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a b s t r a c t

Measurement-while-drilling (MWD) and guidance technologies have been extensively deployed in the 
exploitation of oil, natural gas, and other energy resources. Conventional control approaches are plagued 
by challenges, including limited anti-interference capabilities and the insufficient generalization of 
decision-making experience. To address the intricate problem of directional well trajectory control, an 
intelligent algorithm design framework grounded in the high-level interaction mechanism between 
geology and engineering is put forward. This framework aims to facilitate the rapid batch migration and 
update of drilling strategies. The proposed directional well trajectory control method comprehensively 
considers the multi-source heterogeneous attributes of drilling experience data, leverages the genera-
tive simulation of the geological drilling environment, and promptly constructs a directional well tra-
jectory control model with self-adaptive capabilities to environmental variations. This construction is 
carried out based on three hierarchical levels: “offline pre-drilling learning, online during-drilling 
interaction, and post-drilling model transfer”. Simulation results indicate that the guidance model 
derived from this method demonstrates remarkable generalization performance and accuracy. It can 
significantly boost the adaptability of the control algorithm to diverse environments and enhance the 
penetration rate of the target reservoir during drilling operations.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Currently, the development trend of oil and gas drilling in 
complex oil and gas reservoirs is characterized by ultra-deep wa-
ter, ultra-deep strata, low permeability, and unconventionality. 
The 14th Five-Year Plan issued in 2021 and the outline document 
of the 2035 vision goal have made a comprehensive arrangement 
for the further development of the petroleum exploration in-
dustry. They proposed key core technologies to concentrate su-
perior resources on oil and gas exploration and development, and 
promoted the intelligent upgrading of oil and gas field exploration 
(Zhao et al., 2021; Wang, 2020). As a pivotal technology in the field 
of drilling engineering, borehole trajectory control is confronted 
with the imperative of resolving a series of complex challenges.

These challenges encompass nonlinear characteristics, severe 
interference, high-degree coupling, time-delay effects, and the 
timely degradation phenomenon that occur during the drilling 
process (Wang et al., 2021). The objective is to achieve the precise 
alignment between the actual drilling trajectory and the pre-
designed borehole trajectory through the regulation of drilling 
trajectory parameters.
Traditional borehole trajectory control predominantly centers 

around mechanism-based modeling and numerical solutions. The 
control command is usually based on open-loop or closed-loop 
proportional integral differential (PID) method (Hu and Ying, 
2001; Wu and Shen, 2003), and various measures are taken to 
mitigate the accuracy loss caused by tracking error and viscous slip 
shock. In order to reduce the error of borehole drilling trajectory, 
Van de Wouw et al. (2016) proposed a three-dimensional bore-
hole propagation model based on nonlinear delay differential 
equation. Liu and Samuel (2016) introduced the minimum curva-
ture, balanced tangential and cubic spline, Bessel curve, etc., into 
the calibration process of borehole trajectory. Gulyayev et al.
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(2021) built a projected gradient optimal control model based on 
trajectory smoothness, drilling cost and track length. In order to 
solve the problem of stick-slip oscillation in drilling trajectory 
control, Kremers et al. (2015) used a robust control model to 
reduce the track oscillation in the transient closed-loop response. 
Auriol et al. (2020) proposed to incorporate the feedback law of 
stick-slip mitigation and the law of friction coefficient updating 
into the modeling process of the observer, which improved the 
robustness of drilling toolface control to a certain extent.
In recent years, the application of artificial intelligence in oil 

