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a b s t r a c t

During oilfield development, a comprehensive model for assessing inter-well connectivity and con-
nected volume within reservoirs is crucial. Traditional capacitance (TC) models, widely used in inter-
well data analysis, face challenges when dealing with rapidly changing reservoir conditions over 
time. Additionally, TC models struggle with complex, random noise primarily caused by measurement 
errors in production and injection rates. To address these challenges, this study introduces a dynamic 
capacitance (SV-DC) model based on state variables. By integrating the extended Kalman filter (EKF) 
algorithm, the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag 
efficiency compared to the TC model. The robustness of the SV-DC model is verified by comparing 
relative errors between preset and calculated values through Monte Carlo simulations. Sensitivity 
analysis was performed to compare the model performance with the benchmark, using the Qin-
huangdao Oilfield as a case study. The results show that the SV-DC model accurately predicts water 
breakthrough times. Increases in the liquid production index and water cut in two typical wells indicate 
the development time of ineffective circulation channels, further confirming the accuracy and reliability 
of the model. The SV-DC model offers significant advantages in addressing complex, dynamic oilfield 
production scenarios and serves as a valuable tool for the efficient and precise planning and manage-
ment of future oilfield developments.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

In the development of oilfields, water injection has been shown 
to effectively increase oil recovery rates (Tetteh et al., 2020; 
Mwakipunda et al., 2023). Water injection is preferred due to its 
easy access to resources, relatively low cost, and ease of imple-
mentation (Ogbeiwi et al., 2018; Rini et al., 2021). The impact of 
water injection on enhancing oil recovery depends on the inter-
action between the aquifer and oil reservoir and the volume of 
water injected. Efficient management of water-injected oil fields 
relies on quickly identifying the distribution of injected fluids and 
accurately assessing inter-well connectivity to improve the 
sweeping efficiency in the secondary recovery (Hani Binti et al., 
2020; Zhou et al., 2022). An accurate evaluation of the con-
nection between wells is crucial for comprehending the fluid's

dynamic behavior in the reservoir to optimize field recovery and 
economic efficiency (Artun, 2017; Thiam and Nakhaee, 2023). The 
characterization of inter-well connections is categorized into two 
main groups: static data analysis techniques and dynamic data 
analysis methods (Zhang et al., 2023).

The static data analysis methods mainly utilize static data, such 
as geological, seismic, and static fluid parameters, combined with 
geological and mathematical models to estimate injection-
production relationships. They mainly include the stratigraphic 
comparison of electric logging data and the comparison of reser-
voir parameters of each well (Wohl et al., 2019; Llanes et al., 2022). 
In contrast, dynamic data analysis methods rely heavily on the 
collected real-time or historical dynamic data, such as bottomhole 
flow pressure and flow rate, to assess inter-well connectivity 
through dynamic modelling or simulations. Dynamic data analysis 
methods mainly include inter-well tracer technology, geochemical 
methods, numerical simulation, and other dynamic analysis 
methods derived from the inversion of inter-well connectivity 
based on injection and production data (Sheng et al., 2021; Huang
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S. et al., 2023; Huang Z. et al., 2023).
Dynamic data analysis methods are superior to static data 

analysis methods in many ways. Unlike static methods, dynamic 
data methods can more accurately reflect the actual production 
conditions and dynamic changes in the reservoir. Dynamic 
methods utilize real-time production and monitoring data to 
analyze the reservoir's dynamic response and full lifecycle evolu-
tion (Liu et al., 2020; Gong et al., 2021). Among the many dynamic 
data analysis methods, well-testing and tracer techniques ach-
ieved quantitative interpretation based on the idealized and 
complex theoretical-mathematical models, which may differ sig-
nificantly from the subsurface reality. In addition, these methods 
need to be based on static reservoir understandings, such as small 
layer comparisons and reservoir parameter interpretation, which 
usually involve longer study times and higher costs. Among geo-
chemical techniques, the method of mineralization analysis is 
associated with a high level of uncertainty due to numerous 
influencing factors. Numerical simulation methods are mainly 
handicapped by the authenticity of data, particularly geological 
information, and the consideration of reservoir heterogeneity 
(Cheng et al., 2020; Shan et al., 2022).

Among the methods for identifying dynamic inter-well con-
nectivity, the capacitance modelling method stands out. This 
approach was derived from the inversion of inter-well relation-
ships based on injection and production data, and it excels in 
calculating inter-well connectivity. Moreover, based on the prin-
ciple of material balance, the capacitance modelling method 
effectively takes into account the time lag characteristics and re-
veals the essential characteristics of the injection and production 
system. The time-lag coefficient, a key indicator during the deri-
vation of the capacitance model, reflects the attenuation of the 
injection and production signals, assuming that a pair of injection 
and production wells is equivalent to a pair of input and output 
signals (Zhao et al., 2016). Capacitance models apply to primary, 
secondary, and tertiary oil recovery processes and can be used to 
calculate oil-water ratios and optimize injected fluid distribution 
at the end of oilfield development (Holanda et al., 2018; Nugroho 
et al., 2023).

Capacitance models can be subdivided into different categories, 
of which the most influential is the capacitance-resistance model, 
which has been extensively used in oilfield development and 
enhanced oil and gas recovery technologies since it was proposed 
by Yousef et al. (2006). Initially, the main use of the capacitance-
resistance model was to quantify the connectivity between in-
jection and recovery wells in oil fields and the effectiveness of 
water injection (Yousef et al., 2006). Thereafter, the model was 
improved to make it more adaptable to oilfield environments 
where injection wells are frequently shut down (Sayarpour et al., 
2007). In 2009, Sayarpour et al. (2009) developed a variety of 
forms such as capacitance-resistance model tank (CRMT) and 
capacitance-resistance model producer (CRMP) to meet different 
accuracy requirements. In 2011, Nguyen et al. (2011) further 
extended the application of the capacitance-resistance model by 
proposing a new methodology for the estimation of inter-well 
connectivity in the primary and secondary recovery phases). 
Subsequently, in 2012, Izgec and Kabir (2012) developed an 
injection-recovery connectivity model for new oil fields.

In terms of enhanced oil and gas recovery technologies, 
capacitance models are widely used in a variety of approaches, 
including CO 2 drive (Sayarpour, 2008; Eshraghi et al., 2016), 
alternating water injection gas drive (Laochamroonvorapongse 
et al., 2014), and synchronized water injection gas drive 
(Nguyen, 2012). In addition, capacitance models have shown their 
potential for application in CO 2 sequestration and geothermal 
reservoir modelling (Tao and Bryant, 2012, 2013, 2015; Akin, 2014),

as well as in the field of low-salinity water drive (Zivar et al., 2022). 
More recently, Parra et al. (2024) proposed the capacitance 
resistance aquifer-fractional flow model (CRMPAF) in 2024, a new 

approach for conventional unsaturated reservoirs in primary 
production. Overall, capacitance model and its derivative models 
have significant significance in the conventional oil and gas in-
dustry and new areas like geothermal energy and CO 2 storage. 

Despite the progress made in the above studies, some chal-
lenges and shortcomings still remain for the popularity of tradi-
tional capacitance models, as summarized below.

