hu and Ying,
2001; Wu and Shen, 2003), and various measures are taken to
mitigate the accuracy loss caused by tracking error and viscous slip
shock. In order to reduce the error of borehole drilling trajectory,
Van de Wouw et al. (2016) proposed a three-dimensional bore-
hole propagation model based on nonlinear delay differential
equation. Liu and Samuel (2016) introduced the minimum curva-
ture, balanced tangential and cubic spline, Bessel curve, etc., into
the calibration process of borehole trajectory. Gulyayev et al.
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(2021) built a projected gradient optimal control model based on
trajectory smoothness, drilling cost and track length. In order to
solve the problem of stick-slip oscillation in drilling trajectory
control, Kremers et al. (2015) used a robust control model to
reduce the track oscillation in the transient closed-loop response.
Auriol et al. (2020) proposed to incorporate the feedback law of
stick-slip mitigation and the law of friction coefficient updating
into the modeling process of the observer, which improved the
robustness of drilling toolface control to a certain extent.

In recent years, the application of artificial intelligence in oil
and gas production has received more and more attention (Fang
et al., 2019; Li et al., 2023; Chen D. et al., 2024; Zhang et al.,
2024; Hossein et al., 2023). Relying on intelligent algorithms to
achieve accurate control and intelligent tracking of the drilling
process can effectively improve the control efficiency in complex
scenarios (Xu et al., 2024). In terms of real-time automatic control
of borehole trajectory parameters, Sugiyama et al. (2014) realized
dynamic regulation of drilling parameters based on continuous
static measurement. Kamel et al. (2018) proposed a borehole tra-
jectory control method of directional steering system based on
real-time parameter optimization. Kullawan et al. (2017) realized
the optimization of borehole trajectory sequence decision based
on discrete stochastic dynamic programming. In terms of collab-
orative deployment of measurement-while-drilling (MWD) and
trajectory optimization, Schlumberger's Power Drive X6 can
realize integrated control of downhole drilling, and PetroChina’s
EISC system (Lei et al.,, 2022) can enable digital intelligence of
drilling and production processes.

In summary, the current well trajectory control has a relatively
solid numerical or empirical modeling foundation (Gao and
Huang, 2024; Guo et al., 2024), but the relevant intelligent algo-
rithms lack the ability to adapt quickly in complex and heteroge-
neous geological environments. In order to solve the problems of
high complexity (Fang et al., 2023) and weak anti-interference
ability of the modeling process of the mechanism model, this
paper proposes a directional well trajectory control method based
on high interactive learning mechanism. Through the process of
“data  acquisition-experience  mining-interactive learning-
generalization and transfer”, an empirical model oriented to
multi-task formation under heterogeneous environments is con-
structed. This model enables intelligent perception and decision-
making throughout the entire life cycle of borehole trajectory
control, covering the stages of “before drilling, during drilling, and
after drilling”.

2. Framework of borehole trajectory control algorithm for
directional wells

The framework of the directional well borehole trajectory
control method consists of the equipment sensing layer, data layer,
algorithm layer, highly interactive borehole drilling visualization
system, and equipment execution layer (see Fig. 1).

(1) The equipment sensing layer utilizes the sensors installed
on the drill bit and power equipment to collect data during
the drilling process.

(2) The data layer is tasked with the storage and generation of
heterogeneous data, including MWD data, well logging data,
rock structure data, and geophysical logging data.

(3) The algorithm layer depends on the hierarchical abstraction
of geological-engineering drilling tasks and the learning of
highly interactive timing strategies during the drilling
operation. This enables the mining and migration of
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experiences throughout the entire life cycle, encompassing
the pre-drilling, in-drilling, and post-drilling stages.

(4) The highly interactive experience-based drilling visualiza-
tion system, by relying on sectional interpolation and tra-
jectory interaction, organically integrates the data with
intelligent control algorithms.

(5) The equipment execution layer is primarily responsible for
the implementation of actions and the return of feedback
within the actual operation scenarios.

