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Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated aniso-
tropic media, affecting the quality of migration imaging. To compensate and correct for these effects, the
fractional Laplacian pure viscoacoustic wave equation capable of producing stable and noise-free
wavefields has been proposed and implemented in the Q-compensated reverse time migration (RTM).
In addition, the second-order Taylor series expansion is usually adopted in the hybrid finite-difference/
pseudo-spectral (HFDPS) strategy to solve spatially variable fractional Laplacian. However, during for-
ward modeling and Q-compensated RTM, this HFDPS strategy requires 11 and 17 fast Fourier transforms
(FFTs) per time step, respectively, leading to computational inefficiency. To improve computational ef-
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Keywords: ficiency, we introduce two high-efficiency HFDPS numerical modeling strategies based on asymptotic
Acoustic approximation and algebraic methods. Through the two strategies, the number of FFTs decreased from 11
Anisotropy to 6 and 5 per time step during forward modeling, respectively. Numerical examples demonstrate that
Attenuation

wavefields simulated using the new numerical modeling strategies are accurate and highly efficient.
Finally, these strategies are employed for implementing high-efficiency and stable Q-compensated RTM
techniques in tilted transversely isotropic media, reducing the number of FFTs from 17 to 9 and 8 per
time step, respectively, significantly improving computational efficiency. Synthetic data examples
illustrate the effectiveness of the proposed Q-compensated RTM scheme in compensating amplitude
dissipation and correcting phase distortion.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Reverse time migration

1. Introduction

Attenuation and anisotropy are widespread properties in sub-
surface media, such as aligned fluid-filled fractures, low/high relief
structures, and aligned minerals. These properties cause amplitude
dissipation and waveform distortion as seismic waves propagate
through anisotropic and attenuated media (Kjartansson, 1979;
Thomsen, 1986; Carcione, 1992; Aki and Richards, 2002; Carter and
Kendall, 2006; Zhu and Bai, 2019). Failure to correct and compen-
sate for these effects during migration imaging will can lead to
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reduced resolution and quality of the migrated images (Liu et al.,
1976; Wang et al., 2022a; Mu et al., 2022a). To address these is-
sues, it is crucial to develop numerical strategies that effectively
compensate for both attenuation and anisotropy during migration.

Seismic viscosity is a significant characteristic in earth media, in
which seismic wave propagation exhibits energy loss and phase
dispersion. To describe seismic attenuation, two main models have
been proposed: the standard linear solid (SLS) model (Carcione
et al,, 1988; Deng and McMechan, 2007) and the constant-Q (CQ)
model (Ijartansson, 1979; Guo et al.,, 2016). The SLS attenuation
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model can simulate the Q effect by superposing multiple relaxation
mechanisms in parallel, which has been widely used in industrial
applications due to its flexibility and efficiency (Carcione, 2007; Qu
et al., 2017; Mu et al., 2023). However, fitting CQ characteristics to
specific frequency bands complicates the separation of dispersion
and attenuation effects, which can challenge the implementation of
Q-compensated RTM (Liu et al., 1976; Qu et al., 2022). In contrast,
the CQ model has the advantage of decoupling amplitude loss and
phase dispersion. Based on the CQ model, Carcione et al. (2002)
introduced a time-domain temporal fractional viscoacoustic wave
equation, which requires storing wavefields at each time step.
Subsequent studies aimed to reduce storage demands (Zhu et al.,
2014; Chen et al., 2016; Zhou et al., 2023), making Q-compen-
sated RTM easier to apply. Recent work by Sun et al. (2024) has also
expanded the Q-compensated RTM methods into the frequency
domain using time-fractional viscoacoustic equations based on the
constant-Q model.

In recent decades, considerable research has focused on seismic
wave modeling methods that consider both anisotropy and
attenuation. For instance, Xie et al. (2015) developed a viscoacous-
tic wave equation in transversely isotropic (TI) media based on
Duveneck and Bakker's (2011) anisotropic acoustic wave equation.
Xu et al. (2015) proposed a pure viscoacoustic wave equation
incorporating the single-SLS model. Fathalian et al. (2021) exten-
ded this by developing a viscoacoustic TTI wave equation, ac-
counting for amplitude attenuation and phase dispersion in TTI
media. However, these models typically assume velocity anisotropy
and attenuation isotropy. Petrophysical experiments, however,
show that attenuation anisotropy, along with velocity anisotropy;, is
common in subsurface media (Tao and King, 1990; Lynn et al., 1999;
Zhubayev et al., 2016). To capture these effects, Da Silva et al. (2019)
proposed a viscoacoustic TTI wave equation to describe anisotropic
attenuation in attenuating TTI media, while Zhang et al. (2020)
introduced pseudo-viscoacoustic VIl wave equations. Unfortu-
nately, these pseudo-viscoacoustic TI wave equations become un-
stable when the anisotropic parameter ¢ < ¢, leading to shear-wave
artifacts (Mao et al., 2024a). To overcome these issues, the fractional
Laplacian pure viscoacoustic wave equation has been proposed,
based on the CQ model, and applied in Q-compensated RTM (Zhang
et al., 2022; Mu et al., 2022b; Xiang et al., 2025). However, in het-
erogeneous media, the mixed-domain fractional Laplacian operator
varies with the quality factor, which complicates its direct solution
(Yao et al., 2017; Xing and Zhu, 2019). The traditional approach for
solving this issue is the second-order Taylor series expansion in the
HFDPS strategy, which requires calculating 11 FFTs per time step
during forward modeling. This high computational demand limits
the practical application of traditional HFDPS strategies in real
production environments.

Attenuation compensation is critical for high-quality imaging in
attenuated media. However, during wavefield extrapolation, high-
frequency noise can be amplified during compensation, leading to
instability in the resulting images (Zhu et al., 2014; Li and Qu, 2022;
Wang et al, 2022b; Mu et al,, 2023). To stabilize attenuation-
compensated RTM, low-pass filters are commonly used in the
wavenumber domain to suppress high-frequency noise. However,
their application can inadvertently suppress some useful signal,
particularly when the velocity and Q models vary significantly
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(Yang et al., 2021; Mu et al., 2023). Additionally, when seismic data
contains substantial random noise, low-pass filtering can unin-
tentionally remove relevant signal components. To address these
challenges, the stabilization factor method has been proposed,
which automatically suppresses high-frequency noise and operates
in the time-space domain, preserving more of the signal's integrity
(Wang et al., 2022a; Chen et al., 2020; Mao et al., 2024b). However,
the stabilization factor method increases the number of FFTs per
time step from 11 to 17, posing computational challenges for large-
scale simulations.

In this study, we propose two high-efficiency numerical strat-
egies to address the computational cost and instability challenges
in Q-compensated RTM for attenuating anisotropic media. First, we
introduce an algebraic method for the HFDPS strategy, reducing the
number of Fourier transforms per time step and significantly
improving computational efficiency. Building on this strategy, we
derive a stable and efficient anisotropic attenuation-compensated
extrapolation operator and successfully implement Q-compen-
sated RTM in attenuating TTI media. Through synthetic examples,
we demonstrate that the new Q-compensated TTI RTM method
effectively compensates for waveform distortion and amplitude
attenuation due to anisotropy, achieving high computational effi-
ciency. We also explore an enhancement to the HFDPS strategy
using an asymptotic approximation method, further improving
computational efficiency in Q-compensated RTM. These strategies
provide effective tools for Q-compensated RTM in attenuating
anisotropic media, improving both computational efficiency and
imaging quality in real seismic data.

2. Theory
2.1. Review of the traditional HFDPS numerical solution strategy

To accurately describe the attenuation effect in anisotropic
media, based on Kjartansson's CQ attenuation model, Xiang et al.
(2025) proposed the approximated complex-valued dispersion
relation in attenuation VTI media:
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where o is the angular frequency. ky and k, denote spatial wave-
numbers along the horizontal and vertical directions, respectively.