(1) Constrained by static parameters: although the capacitance 
model uses historical data to assess the dynamic relation-
ships between wells, the inter-well connectivity coefficient 
(λ) and time-lag coefficient (τ) in the model are usually 
treated as constants. Such treatment may not accurately 
reflect the true dynamics of oilfield evolution over time. 
Therefore, such models may have limitations in dynamically 
monitoring and predicting oilfield performance.

(2) Lack of functionality: traditional capacitance models are 
insufficient in dealing with the dynamic non-homogeneity 
of the field due to long-term development and the ineffec-
tive water circulation (IWC) problem in the high water-
bearing stage, especially in predicting the trend of water 
breakthrough, identifying the IWC channels and evaluating 
the dynamic development of different well groups. Dynamic 
connectivity volumes for injection and production well pairs 
are extremely challenging.

(3) Limitations in data processing: capacitance models have 
limitations in processing complex data containing noises 
and adapting to changes in altered environments. In par-
ticular, when analyzing dynamically changing data, tradi-
tional capacitance models are often unable to capture 
changes at each time step effectively. These models typically 
provide a static value based on historical production data, 
whereas the proposed new model (which will be presented 
later) can calculate a value for each time step (daily, 
monthly, or annually), allowing for a more accurate repre-
sentation of real-time changes. Therefore, there exists 
a need for advanced data processing techniques that can 
analyze dynamic changes swiftly and improve model 
adaptability in uncertainties.

To address the above limitations, this study proposes a new 

state-variable-based dynamic capacitance (SV-DC) model, which 
effectively overcomes these shortcomings by incorporating the 
extended Kalman filter (EKF) and other advanced techniques. The 
specific innovations are as follows.

(1) Dynamic identification of inter-well connectivity: tradi-
tional capacitance models treat inter-well connectivity co-
efficients and time-lag coefficients as constants, which fail 
to accurately reflect the dynamic nature of oilfield evolution 
over time, thus limiting their ability to dynamically monitor 
and predict oilfield performance. The proposed SV-DC 
model introduces the EKF processing mechanism, enabling 
dynamic identification of inter-well connectivity co-
efficients and time-lag coefficients, allowing these param-
eters to change with the actual evolution of the oilfield. This 
innovation overcomes the limitations of static parameters in 
traditional capacitance models and improves the model 
adaptability to dynamic changes in the oilfield, enhancing 
the accuracy of predictions.

(2) Dynamic identification and evaluation of ineffective water 
circulation channels (IWCs): traditional capacitance models
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are insufficient in addressing the non-homogeneity of fields 
resulting from long-term development and the issue of 
IWCs in the high water-cut stage, particularly in predicting 
water breakthrough trends, identifying IWCs, and evaluat-
ing the dynamic development of different well groups. The 
SV-DC model, by incorporating the dynamic calculation of 
inter-well connectivity volumes, enables real-time identifi-
cation and evaluation of IWCs. This innovation allows for the 
dynamic tracking of changes in connectivity volumes be-
tween well groups and provides a scientific basis for opti-
mizing water injection strategies and improving recovery 
rates. 

(3) Dynamic data processing and real-time updating capabil-
ities: the SV-DC model incorporates the EKF and uses 
a Taylor expansion to linearize the nonlinear measurement 
equations, thus enabling efficient real-time dynamic esti-
mation. Under noisy conditions, the model demonstrates 
good adaptability and stability, effectively responding to 
data fluctuations and environmental changes. Compared 
with traditional methods, the EKF significantly enhances the 
model's real-time performance, accuracy, and adaptability 
in dynamic data environments.

In this study, a new SV-DC is established to fill the above 
knowledge and technology gaps. The SV-DC model is an extension 
of the traditional capacitance (TC) model, by introducing the EKF 
processing, which not only enables the model to predict the inter-
well connectivity but also optimizes the estimation results based 
on the observed data and model predictions. The superiority of the 
SV-DC model is demonstrated by comparisons between the pure 
state-variable (SV) model and the TC model. The robustness and 
stability of the SV-DC model were validated through Monte Carlo 
simulations under different scenarios. To validate the modelling 
accuracy, the SV-DC model was finally applied to the Qinhuangdao 
Oilfield 32-6 for a practical case study, analyzing the tracer test 
results and the liquid productivity index in a series of well groups 
at the early, middle, and late stages. Overall, the SV-DC model 
presented in this paper can be used as a powerful tool to evaluate 
the connectivity between well groups and identify IWCs.

2. Construction of the SV-DC model 

2.1. The TC model

The TC model effectively captures the dynamic relationships 
between injectors and producers, making it a valuable tool for 
reservoir management. Considering a reservoir with N i injectors 
and N j producers, the total mass balance equation is as follows 
(Sayarpour et al., 2009):

C t V ij
dP ij 
dt

= λ ij Q wi (t) − Q ij (t) (1) 

where C t represents the compressibility, bar − 1 ; V ij denotes the

pore volume, m 3 ; Q ij and P ij are the flow rate (m 3 /d) and the 
average pressure (bar) between injector i and producer j; Q wi is the 
injection rate of injector i, m 3 /d; λ ij is a proportionality coefficient
that reflects the degree of influence of injector i on producer j, 
known as the inter-well connectivity coefficient.

Q ij = J j 
( 
P ij − P wfj 

)
(2) 

where J j is the productivity index of the production well, m 3 /d/bar; 
P wfj is the bottom-hole flowing pressure of the production well,

bar; P ij is the average pressure between injection well i and pro-
duction well j, bar. By taking the time derivative of Eq. (2), we 
obtain

dQ ij
dt

= J j 

(
dP ij 
dt

− 
dP wfj
dt

)

(3)

dP ij 
dt

= 
dQ ij 
J j dt

+ 
dP wfj 
dt

(4)

Substituting Eq. (4) into Eq. (1), it yields

C t V ij 

(
dQ ij 
J j dt

+ 
dP wfj 
dt

) 

= λ ij Q wi (t) − Q ij (t) (5)

Eq. (6) links the pore volume (connectivity volume) V ij and τ ij 
(Yousef et al., 2006):

τ ij = 
C t V ij 
J j

(6)

where τ ij is the first order system's time constant. This value is 
crucial because it indicates how quickly the reservoir responds to 
changes in injection rates. Although calculated as a static param-
eter, τ ij varies dynamically in real reservoir conditions. Combining 
Eqs. (5) and (6) yields

τ ij
dQ ij 
dt

= λ ij Q wi (t) − Q ij (t) − τ ij J j
dP wfj
dt

(7)

After reviewing the method used by previous researchers (Kang 
et al., 2014a), it has been observed that as producer bottom pres-
sure fluctuates much less than the production rate, the influence of 
the pressure term can be regarded as a secondary factor. Con-
sequently, Eq. (7) can be simplified into

τ ij
dQ ij 
dt

= λ ij Q wi (t) − Q ij (t) (8)

Solving the differential equation for Eq. (8) yields

Q ij (t) = Q ij (t 0 )e
− 

t− t 0
τ ij +

∫ t

t0

λ ij
τ ij
Q wi (ζ)e

− t− ζ
τ ij dζ (9)

Taking into account that the total production rate Q j(t) is the 
combined contributions from all injectors N i to the producer j, the
total production rate Q j (t) can be expanded as

Q j(t) = 
∑ N i

i=1

Q ij (t) = 
∑ N i

i=1

Q ij (t 0 )e
− ( t− t 0 )

τ ij + 
∑ N i

i=1

λ ij
e
− t

τ ij

τ ij

∫ t

t0
e

ζ
τ ij Q wi (ζ)dζ

(10)

Then Eq. (10) can be discretized with monthly intervals. Q ij (t 0 ) 
is the production rate of production well j at initial time t 0 , m 3 /d; 
Q wi (ζ) is the injection rate of injection well at the time ζ, m 3 /d. The 
first term on the right of the equals sign is a time-dependent 
variable correlated with the initial production, and decays expo-
nentially over time as

β j (n) = 
∑N i 

i=1
Q ij (0)e

− n
τ ij (11)

Thus, the discretized form of Eq. (10) is given by
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Q j(n) = β j (n) + 
∑ N i

i=1

λ ij 
∑m=n

m=n 0

1
τ ij
e

m− n
τ ij Q wi (m) (12)

where Q j(n) represents the total production of production well j in
time step n; β j (n) refers to the base liquid production rate, m 3 /d; n 0 
is the initial time; m and n are the time step indexes.