and gas production has received more and more attention (Fang 
et al., 2019; Li et al., 2023; Chen D. et al., 2024; Zhang et al., 
2024; Hossein et al., 2023). Relying on intelligent algorithms to 
achieve accurate control and intelligent tracking of the drilling 
process can effectively improve the control efficiency in complex 
scenarios (Xu et al., 2024). In terms of real-time automatic control 
of borehole trajectory parameters, Sugiyama et al. (2014) realized 
dynamic regulation of drilling parameters based on continuous 
static measurement. Kamel et al. (2018) proposed a borehole tra-
jectory control method of directional steering system based on 
real-time parameter optimization. Kullawan et al. (2017) realized 
the optimization of borehole trajectory sequence decision based 
on discrete stochastic dynamic programming. In terms of collab-
orative deployment of measurement-while-drilling (MWD) and 
trajectory optimization, Schlumbergerʼs Power Drive X6 can 
realize integrated control of downhole drilling, and PetroChinaʼs 
EISC system (Lei et al., 2022) can enable digital intelligence of 
drilling and production processes.
In summary, the current well trajectory control has a relatively 

solid numerical or empirical modeling foundation (Gao and 
Huang, 2024; Guo et al., 2024), but the relevant intelligent algo-
rithms lack the ability to adapt quickly in complex and heteroge-
neous geological environments. In order to solve the problems of 
high complexity (Fang et al., 2023) and weak anti-interference 
ability of the modeling process of the mechanism model, this 
paper proposes a directional well trajectory control method based 
on high interactive learning mechanism. Through the process of 
“data acquisition-experience mining-interactive learning-
generalization and transfer”, an empirical model oriented to 
multi-task formation under heterogeneous environments is con-
structed. This model enables intelligent perception and decision-
making throughout the entire life cycle of borehole trajectory 
control, covering the stages of “before drilling, during drilling, and 
after drilling”.

2. Framework of borehole trajectory control algorithm for 
directional wells

The framework of the directional well borehole trajectory 
control method consists of the equipment sensing layer, data layer, 
algorithm layer, highly interactive borehole drilling visualization 
system, and equipment execution layer (see Fig. 1).

(1) The equipment sensing layer utilizes the sensors installed 
on the drill bit and power equipment to collect data during 
the drilling process.

(2) The data layer is tasked with the storage and generation of 
heterogeneous data, including MWD data, well logging data, 
rock structure data, and geophysical logging data.

(3) The algorithm layer depends on the hierarchical abstraction 
of geological-engineering drilling tasks and the learning of 
highly interactive timing strategies during the drilling 
operation. This enables the mining and migration of

experiences throughout the entire life cycle, encompassing 
the pre-drilling, in-drilling, and post-drilling stages.

(4) The highly interactive experience-based drilling visualiza-
tion system, by relying on sectional interpolation and tra-
jectory interaction, organically integrates the data with 
intelligent control algorithms.

(5) The equipment execution layer is primarily responsible for 
the implementation of actions and the return of feedback 
within the actual operation scenarios.

3. Modeling of wellbore trajectory control tasks based on 
multivariate and heterogeneous data

In the actual oil and gas production scenarios, the wellbore 
trajectory control model is required to derive the control rules 
from a vast amount of heterogeneous historical drilling guidance 
data. It also needs to achieve the rapid transfer of existing expe-
riences in complex environments, such as low and medium 

permeability blocks and diverse formation structures. The histor-
ical data acquired by the steering system is diverse in types and 
complex in composition, which comprehensively reflects the 
stratigraphic lithology, block structure, and dynamic properties 
during the geological steering process. Moreover, the size of the 
data samples is limited, and there may be some missing data at 
specific time points. Consequently, the task of wellbore trajectory 
control must be hierarchically decomposed, and an appropriate 
interactive decision-making model should be established based on 
the timing characteristics of control actions and MWD data.

3.1. Hierarchical abstraction of complex multi-task drilling process

The main task of borehole trajectory control in oil and gas wells 
is to adjust the drilling parameters of the bit in real time to guide 
the borehole trajectory to the target oil reservoir (Wei and Liu, 
2024). In the actual production field, there are usually numerous 
drilling and production tasks, which vary in formation character-
istics, target depth, formation structure, and other aspects. 
Moreover, the measurement parameters and action decisions of 
borehole bits are frequently affected by errors resulting from 

nonlinear strong interference noise.
Based on the typical hierarchical architecture employed in al-