Mjj(w) = Gjj cos?(my; /2)(%;)27"1 represent the complex stiffness
components. y; = arctan(1/Q;)/m are dimensionless parameters,
0<y;<1/2, and for any positive value of Q;. C; and Q; are the
elastic stiffness constants and the quality factor, respectively. In
addition, C33 = pvp?, C1q = C33(1 + 2¢), and Cy3 = C33/(1 + 20).
e and 0 are Thomsen anisotropic parameters (Thomsen, 1986).
Qi3 = 2Q33/(0gC%5 /C35 + 2), Q1 = Q33/(1 + £q), and Q33 = Qp.
eq and 0g denote Thomsen-type attenuation anisotropy parame-
ters (Zhu and Tsvankin, 2006). To improve readability and facilitate
understanding, we define the following conventions:
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where ¢ is the tilt angle. In addition, we also define the following
conventions:
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where .7 and .7 ~! represent forward Fourier transform and in- ~ where f is the source-time function, and j, X, a;, b; can be
verse Fourier transform, respectively. Subsequently, based on the expressed as

work of Xiang et al. (2025), the traditional HFDPS strategy is used

to discrete the pure viscoacoustic TTI wave equation, which can be

written as
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In addition, to facilitate the subsequent discussion, we have refer- 2.2. High-efficiency HFDPS numerical solution strategy
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elliptic term and the 4-order partial derivatives terms (e.g. % % brob

high-efficiency HFDPS (HE-HFDPS) numerical modeling strategy
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the elliptic term of Eq. (1) to construct the fractional form I<2i @ Which

can unify the denominator form of the elliptic term and the correction
term of Eq. (1). In addition, this method without approximations
requires only algebraic operations, then Eq. (1) can be rewritten as
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Similar to the derivation of Eq. (4), using the HE-HFDPS strategy
to simulate the pure viscoacoustic TTI wave equation as follows:
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Fig. 1. Wavefield snapshots at 0.4 s by simulating (a) the reference HFDPS strategy Eq. (4), (b) the proposed HE-HFDPS strategy Eq. (7) based on the algebraic method, and (c) the
proposed HE-HFDPS strategy Eq. (C.9) based on the asymptotic approximation method. Note that (d) and (e) are comparisons of the wavefield snapshots of (a) with (b) and (c) in

wiggle format, respectively.

From the above Eq. (7), we will find that Eq. (7) only retains
(Le—L11) compared to the traditional strategy Eq. (4) (Li—L11),
reducing the number of FFTs from 11 to 6 per time step. It shows
that the proposed HE-HFDPS numerical modeling strategy has
significant potential for improved computational efficiency in
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forward modeling. In addition, Eq. (5) does not adopt extra
approximation compared with the original approximated complex-
valued dispersion relation (Eq. (1)). Therefore, the wavefield sim-
ulation accuracy of this scheme is equivalent to that of the original
HFDPS numerical modeling strategy. In the subsequent realization
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Fig. 2. Trace comparison at a horizontal distance of 0.9 km. (a) The black solid line and the red dashed line denote the trace from Fig. 1(a) and (b), respectively. The blue dashed line
is the difference between the black solid and red dashed lines. (b) The black solid line and the blue dashed line denote the trace from Fig. 1(a) and (c), respectively. The pink dashed
line is the difference between the black solid and blue dashed lines. Method 1 and Method 2 represent the algebraic and asymptotic approximation methods, respectively.

of attenuation compensation RTM, Eq. (7) is used as the attenuation
source formula to derive the efficient and stable Q-compensated
wavefield modeling operator.

2.3. Analysis of the proposed HE-HFDPS strategies

To facilitate the analysis of the accuracy, robustness, and com-
putational efficiency of different strategies, we compare the tradi-
tional HFDPS strategy Eq. (4), the HE-HFDPS strategy based on the
algebraic method Eq. (7), and the HE-HFDPS strategy based on the
asymptotic approximation method Eq. (D.9) together. Note that the
HE-HFDPS strategy based on the asymptotic approximation method
is discussed in the Discussion section. All experiments are imple-
mented using the MATLAB 2021a platform on the same computer
with an Intel(R) Core (TM) i3-6100 CPU@3.70GHz, memory of 16G.

2.3.1. Accuracy analysis

To evaluate the stability of the proposed HE-HFDPS strategy
when &< 6 and its accuracy in anisotropic attenuation media. We
designed a homogeneous VTI model with a size of 301 x 301 for the
numerical experiments, and the size of the vertical and horizontal
grids is 10 m. A Ricker wavelet is located at (1510 m, 1510 m) as the
source, and the peak frequency is 25 Hz. The time step for the
numerical simulation is 1 ms. The model parameters are as follows:
e =01,0=025¢ =040y = —0.1,yp =3000m/s,and Q =
30.

Fig. 1 shows the wavefield snapshots of different strategies at
0.4 s, calculated by the traditional HFDPS strategy (Fig. 1(a)), the
proposed HE-HFDPS strategy based on the algebraic method
(Method 1) (Fig. 1(b)), and the asymptotic approximation method
(Method 2) (Fig. 1(c)), respectively. In Fig. 1, when the anisotropy
parameter ¢ <6, the proposed two highly efficient numerical sim-
ulation methods can obtain stable wavefield snapshots. To compare
the simulated accuracy, Fig. 1(d) and (e) present the wavefield
snapshots of Fig. 1(b) and (c) overlaying Fig. 1(a), respectively. From
Fig. 1(d), the wavefield generated by the proposed HE-HFDPS
strategy based on Method 1 aligns perfectly with the reference
trace. However, the HE-HFDPS strategy based on Method 2 deviates
significantly from the reference (shown by the black arrow).

For a more detailed comparison, Fig. 2 displays the vertical
traces at the horizontal distances of 0.9 km extracted from Fig. 1. In
Fig. 2(a), the numerical result obtained from the HE-HFDPS strategy
based on Method 1 (the dashed red line) aligns with the result
obtained from the reference HFDPS strategy (the solid black line). In
addition, the blue dotted line represents the absolute difference
between the track of Method 1 and the reference track, which is
close to zero. From Fig. 2(b), the HE-HFDPS strategy based on
Method 2 significantly deviates from the reference line. These re-
sults are consistent with the theoretical analysis provided in the
previous section, that the algebraic method has the wavefield
simulation accuracy equivalent to the original HFDPS numerical
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modeling strategy. However, the numerical simulation strategy
based on the asymptotic approximation method will lead to the
imbalance of the propagation amplitude, but fortunately, the phase
information is relatively accurate. The asymptotic approximation
method will be discussed in more detail in the Discussion section.

2.3.2. Robustness analysis

To verify the robustness of the HE-HFDPS strategies based on the
algebraic method and the asymptotic approximation method in
complex media, the BP TTI model was used to simulate the wave-
field. Fig. 3 shows the complex BP TTI model, which is discretized
into a grid of 787 x 451. The vertical and horizontal grid spacing is
10 m. The Ricker wavelet with a dominant frequency of 20 Hz is
placed on the surface at 3985 m. The time step for the numerical
simulation is 0.8 ms, and the reference frequency is 20 Hz.

Fig. 4 displays wavefield snapshots simulated by the Zhang et al.
(2020b) proposed coupled pseudo-viscoacoustic TTI wave equation
(Fig. 4(a)—(b)), the proposed HE-HFDPS strategies based on the
algebraic method (Fig. 4(c)—(d)), and the asymptotic approximation
method (Fig. 4(e)—(f))att = 1.6 sand t = 2.4 s, respectively. Fig. 4(a)
and (b) show wavefield snapshots are numerical instabilities.
However, the wavefield snapshots in Fig. 4(c)—(d) and 4(e)—(f)
simulated by the proposed two HE-HFDPS strategies are stable.
These findings illustrate that the HE-HFDPS strategies based on the
algebraic method and the asymptotic approximation method can
obtain stable simulated wavefields in complex attenuation media.

2.3.3. Efficiency analysis

To analyze the computational efficiency, we list the number of
forward and inverse Fourier transforms required for each time step
of the traditional HFDPS and HE-HFDPS strategies in forward
modeling and Q-compensated RTM in Tables 1 and 2, respectively.
Table 1 indicates that the proposed HE-HFDPS strategy can reduce
the number of FFTs from 11 to 6 and 5 in forward modeling,
respectively. Similarly, Table 2 shows a reduction in FFTs from 17 to
9 and 8 for Q-compensated RTM, respectively. Then, to further
validate the computational efficiency of the proposed numerical
solution strategies in forward modeling, these homogeneous media
with sizes of 101 x 101, 301 x 301, and 601 x 601 are conducted
forward simulation of different numerical modeling strategies. The
recording time is 0.8 s, and the model parameters are vp =
2500 m/s,eq =0.4,0g = — 0.1, =0.35,0 =0.1,Q =20and ¢ =
45°. The sponge absorption boundary has a thickness of 50 grid
points.