The above derivation process is well documented elsewhere 
(Kang et al., 2014b) and lays the theoretical foundation of the TC 
model. In the TC model, the time-lag coefficient τ ij is a dimen-
sionless time constant representing the transfer time between 
wells. The TC model shows that the cumulative production of
a producer is determined by the combined effect of its initial cu-
mulative production and the historical injection activity. However, 
in contrast to the original work, this study introduces EKF method 
to dynamically estimate the time-lag coefficient and the inter-well 
connectivity coefficient. The capacitance model serves as the 
foundation for dynamic updates in the following formula deriva-
tions, breaking the static assumptions of the traditional model by 
introducing state variables.

The basic assumptions of the SV-DC model include that the 
inter-well connectivity coefficient and time-lag coefficient are 
dynamic, changing with factors such as injection-production ac-
tivities and pressure variations during oilfield development. We

assume that fluid behavior in the oilfield is complex and dynamic, 
and therefore, real-time updates through state variables are 
necessary.

2.2. State variables of the capacitance model

The construction of the new SV-DC model in this study begins 
with the extraction of state variables by the EKF algorithm; the 
theoretical basis can be found in previous work where a state-

variable model based on pressure impulse responses was estab-
lished and solved by the EKF algorithm (Liu and Mendel, 2007). 
Liu’s method, i.e., the SV model, will also be compared with our 
proposed SV-DC and TC models, forming an integrating part of the 
model comparison conducted in this work. Model characteristics 
and modelling schemes are summarized in Table 1.

In the SV-DC model, three state variables that appear in Eq. (12)
β j , λ ij , and τ ij are defined and extracted as state variables since they 
are the key parameters controlling the dynamic response charac-
teristics of a reservoir. These variables are integral to the model 
and can be effectively estimated using the EKF algorithm. Con-
sequently, Eq. (12) can be transformed by a 3 × 1 state vector 
x i (m):

x i (m) = [x(m); x 1 (m); x 2 (m)] 
′ 

= 
[ 
β j (m); λ ij (m); τ ij (m) 

] ′ 

(13)

where β j (m) refers to the base liquid production rate at time step 
m, which is initially correlated with the production at m = 0 and 
decays exponentially over time, as described in Eq. (11); λ ij (m) 

represents the inter-well connectivity coefficient; τ ij (m) repre-
sents the time-lag coefficient for the inter-well system. Using 
standard techniques, the state variables are

Next, we aggregate the state variables for all injectors, forming 
a complete 1 + 2N state vector, where N is the number of injectors:

This equation represents the state variables for the entire sys-
tem, incorporating both injectors and producers, as given in Eq. 
(16):

Table 1
Comparison of TC, SV, and SV-DC models.

Model
type

Calculation parameters Identification range Method principle

TC model Inter-well connectivity, time-lag coefficient Static identification (unique result) Capacitance model; (TC) linear
SV model Inter-well connectivity Dynamic time step identification (days/ 

months/years)
EKF; non-linear

SV-DC 
model

Inter-well connectivity, time-lag coefficient, inter-well
connected volume

Dynamic time step identification (days/ 
months/years)

Capacitance model and EKF; combines linear and non-
linear approaches

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

x i (n) =

⎡

⎢ 
⎢
⎣ 

x(m) 

x i1 (m)

x i2 (m)

⎤

⎥ 
⎥ 
⎦+ n xi (m)

p i (n) = 

[

1 
∑ n

m=n 0

1 
τ
e

m− n
τ ij Q wi (m) 

∑ N i

i=1

λ ij 
∑ n

m=n0 

( 

−
1 
τ 2ij
e

m− n
τ ij Q wi (m) −

m − n
τ 2ij

e
m− n

τ ij Q wi (m) 

) ] 

x i (n)

(14)

x i (m) = 
[ 
β j (m); λ 1j (m); τ 1j (m); λ 2j (m); τ 2j (m); ⋯; λ Nj (m); τ Nj (m) 

] ′
(15)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x 1 (m) 

x 11 (m) 

x 12 (m) 

x 21 (m) 

x 22 (m) 

⋮
x N1 (m) 

x N2 (m)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ n x (m)

p(n) = pc1(n) + pc2(n)⋯ + pcN(n) + n p (n) = Hx(n) + n p (n)

(16) 

To find the measurement matrix H in Eq. (16), one needs to lin-
earize the measurement equation (denoted as h) from Eq. (12) 
using a Taylor series expansion. Let Eq. (12) be written as h, and by 
performing the linearization, it yields

ε =
∂h
∂x

(17) 

This equation represents the first derivative of the measure-
ment equation with respect to the state variables. The linearization 
process is necessary to capture the relationship between the state 
variables and the reservoir dynamics in a form that can be used in 
the EKF.

At this stage, we apply the Taylor expansion to approximate the 
non-linear measurement equation. This approximation simplifies 
the model, making it computationally feasible for real-time dy-
namic estimation.

H = 
[ 
1 ε ́ 1 ε ́ 2 ⋯ ε ́ N 

]
(20)

The measurement matrix H is now ready to be incorporated 
into the EKF algorithm, providing the necessary linear relationship 
between the state variables and the observed measurements. This 
allows for real-time updating of the system state, improving the

accuracy of reservoir monitoring and control. 
The complete SV-DC for all injector subsystems is given in Eq. 

(16), where p(n) is the measured production rate, n x (m) and 
n p (n) are additive zero-mean white noises for the state and 
measurement equations. The treatment of the state variables in 
developing the SV-DC model is expounded through the stream-
lined logical sequence provided in Eqs. (13)–(20). For the compu-
tation outlined in Eqs. (13)–(20), applying the EKF algorithm is 
essential, as it shows proficiency in managing non-linearity and 
providing dynamic state estimation. Integrating the EKF algorithm 

with the state variable model enables us to dynamically charac-
terize the well connectivity and time-lag coefficient, offering
a more accurate and temporally responsive representation of
reservoir dynamics.

2.3. Procedures of the EKF algorithm

The nonlinear EKF algorithm contains four stages: system 

prediction, establishing measurement equations, generating opti-
mal estimates, and updating the error covariance. The workflow 

presented in Fig. 1 is the core idea of evaluating inter-well con-
nectivity using the EKF algorithm (Liu and Mendel, 2007; Zhai
et al., 2009; Zhai and Mendel, 2010). 

