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ABSTRACT

CO, Water-Alternating-Gas (CO,-WAG) injection is not only a method to enhance oil recovery but also a
feasible way to achieve CO; sequestration. However, inappropriate injection strategies would prevent the
attainment of maximum oil recovery and cumulative CO, storage. Furthermore, the optimization of CO,-
WAG is computationally expensive as it needs to frequently call the compositional simulation model that
involves various CO; storage mechanisms. Therefore, the surrogate-assisted evolutionary optimization is
necessary, which replaces the compositional simulator with surrogate models. In this paper, a surrogate-
based multi-objective optimization algorithm assisted by the single-objective pre-search method is
proposed. The results of single-objective optimization will be used to initialize the solutions of multi-
objective optimization, which accelerates the exploration of the entire Pareto front. In addition, a
convergence criterion is also proposed for the single-objective optimization during pre-search, and the
gradient of surrogate models is adopted as the convergence criterion. Finally, the method proposed in
this work is applied to two benchmark reservoir models to prove its efficiency and correctness. The
results show that the proposed algorithm achieves a better performance than the conventional ones for
the multi-objective optimization of CO,-WAG.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

swept volume (He et al., 2024.).
Appropriate parameter design for CO,-WAG is crucial to realize

CO; flooding is a feasible method for enhanced oil recovery
purposes as it can not only provide reservoir energy and enhance
oil mobility but also contribute to the reduction of greenhouse gas
(Leng et al., 2024). Due to the difference in viscosity and density, the
injected CO, may preferentially flow towards the production well in
a high permeability channel in the reservoir, causing the “fingering”
phenomenon and reducing the overall displacement efficiency
(Tian et al., 2024). It is proven that the CO, water-alternating-gas
(CO-WAG) injection can achieve a higher oil recovery when
compared with continuous CO; injection, which is because the
injected water can stabilize the displacement front and expand the
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optimal oil recovery (Chen and Reynolds, 2016) and CO, storage.
C0O2-WAG, as a typical black-box optimization problem (with only
inputs and outputs), is highly compatible with swarm intelligence
optimization algorithms. Evolutionary algorithms (Ding et al,
2020; Fonseca et al., 2016; Mohagheghian et al., 2018), e.g., Ge-
netic Algorithm (GA) and Particle Swarm Optimization (PSO), as
well as ensemble-based methods (Ma and Leung, 2020) were
improved to obtain the optimal well operating parameters,
although such a process effectively solves the optimization prob-
lem, the efficiency of the optimization is still limited as the original
simulation model is computed numerous times. As a result, it re-
quires a significant amount of computational resources, especially
at the field scale, to complete the optimization since compositional
simulation itself is computationally demanding. To effectively
accelerate the process, the original complex simulation model is
usually replaced by simpler and faster models during optimization,
and such models are termed surrogate models. Two types of sur-
rogate models are commonly implemented, which are physics-
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based surrogates and data-driven surrogates.

The physics-based surrogates, or reduced-order models, use a
low-fidelity physics-based simulation model to approximate the
original high-fidelity simulation model during the optimization,
and this type of surrogate model is generated by simplifying the
solution of the original simulation model, and the obtained surro-
gate model is still based on the solving the mathematical model
governing fluid flow. For example, van Doren et al. (2006) applied
the Proper Orthogonal Decomposition (POD) technique to reduce
the dimension of the discretized governing equations for two-
phase flow during the water flooding process and constructed a
faster surrogate. Cardoso and Durlofsky (2010) further developed a
reduced-order modeling technique using the trajectory piecewise
linearization method, where the governing equations for two-
phase flow were linearized before POD procedures. He and
Durlofsky (2014) then applied the same technique for the surro-
gate modeling of compositional simulation. Another physics-based
surrogate modeling method is the streamline simulation, which
transforms the finite volume solution of a three-dimensional grid
system to the finite difference solution along many one-
dimensional streamlines (Park and Datta-Gupta, 2013; Salehian
and Cinar, 2019; Ushmaev et al., 2018). However, the streamline
simulation can only be applied to the water flooding process as it
cannot treat the nonlinear flow behavior of gas very well. The third
physics-based surrogate modeling directly reduces the number of
grids of the original simulation model by grid coarsening
(Klemetsdal et al., 2019; Lie et al., 2017). The physics-based surro-
gate modeling can effectively improve computational efficiency,
but it may suffer from poor universality.