gorithm design, the multi-task complex drilling control tasks can 
be categorized into the target drilling state search task layer and 
the target drilling state arrival path task layer. The high-level 
drilling guide task is divided into a series of subtasks for deci-
sion calculation (Kwon et al., 2024), so as to achieve the reuse and 
reconstruction of drilling experience. As is shown in Fig. 2, suppose 
U is the high-level drilling guide task set, S is the global drilling 
state of the drilling guide system, and each subtask T i ; i ∈ U con-
sists of a series of subdrilling state s j and action sequence a k . Based 
on a dataset that is analogous to the geological conditions of the 
block slated for drilling, the borehole guidance decision algorithm 

conducts learning from the environment. Through this process, it 
acquires a control strategy model that is well-suited to the specific 
drilling tasks at hand.

3.2. Deconstruction of borehole guidance process driven by 
multivariate heterogeneous data

Wellbore control tasks can be hierarchically organized into a 
sequential “state-action” sequence of drill-down targets, where 
each control cycle makes action decisions based on the observa-
tions of the current state. According to the mathematical model of
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the actual drilling process, the bottomhole assembly (BHA) (Ji 
et al., 2024) serves as the core control object for the wellbore 
drilling trajectory, and MWD (Zhang, 2023; Hyungjoo and Hunjoo, 
2023) is the key technology that enables the drilling system to 
complete signal feedback. The wellbore trajectory control process 
typically encompasses a variety of heterogeneous data, including 
formation characteristic parameters, logging depth, measurement 
curves during drilling, bit azimuth parameters, and the operational 
status of downhole drilling tools, among others.
Fig. 3 illustrates how we handled the multi-source heteroge-

neous data involved in the directional well drilling process. In the 
simulation environment, we utilize logging data to generate 
simulated data, such as natural gamma ray, acoustic time differ-
ence, array induction logging (ACS) curve, spontaneous potential 
(SP), upper limit of mud density, etc., for interactive experiments. 
The deconstruction of the borehole guidance process takes full 
account of the rich patterns embedded in the multi-source het-
erogeneous data. Through a workflow based on mechanism 

modeling and data-driven machine learning (Chen X.Y. et al., 2024) 
that includes “data acquisition-data cleaning-feature extraction-
correlation analysis-visualization”, we maximize the extraction 
of experience from the borehole guidance process. This provides 
support for parameter screening and experience aggregation in 
high-interaction learning algorithms. To comprehensively inte-
grate multi-source heterogeneous data samples and eliminate the

application barriers among the original sampled data, a multi-
dimensional total dataset can be acquired by integrating the fea-
tures contained in each sub-dataset according to the sampling 
time. Meanwhile, by applying techniques such as outlier removal 
and data interpolation, the sampling intervals of the data se-
quences are standardized, and the sampling timestamps of 
different devices are synchronized. Methods like random forest 
and correlation coefficient are employed to screen important 
features for dimensionality reduction. The relationship between 
the changing trends of data sequences, drilling processes, and 
control instructions is analyzed to refine and extract data samples 
that reflect each typical drilling stage, thus forming a typical 
subset. The geological logging dataset obtained through feature 
fusion is vertically distributed according to the formation depth 
and horizontally distributed according to the formation attributes. 
Here are three typical examples of the application of the data 

processing methods.

(1) In the face of the practical challenge where MWD parame-
ters, including inclination angle, azimuth angle, tool face 
angle, formation resistivity, temperature, pressure, drilling 
speed, and the control parameters of the drilling rig (RIG) 
cannot be simultaneously acquired, along with inconsistent 
sampling periods, we take the following measures. First, we 
align the timestamps of the data. Then, based on methods

Fig. 1. Framework of borehole trajectory control algorithm for directional wells. The whole framework mainly consists of five layers: Data layer obtains measurement results from 

device sensing layer; device sensing layer generates real-time data for the drilling system; algorithms in algorithm layer process such data to perform decisions on well trajectory 
control; equipment execution layer accordingly take actions; high interactive borehole visualization system provides user interface to monitor the control process.
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such as linear and polynomial fitting, as well as machine 
learning models, we fill in the missing drilling data. We also 
normalize and enhance features at different scales. Addi-
tionally, by using techniques like boundary extraction and 
layer alignment, a data subset for the corresponding drilling 
subtask is constructed.

