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a b s t r a c t

Carbon dioxide Enhanced Oil Recovery (CO2-EOR) technology guarantees substantial underground CO2

sequestration while simultaneously boosting the production capacity of subsurface hydrocarbons (oil
and gas). However, unreasonable CO2-EOR strategies, encompassing well placement and well control
parameters, will lead to premature gas channeling in production wells, resulting in large amounts of CO2

escape without any beneficial effect. Due to the lack of prediction and optimization tools that integrate
complex geological and engineering information for the widely used CO2-EOR technology in promising
industries, it is imperative to conduct thorough process simulations and optimization evaluations of CO2-
EOR technology. In this paper, a novel optimization workflow that couples the AST-GraphTrans-based
proxy model (Attention-based Spatio-temporal Graph Transformer) and multi-objective optimization
algorithm MOPSO (Multi-objective Particle Swarm Optimization) is established to optimize CO2-EOR
strategies. The workflow consists of two outstanding components. The AST-GraphTrans-based proxy
model is utilized to forecast the dynamics of CO2 flooding and sequestration, which includes cumulative
oil production, CO2 sequestration volume, and CO2 plume front. And the MOPSO algorithm is employed
for achieving maximum oil production and maximum sequestration volume by coordinating well
placement and well control parameters with the containment of gas channeling. By the collaborative
coordination of the two aforementioned components, the AST-GraphTrans proxy-assisted optimization
workflow overcomes the limitations of rapid optimization in CO2-EOR technology, which cannot consider
high-dimensional spatio-temporal information. The effectiveness of the proposed workflow is validated
on a 2D synthetic model and a 3D field-scale reservoir model. The proposed workflow yields optimi-
zations that lead to a significant increase in cumulative oil production by 87% and 49%, and CO2

sequestration volume enhancement by 78% and 50% across various reservoirs. These findings underscore
the superior stability and generalization capabilities of the AST-GraphTrans proxy-assisted framework.
The contribution of this study is to provide a more efficient prediction and optimization tool that
maximizes CO2 sequestration and oil recovery while mitigating CO2 gas channeling, thereby ensuring
cleaner oil production.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Injecting CO2 into reservoirs to enhance hydrocarbons (oil and
gas) recovery is a conventional tertiary recovery technique, often
y Elsevier B.V. on behalf of KeAi Co
referred to as CO2-EOR technology (Li et al., 2021;Wang et al., 2023;
Yan et al., 2023). When injected into subsurface reservoirs, CO2
serves a dual purpose: enhancing recovery of hydrocarbons by
miscible flooding and concurrently facilitating the substantial
sequestration of CO2 within the interstitial voids of the reservoir
(Yuan et al., 2022). However, the intricate geological and engi-
neering uncertainties blur the potential for both CO2 flooding and
sequestration (Ampomah et al., 2017a, 2017b; Zhang et al., 2019;
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Zhuang et al., 2025). It is imperative to develop effectivemethods to
accurately predict the production dynamics of CO2 flooding and
efficiently optimize CO2-EOR strategies, which generally include
well placement and well control parameters, ensuring the suc-
cessful implementation of CO2-EOR technology.

In the CO2 flooding development of hydrocarbon reservoirs,
commonly employed methods for production dynamics prediction
include the analytical model, production decline curve analysis,
and reservoir numerical simulation (Vo et al., 2020). The analytical
model establishes mathematical models based on fluid seepage
principles to forecast well productivity (Ding et al., 2020; Dutt and
Mandal, 2012; Ji et al., 2017). However, this method tends to be
overly idealized, considering numerous assumptions and ideal
conditions. It faces challenges in accurately describing the intricate
seepage processes of strongly heterogeneous hydrocarbon reser-
voirs, leading to suboptimal prediction accuracy. Decline curve
analysis is a statistical method that predicts future production by
fitting historical production data (Tan et al., 2018; Tang et al., 2024;
Yehia et al., 2023). This method involves fitting production data
with a mathematical model. Although this method is straightfor-
ward and practical, it is limited to forecasting production under
stable conditions. Furthermore, it does not account for the dynamic
influences on well dynamics, often resulting in significant dispar-
ities between predicted and actual production outcomes (Tadjer
et al., 2022). Reservoir numerical simulation can replicate com-
plex underground fluid flow processes, but their predictive accu-
racy excessively relies on detailed geological descriptions and high-
quality history matching results (Jiang, 2011; Xiao et al., 2024; Zhou
et al., 2019). Consequently, simulation costs are elevated, hindering
the feasibility of large-scale prediction tasks. In recent years, the
application of artificial intelligence technologies in dynamic pro-
duction prediction for hydrocarbon reservoirs has gained
increasing prominence (Al-Khafaji et al., 2023; Choubey and
Karmakar, 2021; Van and Chon, 2018; Zhuang et al., 2024a).
Various machine learning and deep learning methods can analyze
potential dynamic production patterns from intricate historical
data (Panja et al., 2018). Some methods even consider multidi-
mensional information, such as the temporal and spatial aspects
influencing reservoirs, to achieve precise prediction of production
dynamics (Thanh et al., 2023;Wu et al., 2021; Zhuang et al., 2024b).
However, selecting appropriate methods tailored to distinct
geological conditions and application scenarios remains crucial to
ensure the maximization of computational resource utilization.

In the realm of reservoir production optimization, traditional
methods primarily rely on reservoir numerical simulation for
comparing production scenarios and selecting the one with the
highest cumulative oil production as the recommended option
(Chen et al., 2010; Dai et al., 2014; Pancholi et al., 2020). This
method falls short of genuine optimization, as it merely involves
selecting the best option among those available (Al-Mudhafar et al.,
2018; Kamali et al., 2015; Qiu et al., 2020). In recent years, opti-
mization algorithms based on mathematical theories have seen
increasing application in the field of CO2 flooding (He et al., 2021;
Menad and Noureddine, 2019; Safi et al., 2016). Ampomah et al.
(2017a, 2017b) utilized a genetic algorithm with a mixed-integer
capability optimization approach to maximize the oil recovery
and CO2 sequestration in the target reservoir. Kashkooli et al. (2022)
defined a weighted combined objective function to simultaneously
optimize CO2 flooding and sequestration effects, explicitly high-
lighting differences in optimization results before and after CO2

channeling. You et al. (2020a, 2020b) employed a coupling method
of artificial neural network proxy models and particle swarm
optimization, considered economic (net present value) and phys-
ical (reservoir pressure) constraints for optimizing oil recovery and
CO2 sequestration volume in a CO2-WAG project. However, the
3398
significant disparity in mobility between CO2 and oil makes CO2
flooding prone to gas channeling. Additionally, with increasing
reservoir heterogeneity, CO2 tends to advance along high-
permeability layers, leading to a significant decline in oil
displacement efficiency (Gao et al., 2014; Hao et al., 2016; Zhao
et al., 2020). Remarkably, the mentioned studies did not account
for the impact of gas channeling on CO2-EOR during the optimi-
zation process.

In this paper, a novel deep learning proxy-assisted optimization
workflow is proposed for the collaborative optimization of CO2-
EOR strategies. Theworkflowcomprises twomain components: the
construction of a proxy model and an optimization method.
Initially, a proxy model is established by coupling Graph Attention
Network (GAT) with Transformer to achieve rapid responses in the
dynamics of CO2 flooding and sequestration. GAT is employed to
extract spatial features of geological properties and the injection-
production well pattern, while Transformer handles the temporal
correlations of well control parameters across various time steps.
Additionally, a joint optimization method for CO2-EOR strategies is
introduced, considering balanced CO2 flooding. It achieves multi-
objective collaborative optimization of cumulative oil production
and CO2 sequestration volume while mitigating the occurrence of
CO2 channeling phenomena based on the Multi-objective Particle
Swarm Optimization (MOPSO) algorithm. Finally, the proposed
workflow is validated for its performance and effectiveness using a
2D synthetic model and a 3D field-scale reservoir model.

The rest of this paper is structured as follows: Section 2 eluci-
dates the fundamental principles and contributions of the methods
employed in this study. Section 3 outlines the main framework of
the proposed method and elaborates on the functions of each
component. Section 4 validates the optimization workflow by
employing various reservoir models to assess its performance and
effectiveness. Finally, Section 5 presents conclusions drawn from
the study and outlines avenues for future research.

2. Related techniques

2.1. Graph attention network

Convolutional Neural Networks (CNNs) are widely employed in
the field of spatial feature extraction (Zhang et al., 2023). CNNs are
specifically designed for processing Euclidean data. However,
practical engineering problems often involve non-Euclidean data,
with graph structures being a prominent example of such non-
Euclidean or topological data, such as chemical molecular struc-
tures and interwell connectivity. The inherent variability in the
number of adjacent nodes for each vertex poses a challenge,
rendering traditional CNNs incapable of performing local convo-
lution operations on non-Euclidean data. Graph Neural Networks
(GNNs) exhibit excellent performance in extracting crucial complex
features from non-Euclidean data, uncovering deep and effective
topological information, and achieving rapid processing of massive
datasets (Huang et al., 2023). In the process of reservoir develop-
ment, the injection-production well pattern can be equivalently
represented as a graph structure, with strong correlations between
well points. Therefore, dynamic prediction of CO2 flooding and
sequestration using GNNs becomes imperative, as it incorporates
spatial information like well distribution and temporal information
pertaining to well control parameters.