3. Modeling of wellbore trajectory control tasks based on
multivariate and heterogeneous data

In the actual oil and gas production scenarios, the wellbore
trajectory control model is required to derive the control rules
from a vast amount of heterogeneous historical drilling guidance
data. It also needs to achieve the rapid transfer of existing expe-
riences in complex environments, such as low and medium
permeability blocks and diverse formation structures. The histor-
ical data acquired by the steering system is diverse in types and
complex in composition, which comprehensively reflects the
stratigraphic lithology, block structure, and dynamic properties
during the geological steering process. Moreover, the size of the
data samples is limited, and there may be some missing data at
specific time points. Consequently, the task of wellbore trajectory
control must be hierarchically decomposed, and an appropriate
interactive decision-making model should be established based on
the timing characteristics of control actions and MWD data.

3.1. Hierarchical abstraction of complex multi-task drilling process

The main task of borehole trajectory control in oil and gas wells
is to adjust the drilling parameters of the bit in real time to guide
the borehole trajectory to the target oil reservoir (Wei and Liu,
2024). In the actual production field, there are usually numerous
drilling and production tasks, which vary in formation character-
istics, target depth, formation structure, and other aspects.
Moreover, the measurement parameters and action decisions of
borehole bits are frequently affected by errors resulting from
nonlinear strong interference noise.

Based on the typical hierarchical architecture employed in al-
gorithm design, the multi-task complex drilling control tasks can
be categorized into the target drilling state search task layer and
the target drilling state arrival path task layer. The high-level
drilling guide task is divided into a series of subtasks for deci-
sion calculation (Kwon et al., 2024), so as to achieve the reuse and
reconstruction of drilling experience. As is shown in Fig. 2, suppose
U is the high-level drilling guide task set, S is the global drilling
state of the drilling guide system, and each subtask T;,i € U con-
sists of a series of subdrilling state s; and action sequence ay. Based
on a dataset that is analogous to the geological conditions of the
block slated for drilling, the borehole guidance decision algorithm
conducts learning from the environment. Through this process, it
acquires a control strategy model that is well-suited to the specific
drilling tasks at hand.

3.2. Deconstruction of borehole guidance process driven by
multivariate heterogeneous data

Wellbore control tasks can be hierarchically organized into a
sequential “state-action” sequence of drill-down targets, where
each control cycle makes action decisions based on the observa-
tions of the current state. According to the mathematical model of
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Fig. 1. Framework of borehole trajectory control algorithm for directional wells. The whole framework mainly consists of five layers: Data layer obtains measurement results from
device sensing layer; device sensing layer generates real-time data for the drilling system; algorithms in algorithm layer process such data to perform decisions on well trajectory
control; equipment execution layer accordingly take actions; high interactive borehole visualization system provides user interface to monitor the control process.

the actual drilling process, the bottomhole assembly (BHA) (Ji
et al., 2024) serves as the core control object for the wellbore
drilling trajectory, and MWD (Zhang, 2023; Hyungjoo and Hunjoo,
2023) is the key technology that enables the drilling system to
complete signal feedback. The wellbore trajectory control process
typically encompasses a variety of heterogeneous data, including
formation characteristic parameters, logging depth, measurement
curves during drilling, bit azimuth parameters, and the operational
status of downhole drilling tools, among others.

Fig. 3 illustrates how we handled the multi-source heteroge-
neous data involved in the directional well drilling process. In the
simulation environment, we utilize logging data to generate
simulated data, such as natural gamma ray, acoustic time differ-
ence, array induction logging (ACS) curve, spontaneous potential
(SP), upper limit of mud density, etc., for interactive experiments.
The deconstruction of the borehole guidance process takes full
account of the rich patterns embedded in the multi-source het-
erogeneous data. Through a workflow based on mechanism
modeling and data-driven machine learning (Chen X.Y. et al., 2024)
that includes “data acquisition-data cleaning-feature extraction-
correlation analysis-visualization”, we maximize the extraction
of experience from the borehole guidance process. This provides
support for parameter screening and experience aggregation in
high-interaction learning algorithms. To comprehensively inte-
grate multi-source heterogeneous data samples and eliminate the
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application barriers among the original sampled data, a multi-
dimensional total dataset can be acquired by integrating the fea-
tures contained in each sub-dataset according to the sampling
time. Meanwhile, by applying techniques such as outlier removal
and data interpolation, the sampling intervals of the data se-
quences are standardized, and the sampling timestamps of
different devices are synchronized. Methods like random forest
and correlation coefficient are employed to screen important
features for dimensionality reduction. The relationship between
the changing trends of data sequences, drilling processes, and
control instructions is analyzed to refine and extract data samples
that reflect each typical drilling stage, thus forming a typical
subset. The geological logging dataset obtained through feature
fusion is vertically distributed according to the formation depth
and horizontally distributed according to the formation attributes.