(2) To tackle the problem of making the data features from 

historical drilling data prior to drilling adaptable to the real-
time features during the drilling process, we adopt the 
following approach. Historical drilling data is utilized for 
offline learning before drilling commences. Subsequently, 
the drilling experience gained from this offline learning is 
implemented during the drilling operation. When the dril-
ling rig receives specific sensor feedback, this experience 
guides the rig to execute the corresponding actions.

(3) To enhance the richness of model data samples, we introduce 
a data generation mechanism that is based on generative 
adversarial networks, variational autoencoders, diffusion 
models, and large-scale models. This mechanism fully

explores the patterns embedded in historical real drilling 
data. Furthermore, based on these discovered patterns, we 
further expand the size of the data samples. By integrating 
technologies such as feature alignment, we break down the 
data barriers between heterogeneous data sets.

3.3. Temporal representation of oriented decision control events

The borehole steering control subtask has obvious timing 
characteristics. Therefore, Markov decision process (MDP) model 
of borehole trajectory control (MDP) (Bolshakov and Alfimtsev, 
2024) is established with subtasks as the basic unit. Markov de-
cision process of borehole steering control decision consists of 
drilling state set S, steering action set A, discount factor γ, decision 
reward function r(s, a) and state transition function P(sʼ, s|a). The 
steering agent and the environment constantly interact to obtain 
the maximum cumulative reward. The historical samples of 
borehole trajectory control are mainly long series data D = (d 1 , …,

Fig. 2. Hierarchical division of wellbore trajectory control tasks. Considering the complexity of the wellbore trajectory control tasks, upper level task of target state search 
cooperate with lower level task of how to get to the target state. Subtasks direct the track process together.

Y. Zhao, D.-D. Zhu, F. Wang et al. Petroleum Science 22 (2025) 3333–3343

3336



d n ) T , d i = (s 0 , …, s t , a 0 , …, a t ). Each long sequence of data corre-
sponds to a wellbore trajectory in a particular geological envi-
ronment, and the decision control events taken by the steering 
agent guide the direction and path of the drill bit. Considering the 
Markov property of the actual drilling process state, the state 
transition distribution function of the guiding model satisfies the 
following equation P(s t+1 |s t ) = P(s t+1 |s t , s t− 1 , …,s 1 ). It is evident 
that the intelligent decision-making algorithm will depend on the 
perception of the current environmental conditions to determine 
the control action.

4. Learning of well trajectory control strategy with high 
interaction between geology and engineering

The borehole trajectory agent is required to dynamically adjust 
the drilling trajectory decision-making strategy in accordance 
with real-time field parameters, and it should possess the capa-
bility to adapt to novel scenarios. Fig. 4 illustrates the process by 
which the wellbore guidance intelligent agent proposed in this 
article acquires control experience through interaction with the 
environment. The control strategy model serves as the core of the

highly interactive geological guidance control method in geolog-
ical engineering. An approach based on the framework of “offline 
learning before drilling, online interaction during drilling, and 
model transfer after drilling” is adopted to establish a highly 
interactive learning model for wellbore trajectory control. The 
wellbore trajectory drilling control method throughout the entire 
process, which is based on the highly interactive learning mech-
anism, can address the issue where the limited scale of sequential 
data restricts the learning effectiveness of the control algorithm. 
Moreover, it can enhance the robustness of the control decision-
making for complex multi-task borehole steering.