In recent years, numerous scholars have conducted innovative
research on GNNs and derived a series of variants. Among them, the
GAT has demonstrated outstanding performance (Chen et al., 2024;
Lin et al., 2023; Pan et al., 2023; Zhen et al., 2022). In the application
of GNNs, the computation of parameter values typically occurs in
an iterative fashion, whichmay result in a relatively high number of
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iterations and reduced efficiency. Additionally, deeper levels of
GNNs can lead to excessive similarity in features among all nodes,
causing oversmoothing issues. To address these challenges, a
growing number of scholars have conducted extensive research
using GAT, which is a more flexible and expressive graph con-
volutional network structure (Do et al., 2021; Jiang and Luo, 2022).
GAT introduces a self-attention mechanism, allowing the model to
dynamically assign varying weights to each node. This enables each
node to focus on its neighboring nodes to varying degrees, thereby
enhancing the expressiveness of the model. The core elements of
GAT are similar to GNNs, and they can be described using the
following equation.

G¼ �VN; Eij;A
�

(1)

where VN is the set of nodes; Eij is the set of edges characterizing the
strength of connections between nodes; A is the weighted adja-
cency matrix describing the connection relationships between
nodes.

Based on the above, GAT incorporates attention weight which
focuses on the dynamic relationships between nodes and the
contributions of different nodes to the target node. This implies
that the model can discern the contribution of each neighboring
node to the target node based on the particular task and dataset
during the aggregation of information from neighboring nodes to
update a node's representation. This adaptability is achieved
without relying on a fixed weight matrix.

The graph attention layer serves as the core layer in GAT,
employing attention mechanisms to dynamically compute the
weights between nodes, thereby enabling a more adaptable ag-
gregation of information fromneighboring nodes. The computation
process of a graph attention layer is as follows. Initially, linear
transformations are applied to the input node features and adja-
cency matrix to obtain node representations, as shown in the
following equation:

hðlÞi ¼Xi$W
ðlÞ (2)

where hi
(l) is the node representation; Xi is the node feature matrix;

W(l) is the weight matrix; l is the number of layers.
Subsequently, attention weights need to be computed for each

node. This is achieved by calculating the weights using the learned
weight vector within the attentionmechanism. The computation of
attention weights involves evaluating the relationships between
nodes to determine the contribution of each node when aggre-
gating information from neighbors. The equation is as follows:

eij¼ LeakyReLU
�
a!ðlÞTh

WhðlÞi
���WhðlÞj

i�
(3)

a
ðlÞ
ij ¼ exp

�
eij
�

P
k2NðiÞ

expðeikÞ
(4)

where eij is the transition parameter characterizing the contribu-

tion of node i to node j; a!ðlÞT
is the learned attention parameter

vector; LeakyReLU is the activation function; jj is vector concate-
nation; aij

(l) is the attention weight obtained through softmax
normalization.

Finally, it is necessary to aggregate the representations of
neighboring nodes with attention weights to obtain the updated
representation for each node. The equation is as follows:
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hðlþ1Þ
i ¼s

0
@ X

j2NðiÞ
a
ðlÞ
ij $WhðlÞj

1
A (5)

where hi
(lþ1) is the updated node representation; s is the activation

function.
The aforementioned process outlines the computation of a basic

graph attention layer and the schematic diagram of which is shown
in Fig. 1. By stacking multiple graph attention layers, GAT is capable
of progressively learning more complex graph structural features,
thereby enhancing its accuracy in handling prediction or classifi-
cation tasks.
2.2. Transformer model

The Transformer has achieved tremendous success in the fields
of Natural Language Processing (NLP) and Computer Vision (CV)
(Carpenter, 2022; Zhang et al., 2023). In recent years, due to its
advantages such as parallel computation and fewer trainable pa-
rameters, Transformer has gradually replaced convolutional neural
networks and recurrent neural networks in engineering applica-
tions dealing with time series data. It particularly excels in sce-
narios involving time series data, such as reservoir production
forecasting.

Transformer primarily consists of an encoder and a decoder.
Furthermore, the encoder is composed of multiple identical
encoding layers, with each encoding layer incorporating a self-
attention mechanism and a feedforward neural network. In the
self-attention mechanism, the representation at each position can
depend on other positions in the sequence. To enhance the
expressive power of the model, Transformer introduces multiple
attention heads. The calculation of attention weights for each
attention head is as follows:

dh ¼ AttentionðQ ; K; VÞ ¼ softmax

 
QKTffiffiffiffiffi
dk

p
!
V (6)

where dh is the attention weights for each attention head; Q, K, and
V are matrices obtained by projecting the query, key, and value
through weight matrices; dk is the feature dimension of the
attention head. The output of multi-head attention is the concat-
enation of the outputs from each attention head, as illustrated
below:

MultiHeadðQ ; K; VÞ ¼ Concat
�
d1; d2; …; dh

�
WO (7)

where WO is the projected weight matrix of multi-head attention.
In the feedforward neural network section, following the pro-

cessing by the self-attentionmechanism, the representation at each
position undergoes a feedforward neural network layer which en-
hances the nonlinear expressive capabilities of the model. The
operations in this part are similar to the computation process in an
artificial neural network and would not be reiterated here. Addi-
tionally, both layer normalization and residual connection are
applied after the multi-head self-attention layer and the feedfor-
ward neural network layer. This ensures a smooth training process
for the model while better capturing long-range dependencies and
complex spatio-temporal features in the input sequence. The
structure of decoder mirrors that of the encoder. These layers are
stacked multiple times to construct a deep Transformer model,
enabling the capturing of time dependencies in the output of GAT.
The Transformer architecture in an encoder setting is shown in
Fig. 2.



Fig. 1. Schematic diagram of the graph attention layer.
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2.3. Multi-objective optimization algorithm

In practical engineering problems, one often encounters opti-
mization issues involving the interaction of multiple objectives.
Single-objective optimization algorithms struggle to address such
problems effectively, leading to the emergence of multi-objective
optimization algorithms. It proves challenging in multi-objective
optimization problems to identify solutions that simultaneously
satisfy each objective, given the interdependence, mutual con-
straints, and even contradictions among the objectives. Two
methods exist for handling this challenge. One involves assigning
different weight coefficients based on the importance of each
objective. Using a weighted method, multiple objectives are
transformed into a single objective function incorporating distinct
weights, thereby converting the problem into a single-objective
optimization one. Nevertheless, this method exhibits limitations
by neglecting the conceivable competition among objectives and
the subjective nature inherent in the assignment of weight values
to each objective. The alternative method employs Pareto
Fig. 2. Schematic diagram of the Transformer architecture in an encoder setting.
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optimization methods, leveraging Pareto dominance strategies to
evaluate solution quality and ascertain the Pareto front, thereby
yielding an optimal set of solutions. Subsequently, constraints are
introduced in accordance with the decision-maker's specifications
to identify compromised solutions. The Pareto front can be
construed as comprising optimal solutions.

To align with the development trend of multi-objective opti-
mization, incorporating corresponding optimization strategies into
the basic Particle Swarm Optimization (PSO) algorithm becomes
imperative for directly addressing multi-objective problems. The
MOPSO algorithm harnesses collective intelligence within the
particle swarm, where cooperation and competition among parti-
cles guide the optimization search (Farahi et al., 2021; You et al.,
2020a, 2020b). During each iteration, particles update their posi-
tions and velocities based on two parameters: the individual best
solution (Pbest) for each particle and the global best solution (Gbest)

within the entire swarm. The update equations for the velocity vkþ1
i

and position skþ1
i of the i-th particle at the (kþ1)-th iteration are

expressed as follows:

vkþ1
i ¼ uvki þ c1r1

�
Pbest � ski

�
þ c2r2

�
Gbest � ski

�
(8)

skþ1
i ¼ ski þ vkþ1

i (9)

where k is the number of iterations; u is inertia weight; c1 and c2
are acceleration coefficients used to adjust the proportion of indi-
vidual best positions and neighborhood best positions in the ve-
locity update process; r1 and r2 are random numbers uniformly
distributed in the range [0, 1].

Incorporating an external archive space into the standard PSO
algorithm proves instrumental for recording the Pareto optimal
solution set. During each optimization iteration, the MOPSO algo-
rithm determines the Pareto front of the particle swarm, updating
the optimal solution set. To accommodate a full archive space, an
adaptive grid method is employed for optimizing the archive space.
This augmentation results in the formulation of MOPSO algorithm.
The application of MOPSO to the optimization process in this study
is illustrated in Fig. 3.