Instead of the physics-based surrogates, the data-driven
approach develops the surrogate model using machine learning
models based on data collected from the original simulator.
Olalotiti-Lawal et al. (2019) chose the Kriging-based surrogate
model and applied the GA to optimize the design parameters for
WAG. Bocoum and Rasaei (2023) combined Artificial Neural Net-
works (ANN) and Nondominated Sorting Genetic Algorithm II
(NSGA-II) to optimize cumulative oil recovery and net present value

I SR e

(NPV). Nait-Amar et al. (2021) combined the multi-layer perceptron
model and Radial Basis Function (RBF) with metaheuristic algo-
rithms to build the surrogate model for WAG simulation. Ding et al.
(2022) used multi-objective PSO (MOPSO) to maximize cumulative
oil production and CO, storage in low permeability reservoirs for
WAG. Enab and Ertekin (2021) proposed a reliable ANN to predict,
optimize, and history match the process of WAG. Agada et al. (2016)
used polynomial regression and polynomial chaos expansion to
decrease the computational consumption and employed GA to
optimize the parameters of WAG. The above implementation of
machine-learning surrogate models showed a more significant
reduction in optimization.

A growing body of literature can be found on the surrogate-
assisted single-objective optimization and multi-objective optimi-
zation. However, the combination of single-objective optimization
and multi-objective optimization has been paid less attention. In this
work, we leveraged the results of single-objective optimization as
prior knowledge to initialize the population for multi-objective
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optimization to accelerate the convergence speed. The reason for
this is that the results in the objective function space of the single
objective optimization are the endpoints for the Pareto front, as
shown in Fig. 1. In addition, in the aspect of the optimization algo-
rithm, the setting of the iteration number for surrogate-model-
assisted evolutionary optimization is mostly based on experience,
and a reasonable convergence criterion has not yet been provided in
the literature to the best of our knowledge, which may lead to un-
necessary computational consumption. To fill in this gap, this paper
used the single-objective optimization to initialize and accelerate
the subsequent multi-objective optimization, meanwhile, a conver-
gence criterion is also proposed based on the analytical character-
istics of the surrogate model to further eliminate any redundant
computation. This work is built upon a similar method by Liu et al.
(2024), in which the single-objective optimization results were not
used to initialize the population of the multi-objective optimization.
Whereas the algorithm proposed in this work will use the results of
single-objective optimization to initialize the population of multi-
objective optimization instead of evaluating it through the simu-
lator directly. In addition, the gradient of the surrogate model is used
as a criterion to judge the convergence and determine the iteration
number instead of embedding it into the meta-heuristic algorithm.

This paper is organized as follows: the next section describes the
optimization problem for CO,-WAG injection, which is followed by
the introduction of our proposed optimization methodology. Then,
we apply the methods to two benchmark reservoir simulation ex-
amples and compare them with the conventional optimization
methods to demonstrate the superiority of the proposed approach.
Finally, the conclusions are summarized based on the analysis of
the optimization problem.

2. Description of the optimization problem

The goal of CO,-WAG is to enhance the oil recovery while storing
the CO5 in the reservoir. Therefore, we choose NPV and CO, storage
as our optimization objectives. The NPV is defined by Eq. (1):

(1)

where x is a N-dimensional column vector which contains all opti-
mization variables; n denotes the nth timestep of the reservoir
simulation; N; is the total number of timestep; t; denotes the time at
the end of the nth timestep; b is the annual discount rate; Np and N
are the number of producers and injectors, respectively; 1o, Cw, Cwis
and c,; denote the oil revenue, the disposal cost of produced water,

the cost of water injection, and the cost of gas injection, USD/m>; qT}J
and qTWJ denote the jth production well's average oil production rate
at nth timestep, respectively, m>/D; Dok and qu « denote the kth

injection well's average water injection rate and average gas injec-
tion rate at nth timestep, respectively, m>/D.
The amount of CO, storage can be calculated by Eq. (2):

(2)

where mg; denotes the amount of CO, for structural trapping; myes
denotes the amount of CO, for residual trapping; mg, denotes the

f2 (X) = Mstr + Myes + Mgo] + Mpin,
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Fig. 1. The relationship between the results of single-objective optimization and Pareto front endpoints.

amount of CO, for solubility trapping; m,;, denotes the amount of
CO, for mineral trapping. The unit of the above variables is in kg.
The specific value of the above variables at each timestep can be
obtained from the CMG result files (CMG, 2023).