Here are three typical examples of the application of the data
processing methods.

(1) In the face of the practical challenge where MWD parame-
ters, including inclination angle, azimuth angle, tool face
angle, formation resistivity, temperature, pressure, drilling
speed, and the control parameters of the drilling rig (RIG)
cannot be simultaneously acquired, along with inconsistent
sampling periods, we take the following measures. First, we
align the timestamps of the data. Then, based on methods
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Fig. 2. Hierarchical division of wellbore trajectory control tasks. Considering the complexity of the wellbore trajectory control tasks, upper level task of target state search
cooperate with lower level task of how to get to the target state. Subtasks direct the track process together.

such as linear and polynomial fitting, as well as machine
learning models, we fill in the missing drilling data. We also
normalize and enhance features at different scales. Addi-
tionally, by using techniques like boundary extraction and
layer alignment, a data subset for the corresponding drilling
subtask is constructed.

(2) To tackle the problem of making the data features from

historical drilling data prior to drilling adaptable to the real-
time features during the drilling process, we adopt the
following approach. Historical drilling data is utilized for
offline learning before drilling commences. Subsequently,
the drilling experience gained from this offline learning is
implemented during the drilling operation. When the dril-
ling rig receives specific sensor feedback, this experience
guides the rig to execute the corresponding actions.

(3) To enhance the richness of model data samples, we introduce

a data generation mechanism that is based on generative
adversarial networks, variational autoencoders, diffusion
models, and large-scale models. This mechanism fully
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explores the patterns embedded in historical real drilling
data. Furthermore, based on these discovered patterns, we
further expand the size of the data samples. By integrating
technologies such as feature alignment, we break down the
data barriers between heterogeneous data sets.

3.3. Temporal representation of oriented decision control events

The borehole steering control subtask has obvious timing

characteristics. Therefore, Markov decision process (MDP) model
of borehole trajectory control (MDP) (Bolshakov and Alfimtsev,
2024) is established with subtasks as the basic unit. Markov de-
cision process of borehole steering control decision consists of
drilling state set S, steering action set A, discount factor y, decision
reward function r(s, a) and state transition function P(s’, s|a). The
steering agent and the environment constantly interact to obtain
the maximum cumulative reward. The historical samples of
borehole trajectory control are mainly long series data D = (dj, ...,
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Fig. 3. Drilling guidance data processing flow.

d)% di = (so, ..., St, o, ..., a;). Each long sequence of data corre-
sponds to a wellbore trajectory in a particular geological envi-
ronment, and the decision control events taken by the steering
agent guide the direction and path of the drill bit. Considering the
Markov property of the actual drilling process state, the state
transition distribution function of the guiding model satisfies the
following equation P(s¢1|st) = P(S¢y1lSt St—1, -..,S1). It is evident
that the intelligent decision-making algorithm will depend on the
perception of the current environmental conditions to determine
the control action.

4. Learning of well trajectory control strategy with high
interaction between geology and engineering

The borehole trajectory agent is required to dynamically adjust
the drilling trajectory decision-making strategy in accordance
with real-time field parameters, and it should possess the capa-
bility to adapt to novel scenarios. Fig. 4 illustrates the process by
which the wellbore guidance intelligent agent proposed in this
article acquires control experience through interaction with the
environment. The control strategy model serves as the core of the
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highly interactive geological guidance control method in geolog-
ical engineering. An approach based on the framework of “offline
learning before drilling, online interaction during drilling, and
model transfer after drilling” is adopted to establish a highly
interactive learning model for wellbore trajectory control. The
wellbore trajectory drilling control method throughout the entire
process, which is based on the highly interactive learning mech-
anism, can address the issue where the limited scale of sequential
data restricts the learning effectiveness of the control algorithm.
Moreover, it can enhance the robustness of the control decision-
making for complex multi-task borehole steering.