3. Methodology

In this study, we propose a deep learning proxy-assisted opti-
mization workflow that integrates three key components. First, the
graph structure captures both dynamic and static reservoir infor-
mation within the CO2 flooding well pattern. Second, the AST-
GraphTrans-based proxy model enables precise dynamic predic-
tion of CO2 flooding and sequestration. Third, the constrained
multi-objective optimization ensures optimal performance across
multiple development objectives while delaying gas channeling.
Through the collaboration of these three components, the predic-
tion and optimization tasks involved in CO2-EOR technology can be
effectively addressed.

3.1. Main framework

Considering that the input and output data designed for this
study encompass multidimensional data such as graph structures,
graphmatrices, and time series, traditional single machine learning
or deep learning model may not be suitable for this task. Therefore,
this paper proposes an Attention-based Spatial-temporal Graph-
Transformer Network (AST-GraphTrans) proxy-assisted optimiza-
tionworkflow. It primarily consists of three components. Firstly, the
graph structure is constructed using complex topological



Fig. 3. Schematic diagram of the MOPSO workflow.
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relationships to extract the spatio-temporal features of geological
properties, well distribution, and development strategies. In this
study, special attention is given to the coordinates of each well and
CO2 flooding connectivity data. Secondly, an AST-GraphTrans-based
proxy model is utilized to analyzes the inherent temporal de-
pendencies in the CO2 flooding and sequestration process through
the multi-layer stacking of GAT and Transformer. Integrated with
fully connected layers, the model can generate an output time se-
ries that includes cumulative oil production, CO2 sequestration
volume, and CO2 plume front distribution at different time steps.
Finally, the proxy-assisted optimization framework facilitates the
joint optimization of well placement and well control parameters.
On the optimized Pareto front, cumulative oil production and CO2
sequestration volume are emphasized to optimize the scheme, thus
providing guidance for the scheme decision of reservoir engineers.
The overall architecture of the AST-GraphTrans proxy-assisted
optimization workflow is illustrated in Fig. 4.
3.2. Construction of the graph structure

The graph structure serves as the nucleus of GAT. If the graph
structure fails to effectively encode node features, it leads to an
ambiguity in the correlation among nodes. It hampers the accurate
extraction of potential spatio-temporal information between
nodes, potentially diminishing predictive performance. In this
study, the graph structure primarily characterizes the spatial cor-
relations among different wells within the CO2 flooding well
pattern. Wells are treated as nodes, the existence of a connection
between two wells is regarded as an edge, and the strength of
connectivity between injection and production wells is considered
as the weight of the edge (commonly used to establish the adja-
cency matrix). The process of abstracting the well pattern into the
graph structure is shown in Fig. 5.

Furthermore, after determining the connectivity between
different wells, it is essential to specify the connectivity strength
among injection and productionwells by characterizing the weight
coefficients of the edges. The robustness of connectivity between
injection and production wells is impacted not solely by the dis-
tance between two wells but also by reservoir geological parame-
ters, such as permeability and porosity. For instance, the Euclidean
3401
distance between injectionwell I1 and productionwell P3 is 300m,
with an average permeability betweenwells of 10 mD; whereas the
distance between I1 and P1 is 500 m, with an average permeability
of 100 mD. In practical production scenarios, the intricate deter-
mination of connectivity between I1 and P1 (or between I1 and P3)
poses a significant challenge. Therefore, this paper proposes a
quantitative evaluation index for the CO2 flooding connectivity
between injection and production wells, expressed by the
following equation:

ZðI1; P1Þ ¼
K

 
KroðSoÞ

mo
þ KrgðSoÞ

mg

!
H

,
DI1;P1

Pn
c¼1

" 
KroðSoÞ

mo
þ KrgðSoÞ

mg

!
H

,
DI1;Pc

#
c

(10)

where Z(I1, P1) is the CO2 flooding connectivity coefficient between
I1 and P1; K is the average permeability between I1 and P1; Kro(So)
and Krg(So) are the relative permeability of the oil phase and gas
phase at the average oil saturation betweenwells; mo and mg are the
viscosity of the oil phase and gas phase, respectively; H is the
reservoir thickness; DI1,P1 is thewell spacing between I1 and P1; c is
the production well index in I1 well group; n is the number of the
production wells in I1 well group. Since this paper concentrates on
the oil production capacity of production wells and the CO2 injec-
tion capacity of injectionwells, the equation accounts solely for the
influence of the flow ability of oil and gas on the connectivity be-
tween wells. Using this equation, the CO2 flooding connectivity
matrix, i.e., the adjacency matrix, can be computed. This yields the
initial connection weights between different wells, which are
subsequently normalized within [0, 1].

In this paper, the input data for AST-GraphTrans consists of the
adjacency matrix and the node feature matrix. The construction of
the adjacency matrix is guided by domain-specific knowledge in
the petroleum engineering field. The inclusion of physically
grounded connection relationships can further enrich the AST-
GraphTrans-based proxy model with additional reservoir infor-
mation, thereby enhancing predictive performance. Additionally,
we organize the time series of well control parameters, which
characterize human-operated dynamics, into the node feature
matrix. Integrating the Transformer model into this framework
facilitates the incorporation of temporal correlations inherent in
injection and production data. The amalgamation of these latent
spatial and temporal insights empowers the proposed framework
to consistently and precisely forecast the potential of CO2 flooding
and sequestration across diverse time intervals.

The dataset employed in this paper is characterized by its
multidimensional nature. The input data comprises the graph
structure of the target reservoir model, which includes the node
feature matrix consisting of well control parameters and the adja-
cency matrix formed by the CO2 flooding connectivity coefficients.
The output data encompasses cumulative oil production, CO2
sequestration volume, and the spatial distribution of the CO2 plume
front at various time steps. To optimize the efficiency of model
training and alleviate potential numerical errors arising from var-
iations in data dimensions, preprocessing of the input data is
executed. Specifically, the well control data for each well undergoes
scaling to the interval [0, 1] through the application of the min-max
normalization method, as articulated by the following equation:

Xs ¼ X �minðXÞ
maxðXÞ �minðXÞ (11)

where Xs is the scaled value; X is the original data; max(X) and
min(X) are the maximum and minimum values in the dataset,



Fig. 4. Schematic diagram of AST-GraphTrans proxy-assisted optimization workflow.

Fig. 5. Schematic diagram of abstracting the well pattern into the graph structure.
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respectively.
Furthermore, the dataset is partitioned into training, validation,

and testing sets in a ratio of 6:2:2. Given that well control data
constitutes a time series characterized by temporal correlations
and influences, the partitioning is conducted in accordance with
the chronological order of the time series. The initial 60% of the data
is allocated as the training set for AST-GraphTrans, thereby sup-
porting the training process. The subsequent 20% is assigned as the
validation set, serving the purpose of assessing the model's
generalization accuracy and preventing overfitting. Lastly, the
remaining 20% comprises the testing set, employed for evaluating
the predictive performance of AST-GraphTrans.
3.3. Production prediction tasks using AST-GraphTrans-based proxy
model

In this paper, the AST-GraphTrans-based proxy model is estab-
lished to accomplish production prediction tasks, serving as a cost-
effective alternative tool to numerical simulations for subsequent
3402
optimization tasks. The inputs to the proxy model consist of two
components: the well control data for each well and the CO2

flooding connectivity relationships. The well control data primarily
includes bottomhole pressures for the production wells and injec-
tion rates for the injection wells. These data are sequentially ar-
ranged according to the well order to construct the node feature
matrix. The CO2 flooding connectivity relationships are established
based on Eq. (10) to build the graph structure, taking into account
the intricate relationships between different injection and pro-
ductionwells in constructing the adjacency matrix. Leveraging GAT
to process both the node feature matrix and adjacency matrix, we
derive a feature matrix that effectively captures the spatial in-
teractions among injection and production wells. Subsequently,
feeding the feature matrix at various time steps into the Trans-
former model allows for the exploration of the temporal correla-
tions of well control parameters, building upon the extracted
spatial features of the CO2 flooding well pattern. Finally, cumulative
oil production, CO2 sequestration volume, and CO2 plume front at
different time steps are output through fully connected and flatten
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layers.
The fundamental architecture of the AST-GraphTrans comprises

two graph attention layers stacked on top of each other along with
a Transformer module. The stacking of two graph attention layers
can learn more in-depth feature representation, and take into ac-
count the further connection relationships between nodes, thus it
has stronger expression ability for capturing CO2 flooding connec-
tivity relationships. The Transformer encoder is employed to
perform self-attention operations on the input, enabling the model
to capture the internal structure of the data. Details regarding the
successive architecture and the corresponding output sizes of the
AST-GraphTrans are provided in Table 1.