Considering the above two objectives, the multi-objective
optimization problem for CO,-WAG can be defined by Eq. (3):

Maxf(x) = [fi(x), ()],

st.xloW <y <aP i=1,2 3 Ny’ (3)

LRV < <xTi=1,2,3, .., Ny
In fact, the relation of two objective functions is not known in
advance. Thus, we adopt the concept of “Pareto Optimality”. To
better understand the concept, we provide the following defini-
tions for Pareto optimal points: a vector p = (ay, as, ..., Gn) and
another vector q = (by, by, ..., bm) are two solutions of multi-
objective optimization, if fi(q) <fi(p) for Vi=1, 2 and fi(q) <
fj(p) for atleast one j value (j =1, 2), pis said to dominate q. The set
of all Pareto solutions is named Pareto set (PS) in the decision space.
The set of PS in the objective space is called the Pareto front (PF).

3. Optimization methodology

To eliminate the influence of dimensions, the dataset was
normalized when training the surrogate model: the maximum and
the minimum values of CO, storage and NPV in the dataset are used
to normalize the objective functions, and the optimization pa-
rameters are normalized by their respective upper and lower limits.
The surrogate model adopted by this paper is RBF, which is more
suitable for high-dimensional interpolation. It can be expressed as
Eq. (4):

nt

f@) =p@wp + Y a(*,x5)wr,
i=1

(4)

where x is the input vector; f(x) is the model output; p(x) is
polynomial; wy, is the weight for p(x); nt is the number of training
points; Xy is the ith training point; w; is the weight for @ ; @ is the
radial basis function, it is given by Eq. (5):

| Ixyl2
Q(X7y):e <d0>

where dj is a hyperparameter. w, and wy can be obtained by Eq. (6):

(5)
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where y,; is the output of the ith training points; p(x) is constant in
this paper.

Most of the multi-objective optimization algorithms overlooked
the endpoints of the Pareto front. The Multi-objective Evolutionary
Algorithm based on Decomposition (MOEA/D) noticed the end-
points of the Pareto front, but it cannot select the most reasonable
decomposition method in advance for a practical problem. Thus the
optimization algorithms adopted by this paper are Differential
Evolution (DE) (Storn and Price, 1997) and NSGA-II (Deb et al.,
2002). As mentioned in the previous sections, this study com-
bines single-objective optimization with multi-objective optimi-
zation to accelerate the computation, and the DE algorithm is used
to perform the single-objective optimization while the NSGA-II is
adopted for multi-objective optimization. The specific steps of DE
and NSGA-II are shown in Tables 1 and 2.

This study uses the DE algorithm to perform single-objective
optimization to get the maximum NPV and the maximum CO;
storage on the surrogate models, respectively. The extreme values
of the two individual objectives obtained through single-objective
optimization are the endpoints of the Pareto front, which is the
final set of solutions for multi-objective optimization. Therefore, we
add the corresponding optimum of each single objective as prior
knowledge to the initial population of multi-objective optimiza-
tion, so that the moving speed of the population towards the Pareto
front during multi-objective optimization can be significantly
enhanced. In addition, we propose the following convergence cri-
terion to further accelerate single-objective pre-search.

By definition, the multi-variable gradient of the optimal solution
can be expressed as Eq. (7):

of of
ox; 0xp

The global optimum solution in single-objective optimization

exhibits two distinct characteristics: either the gradient compo-

nents at the optimum approach zero, or the design variables reside

at constraint boundaries. To mitigate interference from local op-

tima (identified by normalized surrogate model values below 1),

of

9Xn

grad(x) — ( (7)
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Table 1
The procedure of DE algorithm.
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The steps of DE

Step 1: Initialize the population, X = X|o,, + rand x (Xup — Xjoy ), rand €0, 1]

Step 2: Mutation (DE/rand/1), v;c =X, ¢ + F x (X, ¢ — X1, 6), X, G, Xr, ¢, and X;, ¢ are three randomly selected individuals in Gth generation, F is the mutation factor, v; ¢ is

the new individual generated by mutation.

vjic rand < CROrj = jrang
X;;c other

integer ranging from 1 to the variable dimension.
u; g if f(uic) > f(%ic)

XiG

Step 3: Crossover, U;;c = {

Step 4: Selection, X, = {

, CR is the crossover probability, ¥;; ; denotes the jth variable of ith individual in Gth generation, jianq is @ random

Step 5: Judge whether the maximum number of iterations is met. If the maximum number of iterations is reached, then cease iteration and add the optimal individuals
corresponding to the optimal values to the initial population of the subsequent multi-objective optimization. Otherwise, G = G + 1 and return to Step 2.