4.1. Pre-drilling offline learning based on historical MWD data

To enhance the convergence speed of the control strategy, the
directional well empirical trajectory control agent is required to
extract patterns from historical drilling data. By doing so, it can
reduce the search space when formulating the control strategy,
thereby enabling it to reach the target state more swiftly. The high
interaction mechanism between geology and engineering closely
integrates the geological model, engineering model, and
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geophysical model. Through formation section interpolation and
model prediction techniques, it uncovers the control factors and
decision-making experiences within the interactive drilling pro-
cess. This learning process is accomplished prior to actual drilling
and solely relies on static information, such as MWD data, the
sequence of control actions, and state observations generated
during previous drilling operations. Statistical analysis and ma-
chine learning techniques, including model mapping, action pre-
diction, and offline reinforcement learning, are employed to
expedite the optimization rate of the control model. Pre-drilling
learning allows the wellbore trajectory control model to assimi-
late historical while-drilling data, which facilitates the movement
of the wellbore trajectory towards the target formation.

4.2. The steering agent interacts online with the drilling
environment

The simulation environment plays a pivotal role in the learning
process of the agent. To accurately depict the parameter flow in
actual borehole drilling, the construction of the simulation envi-
ronment necessitates an understanding of the characteristics of
expert experience data. This, in turn, enables it to more effectively
guide the agent in completing the learning of the drilling strategy.
Generative models, such as generative adversarial networks,
variational autoencoders, and diffusion models (Yan et al., 2024),
have the capability to generate new extended data based on the
distribution patterns embedded within data samples. Among
these, the diffusion model introduces noise to the original data
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through a forward process and recovers the original data via a
reverse process. It demonstrates superior FID (Frechet Inception
Distance) performance in image generation tasks (Seung and
Yong-Goo, 2022). By applying denoising diffusion models,
fractional-based models, and stochastic differential equation
models to the data amplification task, the learning capacity of
large models can be fully exploited, providing substantial data
support for the construction of the simulated geological environ-
ment. The borehole steering agent receives real-time state inputs
from the simulated environment and analyzes the MWD obser-
vation data to incrementally perceive the current drilling state and
the environment surrounding the drill bit. Simultaneously, the
agent assesses the control actions to be implemented, taking into
account the prior domain experience of the mechanism model. In
contrast to the traditional approach of pre-modeling all position
data, this method significantly reduces computational costs and
supports the real-time incremental construction of geological
models. Moreover, it can generate a multitude of diverse drilling
environments, preventing the model from being trapped in a
specific drilling scenario locally. This effectively enhances the
robustness of the algorithm during the training process.

4.3. Wellbore trajectory control strategy model transfer after
drilling

The control models generated through offline learning prior to
drilling and online interactive generation during the drilling process
typically rely on the specific drilling environment. To enhance the
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adaptability of the control model, the learning strategy of the
drilling guidance agent in a new environment can be formulated
based on the concept of transfer learning. By leveraging machine
learning techniques, the knowledge acquired from the source
domain can be mapped onto the new target task. The wellbore
trajectory migration model can boost the adaptability of the drilling
guidance agent when data samples are limited. This is achieved
through empirical mapping and reuse, enabling the rapid and batch
production or verification of the drilling guidance algorithm.

5. Application of drilling guide in typical complex oil and gas
fields

The experimental oil and gas block represents an oil and gas
reservoir with a complex geological structure. Initially, technicians

Petroleum Science 22 (2025) 3333-3343

create a three-dimensional (3D) simulated drilling environment
based on the formation distribution data. They then train a general
decision-oriented model by relying on the process of “data
acquisition-experience mining-interactive learning-generalization
and transfer learning”. The steering performance of the control
model is evaluated in three distinct stages: before drilling, during
drilling, and after drilling. Subsequently, the model is deployed on
the production equipment to enable efficient drilling operations
(as illustrated in Fig. 5). In this section, a simulated drilling envi-
ronment is constructed based on three logging datasets. The de-
tails of these three datasets are as follows.