The table provides definitions for the variables used: N is the
number of samples; V is the number of nodes, which corresponds to
the quantity of wells in this study; F is the number of features per
node, referring to the well control parameters for each well; FG is
the feature dimension of each attention head, set to 128 in this
study; H is the number of attention heads, set to 8 in this study;
DTrans is the dimension of the hidden layers in the Transformer, set
to 256 in this study; T is the sequence length, determined based on
the time steps in this study; O1, O2, and O3 respectively represent
the dimensions of the three output layers, whereO1 andO2 are one-
dimensional sequences, and O3 is a two-dimensional image.

This proxy model leverages the analysis of graph structures
incorporating reservoir information and engineering uncertainties.
It excavates latent patterns in the spatial distribution of geological
properties and temporal variations in well control parameters,
capturing their influence on the underground CO2 plume pattern.
This enables rapid responses to the CO2 flooding and sequestration
dynamics under different geological and engineering parameter
combinations. The AST-GraphTrans-based proxy model achieves
prediction accuracy equivalent to numerical simulations while
ensuring lower time costs, thus providing a robust foundation for
efficient optimization execution.

Two widely recognized metrics within the industry, R2 (coeffi-
cient of determination) and MRE (mean relative error), are chosen
in this paper to evaluate the prediction accuracy of the proxy
model. Due to the relatively large numerical values of cumulative
oil production and CO2 sequestration volume, traditional metrics
like MSE may not effectively gauge predictive performance.
Therefore, R2 and MRE are selected. The equations are as follows:

R2 ¼1�
P ðy� y0Þ2P ðy� yaveÞ2

(12)

MRE¼1
n

X jy� y0j
jyj (13)

where y is the actual value; y' is the predicted value; yave is the
average of the actual values. The two metrics are employed to
assess the performance of the trained proxy model.

To validate the hyper-parameter configuration's rationality for
(
MaxFOPT ¼ ðql1 þ ql2 þ ql3 þ $$$þ qlmÞ � ð1� fwÞ
MaxFGST ¼ �Ig1 þ Ig2 þ Ig3 þ $$$þ Ign

�� �qg1 þ qg2 þ qg3 þ $$$þ qgm
� (14)
the AST-GraphTrans architecture, this study conducted systematic
ablation experiments and noise robustness analysis, with results
presented in Table 2. The experiments employed the average value
of R2 and MRE of cumulative oil production and CO2 sequestration
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predictions as evaluation metrics. Initially, for the feature dimen-
sion of each attention head (FG), we comparatively analyzed three
configurations: FG ¼ 64, 128, and 256. Results demonstrate that
FG ¼ 128 achieves the optimal balance between performance and
efficiency, with significantly superior predictive performance
compared to FG ¼ 64, while simultaneously reducing training time
by 65% and GPUmemory consumption by 32% relative to FG ¼ 256.
Subsequently, optimization of the number of attention heads (H)
revealedH¼ 8 as the optimal choice, delivering performance nearly
equivalent to H ¼ 16 (differing by merely 0.5%), while dramatically
reducing training time and memory consumption by 82% and 52%,
respectively. Further investigation of the hidden layers' dimension
(DTrans) showed that DTrans ¼ 256 significantly enhances predictive
accuracy while maintaining computational efficiency. Additionally,
noise robustness experiments indicated stable performance of the
model under low noise (s ¼ 0.05) and moderate noise (s ¼ 0.1)
conditions. Although performance marginally decreased under
high noise (s ¼ 0.2), it remained within acceptable ranges, with
memory consumption maintaining stability. These experimental
results comprehensively substantiate that the parameter configu-
ration of FG ¼ 128, H ¼ 8, and DTrans ¼ 256 achieves an optimal
balance between predictive performance and computational
efficiency.
3.4. Multi-objective optimization tasks using proxy-assisted
optimization framework

In the process of CO2 flooding within the hydrocarbon reservoir,
the primary challenge arises from factors such as reservoir het-
erogeneity, imperfect well pattern, and unreasonable injection-
production systems. The most significant issue faced during CO2
flooding is gas channeling, exacerbated by reservoir heterogeneity
and inadequate well pattern. Early occurrences of gas channeling
lead to inefficient injection gas circulation. Addressing these chal-
lenges, this study establishes the interwell CO2 flooding diffusion
coefficient to quantitatively evaluate the balanced CO2 flooding
level among injection and production wells. This coefficient is
utilized as a constraint for optimizing well placement and well
control parameters jointly, with themulti-objectives of maximizing
cumulative oil production and CO2 sequestration volume. Conse-
quently, the multi-objective optimization mathematical model for
CO2-EOR strategies is established.

In this mathematical model, three fundamental elements: the
objective function, decision variables, and constraints are essential.
Firstly, the objective function is a critical component. Given that
CO2-EOR technology seeks not only improved oil recovery but also
aims to maintain a substantial amount of CO2 underground for
large-scale geological storage, this study establishes a hybrid
function with the multi-objectives of maximizing cumulative oil
production and CO2 sequestration volume. The equation of this
hybrid objective function is expressed as follows:
where m and n are the number of production wells and injection
wells; qlm is the liquid production rate of them-th production well;
fw is the water cut; Ign is the CO2 injection rate of the n-th injection
well; qgm is the gas production rate of the m-th production well.



Table 1
Fundamental architecture of the AST-GraphTrans.

Layer Parameter Output size

Input / (N, V, F)
GAT layer-1 (attention heads H) Nonlinearity LeakyReLU (N, V, FG � H)

Dropout p ¼ 0.05 (N, V, FG � H)
GAT layer-2 (attention heads H) Nonlinearity LeakyReLU (N, V, FG � H)

Dropout p ¼ 0.05 (N, V, FG � H)
Flatten / (N, V � FG � H)
Transformer encoder layer Position-wise feed forward / (N, T, DTrans)

Normalization / (N, T, DTrans)
Dropout p ¼ 0.05 (N, T, DTrans)

Output layer-1 (FC) Dense (N, O1)
Output layer-2 (FC) Dense (N, O2)
Output layer-3 (FC) Dense þ reshape (N, O3)

Table 2
Results of ablation experiment and noise robustness analysis.

Hyper-parameter Value Average R2 Average MRE Training time, h GPU memory, GB

FG 64 0.939 0.188 3.2 5.6
128 0.960 0.163 4.1 7.8
256 0.963 0.157 6.8 10.3

H 4 0.930 0.199 2.8 5.2
8 0.957 0.183 4.5 7.8

16 0.962 0.165 8.2 11.9
DTrans 64 0.936 0.193 3.0 5.4

128 0.940 0.188 4.7 7.8
256 0.968 0.118 5.2 8.5

AST-GraphTrans (Gaussian noise s ¼ 0.05) 0.955 0.133 5.3 7.8
AST-GraphTrans (Gaussian noise s ¼ 0.1) 0.941 0.190 5.4 7.8
AST-GraphTrans (Gaussian noise s ¼ 0.2) 0.913 0.212 5.4 7.8
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Subsequently, the decision variables are the indispensable
components in the optimization process during each iteration. The
engineering outcomes of the CO2-EOR technology, such as oil re-
covery and sequestration efficiency, are contingent upon both the
inherent conditions of the undeveloped reservoir and the chosen
development strategy. Reservoir conditions encompass geological
structure, distribution of permeability fields, and hydrocarbon
properties. Optimization of the field development primarily in-
volves the design of well pattern and injection-production
schemes. In this paper, the decision variables for optimization
include the well coordinates for each well, the injection rates for
injection wells, and the bottomhole pressures for production wells.
These decision variables in the mathematical model are chiefly
represented by the following vectors:

XCoor ¼ ½X1; X2; X3; /; Xmþn� (15)

YCoor ¼ ½Y1; Y2; Y3; /; Ymþn� (16)

Iinj ¼
h
qg1; qg2; qg3; /; qgn

i
(17)

BHPpro ¼ � Pp1; Pp2; Pp3; $$$; Ppm 	 (18)

where XCoor and YCoor are the coordinates for each well; Iinj is the
CO2 injection rate of injectionwells. BHPpro is the borehole pressure
of production wells.

The final element is the constraint, which constitutes a crucial
aspect of our study. We categorize the constraints into two main
aspects, with the first one pertaining to the constraints on well
coordinates. In the optimization process, the selection of well
placement cannot be arbitrary. Instead, it must adhere to the
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constraint of minimumwell spacing. Deviating from this constraint
could exacerbate the occurrence of gas channeling, leading to
premature decommissioning of production wells. This constraint
can be defined by the following equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXA � XBÞ2 þ ðYA � YBÞ2

q
� Dmin (19)

where XA, XB, YA, and YB are the coordinates for well A and well B,
respectively; Dmin is the minimum well spacing between any two
wells, which is set at 650 ft in this study.