4.1. Pre-drilling offline learning based on historical MWD data

To enhance the convergence speed of the control strategy, the 
directional well empirical trajectory control agent is required to 
extract patterns from historical drilling data. By doing so, it can 
reduce the search space when formulating the control strategy, 
thereby enabling it to reach the target state more swiftly. The high 
interaction mechanism between geology and engineering closely 
integrates the geological model, engineering model, and

Fig. 3. Drilling guidance data processing flow.
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geophysical model. Through formation section interpolation and 
model prediction techniques, it uncovers the control factors and 
decision-making experiences within the interactive drilling pro-
cess. This learning process is accomplished prior to actual drilling 
and solely relies on static information, such as MWD data, the 
sequence of control actions, and state observations generated 
during previous drilling operations. Statistical analysis and ma-
chine learning techniques, including model mapping, action pre-
diction, and offline reinforcement learning, are employed to 
expedite the optimization rate of the control model. Pre-drilling 
learning allows the wellbore trajectory control model to assimi-
late historical while-drilling data, which facilitates the movement 
of the wellbore trajectory towards the target formation.

4.2. The steering agent interacts online with the drilling 
environment

The simulation environment plays a pivotal role in the learning 
process of the agent. To accurately depict the parameter flow in 
actual borehole drilling, the construction of the simulation envi-
ronment necessitates an understanding of the characteristics of 
expert experience data. This, in turn, enables it to more effectively 
guide the agent in completing the learning of the drilling strategy. 
Generative models, such as generative adversarial networks, 
variational autoencoders, and diffusion models (Yan et al., 2024), 
have the capability to generate new extended data based on the 
distribution patterns embedded within data samples. Among 
these, the diffusion model introduces noise to the original data

through a forward process and recovers the original data via a 
reverse process. It demonstrates superior FID (Frechet Inception 
Distance) performance in image generation tasks (Seung and 
Yong-Goo, 2022). By applying denoising diffusion models, 
fractional-based models, and stochastic differential equation 
models to the data amplification task, the learning capacity of 
large models can be fully exploited, providing substantial data 
support for the construction of the simulated geological environ-
ment. The borehole steering agent receives real-time state inputs 
from the simulated environment and analyzes the MWD obser-
vation data to incrementally perceive the current drilling state and 
the environment surrounding the drill bit. Simultaneously, the 
agent assesses the control actions to be implemented, taking into 
account the prior domain experience of the mechanism model. In 
contrast to the traditional approach of pre-modeling all position 
data, this method significantly reduces computational costs and 
supports the real-time incremental construction of geological 
models. Moreover, it can generate a multitude of diverse drilling 
environments, preventing the model from being trapped in a 
specific drilling scenario locally. This effectively enhances the 
robustness of the algorithm during the training process.

4.3. Wellbore trajectory control strategy model transfer after 
drilling

The control models generated through offline learning prior to 
drilling and online interactive generation during the drilling process 
typically rely on the specific drilling environment. To enhance the

Fig. 4. Borehole oriented agent interactive learning process.
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adaptability of the control model, the learning strategy of the 
drilling guidance agent in a new environment can be formulated 
based on the concept of transfer learning. By leveraging machine 
learning techniques, the knowledge acquired from the source 
domain can be mapped onto the new target task. The wellbore 
trajectory migration model can boost the adaptability of the drilling 
guidance agent when data samples are limited. This is achieved 
through empirical mapping and reuse, enabling the rapid and batch 
production or verification of the drilling guidance algorithm.

5. Application of drilling guide in typical complex oil and gas 
fields

The experimental oil and gas block represents an oil and gas 
reservoir with a complex geological structure. Initially, technicians

create a three-dimensional (3D) simulated drilling environment 
based on the formation distribution data. They then train a general 
decision-oriented model by relying on the process of “data 
acquisition-experience mining-interactive learning-generalization 
and transfer learning”. The steering performance of the control 
model is evaluated in three distinct stages: before drilling, during 
drilling, and after drilling. Subsequently, the model is deployed on 
the production equipment to enable efficient drilling operations 
(as illustrated in Fig. 5). In this section, a simulated drilling envi-
ronment is constructed based on three logging datasets. The de-
tails of these three datasets are as follows.

(1) A logging dataset from a basin in western China, which 
comprises 25 geological logging characteristic parameters 
and contains a total of over 6800 data samples.

Fig. 5. A typical interactive borehole trajectory control framework. 
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(2) The Kansas oil and gas logging dataset in the United States, 
consisting of 11 geological logging characteristic parameters 
with a cumulative total of more than 3500 data samples.