In addition, to show the improvement of computational effi-
ciency more clearly, we construct the efficiency improvement ratio
(EIR) formula as follows:

EIR = (l - l) 1
t, [R

% 100%,

i =1, 2
™ o

(8)
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Fig. 3. The model parameters of BP TTI model: (a) vp, (b) ¢, () 0, (d) Qp, (€) &q, (f) 0q. (g) ¢.

where fR is the reference strategy running time, ty;, represents the
simulation running time of the algebraic method or the asymptotic
approximation method.

Tables 3 and 4 show the running time and efficiency improve-
ment ratio of using algebraic and asymptotic approximation
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methods to simulate 0.8 s wavefield snapshots, respectively. The
running time comparison in Tables 3 and 4 demonstrates that the
numerical solution times for the proposed HE-HFDPS strategies are
shorter than that of the reference HFDPS strategy. In particular, the
computational efficiency of the newly proposed numerical
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Fig. 4. Wavefield snapshots at t = 1.6 s, and t = 2.4 s simulated by the pseudo-viscoacoustic TTI wave equation ((a), (b)), the newly proposed HE-HFDPS strategy based on the
algebraic method ((c), (d)), and the HE-HFDPS based on the asymptotic approximation method ((e), (f)), respectively.

Table 1

The number of forward Fourier transforms (FTs) and inverse Fourier transforms
required at each time step for the numerical solution of the forward modeling using
different numerical simulation strategies.

Table 3
The running time and efficiency improvement ratio (EIR) of using the reference and
algebraic methods to simulate 0.8 s wavefield snapshots in forward modeling.

Model size Method
Method , .
Reference time, s Algebraic time, s EIR
Refi Al ic ti A i i i i
eference gebraic time symptotic approximation time 101 101 20157 12129 66.53%
Forward FTs 2 2 2 301 x 301 961.28 573.08 67.73%
Inverse FTs 11 6 5 601 x 601 3559.05 2056.58 73.06%
Table 2 modeling strategies can be nearly doubled compared with the

The number of forward Fourier transforms and inverse Fourier transforms required
at each time step for the numerical solution of the Q-compensated RTM using dif-
ferent numerical simulation strategies.

Method

Reference  Algebraic time  Asymptotic approximation time
Forward FTs 2 2 2
Inverse FTs 17 9 8

2801

reference strategy, and the asymptotic approximation method has
a higher computational efficiency than the algebraic method. That
is because, for each time step of the forward modeling, the
asymptotic approximation method only needs to solve 5 FFTs,
while the algebraic method solves 6 FFTs. In addition, the asymp-
totic approximation method does not contain any fourth-order
partial derivatives, only second-order partial derivatives.
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Table 4

The running time and efficiency improvement ratio (EIR) of using the reference and
asymptotic approximation methods to simulate 0.8 s wavefield snapshots in forward
modeling.

Model size Method

Reference time, s Algebraic time, s EIR
101 x 101 201.57 93.28 116.09%
301 x 301 961.28 409.93 134.50%
601 x 601 3559.05 1430.91 148.72%

2.4. Derivation and implementation of efficient and stable Q-
compensated RTM

To implement anisotropic attenuation-compensated RTM, by
reversing the sign of the amplitude attenuation term (x;; terms and
b;; terms) and maintaining the phase dispersion term ({; terms and
a; terms) unchanged in Eq. (6), we can achieve attenuation-
compensated wavefield extrapolation. Then, the anisotropic
attenuation-compensated extrapolation operator can be written as

Y R LS 5
—X33&( -

M3y d H33Y33~5
01(—V2) 33733 _bla<—vz) 3373372

2\ M1711 0 2 MYy
—az(—V> +b2&(_v>

’p 1
atz - 62 N 62
0x2  0z2

where fi represent the recorded data. However, the high-frequency
noise can occur during wavefield extrapolation, which will be
exponentially amplified during the attenuation compensation
process, resulting in instability in imaged results.

According to the theory of seismic wave propagation, the
amplitude of seismic wave propagation in viscous media decays
exponentially with the propagation distance (Mu et al., 2023; Mao

Z33( - Vz)y33

V2>Y33—%
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P(t + At, ) = P(t, w)exp [ - iAtwng}

x exp|Atwlw! Y tan(Tty/Z)}, (10)

where At denote the time interval of seismic wave propagation. In
Eq. (10), the real part represents the amplitude compensation term,
which increases exponentially with frequency. To avoid the insta-
bility of attenuation-compensation numerical simulation in iso-
tropic attenuation media, Mu et al. (2023) proposed a stable term
Y(1 —7w)w into the real part of Eq. (10), where 7 = 1/(2w;) is the
stability factor and Y is a constant that is associated with 7. In
addition, the parameter w,=2m(f; + fs), where f; denote the
dominant frequency of the source wavelet. f; denotes the incre-
ment of frequency. Through numerous numerical experiments, Mu
et al. (2023) concluded that the f; (5, 20). The detailed steps of
how to accurately obtain the stabilization parameter 7 have been
given in the work of Mu et al. (2023). In particular, the effectiveness
of this method for suppressing high-frequency noise in attenuating
anisotropic media has been demonstrated in the work of Mao et al.
(2024a). Thus, we do not discuss them in detail in this paper.

P+fR7 (9)

Subsequently, we adopt the HE-HFDPS numerical solution strategy
to achieve high-efficiency and stable attenuation-compensated
RTM. By using some mathematical derivations, the efficient and
stable attenuation-compensated operator in the attenuation TTI
media can be derived as follows (the detailed derivations see Ap-
pendix B):

=~ o1 2 Y11 _ Y11 2 Y11 +1
(3 () () ()
e 1 Y33 V33 V33+1
2p ;| (C33< v) C336t( v) C336t( v) )
a?:aer Hs3Y 9 Ba3Y33— R} 33733+ P/, an
2 622 7 o 2 33133 . vr 2 3313372 7 Yvr 2 2M33 1337137
(%( v ) lpzat( v ) %at( v ) )
92 M11711 _ 2 ) Mn“/n—% _ 3 ) %Nn’)’n‘*’%—l
s (El( v ) gzat( v ) E3at< v )
et al,, 2024a). Then, the analytical expression of amplitude com- where 4111 _ CI(JYUH) (;ZYU cos2Yi (T *2YUC£'7UH)‘*’SZYU

pensation for seismic waves propagating in isotropic attenuation
media can be written as
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cos?"i (31 tan (T51), Zu = 2'rYuC(Y”/2+1 ) cos”i-1 (7J1) tan("J4)w, ",
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Similar to the derivation of Eq. (7), we can obtain the efficient
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T T
J S3(x, t)RE(x, t)dt Jo S(x, t)R(x, t)dt

and stable attenuation-compensated extrapolation equation using I€(x) = (% _ 7 (13)
the HE-HFDPS strategy as follows: JO S (x, S (x, )dt JO S(x, OS(x, b)dt
g (Ch (L;J + 2711 (®)Lyg + 275 (W)L ) +h (L,12 + 2711 (0)Ly3 + 27, (X)L’M) )
o\ (L 2rm 0L + 29 (0L )
7, (C}a (L;a +2733(0)L10 + 2735 (%)L ) + s (Lllz +2733(0)L13 + 273 (X)L!M) )
+0s (Llls +2733(0)L16 + 27530115 )
W1 (Lo + 22A33733(X)Lsp + 2(733733(x) )Ly )
+¥> (L,12 +2233733(0)L13 + 2(A33733(%) )ZL,M)
+¥5 (L,15 + 22337330116 + 2(A33733(%) )° Ly )
-y +f, (12)

1 (Lo + 2201711 (W)L + 201711 (0L )

where Ly—L}, are shown in Appendix C.

Compared to the traditional HFDPS strategy Eq. (C.2), which
requires 17 FFTs (L} —L)) per time step (the derivation is shown in
Appendix C), the proposed HE-HFDPS numerical solution strategy
only retains 9 FFTs (L5 —L};), reducing the number of FFTs from 17 to
9 per time step during Q-compensated RTM. That demonstrates
that the proposed HE-HFDPS numerical solution strategy has sig-
nificant potential for improved computational efficiency in Q-
compensated RTM.