The second aspect pertains to the constraints associated with
well control parameters, specifically addressing anti-gas chan-
neling constraints. Thoughtful adjustments to well control pa-
rameters across various time steps can play a positive role in
delaying the onset of gas channeling. It is essential to establish
reasonable relationship between different injection and production
wells to ensure that the injected CO2 is primarily employed for
displacing hydrocarbon and retained underground. This prevents
the preferential migration of CO2 channeling that might adversely
impact the efficiency of production wells. In this paper, since the
proxy model adeptly predicts the dynamic distribution of CO2

plume fronts between injection and production wells, we aim to
constrain the range of well control parameters based on the dis-
tribution of CO2 plume fronts from the previous time step. This
constraint enables the restraint of CO2 plume underground effec-
tively. We define a metric representing the uniformity of CO2
flooding diffusion between different injection and production
wells, termed the interwell CO2 flooding diffusion coefficient l and
the relative CO2 flooding diffusion degree h. The equations are
presented below
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lh¼
dh
Dh

(20)

hh ¼
lh �

 Pm
h¼1

lh

!,
m Pm

h¼1
lh

!,
m

(21)

where lh is the interwell CO2 flooding diffusion coefficient between
the h-th production well and injectionwell within a particular well
group; dh is the Euclidean distance between the CO2 plume front of
the h-th production well and the injection well; Dh is the well
spacing between the injectionwell and the h-th productionwell; hh
is the relative CO2 flooding diffusion degree between the h-th
production well and injection well; m is the number of production
wells within a specific well group.

In essence, the aforementioned constraint conditions are
established based on the relative error between the interwell CO2
flooding diffusion degree of each production well and the average
interwell CO2 flooding diffusion degree at the previous time step.
This relative error is utilized to constrain the parameter selection
ranges for the injection rate and the bottomhole pressure at the
current time step. We conducted a sensitivity analysis of the rela-
tive CO2 flooding diffusion degree to further elucidate how this
parameter can be utilized as a dynamic constraint condition in
guiding well control parameter optimization. Upon obtaining the
relative CO2 flooding diffusion degree from the previous time step,
it becomes necessary to integrate a constraint multiplier for
determining the current time step's well control parameters, as
illustrated in Eq. (22).

Wh;t ¼s�Wh;t�1 (22)

where Wh,t is the well control parameter range at the current time
step; s is the constraint multiplier, indicating the adjustment
magnitude of well control parameters. We conducted a sensitivity
analysis of different relative CO2 flooding diffusion degrees from
the previous time step, as illustrated in Fig. 6.

The analysis reveals several key insights. When the relative CO2

flooding diffusion degree from the previous time step is negative, it
indicates that the interwell CO2 flooding diffusion coefficient is
below the well group average. Consequently, the relative CO2
flooding diffusion degree of the current time step increases with
the constraint multiplier's expansion, with the rate of increase
gradually decelerating. Conversely, when the relative CO2 flooding
Fig. 6. The relationship between the relative CO2 flooding diffusion degrees and the
constraint multiplier under different CO2 flooding diffusion degrees from the previous
time step.
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diffusion degree from the previous time step is positive, it signifies
that the interwell CO2 flooding diffusion coefficient exceeds the
well group average, causing the relative CO2 flooding diffusion
degree of the current time step to decrease as the constraint
multiplier increases, with the rate of decrease progressively accel-
erating. When the relative CO2 flooding diffusion degree equals
zero, it confirms that the interwell CO2 flooding diffusion coeffi-
cient has reached the average value, which is an optimal balanced
displacement performance that we aim to achieve. Therefore, we
adjust well control parameters to approach a relative CO2 flooding
diffusion degree of zero as closely as possible. From the analysis, we
observe that a constraint multiplier of 1.14 enables the interwell
CO2 flooding diffusion coefficient to reach the average value when
the relative CO2 flooding diffusion degree of the previous time step
is negative. Conversely, when the relative CO2 flooding diffusion
degree of the previous time step is positive, a constraint multiplier
of 1.30 achieves the same equilibrium. Consequently, we can
further refine the equation as follows:

Wh;t ¼

�

1� 1:14� hh;t�1
��Wh;t�1; hh;t�1 � 0�

1� 1:30� hh;t�1
��Wh;t�1; hh;t�1 >0

(23)

The multi-objective optimization mathematical model estab-
lished based on the above three elements, after being solved by
MOPSO, effectively addresses the joint optimization problem of
well placement and well control parameters. This method achieves
optimal results by considering the CO2 plume front in a manner
that prioritizes safety while maximizing the effect of CO2 flooding
and sequestration.

4. Case study

In this section, we apply the proposed optimizationworkflow to
two CO2 flooding reservoir models to evaluate its feasibility for
broader application. The first model is a 2D synthetic model used to
verify the performance of the workflow in conventional reservoirs.
The second model is a 3D field-scale reservoir model located in the
Shengli Oilfield, chosen to assess the performance of the workflow
in reservoirs with complex geological conditions. All simulations in
this study are carried out using the commercial software Eclipse
(version 2021.10.2, Schlumberger).

4.1. Case 1: 2D synthetic model

4.1.1. Data pre-processing and analysis for 2D synthetic model
The established AST-GraphTrans proxy-assisted optimization

workflow is applied to the 2D synthetic reservoir model, and the
prediction and optimization performance on conventional reser-
voirs is verified. The model comprises 2500 grid points, with grid
increments set to 100 ft in the x and y directions and 20 ft in the z
direction. The well distribution in the model follows a five-spot
pattern, consisting of 4 injection wells and 9 production wells. In-
jection wells inject CO2 at fixed rates constrained by injection ca-
pacity, while productionwells maintain fixed bottomhole pressures
for oil production. To approximate the complex geological condi-
tions of actual reservoirs, the permeability distribution of this
model exhibits significant heterogeneity. The permeability field
and initial well placement are illustrated in Fig. 7. Further detailed
modeling information is provided in Table 3. Leveraging the
computational efficiency of 2D modeling, the production period of
the model is set at 5 years, with recording intervals of 3 months,
resulting in a total of 20 time steps.

The process of constructing the graph structure described above
is applied to the 2D synthetic model. The CO2 flooding connectivity
coefficients are computed by utilizing Eq. (10) and subsequently



Fig. 7. Geological property and initial well placement distribution of 2D synthetic
model.
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organized to establish the graph structure and adjacency matrix for
the 2D synthetic model, as illustrated in Fig. 8. It is evident that the
interwell CO2 flooding connectivity coefficients are influenced by
geological properties and injection-production intensities, thereby
effectively reflecting the CO2 flooding capacity between injection
and production wells. Consequently, the graph structure encapsu-
lates a greater wealth of static reservoir information and dynamic
production characteristics.
4.1.2. Production prediction tasks for 2D synthetic model
The proposed AST-GraphTrans-based proxy model is employed

to address the production prediction task of the 2D synthetic
model. This involves constructing the graph structure using the
coordinates of 13 wells, their well control parameters, and CO2

flooding connectivity coefficients. Leveraging GAT for graph struc-
ture information extraction and Transformer for temporal corre-
lation analysis, the proposed proxy model can output cumulative
oil production, CO2 sequestration volume, and CO2 plume front at
20 different time steps. For the training process, we selected the
Stochastic Gradient Descent (SGD) optimizer. The learning rate is
dynamically adjusted during training using the ReduceLROnPlateau
learning rate scheduler. Its parameters are configured as follows:
The factor is set to 0.5, representing the multiplicative factor for
learning rate reduction. The patience parameter is set to 10, indi-
cating the number of epochs with no improvement before reducing
the learning rate. The minimum learning rate is set to 1e-6 as the
lower bound. The initial learning rate is set to 0.0001. In addition,
we implemented L2 regularization with a regularization parameter
of 0.0001 and applied a dropout rate of 0.05. The training is con-
ducted over 100 epochs with a batch size of 32, utilizing Mean
Absolute Error (MAE) as the loss function. The proxy model of 2D
synthetic model is established based on the trained AST-
GraphTrans.
Table 3
Properties of the 2D synthetic model.

Depth, ft Porosity Initial pressure, psi

10000 0.3 4500
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To assess the predictive accuracy of the AST-GraphTrans-based
proxy model, we randomly select 50 simulations from the testing
set for comparison between prediction and simulation results. Each
simulation run consists of 20 time steps, resulting in a total of 1000
samples for validation analysis. The comparison between predic-
tion and simulation results of cumulative oil production and CO2
sequestration volume for the 50 simulation runs is illustrated in
Figs. 9 and 10, respectively. The proxy model demonstrates
considerable predictive accuracy for both indexes within the 2D
synthetic model. Notably, it shows slightly higher accuracy in
predicting cumulative oil production compared to CO2 sequestra-
tion volume. Indeed, the higher predictive accuracy for cumulative
oil production can be attributed to the typical development trend,
characterized by rapid initial increases followed by gradual stabi-
lization. This trend is effectively captured by the proxy model,
facilitating accurate predictions. However, fluctuating trends in CO2
sequestration volume stemming from differences in injection rates
may result in slightly diminished predictive performance.