Table 2
The procedure of NSGA-II algorithm.

The steps of NSGA-II

Step 1—-Step 3 are the same as DE.

Step 4: Perform fast non-dominated sorting on the population, compute the crowding distance for each individual, and subsequently select the most competitive

candidates to generate a new population.

Step 5: Judge whether the maximum number of iterations is met. If the maximum number of iterations is reached, then cease iteration and use the numerical simulator to
simulate the optimal case obtained in the iterations. Otherwise, G = G+ 1, and return to Step 2.

we impose an additional criterion requiring predicted objective
function values on the surrogate model to exceed 1. This threshold
ensures selected solutions surpass the current best performance on
the surrogate model, as illustrated in Fig. 2. While this approach
retains a non-zero probability of converging to local extrema, Eq.
(8) shows that the local optimum still remains advantageous for
initializing populations in multi-objective optimization

u = ||jw-gradl + (1 — w)-grad2||,- =0
w = argmin(u) (8)

0O<w<l1

where gradl and grad2 are the gradients of two objective func-
tions; w is a weight parameter. For example, even if a local optimum
solution of NPV is reached, then its corresponding gradient grad1 is
a zero vector, then u will be zero when w is equal to 1. This means it

1.2
Global extreme point

1.0

0.8

f(x)

0.6

Local extreme point
0.4

0.2

0.2 04 06 0.8

X

Fig. 2. The illustration of the convergence criterion.
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is a Pareto-stationary design-point, which is much better than a
solution generated randomly to initialize the population of multi-
objective optimization.

During the single-objective pre-search, the convergence crite-
rion is not checked in each iteration. We will first check the
convergence criterion after some certain iteration numbers (k;), if
the criterion is met at this iteration, then the iteration will be
stopped. Otherwise, the iteration will continue and the conver-
gence criterion will be checked every k, iterations until the crite-
rion is met. For example, k; =500 and k, = 100 means the
criterion will be checked at the 500th, 600th, 700th iteration step
and so on, until the described criterion is satisfied, as shown in
Fig. 3. The overall optimization workflow of this work can be shown
in Fig. 4.

4. Case study

Case 1. The reservoir model is a modified “Egg” model (Jansen
et al., 2014). The geological parameters and well-location parame-
ters are the same as the original “Egg” model, as shown in Fig. 5. The
model has a 60 x 60 x 7 grid system with dimensions 12 m x
12 m x 4 m. The relative permeability curves are shown in Fig. 6.
The porosity is a constant of 0.2. The compositional model con-
siders 5 components, which are N3 to Cy, i-C4 to n-Cs, CO», C, to Cs,
and Cg to Co. The binary interaction coefficients, properties, and
initial conditions of the components are shown in Tables 3—5, while

No
Initial
— S &
number of —’(ﬁe
iterations N

Yes

my

Fig. 3. The optimization based on the convergence criterion.
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Fig. 5. The modified Egg model.

Permeability, mD Table 3

._ The binary interaction coefficients between the considered components of the Egg
6000 model.
= 5000 No—C4 CO, C—Cs i-C4—n-Cs Cs—Co
4000 No—Cq 0.000 0.130 0.008 0.021 0.045
.: CO, 0.130 0.000 0.135 0.125 0.101
3000 C,—C5 0.008 0.135 0.000 0.003 0.016
- o000 i-C4—n-Cs 0.021 0.125 0.003 0.000 0.005
I Ce—Co 0.045 0.101 0.016 0.005 0.000
1000

1800 d, and the design variables are shown in Table 7. In each cycle,
we adjust the half-cycle durations for different injectors. The spe-
cific approach is to calculate the time points at which the injectors
transition from water to gas injection, and write the production
operation to the data file in chronological order after sorting these