2.3.1. System prediction

X(k|k − 1) = FX(k − 1|k − 1) + n x (k − 1) (21)

P(k|k − 1) = FP(k − 1|k − 1)F T + Q (22)

where X is a representation of the set of state variables in Eq. (15); 
X(k|k − 1) denotes the prediction of the current step’s state vari-
ables using the state variables from the last step; F is the state 
transition matrix of the system; n x (k − 1) is the system noise. 
Overall, Eq. (21) uses the optimal estimate X(k − 1|k − 1) from the 
last step, the system matrix F, and the noise n x to predict the state 
variables at the current step.

To further highlight the advantages in autoregressive at each

Fig. 1. Flowchart of the process of calculating inter-well connectivity using the EKF algorithm. 

ε = 

[

1 
∑ n

m=n 0

1 
τ
e

m− n
τ ij Q wi (m) 

∑ N i

i=1

λ ij 
∑ n 

m=n0 

( 

−
1 
τ 2ij
e

m− n
τ ij Q wi (m) −

m − n
τ 2 ij

e
m− n

τ ij Q wi (m) 

) ]

(18)

ε 
′ 

= 

[
∑n

m=n 0

1 
τ
e

m− n
τ ij Q wi (m) 

∑ N i

i=1

λ ij 
∑ n 

m=n0 

( 

−
1 
τ 2ij
e

m− n
τ ij Q wi (m) −

m − n
τ 2ij

e
m− n

τ ij Q wi (m) 

) ]

(19)
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step provided in the EKF algorithm, m in Eq. (12) is represented by 
k − 1 and n is represented by k.

Similarly, Eq. (22) uses the optimal estimate P(k|k − 1) from the 
last step (P is the error covariance of the optimal estimate), the 
system matrix F, and Q (Q is the covariance matrix of noise n x ) to 
predict the error covariance of the optimal estimate at the current 
step P(k|k − 1).

The state transition matrix F is a 3N × 3N Jacobian matrix, the 
explicit form of which is given below for the non-linear state 
equation in Eqs. (23) and (24):

F x =

⎡

⎢ 
⎢
⎣ 

A 1 0 ⋯ 0
0 A 2 ⋱ ⋮
⋮ ⋱ ⋱ 0 
0 ⋯ 0 A N

⎤

⎥ 
⎥ 
⎦ (23) 

A i = 

⎡

⎣ 
1 0 0
0 1 0
0 0 1

⎤

⎦ (24) 

2.3.2. Establishment of the measurement equation
The measurement equation describes the relationship between 

the state variables and the actual observations. For the system 

state variable X(k), one can observe the variable associated with 
Z(k), as expressed as

Z(k) = HX(k) + n p (k) (25) 

where Z is the observed value of the variables; H is the observation 
matrix; n p is the measurement noise.

2.3.3. Optimal estimation generation
The generation of optimal estimation mainly consists of cal-

culating the Kalman gain (Eq. (26)) and establishing the optimal 
estimate equation (Eq. (27)).

K g (k)= 
P(k|k − 1)H T

HP(k|k − 1)H T + R
(26) 

X(k|k) = X(k|k − 1) + K g (k)[Z(k) − HX(k|k − 1)] (27)

The core idea of the EKF algorithm is to combine model pre-
dictions with actual measurements to obtain an optimal state 
estimate, by searching the minimum mean square of the estima-
tion error. This process requires finding a gain K g that minimizes 
the mean square of the estimation error, as expressed in Eq. (26), 
after a series of mathematical derivations.

Eq. (27) represents a correction based on the difference (i.e., the 
residual) between the predicted state variable X and the actual 
measurement Z. This perspective K g determines the extent to 
which the predicted state variables are corrected based on the 
measurement residuals. It should be noted that the X(k|k − 1) in 
the priori estimation equation differs from the X(k) in the meas-
urement equation. X(k|k − 1) is obtained from the prediction of the 
system state at the step k − 1; whereas, X(k) is the measurement at 
the step k, which is independent of the values of the

measurements at the last step. 

2.3.4. Error covariance update

P(k|k) = 
[ 
1 − K g (k)H 

] 
P(k|k − 1) (28)

As the last stage of EKF algorithm, it ensures that the estimate is 
not only optimum but also matches the real uncertainty. 

So far, three models have been introduced: the TC model, the SV 
model based on the EKF algorithm, and the SV-DC model by 
integrating the merits of the first two. The following work will 
compare the different performances of these three models, as
shown in Table 2.

3. Comparative evaluation of model performance

The three models (TC, SV, and SV-DC models) discussed above 
are utilized to analyze the reservoir's complex fluid flow re-
lationships and the interplay between injectors and producers. In 
reservoir analysis, these models require a complete collection of 
time series production data. Acquiring comprehensive production 
data, such as injection and production rates and bottomhole 
pressure (BHP), can depend on either field monitoring results or 
numerical simulation results. Although field-recorded data are 
closer to the actual operation in the reservoir, they are often 
subjected to disturbances from production regimes and practical
operations, making it challenging to obtain complete time series 
information. Therefore, this study has chosen the reservoir simu-
lator to simulate the production conditions of the oilfield.

3.1. Construction of the numerical model

In the simulation, a widely used commercial software, tNavi-
gator, was used to simulate the performance of wells or well groups. 
Establishing the model and the petrophysical parameters in this 
paper refers to a mature oilfield in Qinhuangdao, China, which 
provides strong data support for the subsequent model calibration.
A 3D reservoir model with 315 m × 315 m × 25 m 

(length × width × height) was developed, as shown in Fig. 2. The 
chosen permeability values (30, 100, 200, and 400 mD) for the 
preferential channels between the producer and injector cover 
a broad range of flow scenarios, enabling a detailed analysis of 
permeable channels on fluid mobility. The petrophysical parame-
ters used in the model were obtained through laboratory tests and 
calibrated by field monitoring, and listed in Table 3. An irreducible 
water saturation of 32% was assumed at the beginning of reservoir 
development. This simulation was crucial for providing complete 
and reliable production data, unaffected by real-world operational 
disturbances such as well shut-ins, which are commonly encoun-
tered in field data. These simulation results serve as essential input 
for the dynamic estimation of inter-well connectivity and time-lag 
coefficients in the SV-DC model. Furthermore, tNavigator was used 
to establish models under different permeability conditions, pro-
viding insight into how permeability variations impact inter-well 
connectivity. The resulting production data obtained from tNavi-
gator simulations were compared with theoretical predictions from

Table 2
Comparison of model performances.

Model type Characteristics Advantages

TC model Considers time delay effect Convenient, clear physical meaning
SV model Uses EKF for parameter estimation High-accuracy prediction and real-time update
SV-DC model Combines linear relationship and state-variable estimation; 

connected volumes, IWCs
Higher robustness and accuracy, superior in complex and dynamic environments
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the SV-DC model, ensuring the model’s accuracy in representing 
real-world reservoir behavior.