Furthermore, in order to verify the superiority of AST-
GraphTrans-based proxy model in handling this prediction task in
the 2D synthetic model, we perform a comparative analysis with
various deep learning methods. Specifically, we utilize the base
learners of this model (GAT and Transformer) as a comparison. As
mentioned above, we introduce R2 and MRE to evaluate the pre-
dictive performance of these methods for cumulative oil produc-
tion and CO2 sequestration volume. Table 4 showcases the
predictive performance of various deep learning methods acting as
proxy models. Despite the incorporation of extensive spatial
sequential data into the inputs, the predicted cumulative oil pro-
duction and CO2 sequestration volume distinctly display temporal
patterns. Additionally, owing to the simplified spatial characteris-
tics of the 2D synthetic model compared to its 3D model, the in-
fluence of reservoir spatial information on this prediction task is
diminished.

To ensure a fair comparison, we created two hybrid models by
combining Convolutional Neural Network (CNN) with Long Short-
Term Memory (LSTM), and Graph Convolutional Network (GCN)
with LSTM for comparisonwith ST-ResNet. The shared fundamental
parameters across these models were configured identically.
Through evaluative metric analysis of CNN-LSTM, GCN-LSTM, and
ST-ResNet, we observed several key insights: Both CNN-LSTM and
GCN-LSTM models effectively analyze reservoir attributes and
spatial geological information through convolutional operations,
simultaneously utilizing LSTM to extract temporal sequence fea-
tures of engineering parameters and achieve information fusion.
This approach enables more accurate capture of CO2 migration and
diffusion patterns, significantly improving prediction accuracy
compared to single base learners. However, due to the processed
input data structure being more conducive to graph neural net-
works and their variants, GCN-LSTM demonstrates superior per-
formance in handling such datasets. Although both models
fundamentally employ convolution operations, GCN-LSTM exhibits
greater proficiency in processing the graph-structured data pro-
posed in this study. Consequently, in predicting cumulative oil
production and CO2 sequestration volume, GCN-LSTM's accuracy
notably surpasses that of CNN-LSTM. The AST-GraphTrans model,
leveraging its multi-layer stacked Transformer architecture, out-
performs LSTM-based models in processing time series output data
Initial water saturation Oil viscosity, cP

0.25 2.2



Fig. 8. CO2 flooding connectivity coefficients and adjacency matrix of 2D synthetic model.

Fig. 9. Comparison between the prediction and simulation results for cumulative oil
production in 2D synthetic model.
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such as cumulative oil production and CO2 sequestration volume.
Moreover, the multi-head attention mechanism in Transformer
enables simultaneous consideration of feature correlations across
different time steps and spatial positions, achieving more
comprehensive spatio-temporal dependency modeling. It is an
advantage unattainable by LSTM with its gated structure. As a
result, the Transformer model demonstrates superior performance
over the GAT, yielding more satisfactory outcomes. However, owing
to its robust capability in handling diverse data types, the AST-
GraphTrans-based proxy model significantly outperforms other
deep learning methods in this production prediction task. Conse-
quently, the AST-GraphTrans proposed in this paper can effectively
serve as a proxy model to aid subsequent optimization processes.

Furthermore, a specific scheme is chosen from the testing set to
assess the performance of the proxy model in predicting the
Fig. 10. Comparison between the prediction and simulation results for CO2 seques-
tration volume in 2D synthetic model.
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subsurface CO2 plume front. The prediction and simulation results
of the subsurface CO2 plume front at time steps 10 and 20 are
illustrated in Fig. 11. Additionally, the Structural Similarity Index
(SSIM) is employed as an evaluation metric to assess the similarity
between the prediction and simulation results (Sara et al., 2019).
The equation of SSIM is shown below

SSIMðx; yÞ¼
�
2mxmy þ c1

��
2sxy þ c2

�
�
m2x þ m2y þ c1

��
s2x þ s2y þ c2

� (24)

where x and y are the data bodies transformed into prediction and
simulation images, respectively; mx and my are their respective
means; sx and sy are their respective variances; sxy is the covari-
ance between x and y; c1 and c2 are constant. Generally, a higher
SSIM value indicates greater similarity between two images. Since
the 2D synthetic model only consists of a single layer grid in the
vertical direction, a comparative analysis across different layers is
not conducted. It can be observed that the SSIM increases with the
progression of time steps. This is mainly attributed to the influence
of previous time step predictions on the contour of the current CO2
plume front. And the temporal correlation is effectively captured by
the Transformer model, which leads to continuous enhancement in
prediction accuracy.

4.1.3. Multi-objective optimization tasks for 2D synthetic model
Based on the geological property and well pattern of the 2D

synthetic model, the objective function, decision variables, and
constraint conditions of the model are determined. Through the
utilization of the MOPSO algorithm, joint optimization process
Table 4
Evaluation of prediction effect of proxy model in 2D synthetic model.

Model Cumulative oil
production

CO2 sequestration
volume

R2 MRE R2 MRE

GAT 0.879 0.244 0.885 0.204
Transformer 0.950 0.142 0.931 0.167
CNN-LSTM 0.955 0.140 0.941 0.159
GCN-LSTM 0.969 0.128 0.949 0.155
AST-GraphTrans 0.973 0.102 0.957 0.135



Fig. 11. Comparison of the simulation results and prediction results of CO2 plume front, as well as the corresponding differences at different time steps in 2D synthetic model.

Fig. 12. Pareto front with multiple objectives in 2D synthetic model.
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involving both well placement and well control parameters is un-
dertaken to assess the reliability of the proposed optimization
workflow in conventional reservoir models. A standard five-spot
well pattern is employed in the model, with constant well control
parameters (injection rates for injection wells and bottomhole
pressures for production wells) set as a comparative benchmark.
The basic parameters of MOPSO algorithm are set as follows: the
number of particles is 100; the number of iterations is 200; inertia
weight is 1.2; the acceleration coefficient is 1.4. The Pareto front of
the 2D synthetic model is obtained by solving the established
multi-objective optimization mathematical model using the
MOPSO algorithm, as illustrated in Fig. 12.

In condition, the constraints for the decision variables are also
important in the optimization problem. The constraint range of
decision variables used in this optimization process is shown in
Table 5.

In this Pareto front, it encompasses the optimal outcomes
achievable by balancing multiple objectives under the current al-
gorithm parameter settings. As decision-makers, we select schemes
with the same cumulative oil production as the benchmark
(referred to as the productivity scheme) and schemes with the
same CO2 sequestration volume (referred to as the sequestration
scheme) for comparative analysis of optimization effectiveness. In
the Pareto front, the region to the left of the sequestration scheme
represents the FGST-dominated region, while the region below the
productivity scheme represents the FOPT-dominated region. The
performance of these mentioned schemes in terms of cumulative
oil production and CO2 sequestration volume is illustrated in
Table 6 and Fig. 13.
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The optimization results underscore the advantages of the
workflow proposed in this study. The two obtained optimization
schemes exhibit improvements in both hydrocarbon recovery and
sequestration effectiveness compared to the benchmark. The pro-
ductivity scheme demonstrates the same sequestration volume as
the benchmark, yet achieves an increase of 2.47 � 104 m3 in cu-
mulative oil production. Similarly, the sequestration scheme



Table 5
Constraints for the decision variables in 2D synthetic model.

Decision variable Constraint lower bound Constraint upper bound

XCoor 0 50
YCoor 0 50
Iinj, m3/d 2000 10000
BHPpro, psi 2000 4000
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matches the benchmark in cumulative oil production while
increasing the sequestration volume by 7 � 106 m3. These two
optimized schemes, through the reconfiguration of the well
placement and well control parameters, are tailored to emphasize
different development objectives, thereby maximizing both cu-
mulative oil production and CO2 sequestration volume.

Moreover, it is evident from the comparison of CO2 plume front
distributions between the optimized schemes and the benchmark,
as depicted in Fig. 14, that the optimized schemes demonstrate
smoother and more balanced CO2 plume fronts. Specifically, the
sequestration scheme only conducts constrained optimization for
the I2 and I4 well groups (i.e., the two well groups on the right side
in Fig. 14(b)), while optimization for the I1 and I3 well groups does
not consider anti-gas channeling constraints. In contrast, the pro-
ductivity scheme encompasses optimization for all well groups,
taking into account this constraint. Comparing Fig. 14(a) and (b)
reveals that the sequestration scheme achieves a greater CO2 plume
area and more CO2 remained underground by dynamically
adjusting well control parameters to enable collaboration between
injection and production wells. Furthermore, optimization
considering anti-gas channeling constraints results in a more
balanced and stable distribution of CO2 underground for the I2 and
I4 well groups compared to the I1 and I3 well groups. Comparative
Table 6
Comparison of the results of the benchmark and optimization schemes in 2D synthrtic m

Scheme Cumulative oil production, 104 m3

Benchmark 2.85
Sequestration scheme 2.84
Productivity scheme 5.32

Fig. 13. Comparison of the multiple objectives of the benchm
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analysis of Fig. 14(a) and (c) reveals that the primary challenge to
achieve higher productivity in the productivity scheme is gas
channeling. Premature gas channeling in production wells leads to
a rapid decline in oil production. Therefore, each production well
avoids significant gas channeling by rearranging well placement
and well control parameters, resulting in increased production.
Optimization considering anti-gas channeling constraints is
implemented for all well groups in the productivity scheme,
resulting in a smoother distribution of CO2 underground compared
to the other two schemes. This achieves the goal of balanced
displacement, demonstrating that the proposed optimization
workflow in this study can enhanced hydrocarbon recovery and
CO2 sequestration effectiveness while preventing gas channeling.