Table 6 presents the considered chemical reaction equations. The  ¢jme points. The described optimization problem results in 160
initial pressure of the reservoir is 40 MPa. The production time is optimization variables. It is worth noting that the lower bounds of

Relative permeability
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Fig. 6. The relative permeability curves.
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Table 4
The component properties of the Egg model.
Critical pressure, atm Critical temperature, K Acentric factor Qa Qp
No—C; 43.60 180.02 0.01 0.46 0.08
€O, 72.80 304.20 023 037 0.06
C—C3 44.08 350.22 0.13 0.46 0.08
i-C4—n-Cs 35.37 44226 021 0.46 0.08
Cs—Co 27.60 592.91 033 0.46 0.08
Table 5 - As for the setting of the algorithm parameter, the hyper-
The initial compositional of each component. parameter d, of the RBF model is 5, the mutation factor is 0.5, the
Component name N,—C; CO, C,—Cs i-C4—n-Cs Cg—Co crossover probability is 0.7, the population size of DE is 50, the initial
Proportion 0.0549627 0.0034125 0.0977151 0.127606 0.299294 iteration number is k; = 500, and the convergence will be checked
for every 100 iteration steps if convergence is not satisfied (k, =
100). For the multi-objective optimization, the mutation factor and
Table 6 crossover probability of NSGA-II are the same as the DE, the popu-

The considered chemical reaction equations.

Chemical reaction equation

CO, + Hy0 = H* + HCO3
Calcite + H* = Ca®* + HCO3

Table 7
Design variables of the Egg model.

Design variable Upper bound Lower bound

Water injection rate, m3/d 180 0
Gas injection rate, m3/d 30000 0
BHP of the producer, kPa 39500 32500
Half-cycle duration, d 360 0

Note: Half-cycle duration is the water injection time in a CO,-WAG cycle.

the water injection rate, gas injection rate, and half-cycle are set as
0, which can ensure that water flooding and continuous gas in-
jection are included and the duration of the CO,-WAG cycle is more
flexible. When the half-cycle is set to 0 or 360, the setting of the gas
injection rate or water injection rate is invalid, which will cause
different injection schemes to correspond to the same objective
value, which is disadvantageous for the optimization. To deal with
this, we forcefully set the water injection or the gas injection rate to
0 when the half-cycle is equal to 0 or 360.

The simulator employed in the simulation is the GEM of CMG
2022 and the economic parameters are given in Table 8. Sensitivity
analysis, as shown in Table 9, was performed before optimization to
understand the influence of different optimization variables on the
objective functions. The results show that the NPV will increase due
to the increase in water injection rate, but the cumulative CO,
storage will decrease when water flooding is incorporated. The NPV
and cumulative CO, storage will increase when the gas injection
rate increases, when considering continuous gas injection, but the
NPV under the maximum gas injection rate is less than the NPV
under the maximum water injection rate, which may be due to
gravitational differentiation. An increase in half-cycle duration will
increase the NPV and decrease CO, storage. In contrast, an incre-
ment of bottomhole pressure will reduce the NPV but enhance the
cumulative CO; storage.

Table 8
The economic parameters (Botechia et al., 2023).

lation of the NSGA-II is 10, and the initial iteration number is 1000.
For the convergence criterion, we define the single-objective opti-
mization converges on the surrogate model when the value of the
gradient component is less than 0.001 or when the distance be-
tween the optimization variable and the boundary is less than 0.001.
The initial number of samples is 100. The sampling process initiates
with Latin Hypercube Sampling (LHS), a space-filling technique
particularly effective for high-dimensional parameter spaces, to
generate representative initial sample points. These sampled values
are subsequently mapped into the constrained domain of optimi-
zation variables based on predetermined upper and lower bounds.
Ultimately, this procedure establishes a comprehensive dataset that
systematically correlates production scheme parameters with their
associated objective function values. The maximum evaluation times
for the simulator is 200.

To show the superiority of the proposed algorithm (RBF-DE-
NSGA-II-C), we compare it with the algorithm without single-
objective pre-search or convergence criterion (RBF-NSGA-II), the
algorithm with pre-search but without convergence criterion (RBF-
DE-NSGA-II), and the algorithm by Zhao et al. (2020) (PCA-K-RVEA).
To ensure fairness of comparison, the parameter settings of all
compared algorithms are set to be the same. As our proposed
methodology includes pre-search by single-objective optimization,
we record the total number of surrogate model evaluations of our
algorithm and set the overall iteration number of all three
compared algorithms to be the same, which is 11500. This means
that the total iteration steps consumed by single-objective and
multi-objective optimizations is 11500 for our proposed algorithm,
and the other three algorithms (RBF-NSGA-II, RBF-DE-NSGA-II, and
PCA-K-RVEA) also used totally 11500 iteration steps to perform the
optimizations. The maximum number of evaluations for the nu-
merical simulator is 200 for all four compared algorithms.