(1) A logging dataset from a basin in western China, which
comprises 25 geological logging characteristic parameters
and contains a total of over 6800 data samples.
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Fig. 5. A typical interactive borehole trajectory control framework.
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Table 1
Generation of sequence 0 geological feature data.
Sample No. Natural gamma Sonic lag ACS log Spontaneous potential Upper mud density
1 112.173913 66.388894 23.766100 71.990747 1.9529520
2 110.869680 67.211742 25.009145 72.222222 1921165
3 115.652177 66.858000 27.006172 72.359115 1.9351472

(2) The Kansas oil and gas logging dataset in the United States,
consisting of 11 geological logging characteristic parameters
with a cumulative total of more than 3500 data samples.

(3) The logging dataset provided by the Kansas Geological
Survey in the United States, which includes 14 geological
logging characteristic parameters and has a total of over
8700 data samples.

Due to the disparities in feature types and sampling periods
among the three logging datasets, the techniques of temporal
alignment, data interpolation, and feature selection introduced in
the previous framework were employed for preprocessing.
Random forest and cross-validation recursive feature elimination
algorithms were utilized to select five significant geological fea-
tures, namely DCAL (Differential Caliper), SP (Self Potential), MI
(Resilience Intermediate Array), MCAL (Normal Caliper), and MN
(Resilience Wide Array). The preprocessed historical drilling data
will be utilized to simulate the generation of the drilling envi-
ronment and the process of drilling interactive learning.

5.1. Data-driven simulation drilling environment modeling

A generative adversarial network is incorporated into the
model of complex geological blocks and the generation process of
formation characteristic parameters. The visualization data of the
formation distribution, along with the original characteristic data
such as natural gamma ray, acoustic time difference, array in-
duction logging (ACS) curve, spontaneous potential (SP), and the
upper limit of mud density, are respectively used as the inputs to
the network (as shown in Table 1). A least square generating
adversarial network (Mao et al., 2017) used in this example is
composed of generator G and discriminator D, and the least square
is used as the discriminator loss function to solve the gradient
disappearance problem (see Fig. 6). In this example, the employed
adversarial generative network integrates bidirectional Long

Generator loss
1.2 4 Discriminator loss

Loss

0s | ) WJMW/\A/LAV A

0.6 4

0.4 -

T
0 200 400 600 800 1000

Epochs

Fig. 6. Loss function diagram of stratigraphic data generation model. After approxi-
mately 200 iterations, the losses of the discriminator and generator networks tend to
converge, indicating that the parameters meet the requirements for expanding
geological data.
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Short-Term Memory (LSTM) to extract contextual information
from time series data. The model is then trained and optimized
using the Adam optimizer. The hyperparameter configurations for
the adversarial generative network are presented in Table 2. The
intricate three-dimensional (3D) simulated geological block is
created through multi-step accumulation, achieved by aligning
and interpolating the block profiles within the sample set. This
approach effectively enhances the data richness of geological
survey samples, thereby providing the necessary environmental
setup for the drilling decision-making algorithms (as depicted in
Figs. 7 and 8).

5.2. Experience learning of directional well steering decision
making

Based on the behavior cloning method, the state-action map-
ping is extracted from the time series MWD dataset, and super-
vised learning is conducted to generate the basic control strategy
model for the drilling agent. Taking into account the cumulative
error of the direct fitting model, approximate end-to-end learning
is further introduced to optimize the sequential decision-making
process. For each subtask within the task set, the parameters of
the basic control strategy model are updated via the back-
propagation mechanism of state error. Through continuous
learning, a more refined control strategy is obtained. The
intelligent-oriented offline model accepts the multi-dimensional
data samples of the enhanced model. According to the move-
ment direction of the drill bit, nine azimuth-oriented labels for the
screw drill tool are constructed, namely: upper left, lower left,
upper right, lower right, forward, leftward deviation, rightward
deviation, upward, and downward. The intelligent-oriented data-
set is then learned from and mined through the supervised
learning model of deep learning.