For attenuation anisotropic media, the Q-compensated RTM
workflow involves three steps. To describe the amplitude attenu-
ation, we assume the exponential form e~")L, where L represents
the propagation distance, 7(f) denote the attenuation factor. Firstly,
based on the pure viscoacoustic TTI wave propagation Eq. (6) to
simulate the forward source wavefield. This process can be
expressed mathematically as S3(x, t) = S(x, t)e~"(?)lwwmn  Secondly, by
using the stable attenuation-compensated extrapolation Eq. (11) as
the reverse-time wavefield extrapolation operator to realize the
backward propagation of the seismic record that the process can be
expressed as RE(X, t) =R3(x, t)et"Olw = R(x, t)e "Dl e~ 1(Dlwe+
n()Lup = R(x,t)e "OLown Note that where S?(x,t), R¥(x,t), and
R°(x, t) represent the attenuation source, the attenuation receiver,
and the compensated receiver wavefield, respectively. S(x,t), R(x, t)
denote the forward propagation source and backward propagation
receiver wavefields in non-attenuating media, respectively. Thirdly,
applying a suitable imaging condition to obtain the final imaging
results (Fathalian et al., 2021). The widely used source-normalized
cross-correlation imaging condition can be expressed as

—| +£& (L’12 + 2411711 L3 + 241711 (%) )ZLI14)
+&3 (L’15 + 201711 (%L1 + 2(A11711 (%) )Ly )
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where T is the total time of the seismic recording. Eq. (13) shows
that the imaging results of the compensated migration are theo-

0.3
E 0

-0.3
Fig. 5. Snapshots at 0.6 s were calculated using (a) acoustic TTI, (b) dispersion-
dominant TTI, (c) dissipation-dominated TTI, and (d) viscoacoustic TTI wave equa-

tions, respectively. The model parameters are vp = 3000 m/s,e =0.3,6 =0.1,Q, =30,
eq =04, 0q =—0.1 and ¢ = 45" at the reference frequency of 500 Hz.
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Fig. 6. Gas cloud model: (a) vp, (b) &, (c) 4, (d) Qp, (€) eq. (f) dq. (8) ¢.

retically equivalent to the imaging results of the acoustic aniso-
tropic migration.

3. Numerical examples

In this section, we utilize the HFDPS strategy Eq. (4) proposed by
Xiang et al. (2025) to produce the reference wavefield and compare
it with the proposed HE-HFDPS numerical modeling strategy Eq.
(7). Boundary reflections are suppressed by sponge-absorbing
boundary conditions (Cerjan et al., 1985).
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3.1. The dissipation and dispersion properties of the algebraic
method

To demonstrate that the proposed HE-HFDPS numerical mod-
eling strategy based on the algebraic method can simulate the
separate effects of amplitude attenuation and phase dispersion, we
construct a homogeneous model with a size of 401 x 401, and the
size of the vertical and horizontal grids is 10 m. A Ricker wavelet is
located at (2010 m, 2010 m) as the source, and the peak frequency is
25 Hz. The time step for the numerical simulation is 1 ms. The
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Fig. 7. Migration imaging results of (a) acoustic TTI data with acoustic-TTI RTM (reference), (b) viscoacoustic-TTI data with acoustic-TTI RTM, (c) viscoacoustic-TTI data with

viscoacoustic-ISO RTM, and (d) viscoacoustic-TTI data with viscoacoustic-TTI RTM.
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Fig. 8. Trace comparison from Fig. 7 at a horizontal distance of 1.3 km. The black solid
line denotes the reference trace extracted from Fig. 7(a). (a) The red, (b) green, and (c)
blue dashed lines represent the trace from Fig. 7(b), 7(c), and 7(d), respectively.

model parameters are v, = 3000 m/s, ¢ =0.3,6 = 0.1, Qp = 30,
eq = 0.4, 0g =—0.1 and ¢ =45° at the reference frequency of
500 Hz.

Fig. 5 shows snapshots at 0.6 s were calculated using acoustic
TTI (Fig. 5(a)), dispersion-dominant TTI (Fig. 5(b)), dissipation-
dominated TTI (Fig. 5(c)), and viscoacoustic TTI wave equations
(Fig. 5(d)), respectively. As shown in Fig. 5(a) and (b), the amplitude

of the dispersion-dominated wavefield is similar to that of the
acoustic wavefield, but the phase is delayed due to the velocity
dispersion. In Fig. 5(c), the wavefront of the dissipative dominant
wavefield is the same as that of the acoustic dominant wavefield,
but the amplitude is reduced significantly. The simulated viscoa-
coustic wavefield has both attenuated amplitude and delayed
phase in Fig. 5(d). This experiment shows that the proposed HE-
HFDPS numerical modeling strategy based on the algebraic
method can achieve a decoupled wave field simulation of ampli-
tude attenuation and phase dispersion, which is beneficial for
implementing Q-compensated RTM in attenuated anisotropic
media.

3.2. A simple gas reservoir model

To illustrate the influence of viscosity and anisotropy on
migration imaging of the proposed efficient and stable attenuation-
compensated RTM scheme, we construct a simple gas cloud model.
The model parameters and structure are shown in Fig. 6 with a grid
size of 401 x 201 for the numerical experiments, and the vertical
and horizontal grid spacing is 10 m. The time step for the numerical
simulation is 0.8 ms, and the total recording time is 2.4 s. We
located 80 shots at a depth of 10 m as the source, the shot spacing is
50 m. The peak frequency is 25 Hz and the reference frequency is
500 Hz. We used 401 surface-deployed receivers to record the re-
flections for each shot, with a receiver interval of 10 m. Notice that
the acoustic TTI shot is gathered by assuming Q — « in Eq. (4) and
the w; = 707 rad/s.

In Fig. 7, we present the acoustic-TTI RTM (AC-TTI RTM) result
obtained by using acoustic-TTI data as the reference (Fig. 7(a)), the
AC-TTI RTM imaging result computed by using viscoacoustic (VA)
data in Fig. 7(b), the viscoacoustic-ISO RTM (VA-ISO RTM) result
calculated by using viscoacoustic data in Fig. 7(c), and the
viscoacoustic-TTI RTM (VA-TTI RTM) imaging result by using vis-
coacoustic data in Fig. 7(d), respectively. Upon comparing
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Fig. 9. Marmousi TTI model: (a) vp, (b) ¢, (c) 6, (d) Qp, (€) eq, (f) dq. (8) ¢-

Fig. 7(b)—(a), the AC-TTI RTM result computed by using viscoa-
coustic data exhibits amplitude energy attenuation because of
ignoring the viscosity effect. Analysis of Fig. 7(c) reveals that the
amplitude energy of the VA-ISO RTM result is compensated.
However, the deep structures remain unrecovered and exhibit
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obvious phase distortion because the anisotropic effect is ignored
(as shown by the red arrow in Fig. 7(c)). It is evident from Fig. 7(d)
that the amplitude energy is well compensated.

For a more detailed comparison, Fig. 8 shows the vertical pro-
files at horizontal distances of 1.3 km extracted from Fig. 7. In
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Fig. 10. Migration imaging results of Marmousi TTI model. (a) Acoustic TTI data with acoustic-TTI RTM (reference), (b) viscoacoustic-TTI data with acoustic-TTI RTM, (c)
viscoacoustic-TTI data with viscoacoustic-ISO RTM, and (d) viscoacoustic-TTI data with viscoacoustic-TTI RTM.
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Fig. 11. Trace comparison from Fig. 10 at a horizontal distance of 2.3 km. The black
solid line denotes the reference trace extracted from Fig. 10(a). (a) The red, (b) green,
and (c) blue dashed lines represent the trace from Fig. 10(b), 10(c), and 10(d),
respectively.

Fig. 8(a), the red dotted line exhibits a weak amplitude and a sig-
nificant phase shift compared to the reference traces (the black
solid line). In Fig. 8(b), the green dashed line compensates for the
amplitude in the shallow layers, however, the amplitude in the
deeper layers remains weak and displays a significant phase shift.
Analyzing Fig. 8(c), the blue dotted line agrees very well with the
black solid lines. The above numerical examples show that the
newly derived Q-compensated TTI RTM based on the algebraic
method can simultaneously correct waveform distortion and
amplitude weaker caused by anisotropy and attenuation.

3.3. Modified Marmousi TTI model

To demonstrate the practicality of the new stable Q-compen-
sated RTM method in a complex geological model, we created
a modified attenuation Marmousi model in Fig. 9. The model has
a grid size of 369 x 201 with vertical and horizontal grid spacings of
10 m. The time step for the numerical simulation is 0.8 m, and the
total recording time is 2.4 s. We used a Ricker wavelet with
a dominant frequency of 20 Hz as the source, with a reference
frequency of 500 Hz. There are 61 shots positioned at a depth of
10 m, with a shot spacing of 60 m. We employed 369 surface-
deployed receivers, positioned at 10 m intervals, to record the re-
flections for each shot. Notice that w, = 707 rad/s.