(3) The logging dataset provided by the Kansas Geological 
Survey in the United States, which includes 14 geological 
logging characteristic parameters and has a total of over 
8700 data samples.

Due to the disparities in feature types and sampling periods 
among the three logging datasets, the techniques of temporal 
alignment, data interpolation, and feature selection introduced in 
the previous framework were employed for preprocessing. 
Random forest and cross-validation recursive feature elimination 
algorithms were utilized to select five significant geological fea-
tures, namely DCAL (Differential Caliper), SP (Self Potential), MI 
(Resilience Intermediate Array), MCAL (Normal Caliper), and MN 
(Resilience Wide Array). The preprocessed historical drilling data 
will be utilized to simulate the generation of the drilling envi-
ronment and the process of drilling interactive learning.

5.1. Data-driven simulation drilling environment modeling

A generative adversarial network is incorporated into the 
model of complex geological blocks and the generation process of 
formation characteristic parameters. The visualization data of the 
formation distribution, along with the original characteristic data 
such as natural gamma ray, acoustic time difference, array in-
duction logging (ACS) curve, spontaneous potential (SP), and the 
upper limit of mud density, are respectively used as the inputs to 
the network (as shown in Table 1). A least square generating 
adversarial network (Mao et al., 2017) used in this example is 
composed of generator G and discriminator D, and the least square 
is used as the discriminator loss function to solve the gradient 
disappearance problem (see Fig. 6). In this example, the employed 
adversarial generative network integrates bidirectional Long

Short-Term Memory (LSTM) to extract contextual information 
from time series data. The model is then trained and optimized 
using the Adam optimizer. The hyperparameter configurations for 
the adversarial generative network are presented in Table 2. The 
intricate three-dimensional (3D) simulated geological block is 
created through multi-step accumulation, achieved by aligning 
and interpolating the block profiles within the sample set. This 
approach effectively enhances the data richness of geological 
survey samples, thereby providing the necessary environmental 
setup for the drilling decision-making algorithms (as depicted in 
Figs. 7 and 8).

5.2. Experience learning of directional well steering decision 
making

Based on the behavior cloning method, the state-action map-
ping is extracted from the time series MWD dataset, and super-
vised learning is conducted to generate the basic control strategy 
model for the drilling agent. Taking into account the cumulative 
error of the direct fitting model, approximate end-to-end learning 
is further introduced to optimize the sequential decision-making 
process. For each subtask within the task set, the parameters of 
the basic control strategy model are updated via the back-
propagation mechanism of state error. Through continuous 
learning, a more refined control strategy is obtained. The 
intelligent-oriented offline model accepts the multi-dimensional 
data samples of the enhanced model. According to the move-
ment direction of the drill bit, nine azimuth-oriented labels for the 
screw drill tool are constructed, namely: upper left, lower left, 
upper right, lower right, forward, leftward deviation, rightward 
deviation, upward, and downward. The intelligent-oriented data-
set is then learned from and mined through the supervised 
learning model of deep learning.

5.3. Multi-task driven drilling agent interactive learning

Wellbore trajectory offline learning network receives 5-
dimensional inputs, namely, well depth L, current azimuthϕ o , 
current inclinationα o , target azimuthϕ t , and target inclinationα t , 
and passes the output BHA azimuth and inclination angle into the 
network to predict theQ value of the action selected by the agent in 
the current state. Taking into account the continuity characteris-
tics of the borehole trajectory, this example employs the actor-
critic algorithm, Deep Deterministic Policy Gradient (DDPG), 
which is based on the deterministic strategy gradient, to imple-
ment the offline learning method framework. Strategies based on 
the random experience replay mechanism and the priority

Fig. 6. Loss function diagram of stratigraphic data generation model. After approxi-
mately 200 iterations, the losses of the discriminator and generator networks tend to 
converge, indicating that the parameters meet the requirements for expanding 
geological data.

Table 1
Generation of sequence 0 geological feature data.