4.2. Case 2: 3D field-scale reservoir model

4.2.1. Data pre-processing and analysis for 3D field-scale reservoir
model

The AST-GraphTrans proxy-assisted optimization workflow is
applied to validate its prediction and optimization performance
under complex geological conditions on a field-scale reservoir
model. This 3Dmodel comprises a total of 126,500 grid points, with
grid increments in the x, y, and z directions set at 130, 130, and 5 ft,
respectively. Furthermore, the model encompasses seven well
groups, consisting of 7 injection wells and 13 production wells. The
injection wells maintain fixed injection rates, while the production
wells operate at constant bottomhole pressures. Fig. 15 illustrates
the permeability, porosity, and initial oil saturation of the model,
while detailed geological properties are presented in Table 7. The
entirety of the production period spans 3 years, with a recording
interval set at 3 months, resulting in a total of 12 time steps.

The application of the graph structure is extended to the field-
odel.

CO2 sequestration volume, 108 m3 Variation

0.09 e

0.16 FGST [

0.09 FOPT [

ark and optimization schemes in 2D synthetic model.



Fig. 14. Comparison of CO2 saturation distribution for the benchmark and optimization schemes in 2D synthetic model.

Fig. 15. Geological property distribution of 3D field-scale reservoir model.

Table 7
Properties of the 3D field-scale reservoir model.

Depth, ft Porosity Initial pressure, psi Oil viscosity, cP

12500 0.15e0.55 5600 2.4
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scale reservoir model utilized in this study, with its distribution of
initial well placement depicted in Fig. 16. Based on the distances
between injection and production wells, the preliminary con-
struction of the graph structure for this model is illustrated in
Fig. 16(b). From the illustration, it becomes apparent that the graph
structure exhibits high flexibility in connecting wells. Production
wells that are notably affected by the proximity of the injectionwell
are typically linked to the injection well node (e.g., I1 and P1, P3),
represented by edges. Additionally, wells not directly connected by
edges but linked through a shared node may also interfere each
other (e.g., P3 and P8 indirectly connected through I1).

After the connection relationship between different wells is
defined, it is necessary to further determine the strength of the
edge which is characterized by the CO2 flooding connectivity co-
efficients. This coefficient is calculated by Eq. (10) for the field-scale
reservoir model is depicted in Fig. 17(a), resulting in the adjacency
matrix shown in Fig. 17(b). Notably, this matrix is symmetric.
4.2.2. Production prediction tasks for 3D field-scale reservoir model
The AST-GraphTrans proposed in this study is served as the

proxy model to tackle the production prediction task of the field-
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scale reservoir model. The input data comprises the CO2 flooding
connectivity relationships of 20 wells (used to construct the adja-
cency matrix) and the well control parameters of these 20 wells
(the bottomhole pressures of 13 production wells and the injection
rates of 7 injection wells, utilized for building the dynamic node
feature matrix). The output data includes cumulative oil produc-
tion, CO2 sequestration volume, and the CO2 plume front at various
time steps. For the training process, we also selected the SGD
optimizer to better handle the increased complexity of the 3D field-
scale reservoir model. The ReduceLROnPlateau learning rate
scheduler is configured to dynamically adjust the learning rate
during training. Unlike the 2D synthetic model, we increased the
patience parameter from 10 to 15 epochs. The initial learning rate is
set to 0.0001, with the total number of training epochs established
at 200 to allow more time for convergence. Additionally, we
reduced the batch size from 32 to 12 to accommodate the larger
memory requirements of 3D field-scale reservoir data. The loss
function is set as the MAE.

Furthermore, to validate the disparities between the proxy
model and numerical simulation methods, a comparative analysis
is conducted on 50 selected schemes from the testing set. Each data
point represents a sample, denoting the results corresponding to a
specific time step, totaling 600 samples. The comparison between
the prediction and simulation results for cumulative oil production
and CO2 sequestration volume in these 50 schemes is illustrated in
Figs. 18 and 19. This demonstration showcases that during the
testing process, the proxy model adeptly fits the temporal evolu-
tion curves of cumulative oil production and CO2 sequestration



Fig. 16. Well placement distribution and extracted graph structure of 3D field-scale reservoir model.

Fig. 17. CO2 flooding connectivity coefficients and adjacency matrix of 3D field-scale reservoir model.
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volume obtained through numerical simulation. The errors be-
tween prediction and simulation results fall within a reasonable
range, indicating that the proxy model constructed in this case can
Fig. 18. Comparison between the prediction and simulation results for cumulative oil
production in 3D field-scale reservoir model.

3411
effectively forecast the development effect of CO2 flooding under
complex geological and well pattern conditions.

Furthermore, to demonstrate the advantages of AST-GraphTrans
in handling the production prediction task on a 3D field-scale
reservoir, GAT and Transformer are selected as comparison
models, as in Case 1. Additionally, we employ R2 and MRE to assess
the comprehensive performance of various deep learning methods
in predicting cumulative oil production and CO2 sequestration
volume. Table 8 shows the predictive performance of various deep
learning methods as proxy models. Similar to their performance on
the 2D synthetic model, base learners such as GAT and Transformer
exhibit unique strengths in handling spatial and temporal sequence
data, respectively. However, they cannot simultaneously extract
features from both types of data. The proposed AST-GraphTrans-
based proxy model, on the other hand, leverages graph structures
to extract spatial information of well patterns and geological



Fig. 19. Comparison between the prediction and simulation results for CO2 seques-
tration volume in 3D field-scale reservoir model.

Table 8
Evaluation of prediction effect of proxy model in 3D field-scale reservoir model.

Model Cumulative oil
production

CO2 sequestration
volume

R2 MRE R2 MRE

GAT 0.845 0.272 0.842 0.277
Transformer 0.911 0.198 0.855 0.250
CNN-LSTM 0.915 0.196 0.866 0.231
GCN-LSTM 0.933 0.190 0.869 0.226
AST-GraphTrans 0.936 0.187 0.872 0.202
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properties, while employing an encoder architecture to analyze the
temporal correlation of reservoir production dynamics, thereby
achieving more precise predictions of cumulative oil production
and CO2 sequestration volume. Compared to GAT and Transformer,
the AST-GraphTrans-based proxy model demonstrates superior
performance due to its better generalization and robustness in
predicting the dynamic CO2 flooding and sequestration processes
involving high-dimensional reservoir information. We conducted
the comparative analysis of the AST-GraphTrans against CNN-LSTM
and GCN-LSTM models in terms of predictive performance. The
inherent spatial complexity of the 3D field-scale model progres-
sively elevates the significance of geological spatial information.
Given that GCN and GAT demonstrate exceptional capabilities in
processing graph-structured data rich in spatial information, their
evaluation metrics significantly outperform CNN-based models.
Furthermore, considering the Transformer's superior handling of
temporal sequence data compared to LSTM, AST-GraphTrans re-
mains the top-performing model.

For the prediction of the CO2 plume front, we randomly select
one schemes from the testing set and conducted predictions using
both the proxy model and numerical simulation. The simulation
and prediction results at various time steps and layers are depicted
in Fig. 20. Additionally, to quantitatively analyze the disparities
between the simulation and prediction results of the CO2 plume
front, we employ the SSIM for evaluation. It is evident that as the
time steps increase, SSIM gradually rises, affirming that the proxy
model adeptly captures the dynamic changes in the CO2 plume
front at various time steps. Furthermore, considering geological,
fluid, and well control parameters, the proxy model exhibits ac-
curate prediction regarding the shape of the CO2 plume front. In
practical engineering applications, this proxy model demonstrates
the ability to accurately predict the distribution of CO2 plumes
among various injection and production wells, leveraging intricate
geological and well pattern information. Consequently, it offers
valuable guidance for on-site gas channeling warning and pre-
vention in oilfield operations.
3412
4.2.3. Multi-objective optimization tasks for 3D field-scale reservoir
model

Taking into consideration the three core elements mentioned in
Section 3.4, we establish the multi-objective optimization mathe-
matical model for 3D field-scale reservoir model. The joint opti-
mization of both well placement and well control parameters for
this model is carried out through the utilization of the MOPSO al-
gorithm. Prior to initiating the optimization process, a series of
baseline scenarios comprising the coordinates and control param-
eters for eachwell are established as a comparative benchmark. The
basic parameters of MOPSO algorithm are set as follows: the
number of particles is 100; the number of iterations is 100; inertia
weight is 0.8; the acceleration coefficient is 2.0. The Pareto front
resulting from the MOPSO optimization process is depicted in
Fig. 21. The constraint range of decision variables used in this
optimization process is shown in Table 9.