In Fig. 10, we plotted the reference RTM imaging (Fig. 10(a)), the
AC-TTI RTM result (Fig. 10(b)), the VA-ISO RTM imaging result
(Fig. 10(c)), and the VA-TTI RTM result (Fig. 10(d)). Additionally, in
Fig. 11, we provided a more detailed comparison by showing the
vertical profiles at horizontal distances of 2.3 km extracted from the
results in Fig. 10. From Fig. 10(b)—(a), we observed that the AC-TTI
RTM result computed by using viscoacoustic data exhibited
amplitude energy attenuation and phase distortion when
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Fig. 12. Trace comparison at a horizontal distance of 0.8 km. The black solid line and
dashed line are the wavefield traces computed by the reference HFDPS strategy Eq. (4)
and the proposed HFDPS strategy Eq. (C.9) based on the asymptotic approximation
method for the quality factors Q = 30 (a), Q = 20 (b), and Q = 10 (c), respectively.

comparing the reference results. In Figs. 10(c) and 11(d), the VA-ISO
RTM results not only showed poor amplitude energy compensation
but also significant phase distortion (as shown by the black circles).
However, the amplitude energy of the VA-TTI RTM result is com-
pensated, and the phase is corrected well in Figs. 10(d) and 11(c).
The above synthetic examples indicate that the newly derived Q-
compensated TTI RTM using the algebraic method can simulta-
neously correct waveform distortion and amplitude weaker caused
by anisotropy and attenuation in complex attenuation media.

4. Discussions

In the above section, we proposed a new HE-HFDPS numerical
modeling strategy based on the algebraic method, which has no
approximation and only algebraic operations compared with the
reference equation. In this section, we discuss another HE-HFDPS
numerical modeling strategy based on the asymptotic approx-
imation method to further reduce the computation number of FFTs
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per time step. Similar to the asymptotic approximation method
used in anisotropic non-attenuation forward modeling by Xu and
Zhou (2014). We extend the use of the asymptotic approximation
(n = k/|k|] = VP/|VP|) from anisotropic acoustic media into ani-
sotropic attenuation media to eliminate the fractional form k;jr—kz of

the correction term. This method only retains (L1—Ls) compared to
the traditional strategy Eq. (4) (L1—Lq1), reducing the number of
FFTs from 11 to 5 per time step. In addition, the asymptotic
approximation method does not contain any fourth-order partial
derivatives, only second-order partial derivatives, further improv-
ing the computational efficiency. The detailed derivation is shown
in Appendix D.

However, the asymptotic approximation will lead to the
imbalance of the propagation amplitudes in different directions.
When using a scalar operator for the correction term in an
attenuation anisotropic media, this amplitude imbalance caused by
the asymptotic approximation method is coupled to the influence
of the attenuation anisotropy. It is difficult to distinguish whether
the change in amplitude is due to the characteristics of the
attenuation anisotropy or to an error in the approximation method.
Fortunately, the asymptotic approximation retains relatively accu-
rate phase information, although slight phase variations occur due
to amplitude imbalances. In addition, the phase and amplitude
characteristics of the wavefield are mainly affected by the elliptic
term in the approximate complex-valued dispersion relation (Xu
et al,, 2015). Thus, when we use an approximation only for the
propagation direction of the correction term, this approximation
will yield unbalanced amplitude energy but still can characterize
the features of attenuation anisotropy in attenuation TTI media.
Compared with the improved computational efficiency, part of the
accuracy loss is acceptable for numerical modeling in attenuated
TTI media, especially for Q-compensated RTM. To analyze the effect
of the asymptotic approximation on forward modeling and Q-
compensated RTM, we will provide several analytical and numer-
ical simulation examples in the following section.

Recent studies on anisotropic media have shown that replacing
the scalar operator with the optical flow method (Zhang et al,,
2024), in conjunction with constructing the multi-propagating
components of the equation, can effectively mitigate the wave-
field propagation energy imbalance typically caused by the scalar
operator. In future research, we plan to explore the integration of
the optical flow method into attenuating anisotropic media to
address the limitations of the scalar operator. This approach may
provide an effective solution to the challenges associated with
wavefield propagation in such media.
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Fig. 13. Trace comparison at a horizontal distance of 0.8 km. The black solid line and dashed line are the wavefield traces computed by the reference HFDPS strategy Eq. (4) and the
proposed HFDPS strategy based on the asymptotic approximation method (Method 2) Eq. (C.9) for the Thomson anisotropy parameters e = 0.2, 6 = —0.1 (n = 0.375) (a), ¢ = 0.35,
0=0.05(n =3/8)(b),e =04,0=0.1(n =0.25)(c),and ¢ = 0.1, =0.2 (n = — 1/14) (d), respectively.
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4.1. Numerical simulation analysis of asymptotic approximation
method

To analyze the effect of the asymptotic approximation method
on attenuation and phase, we designed two types of models to be
compared separately. First, to assess the influence of the attenu-
ation, we assume the Thomsen anisotropic parameterse = 0.2,6 =
0.15, and the attenuation anisotropic parameters eqg = 0.2, dq =
0.15 to eliminate the effects of the velocity anisotropic and
attenuation anisotropic. The other parameters are the same as in
Section 2.3. In Fig. 12, we plot comparisons of the wavefield tracks
at a horizontal distance of 0.8 km computed using the reference
wave Eq. (4) (the black solid line) and the asymptotic approx-
imation method Eq. (D.9) (the dotted line) for the quality factors
Q = 30 (Fig. 12(a)), Q = 20 (Fig. 12(b)), and Q = 10 (Fig. 12(c)),
respectively. In Fig. 12, when the effect of anisotropy is small, the
difference between the wavefield snapshots tracks comparisons of
dotted lines and the black solid line for different quality factor
conditions is small. It proves that the computational error of this
approximation is not highly sensitive to the variation of the
attenuation characteristics.

Subsequently, to analyze the influence of the anisotropic pa-
rameters, we assume the quality factor Q = 30 and the anisotropic
attenuation parameters g = 0.2, 69 = 0.15. In Fig. 13, we show
a comparison of the wavefield tracks at a horizontal distance of
0.8 km computed by the reference wave (the black solid line) and
the asymptotic approximation method (the dotted line) for the
Thomsen anisotropic parameter ¢ = 0.2, 6 = —-0.1 (n = 0.375)
(Fig. 13(a)), e =0.35,8 = 0.05 (n = 3/8) (Fig.13(b)),e = 0.4,6 =0.1
(n = 0.25) (Fig. 13(c)), and e = 0.1, 6=02 (n = — 1/ 14)
(Fig. 13(d)), respectively. Notice that n = (¢ —d)/(1+20) is dimen-
sionless anisotropy parameters used to describe the anellipticity of
anisotropic media (Alkhalifah, 1998). From Fig. 13, we can see that
as the parameter 7 increases, the effects of amplitude unbalance
between the track computed by using the asymptotic approx-
imation and the reference track increases (as shown in the black
arrow). However, the phase information of the simulated wave-
fields in Fig. 13 is relatively accurate, although there are variations
in phase due to amplitude imbalances. This analysis indicates that
the influence of the asymptotic approximation method on the
wavefield phase and amplitude increases as the anellipticity of the
anisotropic medium increases, but has relatively accurate phase
information. In addition, we can find that even when the anellip-
ticity parameter n = 0.25, the phase and amplitude information are
relatively accurate (Fig. 13(c)). Since most bulk elastic media are
weakly anisotropic (Thomsen, 1986), the anellipticity parameter
is generally less than 0.25. Therefore, the asymptotic approx-
imation method is effective for common weakly anisotropic media.