The optimization results are shown in Fig. 7, the optimization
consumed 669 min with 11th Gen Intel® Core i7-11700 @ 2.50 GHz.
We can find the Pareto front obtained by our algorithm, after the
validation of the numerical simulator, is obviously the highest
among all the four algorithms, which means it outperforms the
three other algorithms with the same computational cost. The pre-
search and appropriate iteration in each cycle resulted in its su-
periority. The comparison of points Aq, A, A3, A4 and
Bq, By, B3, B4 are shown in Figs. 8 and 9. For the first group (A1, Ay,

0il price, USD/m® Water-injection cost, USD/m> Gas-injection cost, USD/m® Water disposal cost, USD/m> Producer gas disposal cost, USD/m> Annual discount rate

314.5 4.65 0.0134

4.65

0.0124 0.09

2972
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Table 9

The sensitivity analysis of the Egg model.

Petroleum Science 22 (2025) 2967—2976

Experiment No.  Half-cycle,d  Water injection rate, m>/d  Gas injection rate, m®>/d ~ BHP of the producer, kPa NPV, USD Cumulative CO; storage, kg
1 360 60 0 32500 98918623.2 2992916.0
2 360 120 0 32500 127738171.2 2289048.0
3 360 180 0 32500 139900157.6 1793167.0
4 0 0 10000 32500 51299460.6 250903300.0
5 0 0 20000 32500 83204630.1 436071700.0
6 0 0 30000 32500 105749417.1 579029800.0
7 90 60 10000 32500 73964257.0 197345000.0
8 180 60 10000 32500 86323988.0 134306900.0
9 270 60 10000 32500 93939899.4 68863020.0
10 270 120 20000 34500 92288663.4 68893720.0
11 270 120 20000 36500 90722856.6 68971060.0
12 270 120 20000 38500 88762706.6 68977090.0
" 4x1010
6:5x1071 @ |Initial sample .‘ B, 1ax1e
6.0x10° | @ RBF-NSGA-I B!
©® PCA-K-RVEA ‘.cg. _ 1.2x10"
o 55x10° { @ RBF-DE-NSGAII b o ® g
= ® RBF-DE-NSGA-II-C 5% o 4@ =
O 5.0x10° 4 O 1.0x10"
& &
S 45x10° | o
o« o 8.0x10°
o 4.0x10° o)
(@] (@)
.a2> 3.5x10° o _g 6.0x10°
T 300100 4 kS
> 2 x10°¢
E 250 g R
8] (&)
2.0%10° 1 2.0x10°
1.5x10°
1.0x108 T T T T T T T 9 " " ’ ' ' J J J
8.0x107  9.0x107 1.0x10° 1.1x10° 1.2x10° 1.3x10° 1.4x10° 1.5x10° 0 20004000600 6001 =000 4200 SH400; =600 - 800
NPV, USD Production time, d

Fig. 7. The optimization results under different algorithms.

A3, Ag), their cumulative CO, storage is almost equal, but the cu-
mulative oil production of the proposed algorithm is the highest
and the cumulative water production is relatively lower under the
production scheme obtained by RBF-DE-NSGA-II-C. The production
schemes in the second group (By, By, B3, B4) return almost the
same NPV, but the cumulative CO, storage of “B,” is the greatest.

6x10°

A 2
A /
As

5x10° 4

4x10° o

3x10° 4

2x10° 4

Cumulative oil production, m®

1x10° o

0 T T T T T T T T

0 200 400 600 800 1000 1200 1400 1600 1800

Production time, d

Cumulative water production, m?

Fig. 9. The cumulative CO, storage at points By, By, B3, and By.