3.2. Numerical results of water breakthrough

Fig. 3 together with Fig. 4 provide a comprehensive view of 
water breakthrough in four producers. Fig. 3 illustrates the 
declining trend in oil saturation at chronological water break-
through times for four producers, while Fig. 4 shows the corre-
sponding water cuts, the measurement of the relative amount of 
water in the producer wellhead. The numerical prediction results 
of water breakthroughs are highly sensitive to the selection of time 
steps. Shortening the time step can indeed improve accuracy, but it 
comes at the cost of increased time and storage requirements. By 
conducting a comprehensive analysis with different time steps, it

is found that the simulation results are generally stable when the 
time step reaches one month. The simulation period in this paper 
spans 121 months (2021/12–2032/01). Notably, water break-
through events in the four producers occur on 2022/01/01, 2022/ 
02/01, 2022/03/01, and 2022/07/01, indicating the formation of 
continuous water flow channels within the reservoir. This facili-
tates efficient water movement towards the wells along the 
model's diagonal, as observed in Fig. 4, where PRO-04 experiences 
water coming first, followed by PRO-03, PRO-02, and PRO-01. 

The permeability of the preferential channels between the 
producers and the central injector varies, with PRO-04 possessing 
the highest permeability. Permeability of the preferential channel 
results in a greater impact on water breakthrough, as evidenced by 
the sequence observed in the producers at presented in Fig. 4. 
Historical data records the timeline of water breakthrough for each 
well: 210 d for PRO-01, 90 d for PRO-02, 60 d for PRO-03, and 30 
d for PRO-04.

Although the breakthrough time shown in Fig. 4 is based on 
predictions from the numerical simulation model, it is important 
to note that the actual field data may be influenced by numerous 
uncertainties, such as well relationships and fault systems. This 
analysis with the results from Figs. 3 and 4 helps further validate 
the accuracy of the SV-DC model.

3.3. Characterization of inter-well connectivity and time-lag 
coefficient

Fig. 5 illustrates the inter-well connectivity computed by the 
three models. The results of the SV-DC model and the SV model are 
presented as solid and dash lines, respectively, reflecting their 
ability to capture the time-varying characteristics. The results of 
the TC model, on the other hand, are presented as three single solid 
dots locating at the corresponding pressure impulse moment since

Fig. 2. The reservoir model for simulation data generation (permeability of the preferential channels between PRO-01, PRO-02, PRO-03, PRO-04, and INJ-01 are 30, 100, 200, and 
400 mD, respectively, the figure has a longitudinal elongation by a factor of ten).

Table 3
Petrophysical parameters used in the model.

Parameter Value

Porosity, % 32
Depth, m 6000
Initial water saturation, % 20
Crude oil viscosity, mPa⋅s 22–260
Matrix permeability, mD 20
Oil density (in situ), kg/m 3 867
Water density (in situ), kg/m 3 1000
BHP of the injector, bar 750
BHP of the producer, bar 600
Permeability of channel to PRO-01, mD 30
Permeability of channel to PRO-02, mD 100
Permeability of channel to PRO-03, mD 200
Permeability of channel to PRO-04, mD 400
Width of the high-permeability channel, m 7.1
Length of grid in the X, Y, and Z directions, m 5
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the TC model only provides a static estimate.
The calculated relative errors of the λ from the SV and SV-DC 

models, defined as λ SV-DC − λ SV
λ SV , are 19.5% (400 mD), 18.5% (200 mD),

15.7% (100 mD), and 9% (30 mD), respectively, showing that the 
SV-DC model and the SV model present similar oscillation patterns 
in the inter-well connectivity, especially after the first pressure 
impulse applied at 2024/01/01. Additionally, the SV-DC model 
appears to be more sensitive to pressure impulses, indicating its 
potential advantages when facing large pressure fluctuation. 

During the three pressure pulse stages (2024/01–2024/06, 
2027/01–2027/06, 2031/01–2031/06), both the SV-DC and SV 
models show fluctuating inter-well connectivity coefficients, with 
similar fluctuation ranges and patterns, further validating the ac-
curacy of the SV-DC model in simulating dynamic reservoir 
behavior. Notably, the SV-DC model demonstrates a more pro-
nounced response to pressure pulses. During these stages, the 
inter-well connectivity coefficient follows a “rapid increase—rapid 
decrease—gradual stabilization—decline” pattern, reflecting the 
reservoir's quick response to pressure changes and subsequent 
adaptation. The rapid increase in connectivity occurs as the

pressure pulse is applied, followed by a decrease as the pressure 
wave dissipates. Once the wave stabilizes, the connectivity coef-
ficient becomes steady, gradually decreasing to equilibrium. The 
peak connectivity values are proportional to the amplitude of the 
pressure pulse, confirming that the SV-DC model accurately cap-
tures the reservoir's dynamic response to varying pressure 
conditions.

Additionally, we observed significant differences in the curve 
trends of the SV-DC and SV models before 2022/01/01, with the 
SV-DC model showing a downward trend and the SV model 
showing an upward trend. This difference can be attributed to two 
main factors. On the one hand, the models have different mathe-
matical structures: the SV model is a difference equation that fo-
cuses on recursive relationships at discrete time steps, 
representing a dynamic system model based on stepwise changes. 
In contrast, the SV-DC model is an integral effect model, repre-
senting a continuous summation relationship that aggregates the 
effects of multiple inputs to predict a single output. On the other 
hand, both models employ an EKF process. As an adaptive signal 
processing technique, the EKF optimization algorithm becomes 
increasingly accurate over time, which may cause certain data

Fig. 3. The water/oil saturation distribution reflecting water breakthrough times for the four producers.
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fluctuations during the early stages of the model. These fluctua-
tions reflect the model’s self-adjusting nature, and as more data

accumulates, the predictions tend to become more precise.
We also observed that the trends in the inter-well connectivity

Fig. 4. Water cut variations in four producers.

Fig. 5. Dynamic temporal variations of inter-well connectivity in SV-DC, SV, and TC 
models. The SV-DC and SV models provide calculated results at each time step, while 
the TC model produces a single result based on data from all-time steps.

Fig. 6. Dynamic temporal variations of time-lag coefficients predicted by the SV-DC 
model. The figure shows that higher permeability leads to shorter time-lag co-
efficients, indicating faster fluid flow and earlier breakthrough at producers.
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coefficient curves of the SV-DC and SV models are closely related 
to the permeability of the high-permeability channels. This trend 
clearly shows that as permeability increases, the inter-well con-
nectivity coefficient also increases, which is consistent with our 
understanding of reservoir characteristics. In short, high-
permeability channels (e.g., 400 mD) exhibit significantly higher 
inter-well connectivity coefficients compared to low-permeability 
channels (e.g., 30 mD), thus validating the traditional under-
standing of reservoir fluid flow characteristics.

The time-lag coefficient characterizes the delay in fluid transfer 
from injectors to producers, and its definition is given in Eq. (6) 
(Yousef et al., 2006; Parra et al., 2023). The variation of τ over time 
can be attributed to changes in reservoir conditions, such as per-
meability, fluid viscosity, and flow pathways. These factors affect 
the propagation of pressure impulses. Therefore, τ can be consid-
ered a dynamic parameter that adjusts according to changes in the 
reservoir state. Fig. 6 describes the evolution of the time-lag coef-
ficient τ obtained from the SV-DC model. The order in the magni-
tude of τ of the four producers is τ 30mD > τ 100mD > τ 200mD > τ 400mD . 
The τ values are inversely proportional to the permeability of 
preferential channels. This suggests that in reservoirs with higher 
permeability, the mobility of fluids accelerates, leading to a more 
rapid flow of fluids to producers. This finding is consistent with the 
observations made in Figs. 3 and 4 regarding the breakthrough time 
of the water cone. Since the fluid flow rate is directly related to the 
permeability, the increased mobility in the dominant channel with 
high permeability results in the injected water reaching the pro-
ducers earlier.