4.2. Comparison of Q-compensated RTM results of different
numerical simulation methods

To compare the application of the algebraic and the asymptotic
approximation methods in Q-compensated RTM. We use the same
shot data result calculated by the reference pure viscoacoustic TTI
wave Eq. (4). The Marmousi model and observation system pa-
rameters are the same as in Section 3.3. In Fig. 14, we show the Q-
compensated RTM result calculated by the reference attenuation-
compensated modeling Eq. (D.2) (Fig. 14(a)), the Q-compensated
RTM result computed by the HE-HFDPS based on the algebraic
method Eq. (12) (Fig. 14(b)), the Q-compensated RTM result cal-
culated by the HE-HFDPS based on the asymptotic approximation
method Eq. (D.10) (Fig. 14(c)), respectively. Fig. 14 shows that these
numerical modeling methods can stably image model structures
and obtain relatively accurate results. For a more detailed
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comparison, Fig. 15 shows the vertical profiles at horizontal dis-
tances of 2.6 km extracted from Fig. 14. In Fig. 15(a), the blue dashed
line (algebraic method results) is close to the black solid line and
almost overlaps. However, the migration results obtained by the
asymptotic approximation method (red dotted line) have slight
amplitude differences and phase distortion compared with the
reference results (as indicated by the black arrow). The above im-
aging results demonstrate that the algebraic method has higher
simulation accuracy than the asymptotic approximation method,
which can be well applied to attenuation compensation RTM.

4.3. Analysis of attenuation compensation methods

To compare the proposed stabilization method with the low-
pass filtering method in suppressing random noise, we take the
Q-compensated RTM proposed based on the algebraic method Eq.

(a) Distance, km
0 1 2 3
0 - 0.2
1S
X
£ 1 0
(o
[)
a
2 -0.2
(b) Distance, km
0 1 2 3
0 — 0.2
S
X
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Q.
(]
a
2 -0.2
(c) Distance, km
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0 g 0.2
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£ 1 0
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(]
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2 -0.2

Fig. 14. Migration imaging results of the Marmousi model. (a) Q-compensated RTM
result computed by the reference attenuation-compensated modeling Eq. (B.2) (ref-
erence), (b) the Q-compensated RTM result calculated by the attenuation-
compensated modeling Eq. (11) based on the algebraic method, and (c) the Q-com-
pensated RTM result computed by the attenuation-compensated modeling Eq. (C.1)
based on the asymptotic approximation method.
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Fig. 15. Trace comparison from Fig. 14 at a horizontal distance of 2.6 km. The black solid line denotes the reference trace extracted from Fig. 14(a). (@) The blue and (b) red dashed
lines represent the trace from Fig. 14(b) and (c), respectively. Method 1 and Method 2 represent the algebraic and asymptotic approximation methods, respectively.

(12) as an example and introduce Gaussian random noise into the
improved Marmousi TTI model (Fig. 9). The signal-to-noise ratios
(S/N) of the gathers are 10 dB and 5 dB, respectively. Notice that the
cutoff frequency for the low-pass filter is set to 70 Hz and the pa-
rameters are the same as in Section 3.3.

In Fig. 16, the imaging results obtained by using the Q-com-
pensated RTM based on the algebraic method Eq. (12)
(Fig. 16(a)—(c)) and the traditional Q-compensated RTM using the
low-pass filtering method (Fig. 16(b)—(d)), respectively. It can be
seen from Fig. 16 that both the traditional and the newly proposed
Q-compensated RTM can produce stable imaging results. As the S/N
ratio decreases, the noise in the imaging results gradually increases.
Compared with the traditional RTM imaging results using low-pass
filters (Fig. 16(b)—(d)), the RTM imaging results based on the sta-
bility factor method (Fig. 16(a)—(c)) have lower noise and higher
resolution. Especially when the S/N ratio is 5, the fault zone
structure in the traditional Q-compensated RTM using the low-pass
filter is obscured by strong noise (as indicated by the red dotted
ellipse and arrows). In contrast, the fault zone structure remains
visible in the imaging results obtained with the proposed Q-
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compensated RTM using the stability factor method. This shows
that the proposed Q-compensated RTM based on stability factor is
superior to the traditional Q-compensated RTM using the low-pass
filter in suppressing high-frequency noise.

5. Conclusions

We have proposed two HE-HFDPS numerical modeling strat-
egies based on the asymptotic approximation and the algebraic
methods to discretize the fractional Laplacian pure viscoacoustic
wave equation, respectively. Based on the algebraic method, the
new HE-HFDPS strategy reduces the number of FFTs from 11 to 6
per time step in forward modeling. For Q-compensated RTM, only 9
FFTs per time step are retained compared to the traditional strategy
of 17 FFTs. In addition, it does not use any additional approximation,
so the wavefield simulation accuracy of this scheme is equivalent to
that of the original HFDPS numerical modeling strategy. Using the
asymptotic approximation method, the other HE-HFDPS strategy
cuts the number of FFTs from 11 to 5 per time step in forward
modeling and only retains 8 FFTs per time step during Q-

(b) Distance, km

0.2

Depth, km

-0.2

(d) Distance, km
0 1 2 3
_ 0.2

Depth, km
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Fig. 16. Migration results by using the stabilization factor Q-compensated TTI RTM ((a), (c)) and the Low-pass filter Q-compensated TTI RTM ((b), (d)). The S/Ns of the used gathers
are 10 dB ((a)—(b)), 5 dB ((c)—(d)), respectively. Notice the cutoff frequency for the low-pass filter is 70 Hz.
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compensated RTM, further improving computational efficiency.
However, it exhibits phase distortions and amplitude imbalances.
Then, based on the HE-HFDPS strategies, we derived efficient and
stable attenuation-compensated extrapolation operators and
implemented the Q-compensated RTM in the attenuation TTI me-
dia. The synthetic data results demonstrate that the proposed Q-
compensated TTI RTM method effectively corrects and compen-
sates for waveform distortion and amplitude attenuation induced
by anisotropy and attenuation. Additionally, the HE-HFDPS strategy
significantly improves computational efficiency, achieving nearly
double the performance of traditional methods, thereby greatly
enhancing seismic imaging and inversion capabilities. As a result,
this method contributes to more accurate subsurface imaging and
provides strong support for resource exploration and monitoring in
complex geological environments, such as fractured reservoirs and
salt structures. These advancements highlight the significant po-
tential for widespread application in practical seismic data
processing.
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APPENDIX A

Derivation of the fractional Laplacian pure viscoacoustic wave
equation.

According to Eq. (1), The approximate dispersion relation is
represented as

w® = My1k% + M33kZ

-1
(M2, (W) = /W3 )i
+

k2 + k2

; (A1)

where ky, k; denote spatial wavenumbers along the horizontal and
vertical directions, respectively. To transform Eq. (A.1) into TTI

media, we insert the coordinate rotation relations Ex = oS ¢ky —
sin ¢, kz = sin ¢ky + cos ¢k, into Eq. (A.1), and replacing k2 and k2

2 2
with k, and k,. where ¢ is the tilt angle. Then, the TTI approxi-
mated complex-valued dispersion relation can be expressed as

(A2)

+<cos4 ¢ + sin* ¢ — sin® 2¢) k2k2

i\ i .
where Mjj(w) = Gy cos?(my;; /2)(5—3) ’. Next, we introduce an

approximate  expression  (iw)?" = (iw)sin(my)r?"~1k271 + cos
(Ty)v2Yk2Y to reduce the computational storage cost (Zhu et al.,
2014). Note the phase velocity v associated with M;3, My, M33
can be expressed as vz = \/Ci1 = vp(1+2¢)"/2, vy; = /Ci3 =
vp(1420)1/4, v33 = \/C33 = vp, Where vp is the P-wave velocity
along the vertical axis of symmetry (Xiang et al., 2025). Then, we
insert the approximate expression into the expression of M;(w),
resulting in

M; = iwCijkzy"r] + Xﬁk27U7 (A3)

-2

cos?(my;i /2)wy 1 cos(myy), Xij = cos?

where CU _ Ci(j“/xi+1) C-(]-Yij+1/2)

1
(v /2)wg " sin(myy).