Case 2. The reservoir model is also a benchmark simulation model
(the ‘Cap’ model) modified from Afanasyev and Vedeneeva (2021).
The reservoir model and its initial oil saturation are shown in
Fig. 10. The relative permeability curves and components are the
same as those in the “Egg” model of Case 1. The considered
chemical reaction equations are in Table 10. The initial pressure of
the reservoir is 24 MPa and the production time is 1800 d. The
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Fig. 8. The cumulative oil and water production at points A;, Ay, A3, and Ay.
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Fig. 10. The reservoir model and its initial oil saturation.

Table 10 5.0x10°
The considered chemical reaction equations. @ Initial sample
Chemical reaction equation : gg/l—;—_u_sg/ﬁgg * ’.S.... °,
+ - _ 45x10° { @ RBF-DE-NSGA-II °
H"+ OH™ = H2+0 B 2 ® RBF-DE-NSGA-II-C o
CO, + H,0 = H™ 4 HCO3 . °
CO%™ + H* = HCO3 ol
Kaolinit + 6H' = 5H,0 -+ 2A1* + 25i0,(aq) S aox0r g o .
Anorthit + 8H* = 4H,0 + Ca®* + 2AR" + 25i0, (aq) o)
O ®
]
2 3.5x10° A P
Table 11 % °
The design variable of the reservoir model. £
=1 [ 02 )
Design variable Upper bound Lower bound o 3.0x10° 4 .’ .‘ ®e
i a o
Water injection rate, m>/d 250 0 jot ’. ® °
Gas injection rate, m>/d 18000 0 .. ®
BHP of the producer, kPa 10000 5000 .
Half-cycle duration, d 360 0 2:5%10 y T T )
1.5%108 2.0x10° 2.5x10° 3.0x10° 3.5x10°
Note: half-cycle duration is the water injection time in a CO,-WAG cycle.
NPV, USD

design variables are shown in Table 11 and the total number of
optimization variables is 140. With the same economic parameters
shown in Case 1, a sensitivity analysis was also performed for Case
2, and the results are shown in Table 12. It can be found that the
trend of the objective functions is the same as Case 1.

Similarly, the parameter settings of the algorithms are the same
as those in Case 1. The optimization for Case 2 consumed 593 min
with 11th Gen Intel® Core i7-11700 @ 2.50 GHz. Obviously, it can be
found in Fig. 11 that the proposed algorithm gives the best outcome
within the same iteration number, which means that the prior
knowledge by the single-objective optimization and the conver-
gence criterion both worked well. The prior knowledge explores the

Table 12
The sensitivity analysis of the reservoir model.

Fig. 11. The optimization results under different algorithms.

endpoints of the Pareto front, while the convergence criterion en-
sures a full search on the surrogate model. The production scheme
under the maximum NPV obtained by our algorithm is shown in
Fig. 12. The distribution of CO, and relative ions corresponding to the
maximum NPV case is shown in Fig. 13. It can be found that CO, is
mainly distributed around the wells, and the injected CO, almost
achieved uniform flooding with the optimized well schedules. Fig. 14
shows the proportion of different trapping mechanisms under the
maximum CO, storage, and the amount of CO, storage due to
structural trapping accounts for half of the total CO, storage.

Experiment No. Half-cycle,d  Water injection rate, m3/d Gas injection rate, m3/d BHP of the producer, kPa NPV, USD Cumulative CO; storage, kg
1 360 150 0 5000 249466952.8  232975900.0
2 360 200 0 5000 268415980.3  231645600.0
3 360 250 0 5000 287128766.6  230325600.0
4 0 0 6000 5000 218756939.7  315467800.0
5 0 0 12000 5000 252490050.2  393385400.0
6 0 0 18000 5000 283760177.7  471382900.0
7 90 200 12000 5000 253544151.7  353016500.0
8 180 200 12000 5000 255231294.7  312951100.0
9 270 200 12000 5000 260171887.0  272527000.0
10 270 200 12000 6500 233078695.3  273760400.0
11 270 200 12000 8000 210388960.4  274312200.0
12 270 200 12000 9500 190609304.4  275169700.0
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Fig. 12. The production scheme under the maximum NPV.

CO; saturation

0.70
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Fig. 13. The distribution of CO, in Case 2.