Overall, the proposed SV-DC model effectively simulates the 
dynamic behavior of fluid flow in the reservoir, especially in terms 
of the acuity it exhibits in response to pressure impulses. The SV-
DC model sensitively captures the variation of the inter-well 
connectivity λ and reveals the effect of permeability magnitude 
on fluid migration. The SV-DC model also quantifies the effect of 
fluid transfer from wells to wells through the time-lag coefficient τ. 

Furthermore, in a related study (Guo et al., 2024), we carried 
out a series of sensitivity analyses by varying key parameters such 
as permeability, permeable channel width, injection pressure 
differentials, injection duration, and well group configuration. 
Although these variations led to substantial fluctuations in dy-
namic data (e.g., injection rate, production rate, and water cut), the 
results remained consistent with both field observations and nu-
merical simulations, indicating that the model can maintain sta-
bility and reliability in complex scenarios. By examining these 
parameters, we demonstrated that the SV-DC model exhibits

favorable adaptability when confronted with highly variable field 
data.

Moreover, the SV-DC model leverages the EKF to correct and 
update data at each time step, which minimizes the impact of 
initial assumptions on final computational results. This feature is 
crucial for sustaining robust performance, even under conditions 
of significant data fluctuations and uncertainties. Our sensitivity 
analyses further revealed that the SV-DC model can achieve stable 
identification accuracy despite highly fluctuating inputs, under-
scoring its advantages and reliability for practical applications.

4. Model robustness validation

The robustness and reliability of the proposed SV-DC model 
need to be verified to broaden its application, especially in simu-
lating the dynamic behavior of fluids under complex geological 
and engineering conditions, to achieve the leap from the "simu-
lator" to the "field". The SV-DC model's robustness is validated 
based on the synthetic data generated through Monte Carlo sim-
ulation. The reason for choosing Monte Carlo simulation is that it 
enables us to set the true values of λ ́ and τ ́ in advance, providing us 
with a known frame of reference to assess the stability of the SV-
DC model in the face of interferences and noises (Liu and Mendel, 
2007; Vadapalli et al., 2014).

4.1. Monte Carlo simulation

The process of testing the robustness of the SV-DC model using 
Monte Carlo simulation is displayed in Fig. 7. It solves for the 
optimal λ and τ values based on the known injection volume Q wi
and liquid yield Q j . The process is as follows: the values of λ ́ and τ ́
are assumed first, and then the Q j is calculated using the Q wi with
noise, as highlighted in the blue part. This part is essentially the
inversion modelling process of computing Q j by the TC model.
Next, recalculate λ and τ through the SV-DC model using these
calculated Q j and Q wi with noise (orange part). The purpose of this
is to compare the relative errors between the recalculated λ and τ 
and the presets (λ ́ and τ ́ ). If the calculated relative errors are less 
than 10% (Cremon et al., 2018), the SV-DC model is considered to 
have good self-robustness.

Considering conversion of the well groups often encountered in 
actual oilfield production, the validation under two scenarios, i.e., 
multiple producers and one injector, and multiple injectors and 
one producer, was carried out. In the former case, the production 
rates of three producers and the injection rate of one injector were

Fig. 7. SV-DC model robustness verification flowchart via Monte Carlo simulation. 
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selected as the synthetic data. Similarly, the synthetic data for the 
latter is the injection rates of three injectors and the production 
rate of one producer.

The specific workflow is presented in Fig. 7. Synthetic data are 
generated as follows.

(1) Specify the value of Q wi in [200, 800]; choose the value of λ ́ 

in [0, 1]; choose the value of τ ́ in [0, 10]; choose the value of
β j is 50; the number of time steps is set to 2000; the number 
of Monte Carlo simulations is set to 100.

(2) Add measurement noises n wi (k) to Q wi (k) with SNR =

10log 10 

[
E(Q wi (k) ) 

2

E(n wi (k) ) 
2

] 

= 20 dB. Generate the noise injection

rates Q wi (k). SNR means the signal-to-noise ratio.
(3) To generate the noise production rates Q j , the three injectors

and a single producer are implemented with noise by 
specifying β j , λ ́ , τ ́ , and Q wi using the procedure described 
above.

(4) The noise injection rates Q wi and noise production rates Q j 
are obtained by down-sampling rate. Estimate using the 
just-generated data from the SV-DC model.

(5) Compute the mean relative errors of λ and τ at each time 
k (k = 1; 2; 3; ⋯; 2000).

λ mean relative error (k)= 
|λ(k) − λ ́ (k)|

λ ́ (k)
(29) 

τ mean relative error (k)= 
|τ(k) − τ ́ (k)|

τ ́ (k)
(30) 

4.2. Simulation results for different well groups

4.2.1. Three producers and one injector
First, a well group of three producers and one injector is 

selected for analysis. Applying the Monte Carlo simulation, the 
injection and production rate data with random noise are gen-
erated, as shown in Fig. 8.

The original injection rate was set to range from 200 to 800 m 3 /

d, but due to the inclusion of noise, values outside of this range
appear in the dataset. This noise is introduced to simulate the 
random fluctuations and uncertainty factors that may be 
encountered in reservoir development, thus making the simu-
lation results closer to the complexity of the actual situation. These 
generated injection and production data are then utilized to cal-
culate the inter-well connectivity coefficient (Fig. 9) and the time 
lag coefficient (Fig. 10) through the SV-DC model. 

The preset λ ́ values in the three-producer-one-injector well 
group are 0.63, 0.91, and 0.46, which are very close to the average 
and last-time step values calculated by SV-DC model. Note that the 
horizontal coordinate of Fig. 9 is the simulation time step, so the 
more steps simulated, the more accurate the results are, and in this 
sense, it may be more reliable to use the last time step values to 
evaluate the model performance than the average values. Fur-
thermore, the relative errors of λ calculated according to Eq. (29)

Fig. 8. Water injection rate and liquid production rate from a three-producer-one-injector well group generated by Monte Carlo simulation. The generated data incorporate noise 
to simulate random fluctuations and uncertainties, reflecting the complexity of actual reservoir conditions.

Fig. 9. Plot of the inter-well connectivity coefficient over time of a three-producer-
one-injector well group (MC Sim. represents the value of λ for Monte Carlo simu-
lation, Avg represents the average value of λ for the SV-DC model, Last step represents 
the value of λ for the last time step of the SV-DC model).
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are merely 0.24%, 0.61%, and 0.66%, respectively, which further 
validates the high robustness of the SV-DC model.

Fig. 10 presents the time-lag coefficient simulation results. The 
average values using the SV-DC model are 3.24, 6.26, and 7.24, and 
the values at the last time step are 3.15, 6.33, and 7.65. The relative 
errors calculated according to Eq. (30) are 5.41%, 1.18%, and 2.97%, 
respectively.

In summary, for the three-producer-one-injector well group, 
the relative errors of the inter-well connectivity (0.24%, 0.61%, and 
0.66%) and time-lag coefficient (5.41%, 1.18%, and 2.97%) are all 
within 5.5%. Such a small error range confirms that the SV-DC 
model possesses high self-consistency and robustness in evaluat-
ing the dynamic fluid migration behavior in a multiple well 
system.