Sample No. Natural gamma Sonic lag ACS log Spontaneous potential Upper mud density

1 112.173913 66.388894 23.766100 71.990747 1.9529520
2 110.869680 67.211742 25.009145 72.222222 1.921165
3 115.652177 66.858000 27.006172 72.359115 1.9351472

Table 2
Hyperparameters for stratigraphic GAN model.

Parameter name Value

Learning rate of D 0.0001
Learning rate of G 0.00035
Number of iterations 1000
Optimizer Adam
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experience replay mechanism are respectively adopted to enhance 
the learning performance of the drilling guidance agent. The 
discrete points measured by the MWD system are associated with 
the borehole trajectory authority by means of the cylindrical helix 
method (Ma and Yuan, 2017). The coupling between the borehole 
drilling control actions and the while-drilling parameters is ach-
ieved through iterative updates in an incremental fashion. A preset 
experience track is utilized as the target path, and the actual 
borehole drilling decision-making process is required to match the 
preset track to the highest extent possible. When the drilling de-
cision action provided by the agent deviates from the preset tra-
jectory path, the algorithm will assign a low reward value to the 
current decision. This enables the agent to continuously learn the 
drilling guidance strategy that meets the target expectations.
Fig. 9 illustrates the comparison results between the actual 

drilling trajectory generated by the algorithm proposed in this

article and the preset trajectory. The example experiments 
demonstrate that the target model, which is based on transfer 
learning and the DDPG algorithm, exhibits a favorable conver-
gence effect in terms of the target rate. The maximum deviation of 
the borehole trajectory under interference constraints diminishes 
as the number of training sessions increases, ultimately 
converging to zero. This outcome indicates that the intelligent 
drilling guidance framework presented in this paper is capable of 
fulfilling the task of borehole guidance. Furthermore, in compari-
son with the random experience replay strategy, the model based 
on the priority experience replay mechanism converges more 
rapidly and demonstrates superior performance. The drilling rate 
of the borehole trajectory adaptive control, which is based on 
formation profile interpolation and the migrated DDPG algorithm, 
is approximately 10% higher than that of the preset borehole tra-
jectory. After convergence, the maximum deviation distance is

Fig. 7. Formation profile generation. A generative algorithm is used to iteratively generate formation profiles, where red, yellow, blue and green represent one formation type 
respectively, providing data support for the training of intelligent drilling guidance model.
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roughly 81.6% lower than that achieved by the traditional 
Proportional-Integral-Derivative (PID) method, and the target hit 
rate is approximately 65% higher than that of the PID method. The 
learning method for the drilling guidance agent, which is founded 
on the highly interactive learning mechanism, possesses excellent

anti-interference capabilities. It can successfully guide the drilling 
equipment to reach the formation target area and effectively 
enhance the drilling rate of the target reservoir.
However, there are still several limitations of the algorithm, 

including computing cost, data dependence, generalization, etc.

(1) The wellbore trajectory control algorithm framework put 
forward in this article relies on preset trajectories and is 
unable to dynamically track target trajectories that might be 
adjusted during the construction process.

(2) When the complexity of the preset wellbore trajectories is 
increased, the existing algorithms demand a longer training 
time.

(3) The cost of data governance is relatively high. It is necessary 
to simulate numerous different scenarios to ensure that the 
algorithm can adapt to various formation conditions.

Further work can be carried out around these limitations to 
continuously improve the algorithmʼs capabilities. Specifically, we 
will build an integrated method of systematic data processing and 
try to build a training platform for intelligent drilling guide 
algorithms.

6. Conclusion

In this paper, a framework of an adaptive interactive learning 
control method is proposed, which focuses on the key technical 
issues of wellbore trajectory. By leveraging an interactive simu-
lated drilling environment, the processes of data acquisition, 
experience mining, interactive learning, and generalization 
transfer are achieved during the borehole guidance operation. The 
method put forward in this study can be effectively applied to the 
drilling tasks in actual oil and gas fields. It is capable of enhancing 
the deployment efficiency of the algorithm and significantly 
increasing the drilling rate of the target oil and gas reservoirs.
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