By substituting Eq. (A.3) into Eq. (A.2) and transforming it to the
time-space domain, we derive the pure viscoacoustic wave equa-
tion in the TTI attenuation medium:
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o%p 5\ Y11 9 S\ 11—1/2 , . 0 L, R . 2
otz 7(C11<—V> +X11&(—V> ) cos d’@ﬁ-sm ¢E_Sm2¢m p

ot

233Y33 a As3733—1/2 A1 0 Ayn—1/2
_ 2 Il R v 7] _ _ 2 _ Il R v )
(o () b () o (<2) """ by (-9%)"" )

Y 0 yi-1/2\ [ . 02 2 02
+(Z33 (—Vz) ” X33 (—Vz) ? )<51n2¢@+c052 ¢@+smz¢m p

ot2 0x2 ox0z az2

sin? ¢ cos? ¢(k;‘ + kfz‘) (A.4)
4 4 2 ot
. Csin22s) O
1 +<cos ¢+ sIn” ¢ — sin ¢) ax2022 ;
- p+f.
2 o : . 4
—— sin 2 ¢( cos® ¢ — sin
a2 oz * ¢< ¢ ¢) 0x30z
sin 2 ¢ (sin? ¢ — cos?
+ ¢( ¢ ¢) oxoz3
2
v2%i®) =F1(1 4+ 2 (In(k)y;;(x) + (In(k)ys(x) . (A5)
Since the mixed-domain fractional Laplacian operator of these ( ( ! ( ! ) >>
equations varies with the quality factor of the space, Eq. (A.4) Substituting Eq. (A.5) into Eq. (A.4), the pure viscoacoustic TTI
cannot be solved directly by the traditional Fourier pseudo- wave Eq. (A.2) using the HFDPS strategy can be rewritten as
2 2 2 2\ (G (p+2v1 (0L + 275 WL
p_ (coszd)()—sinzdba+sin2q>a >( ( )

+X11 (L3 +2Lgv11 (%) + 2754 (X)L5>
C3 (P + 2133001 + 273502 ) ) (A5)

+x33(Ls + 2Lav33(0) + 2v35(0)Ls )

+( sin? ¢ i +5sin2 ¢ o + cos? ¢£
ox2 0x0z 072

sin’ ¢ cos? ¢<k§ + k:;}) a (Le +2L7233733(X) + 2(/133733(X))2L8)

+(cos g+ sin ¢ —sin 20 ) G2 | [ 1y (Lo + 2Liods3733(%) + 2L (a3733())?) o
4sin 2 ¢(c052 ¢ — sin? ¢> Ik, —ay (Le +2L7 11711 (%) + 2(A11711(X))2LS> 7
sin 2 ¢(sin2 6 — cos? ¢> k3 —b, <L9 +2LoA1v11 (%) + 2L (A1 vn (X))z)

spectral (FPS) and finite difference (FD) methods. Subsequently,

Zhang et al. (2020) used the second-order TSE k2%i®= 14 where f is the source-time function, and {j, X;, a;, b; can be
2(In(k)y;(x) +(ln(k)yij(x))2) to simplify these equations, which in expressed as

the space domain would be expressed as

o CIS-WH) cos2 (TWU/2> wy 2 cos (TWij)v Xij = CI.S.V""“/Z) cos? (TE’YU/2> wy Sil‘l(TC’Yij)7

a; = (113)2(\/111133) 1 by = (x3)* (Vxaixss) 1 a2 = VEiGes, by = VXX
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Subsequently, by substituting Eq. (2) into Eq. (A.6), the pure
viscoacoustic TTI wave equation can be rewritten as

62

52 = (G (pr2vm L 275 L)

+x11 (L3 +2Larn (0 +27%, (0L ) )

+¥s3 <§33 <P +2733(0)L1 +2753(%) Ly )

+X33 <L3 +2La733(%) +2733(X)Ls ) )

a (Le +2L733733(%0) +2(A33733 (%) )°Lg )
+by (Lg +2L10733733(X) +2L11 (A33733 (%)) )
—ay (LG +2L7 1711 (%) +2(A11711 (%) )2L8>

—b; (Lg +2L10A11711 (%) +2L11 (A11711 (%) )2>
(A7)

APPENDIX B

Derivation of the anisotropic attenuation-compensated extrap-
olation operator.

Based on the stable term Y(1—7w)w proposed by Mu et al.
(2023). We extend it to attenuation anisotropic media. The cor-
rected analytic expression of attenuation compensation in attenu-
ation anisotropic media can expressed as

P(t+ At,w) =P(t,w)exp {Y,j(l — Tw)wAtwg"w1’“/v' tan (’rcy,-j/2>],
(B.1)

where 7 is the stability factor. Y; is a constant that is associated

with 7 and can be determined accordingly using the following
relational formula:

Mi;
k2 + k2

M33
k2 + k2

W (W) sy

k2 + k2

w2 =

<sin2 dk? + cos? ¢k + k2k? —sin 2 ¢ <k§ kz + k,dcf))

(sin2 ok + cos? gk +k2k2 +sin2 ¢ (k,% kz + kxl<§’>>

sin? ¢ cos? ¢(k,‘} + k;‘)
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where 7 = 1/(2w;). w; = 2n(f; + fs), which is slightly higher than
the peak angular frequency of the source wavelet 27f;. f; denotes
the increment of frequency. Through numerous numerical experi-
ments, Mu et al. (2023) concluded that the f; (5, 20). Subse-
quently, by substituting Eq. (B.1) into Eq. (10), we can obtain the
analytic expression of the stability anisotropic attenuation-
compensation operator in attenuation anisotropic media:

P(t + At, ) = P(t, w)exp [r,-j(l — T0)wAtolwl T tan(my / 2)]

xexp| — iAtwng]. (B.3)
Combining the formula of P(x + Ax, w) = P(x, w)eki@VGAt the
approximate dispersion relation of Eq. (B.3) can be written as

gijwl—y‘-j

Vi
where k;j(w) denote the approximate dispersion relation of CQ
theory in attenuation anisotropic media. By using the relational
expression V}(w) = w?/ki(w) and some mathematical derivation,
we obtain the following expression:

kij(w) = (iY§(1 = Tw)w tan(mwy / 2) + 1), (B.4)

Cr(way"’w%f)z
(1 +iY(1 = Tw)w tan(’rw,-j/2>>2.

To simplify the analytic relation, we ignored the Y,-zj term to the
right of Eq. (B.5) due to the value of Y;; is small. Then, we can obtain
the attenuation-compensated complex velocity formula as follows:

V2 () = (B.5)

() =G (wg%vfj)z (120051 — )0 tan(my; /2)).
(B6)

Subsequently, inserting Eq. (B.6) into Eq. (5) and replacing M
with 1\711-1-. We can obtain the high-efficiency attenuation-compen-
sated RTM operator in TTI media expressed as

(B.7)

Jr<cos4 ¢ + sin* ¢ — sin? 2¢> k2k?

+sin 2 q)(cos2 ¢ — sin? ¢) Kk,

+sin 2 ¢(sin2 ¢ — cos> qb) k2

T—y; y }
w tan
' < 2 >} W=Wmax
TV +:
(]
2 W=Wmax

exp [Y‘ij(l - Tw)wAtwg”

(B.2)

=exp [Atwg”
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Similar to the derivation of Eq. (A.2), using approximate rela-
tional expressions to obtain the efficient and stable attenuation-
compensated extrapolation equation based on the algebraic
method in the attenuation TTI media written as:



L. Xiang, J.-P. Huang, Q. Mao et al. Petroleum Science 22 (2025) 2794—2817

lj’“(C%]<_vz)yn’Lc“at( V)y“ Z“at( V)VHH)

2 ; +Wss (C}s( - V2>733 + Z33at( v >733 133&( v )VBH)

5 = +f, (B.8)
oz =40 K33y ] B335} 0 3333 H—1 b=,
a2 ez | _ 2) 3133 O/ g2\Ms¥s72 0/ o2\#nTut:
(W1< v l‘yzat( v ) l‘”3at( v )
g2\ 3( _ 2)#11“/11*% _ 3( _ 2)%“11%1*%*1
+’p13(51< v ) S5~V §3at v
i 2 ! T wave equation.
where ; = (§13) (V&11833) & =/ lsse According to Eq. (B.8), the conventional stable attenuation-
APPENDIX C compensated pure viscoacoustic TTI wave equation can be

obtained as follows:
Derivation of traditional Q-compensated pure viscoacoustic TTI

?;5 LT (Cn(—vz)y“ +C“a[< V2>711
+ C%l%( — V2)7”+1 )p W, (C;B ( _ V2)733
# B ~) "+ (-9 )
W V1 ( _ V2>#33733 n ¢2%< _ Vz)/‘33733 " ¢3%( _ V2)l‘-33“/33+1

p+f.