4.2.2. Three injectors and one producer
The same procedures as those used for the three-producer-one-

injector well group were implemented in a three-injector-one-
producer well group. First, the Monte Carlo simulation is per-
formed on a three-injector-one-producer well group to generate 
the injection and production data with noise, and then, calculated 
by the SV-DC model, the inter-well connectivity coefficient and the 
time-lag coefficient are obtained in Figs. 11 and 12, respectively. 

For the inter-well connectivity coefficients, the preset λ ́ values 
in the three-injector-one-producer well group are 0.75, 0.85, 0.60. 
The relative errors of λ calculated according to Eq. (29) are 1.62%, 
8.33%, and 9.46%.

For the time-lag coefficients, the preset τ ́ values are 4.50, 5.50, 
and 6.50. The relative errors of τ calculated according to Eq. (30) 
are 9.74%, 1.20%, and 8.30%. Again, the simulation results indicate 
a high self-consistency and robustness of the SV-DC model in 
calculating the inter-well connectivity and time-lag coefficient for 
a multi-injector-one-producer well group.

It is worth noting that in this study, the “noise” we use pri-
marily consists of randomly generated ideal perturbations aimed 
at evaluating the adaptability and stability of the model under 
interfering signals. However, such noise differs from the irregular 
signals that may occur when the reservoir undergoes drastic 
changes, and thus the current results do not fully represent the 
model’s performance under more extreme conditions. Nonethe-
less, by incorporating an EKF into the SV-DC model, we can 
dynamically calibrate inter-well connectivity parameters at each 
time step, and the model’s robust performance under ideal noise 
suggests good adaptability to certain levels of fluctuation. In future 
work, we plan to consider noise types that more closely resemble 
complex reservoir scenarios—including irregular disturbances 
arising from significant changes in reservoir behavior—and inte-
grate additional field monitoring data to further assess the model’s 
applicability and reliability.

5. Model field application

To verify the accuracy and reliability of the SV-DC model, 
comprehensive production data collected from an oilfield being 
produced in Qinhuangdao was used. Qinhuangdao Oilfield 32-6, 
located in Bohai Bay, is a large, thick oil field with complex fluvial 
features, whose main reservoirs are the lower part of the Neo-
proterozoic Minghuazhen Formation and the upper part of the

Fig. 10. Plot of the time-lag coefficient over time of a three-producer-one-injector 
well group in Monte Carlo simulation (MC Sim. represents the value of τ for Monte 
Carlo simulation, Avg represents the average value of τ for the SV-DC model, Last step 
represents the value of τ for the last time step of the SV-DC model).

Fig. 11. Plot of the inter-well connectivity over time of a three-injector-one-producer 
well group in Monte Carlo simulation (MC Sim. represents the value of λ for Monte 
Carlo simulation, Avg represents the average value of λ for the SV-DC model, Last step 
represents the value of λ for the last time step of the SV-DC model).

Fig. 12. Plot of the time-lag coefficient over time of a three-injector-one-producer 
well group in Monte Carlo simulation (MC Sim. represents the value of τ for Monte 
Carlo simulation, Avg represents the average value of τ for the SV-DC model, Last Step 
represents the value of τ for the last time step of the SV-DC model).
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Guantao Formation. The oilfield is characterized by high porosity 
(32% on average) and high permeability (2–8474 mD) as well as 
medium to high crude oil viscosity (22–260 mPa⸱s).

5.1. Field monitoring for Well Group C03

Being water flooded for more than 6 decades, the Qinhuangdao

Oilfield is now developing in the extra-high water cut period 
(> 98%), and the ineffective water circulation (IWC) worsens year 
by year. Due to the heterogeneity and gravity effect, high perme-
ability channels always exist in the thick reservoir, greatly affect-
ing water flooding efficiency. As shown in Fig. 13, Well Group C03 
of Qinhuangdao Oilfield 32-6 is taken as the case to explore the 
development of IWC by analyzing the key development

Fig. 13. Schematic diagram of key well groups in the Nml3 sand body in the south zone of Oilfield 32-6.

Fig. 14. Development curves of key parameters in Well Group C03.
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parameters such as the productivity index and water cut. Well 
Group C03 consists of four production wells (B26HS, C02, H19H, 
and H03H) and one central injection well (C03). IWCs in oil fields 
refer to pathways in which the injected water circulates ineffi-
ciently or invalidly, especially at stages with ultra-high water cuts. 
These channels inhibit oil and gas recovery and lead to resource 
wastage (Han, 2018). Tracer test results, such as tracer arrival time, 
tracer concentration, and equivalent permeability, are also avail-
able and can be used to assess the degree of inter-well connec-
tivity. Finally, based on the λ and τ calculated by the SV-DC model, 
the dynamic connectivity volume can be estimated, thus identi-
fying IWCs in the Well Group C03.

5.1.1. Productivity index, water cut and pressure differential
In Fig. 14, the production pressure differential is depicted as the 

difference between the reservoir pressure and the bottomhole 
flowing pressure. The productivity index refers to the well's ability 
to produce fluids under a certain pressure differential, measured in 
cubic meters per day. Water cut of a well refers to the mass or 
volume of water in the liquid produced from a production well. It is 
generally accepted that increases in productivity index and water 
cut in production wells are indicative of water breakthrough, and 
there is an urgent need for profile control and water plugging 
(Yang et al., 2021).

Fig. 14 shows the productivity index and water cut of four wells 
in Well Group C03, among which the rise in productivity index is 
particularly pronounced in Well H03H and Well B26HS. Between 
2017/03 and 2018/03, the productivity indexes of Well H03H and 
Well B26HS increased dramatically, as marked by the yellow ar-
rows, while the pressure differential did not change much, so the 
most likely factor is the formation of dominant water break-
through pathways that show clear signs of ineffective circulation 
channels.

Correspondingly, the sudden increase in water cut in Well 
H03H and Well B26HS at the same time points (Fig. 14(b)) further 
validates the development of IWCs. Therefore, through the dy-
namic development characteristics of Well Group C03, it can be 
inferred that Well H03H may develop the IWC in 2017/03, and Well 
B26HS may develop an IWC in 2018/03.

5.1.2. Tracer test characterization of Well Group C03
Tracer test information for the four selected production wells 

has been recorded continuously in the field and is summarized in 
Table 4. The related information includes the tracer arrival time, 
tracer lasting time, tracer concentration, and reservoir equivalent 
permeability.

For Well H03H, the tracer arrived on 2019/08/19 and lasted 32 
d, with a tracer concentration of 1.05 mg/L. The tracer arrival time 
of Well H03H is the earliest, which is most likely due to its highest 
equivalent permeability (14,620 mD), reflecting the well's superior 
connectivity. A higher permeability typically allows for faster fluid 
movement, leading to quicker tracer arrival. The relatively higher 
permeability value indicates the well's capacity to allow fluid to 
flow more easily, enhancing its connectivity within the reservoir. 
Overall, the connectivity of Well H03H is the best, followed by Well 
B26HS and Well C02, and H19H has the poorest connectivity,

which aligns with its lowest permeability (5010 mD). The low 

permeability of Well H19H likely contributes to the delayed arrival 
time of the tracer (2019/09/03), as lower permeability zones 
impede fluid flow, delaying tracer movement through the 
reservoir.