For both the Egg model (Case 1) and Cap model (Case 2), we use
the hypervolume value (HV) (Guerreiro et al., 2021) to measure the
performance of different algorithms quantitatively, and the refer-
ence point is set to be (0, 0). A higher HV value usually indicates a
higher optimization efficiency. From Table 13, it can be found that
the HV of the proposed algorithm achieved the largest value in the
two benchmark models. The effect of single-objective pre-search
can be demonstrated by the performance comparison between
RBF-DE-NSGA-II and RBF-NSGA-II, the HV value is significantly
improved by approximately 59.7% and 194.3% in Case 1 and Case 2,
respectively. The effect of the convergence criterion can be
demonstrated by the performance comparison between RBF-DE-
NSGA-II-C and RBF-DE-NSGA-I], and it is shown that the conver-
gence criterion further enhanced the HV value by 31.2% and 9.98%.

300 300
0 = H;0-Inj3 — CO--Inj3 } 20000 = H;0-Inj4 — CO-Inj4 | 20000
o 2 - 2 3
= E 250 = g 260 =
£ 2 £ 3 £
05 £ 200 15000 ¢ £ 559 15000 o5
B = s = — |
c £
c o c o o
0L B 160 10000 2 9 10000 -2
8 2 8 2 8
£ £10 £ £10 £
o 8 5000 @ 8 5000 @
T 50 T 50
V] = o = o
0 F—rr! 0 0 . 0
0 200 400 600 800 10001200140016001800 0 200 400 600 80O 10001200140016001800
Injection time, d Injection time, d
© 10000 { — Eredd © 10000 — — R4
o o
= =
& 9000 & 9000
H H
2 2
8 8000 8 8000
a =3
2 7000 L 7000
o [=}
2 2
£ 6000 £ 6000
S S
3 3
@ 5000 @ 5000
0 200 400 600 80O 10001200140016001800 0 200 400 600 800 10001200140016001800
Production time, d Production time, d
— Prod7 — Prod8
© 1 —
& 10000 & 10000
= =
@ 9000 o 9000
5 5
2 2
8 8000 8 8000
(=8 =5
2 7000 2 7000
o [<}
2 2
£ 6000 £ 6000
£ £
R 5000 R 5000
0 200 400 600 800 10001200140016001800 0 200 400 600 800 10001200140016001800
Production time, d Production time, d
- Structural trapping
- Residual trapping
- Solubility trapping
12.76% 6.87% l:l Mineral trapping

2975

26.77%

53.60%

Fig. 14. The proportion of different trapping mechanisms under the maximum CO,
storage case.

Table 13

The HV value of different algorithms on two reservoir models.
Algorithm Case 1 Case 2
RBF-NSGA-II (with 11500 iterations) 0.3660 0.3061
RBF-NSGA-II (with 12500 iterations) 0.6081 0.1846
PCA-K-RVEA (with 11500 iterations) 0.6247 0.7774
PCA-K-RVEA (with 12500 iterations) 0.5906 0.8778
RBF-DE-NSGA-II (with 11500 iterations) 0.5845 0.9010
RBF-DE-NSGA-II-C (with 11500 iterations) 0.7671 0.9910

For RBF-NSGA-II and PCA-K-RVEA, the iteration number is
increased to 12500 to check if the HV value would be improved
with more iterations, but it can be found that an increase in itera-
tion number does not guarantee HV improvement. For Case 1, the
HV of RBF-NSGA-II is enhanced while the HV of PCA-K-RVEA is
reduced. For Case 2, the results are completely the opposite. The
proposed algorithm still outperforms these two algorithms with
more iterations in terms of HV.
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5. Conclusions

This study develops an integrated multi-objective optimization
framework for CO, water-alternating-gas (WAG) and CO; flooding
processes. Through treating single-objective optimization results as
prior knowledge for population initialization, as well as establish-
ing an adaptive convergence criterion to determine optimal itera-
tion thresholds for preliminary single-objective searching, the
subsequent multi-objective is significantly accelerated. The inves-
tigation of this work yields two principal findings.

(1) Strategic incorporation of single-objective optimization
outcomes into multi-objective population initialization
substantially accelerates Pareto front convergence rates.
Computational experiments demonstrate that this pre-
search mechanism enhances optimization efficiency by 59%
compared to conventional initialization approaches.

(2) The establishment of convergence criterion can help deter-
mining the number of iterations for the single-objective pre-
search. It can avoid the empirical setting of the iteration
number for the single-objective optimization. Implementa-
tion of this criterion achieves a 9.98% improvement in
hypervolume (HV) indicator for the overall optimization
workflow.
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