P P
2y + 25 H11711 0 K111 0 H11Y11+1
et | () e ag (- e)T (-9

To improve readability and facilitate understanding, we define
the following conventions:

Ch(P+ 27501y + 273 ()L, — G (L5 + 295001y + 2¥5(0)Ls )

43 (L6 + 2v5(0L7 + 273 (0Ls )

Gh(Lo + 27 (X)Lro + 27300111 ) + 85 (Lia + 25013 + 273 (X)Lsg )

+C§- <L/15 + 2v;(x)Lys + 2“/5'(")1:17)

V1 (P+ 22033733 (0L; + 200337330 Ly ) + ¥ (L + 233733 (0L + 22337330 )Ls )
H' = | 95 (Ls + 2233733(0L7 + 2(233733(%)°Ly ) = &1 (P+ 2201711 Ly + 2(1711 (%)L )

& (L3 + 2l (0L + 2001711 (X)L ) = £3(Lg + 2hn 1 (0L + 201711 (x))*Lg )

¥y (L;; + 22233733 (%)L10 + 2(A33733(%) )°Lyy ) 2 (L,12 + 2233733 (X)L13 + 2(A33733 (%) )ZL/14)
H' = | —¥3(Lis + 2a373300L16 + 20233733(%) °Lyz ) = £1 (Lo + 2201711 (X)Lyp + 201711 (0)Liy )
+65 (Liz + 201711 (0L1s + 2001711 (%)) Lia ) + £3 (Lis + 2011 (0L + 2001711 (0 )Ly )
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where [} = 7 '(In(k).7 (p)), Ly = 7 1(In (k)27 (p)), I = 7~
(7 (% )) L, = *1(/(5’)111(10) Ly = 7 (7 (%) nk?),
Ly = 7~ (kr(ﬁ)) L, = (k7( Pink), Ly = 7
(k7<a£>ln(1<)2>, L = ((k2+k2) FP), L= 77
(R +k) 7 E)nk), Ly = 7 (R +k) 7Pl (k?),
Ly, = 7! ((k2+k2) (f’P)>, Ly = 7! ((k2+k2) (f’_lg)
ln(k)), Iyy= 7- <(k2+k2) "P ln(l<2> Ly = 771
<k(k2+k2) (;)) L = ((k2+k2) (P) 1(1<)>
U, =7 <k(k2+k2) (dp)ln (k) )

Subsequently, similar to the derivation of Eq. (7), Eq. (C.1) can be
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the new expression as follows:

w? = M“k,z( +M33k§
-1
k)zck% (M%3(\/M11M33> — \/M]1M33><k,2(+k§>

(k2 +12) (kg +K2) (®-1)

+

kx = cos ¢ky — sin

@, EZ = sin ¢k + cos ¢k, are used to transform Eq. (D.1) from VTI
media to TTI media. Note that ¢ represent the dip angle of the

Next, the coordinate rotation relations

symmetry axis. Replacing ky,k, in Eq. (C.1) with Ex, EZ, we can
obtain the TTI approximation dispersion relation

sin® ¢ cos? ¢>(k§‘ + k;‘)

-1

M%3<\/M11M33>

(k2 +12)
—vM11Ms33

+ (cos4 ¢ + sin* ¢ — sin® qu) k2k?
+sin 2 ¢<c052 ¢ — sin? ¢) Kk,

+sin 2 ¢(sin2 $ — cos? ¢>) Kyl

w? = M1y +Ms3T33 +

reformulated as

8%p

oz = Wt + Wsshss + WisH )P+ f,

(C2)

Analyzing the above Eq. (C.2), the traditional stable attenuation
compensation pure viscoacoustic wave equation contains 17 FFTs,
resulting in a significant computational cost. This presents chal-
lenges for practical applications of the field data and three-
dimensional data in anisotropic attenuation media.

APPENDIX D

Derivation of HE-HFDPS strategy based on the asymptotic
approximation method.
To use the asymptotic approximation, we multiply the correc-

tion term of Eq. (1) by the expression (’,:Z;zz) and then we can obtain

<k,2( + k%) ?

(D.2)

To improve readability and facilitate understanding, we define

the following conventions I'y; = sin? ¢k2 + cos? ¢k2 — sin 2 Gkyk;,
33 = sin? k2 + cos? k2 + sin 2 pkyk,.

Note that we assume the propagation direction
n = (nx,nz) = (sin 0, cos @) for the TTI media. n represent the phase
direction of wave propagation which is a unit vector. In addition,
the relation between frequency and wavenumber in TTI media are
sin 0 = ky/k,cos 6 = k,/k and thus we can obtain the relation be-
tween n and k as

ky kz\ Kk

k’ k) k|

Substituting Eq. (D.3) into Eq. (D.2), Eq. (D.2) can be rewritten as

n = (ny,n;) = (sin 6, cos #) = ( (D.3)

sin® ¢ cos? qﬁ(n,‘} + n;‘)

Mz, (v 1\/1111\/133)71

(k,% + I<§>
—v/M11Ms3

+(cos4 ¢ + sin* ¢ — sin® 2¢>)

nin;

+sin 2 ¢<c052 ¢ — sin? d)) nin,

+sin 2 ¢<sin2 ¢ — cos? </)> n3ny

w=Mq1I11 +M33033 +

(D.4)

(n2 +n2)°
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Based on the asymptotic approximation (n =k/ [k| = VP/ |VP|)
proposed by Xu and Zhou (2014), the n, ny and n; can be expressed

as

n= ﬂ)e @e @e %e

— axx-i‘azz 6XX+ ZZa
no 0P /(PP (0PYP o [ (P2 (o2
XX ox az) ¢ oz ox oz

(D.5)

where P represents the pressure wavefield. Subsequently, by
inserting Eq. (D.5) into Eq. (D.4), then Eq. (D.4) can be rewritten as

-1

2 /
w? = M1 + M33T733 + T M13< M11M33> (k)z(—l—kg)
—vMi1M33
(D.6)

Note that Ts term of the right-hand side in Eq. (C.6) is defined as
a scalar operator, which can be defined as follows:
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p_y (c (P+2 (X)L + 272, (X)L )+ (L
oz~ -l 111 1 26! 2 X11{L3
+2Lgy11(X) + 274 (%)Ls ) ) + W33 (:33 (P +2733(%)L4

+2733(0)L2 ) + 133 (L3 + 2Lav33 (%) + 2735 (X)Ls ) )
62

T. | —
1t )

a <P +2L1A33733(%) + 2(A33733(%) )L )
+b1 <L3 +2L4233733(X) + 2Ls (A33733(%) ) )
a3 (P4 2Laday1 (0 + 201711 (%))*Ls )
—by <L3 +2Lala1711 (%) + 2Ls (A1 v (%) ) )
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From the above Eq. (D.10), we will find that the proposed HE-
HFDPS strategy based on the asymptotic approximation method
only retains L1—Ls, reducing the number of FFT calculations from 11
to 5 per time step. In addition, it only contains 2-order spatial

ap
0x

9 5 oP\* soP\* 4 .4 i oP 0P\ 2
sin®*¢ cos ¢<<ax> + (&) + (cos é + sin® ¢ — sin 2q>) o 5

3
+sin 2 ¢(cos2 $ — sin® ¢> (%) % +sin 2 ¢(sin2 ¢ — cos? (j)) (g)

s =

(@)

Similar to the derivation process of Eq. (6), the new efficient
pure viscoacoustic TTI wave equation can be obtained as

1
ZZTI;:‘I‘” (Z“ (_VZ)YH +X11%(—V2)7“7§>P+1p33 (:33 (_V2>733
1
7V2 H33733 b E 7V2 M”YB_Z
@)

(D.7)

partial derivatives, further improving the computational efficiency.
Subsequently, inserting Eq. (B.7) into Eq. (D.7) and replacing Mj;
with Mij' Then, by some mathematical derivation, we can obtain the
efficient and stable attenuation-compensated extrapolation equa-

(D.8)

1

() ()2

Subsequently, we can simulate the pure viscoacoustic TTI wave
equation using the HE-HFDPS strategy based on the asymptotic
approximation method as follows:

2816

tion using the HE-HFDPS strategy based on the asymptotic
approximation as follows:

2 62

o’p Wy Hy + WasHy + T o+ L) # P+f
111 s +1s| o5+ 53 .

a2z
(D.10)

Compared to the traditional HFDPS strategy Eq. (C.2), which
requires 17 FFTs (L} —L),) per time step, the proposed HE-HFDPS
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numerical solution strategy only retains 8 FFTs (L} —Lg), reducing
the number of FFTs from 17 to 8 per time step. That demonstrates
that the asymptotic approximation method has significant poten-
tial for improved computational efficiency in Q-compensated RTM.
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