Well B26HS and Well C02 show intermediate connectivity, 
supported by their moderate permeabilities (8156 and 7542 mD, 
respectively) and slightly delayed tracer arrival times (2019/08/24 
and 2019/08/25). The moderate permeability values suggest that 
these wells are in areas where fluid flow is neither too fast nor too 
slow, thus resulting in a balance between connectivity and tracer 
arrival time.

The consistent correlation between permeability values and 
tracer dynamics (arrival time, concentration, and duration) further 
validates the overall connectivity hierarchy: Well H03H > Well 
B26HS > Well C02 > Well H19H.

5.2. Model-predicted inter-well connectivity

In Section 5.1, productivity index, water cut, and tracer test 
information identifying potential IWCs, including the associated 
well pairs and their development times, are tentatively deduced. 
To explore the effect of the SV-DC model field application, inter-
well connectivity is calculated by the SV-DC model and com-
pared with the field information. This task aims to validate the 
prediction accuracy of the proposed model.

As shown in Fig. 15, the model predicted inter-well connectivity
follows the order: λ avg(H03H) > λ avg(B62HS) > λ avg(C02) > λ avg(H19H) .
This pattern is consistent with the tracer test results of tracer 
arrival time.

Furthermore, the inter-well connectivity increased rapidly for 
Well H03H in 2017/03 and for Well B62HS in 2018/03, suggesting 
that IWCs may have formed at those times and that the timing of 
the development of two IWCs agrees very well with the variation 
rules of liquid production index, water cut, and tracer test results 
discussed above.

Table 4
Field monitored tracer information for the four selected wells in Well Group C03.

Well group Well Tracer arrival time Tracer lasting time, d Tracer concentration, mg/L Equivalent permeability, mD

C03 H03H 2019/08/19 32 1.05 14620
C02 2019/08/25 38 0.87 7542
H19H 2019/09/03 47 0.79 5010
B26HS 2019/08/24 37 1.03 8156

Fig. 15. Inter-well connectivity of Well Group C03 predicted by the SV-DC model. The 
model predicted inter-well connectivity order, consistent with tracer arrival time 
results.
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5.3. Analysis of dynamic connectivity volume

With the time-lag coefficient τ ij directly calculated by the SV-
DC model, the dynamic connectivity volume V ij can be obtained 
by Eq. (6). Connectivity volume is defined as the effective volume 
between different wells interacting through the reservoir (Vrolijk 
et al., 2005).

The concept of dynamic connectivity volume introduces 
a temporal dimension that allows us to track and predict changes 
in the fluids over time. This dynamic perspective enables an in-
depth understanding of the reservoir's dynamic behavior and 
provides a more accurate basis for adjusting the production 
strategy. The calculation results of the dynamic connectivity vol-
ume of Well Group C03 are shown in Fig. 16.

(1) Well B26HS shows a peak in connectivity volume in 2018/ 
03, suggesting the formation of IWCs, which could point to 
the opening of dominant water flushing pathways, revealing 
a key transition in fluid dynamics.

(2) For Well C02, the connectivity volume is maintained low, 
indicating low fluid mobility. The connectivity volume is

a key metric to quantify the efficiency of fluid mobility, 
when the connectivity volume is maintained in the range of 
0–0.1, it generally reflects limited fluid dynamic connectivity 
between wells, suggesting that the efficiency of fluid 
migration from one injector to surrounding producers or 
neighboring injectors is significantly inhibited. This may be 
attributed to geologic features of lower permeability or 
physical isolation or reservoir isolation caused by geologic 
structural factors such as discontinuous formations or 
faults.

(3) The connectivity volume of Well H03H increases dramati-
cally in 2017/03, and this apparent change may reflect 
fracture initiation or water flushing channel expansion. 
Such significant dynamic events are critical for reservoir 
management, indicating potential enhanced reservoir ac-
tivity or the formation of new fluid flow pathways.

(4) Well H19H is also in the lower range of connectivity volume, 
showing a stable and balanced connectivity pattern. This 
suggests that the connectivity between Well H19H and the 
reservoir, although limited, remains consistent and does not

Fig. 16. Plots of time-lag coefficients and connectivity volumes for Well Group C03.
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show signs of fluid dynamic change, which may indicate 
stability and continuity of production.

To sum up, the magnitude of the connectivity volume calcu-
lated by the SV-DC model directly correlates with fluid flow effi-
ciency between wells and the reservoir. A high connectivity 
volume indicates strong fluid interaction and easy movement of 
fluids within the reservoir, while a low connectivity volume sug-
gests potential isolation or restricted fluid flow. This finding may 
be valuable for optimizing production strategies and developing 
interventions.

Moreover, Fig. 16 reveals that the connectivity volume of Well 
H03H experiences a significant increase in 2017/03, and the con-
nectivity volume of Well B62HS shows a similar upward trend in 
2018/03. This rule is mutually verified by the above results as 
discussed in Sections 5.1 and 5.2. The SV-DC model shows its po-
tential in applying connectivity volume analysis to identify and 
time IWCs. By tracking the time-series changes in the connectivity 
volume, one can gain more insight into the fluid migration pat-
terns within the reservoir.

Although we have validated the adaptability of the SV-DC 
model in local well groups in this study, we are also exploring its 
application across the entire well group in the oilfield. The pre-
liminary results show that the model achieves an accuracy rate of 
96%. We are currently organizing this research, and detailed re-
sults will be provided in a future paper.

6. Conclusions

This study introduces a state variable-based dynamic capaci-
tance (SV-DC) model, which significantly enhances and extends 
the traditional capacitance model. By integrating the EKF algo-
rithm, the SV-DC model offers greater flexibility in predicting 
inter-well connectivity and time-lag coefficients. A key strength of 
the SV-DC model is its robust ability to handle noise, effectively 
quantifying prediction uncertainty through a defined covariance 
matrix. The key innovative contributions of this paper are as 
follows.

(1) Based on the production data generated by a commercial 
simulator, the SV-DC model has been proven to be more 
sensitive to the applied pressure impulses. The inter-well 
connectivity coefficients predicted by the SV-DC model 
and the SV model are closely related to the magnitude of the 
permeability of the preferential channel. As the perme-
ability increases, the inter-well connectivity increases 
accordingly.

(2) The newly proposed SV-DC model in this study reveals the 
dynamic evolution of the time-lag coefficient, which is 
inversely proportional to the permeability of the preferen-
tial channel. This finding is consistent with the observations 
in the simulated breakthrough time of the water cone.

(3) The robustness of the SV-DC model is validated using syn-
thetic data generated through Monte Carlo simulations on 
two commonly used well patterns. The relative errors of the 
inter-well connectivity and time-lag coefficients are all 
below 5.5%, demonstrating the high robustness and stability 
of the SV-DC model in evaluating fluid migration within 
a well group.

(4) The SV-DC model is implemented in Well Group C03 in 
Qinhuangdao Oilfield 32-6 to explore the development of 
ineffective circulation channels by analyzing the produc-
tivity index and water cut. The rises in productivity index 
and water cut in Wells H03H and B26HS indicate the 
development time of ineffective circulation channels,

combined with the tracer test information, once again 
confirming the accuracy and reliability of the proposed SV-
DC model.

(5) The connectivity volume calculated by the SV-DC model 
correlates with the well ability to exchange fluids. A high 
connectivity volume corresponds to strong fluid interaction, 
while a low connectivity volume may indicate reservoir 
isolation or fluid flow restriction.
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