Following the screening process, the resulting Pareto front is
represented as a relatively smooth curve, comprising 16 Pareto
optimal solutions. The cumulative oil production among these
optimal solutions ranges from 10 � 104 to 33 � 104 m3, while the
CO2 sequestration volume is centered between 2.5 � 108 and
7.0 � 108 m3. Each solution within the Pareto optimal set, derived
through MOPSO optimization, can be considered as genuinely
optimal. In practical engineering applications, decision-makers can
selectively choose the well placement and well control parameter
combination from the Pareto front that aligns with their specific
needs. This selection is based on achieving the desired engineering
objectives, whether emphasizing hydrocarbon recovery or
sequestration efficiency. Referring to the benchmark, we selected
schemes from the Pareto front with equivalent CO2 sequestration
volumes (referred to as the productivity scheme) and equivalent
cumulative oil production (referred to as the sequestration
scheme). A detailed comparison of different optimization schemes
in terms of objective function values is presented in Table 10 and
Fig. 22.

The productivity scheme demonstrates a notable increase in
cumulative oil production, surpassing the benchmark by
10.12 � 104 m3, while maintaining the same CO2 sequestration
volume. This enhancement stems from strategic adjustments in
well placement and the optimization of injection and production
relationships. These adjustments enlarge the CO2 sweep area and
promote a greater intermixing with oil, thereby enhancing hydro-
carbon recovery. If reservoir engineers prioritize higher production,
the productivity scheme would meet their requirements.

Similarly, the sequestration scheme achieves the same cumu-
lative oil production as the benchmark but exhibits a larger CO2
sequestration volume, elevated by 2.17 � 108 m3. This outcome is
attributed to the multi-objective optimization of CO2-EOR strate-
gies, facilitating the extensive underground CO2 plume. While
ensuring the same production, this scheme effectively mitigates
CO2 escape through dominant channels, thereby increasing the
volumetric fraction of CO2 retained underground.

As a result of incorporating intricate anti-gas channeling con-
straints into this optimization process, the shape of the CO2 plume
front becomes more balanced across various time steps, thereby
delaying gas channeling in production wells. A comparison of the
CO2 plume front distribution for the benchmark, sequestration
scheme, and productivity scheme at time steps 6 and 12 is illus-
trated in Fig. 23. Each CO2 plume front distribution depicted in the
figures is derived from numerical simulations. These clearly illus-
trate that both the productivity and sequestration schemes achieve
a more balanced CO2 plume front shape following constrained



Fig. 20. Comparison of the simulation and prediction results of CO2 plume front, as well as the corresponding differences at different time steps and layers in 3D field-scale reservoir
model.
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Fig. 21. Pareto front with multiple objectives in 3D field-scale reservoir model.

Table 9
Constraints for the decision variables in 3D field-scale reservoir model.

Decision variable Constraint lower bound Constraint upper bound

XCoor 0 178
YCoor 0 167
Iinj, m3/day 2 � 104 12 � 104

BHPpro, psi 2500 5000

Table 10
Comparison of the results of the benchmark and optimization schemes in 3D field-scale

Scheme Cumulative oil production, 104 m3

Benchmark 20.29
Sequestration scheme 20.30
Productivity scheme 30.41

Fig. 22. Comparison of the multiple objectives of the benchmark
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optimization under the specified conditions elucidated in this pa-
per. Furthermore, the gas channeling time in each production well
is prolonged. In Fig. 23(a), it is apparent that in the benchmark at
the time step 6, the CO2 plume front of I7 is approaching P7 and P13
wells. This indicates that P7 and P13 wells are on the verge of
experiencing channeling by CO2, potentially resulting in a signifi-
cant increase in CO2 production. Conversely, in both the produc-
tivity and sequestration schemes at time step 6, the CO2 plume
front of I1 has not yet reached P7 and P13 wells. Particularly in the
sequestration scheme, the CO2 plume front between I7 and P7, as
well as P13, has only covered approximately half of their well
spacing. This effectively restrains the advancement of the CO2
plume front compared to the base scheme, thereby delaying the gas
channeling time for P1. This comparison underscores the effec-
tiveness of the proposed optimization workflow in achieving a
more judicious distribution of subsurface CO2, thereby enhancing
both hydrocarbon recovery and sequestration efficiency. Moreover,
it has the capacity to delay the onset of gas channeling, offering
valuable technical insights for the design of well placement and
well control parameters in CO2 flooding operations.

Based on the multidimensional characteristics of data involved
in CO2 flooding and sequestration, we design an optimization
workflow that integrates a proxy model for spatio-temporal
sequence prediction and a multi-objective optimization algorithm
considering anti-gas channeling constraints in CO2 EOR strategies.
The successful performance of the workflow across various types of
reservoirs demonstrates its capability to effectively tackle the
prediction and optimization tasks inherent in CO2-EOR technology.
reservoir model.

CO2 sequestration volume, 108 m3 Variation

4.34 e

6.51 FGST [
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and optimization schemes in 3D field-scale reservoir model.



Fig. 23. Comparison of CO2 saturation distribution for the benchmark and optimization schemes at different time steps in 3D field-scale reservoir model.
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5. Summary and conclusion

The CO2-EOR technology ensures substantial underground CO2
sequestration while also boosting the production capacity of sub-
surface hydrocarbons. Rational well placement and well control
parameters are crucial for the successful implementation of CO2-
EOR technology. Traditional optimization workflows fail to simul-
taneously coordinate the impacts of well placement and well
control parameters on the effectiveness of CO2 flooding and
sequestration. These workflows typically do not take into account
high-dimensional reservoir information and dynamic production
characteristics, limiting their effectiveness in optimizing for
enhanced oil recovery and carbon storage. Moreover, most existing
optimization workflows overlook the detrimental effects of gas
channeling on production. Therefore, a novel deep learning proxy-
assisted optimization workflow is proposed for the collaborative
optimization of CO2-EOR strategies. This workflow primarily en-
compasses three exciting aspects. Firstly, the constructed graph
structure takes into account the intricate well distribution and
dynamic well control parameters, proficiently characterizes the
spatio-temporal correlation among different wells within the CO2
flooding reservoir. It encapsulates the spatio-temporal evolution
patterns of injection and production behavior, thereby endowing
the proxy model with a more comprehensive understanding of
reservoir dynamics during its construction. Subsequently, the AST-
GraphTrans-based proxy model employs GAT and Transformer
modules to accurately extract multidimensional features, ac-
counting for geological and engineering uncertainties. This model
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enables swift and responsive prediction of the spatio-temporal
sequences of well placement and well control parameters across
various time steps, facilitating dynamic forecasting of CO2 flooding
and sequestration. Finally, a novel proxy-assisted optimization
workflow is introduced, integrating the AST-GraphTrans-based
proxy model with multi-objective optimization algorithms. This
workflow not only facilitates the training of a proxy model capable
of substituting physics-based simulators but also tackles joint
optimization challenges in CO2-EOR strategies. The effectiveness of
the proposed workflow is validated on a 2D synthetic model and a
3D field-scale reservoir model. The results demonstrate significant
increases in cumulative oil production by 87% and 49%, and CO2
sequestration volume enhancement by 78% and 50% across various
reservoirs. This ensures the maximization of cumulative oil pro-
duction and CO2 sequestration volume while constraining and
mitigating gas channeling. Thus, this study provides a more effi-
cient prediction and optimization tool that maximizes CO2
sequestration and oil recovery while mitigating gas channeling,
thereby ensuring cleaner oil production. However, the present
research has not explored the influence of various CO2-EOR stra-
tegies on economic benefits such as NPV. Therefore, it lacks the
ability to handle three or more objectives simultaneously in opti-
mizing well placement and control parameters, which may make
the optimization time much longer. This aspect holds significant
importance for the comprehensive evaluation of CO2-EOR projects.
In addition, this workflow has been exclusively validated in me-
dium and high permeability reservoir environments currently,
demonstrating promising performance. However, the methodology
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remains untested for compatibility with more complex geological
formations, including unconventional reservoirs and those char-
acterized by intricate fault and fracture networks. Nonetheless, the
proposed workflow represents an innovative and extensible
analytical approach. By strategically re-optimizing inputs, outputs,
and specific model hyperparameters, the workflow shows consid-
erable potential for addressing prediction and optimization chal-
lenges across diverse and complex reservoir conditions. These
nuanced considerations will be subject to further exploration in
forthcoming investigations.
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