5.3. Multi-task driven drilling agent interactive learning

Wellbore trajectory offline learning network receives 5-
dimensional inputs, namely, well depth L, current azimuthg,,
current inclinationa,, target azimuthey, and target inclinationa,
and passes the output BHA azimuth and inclination angle into the
network to predict theQ value of the action selected by the agent in
the current state. Taking into account the continuity characteris-
tics of the borehole trajectory, this example employs the actor-
critic algorithm, Deep Deterministic Policy Gradient (DDPG),
which is based on the deterministic strategy gradient, to imple-
ment the offline learning method framework. Strategies based on
the random experience replay mechanism and the priority

Table 2

Hyperparameters for stratigraphic GAN model.
Parameter name Value
Learning rate of D 0.0001
Learning rate of G 0.00035
Number of iterations 1000
Optimizer Adam
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Fig. 7. Formation profile generation. A generative algorithm is used to iteratively generate formation profiles, where red, yellow, blue and green represent one formation type
respectively, providing data support for the training of intelligent drilling guidance model.

experience replay mechanism are respectively adopted to enhance
the learning performance of the drilling guidance agent. The
discrete points measured by the MWD system are associated with
the borehole trajectory authority by means of the cylindrical helix
method (Ma and Yuan, 2017). The coupling between the borehole
drilling control actions and the while-drilling parameters is ach-
ieved through iterative updates in an incremental fashion. A preset
experience track is utilized as the target path, and the actual
borehole drilling decision-making process is required to match the
preset track to the highest extent possible. When the drilling de-
cision action provided by the agent deviates from the preset tra-
jectory path, the algorithm will assign a low reward value to the
current decision. This enables the agent to continuously learn the
drilling guidance strategy that meets the target expectations.

Fig. 9 illustrates the comparison results between the actual
drilling trajectory generated by the algorithm proposed in this
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article and the preset trajectory. The example experiments
demonstrate that the target model, which is based on transfer
learning and the DDPG algorithm, exhibits a favorable conver-
gence effect in terms of the target rate. The maximum deviation of
the borehole trajectory under interference constraints diminishes
as the number of training sessions increases, ultimately
converging to zero. This outcome indicates that the intelligent
drilling guidance framework presented in this paper is capable of
fulfilling the task of borehole guidance. Furthermore, in compari-
son with the random experience replay strategy, the model based
on the priority experience replay mechanism converges more
rapidly and demonstrates superior performance. The drilling rate
of the borehole trajectory adaptive control, which is based on
formation profile interpolation and the migrated DDPG algorithm,
is approximately 10% higher than that of the preset borehole tra-
jectory. After convergence, the maximum deviation distance is
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Fig. 8. Complex geological profile data generation. (a) Geological blocks generated at
the beginning of the interaction, (b) block generated during the interaction, (c)
complete geological block.

roughly 81.6% lower than that achieved by the traditional
Proportional-Integral-Derivative (PID) method, and the target hit
rate is approximately 65% higher than that of the PID method. The
learning method for the drilling guidance agent, which is founded
on the highly interactive learning mechanism, possesses excellent
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Fig. 9. Adaptive well trajectory versus preset trajectory. The drilling trajectory
generated by the algorithm accords with the preset trajectory height.

anti-interference capabilities. It can successfully guide the drilling
equipment to reach the formation target area and effectively
enhance the drilling rate of the target reservoir.

However, there are still several limitations of the algorithm,
including computing cost, data dependence, generalization, etc.

(1) The wellbore trajectory control algorithm framework put
forward in this article relies on preset trajectories and is
unable to dynamically track target trajectories that might be
adjusted during the construction process.

(2) When the complexity of the preset wellbore trajectories is
increased, the existing algorithms demand a longer training
time.

(3) The cost of data governance is relatively high. It is necessary
to simulate numerous different scenarios to ensure that the
algorithm can adapt to various formation conditions.

Further work can be carried out around these limitations to
continuously improve the algorithm’s capabilities. Specifically, we
will build an integrated method of systematic data processing and
try to build a training platform for intelligent drilling guide
algorithms.

6. Conclusion

In this paper, a framework of an adaptive interactive learning
control method is proposed, which focuses on the key technical
issues of wellbore trajectory. By leveraging an interactive simu-
lated drilling environment, the processes of data acquisition,
experience mining, interactive learning, and generalization
transfer are achieved during the borehole guidance operation. The
method put forward in this study can be effectively applied to the
drilling tasks in actual oil and gas fields. It is capable of enhancing
the deployment efficiency of the algorithm and significantly
increasing the drilling rate of the target oil and gas reservoirs.
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