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ABSTRACT

Formation pore pressure is the foundation of well plan, and it is related to the safety and efficiency of
drilling operations in oil and gas development. However, the traditional method for predicting formation
pore pressure involves applying post-drilling measurement data from nearby wells to the target well,
which may not accurately reflect the formation pore pressure of the target well. In this paper, a novel
method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory
into machine learning based on seismic and logging-while-drilling (LWD) data was proposed. Gated
recurrent unit (GRU) and long short-term memory (LSTM) models were developed and validated using
data from three wells in the Bohai Oilfield, and the Shapley additive explanations (SHAP) were utilized to
visualize and interpret the models proposed in this study, thereby providing valuable insights into the
relative importance and impact of input features. The results show that among the eight models trained
in this study, almost all model prediction errors converge to 0.05 g/cm?, with the largest root mean
square error (RMSE) being 0.03072 and the smallest RMSE being 0.008964. Moreover, continuously
updating the model with the increasing training data during drilling operations can further improve
accuracy. Compared to other approaches, this study accurately and precisely depicts formation pore
pressure, while SHAP analysis guides effective model refinement and feature engineering strategies. This
work underscores the potential of integrating advanced machine learning techniques with domain-
specific knowledge to enhance predictive accuracy for petroleum engineering applications.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0)).

1. Introduction

well. These methods often fail to accurately reflect the true for-
mation pore pressure conditions of the target well (Das and

Formation pore pressure represents the pressure exerted by
fluids within the pores and fractures of geological formations. It
serves as a crucial parameter for wellbore structural design and
drilling fluid density planning, thus forming a core component of
drilling operations (Deng et al., 2024; Zhang, 2011). However, the
prevalent approach to predicting formation pore pressure involves
applying formation pore pressure calculations derived from logging
data of nearby wells directly to the design and drilling of the target
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Chatterjee, 2018). Therefore, achieving a precise and accurate
description of formation pore pressure in the target well is of
paramount importance.

Logging data provides abundant information about formation
and rock properties, including formation rock density, acoustic
velocity, and porosity. Theoretical methods derived from effective
stress laws by Biot (1941) and Terzaghi (1943) enable the calcula-
tion of formation pore pressure using logging data. Hottmann and
Johnson (1965) proposed classic theoretical methods for forma-
tion pore pressure prediction based on sonic travel time and re-
sistivity data to characterize shale properties. Deviations from
expected trends in calculated results can indicate anomalous for-
mation pore pressure conditions. Eaton (1972, 1975) introduced
significant theoretical equations utilizing resistivity data and a new
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equation using sonic differential time data to predict formation
pore pressure (Eaton method). The empirical constant in the Eaton
method needs to be determined within the range of 0.6—3 and
varies in different regions. Bowers (1995) introduced a new for-
mation pore pressure prediction method in 1995 (Bowers method)
considering rheological differences through loading and unloading
divisions, although it may overestimate formation pore pressure in
formations with slow acoustic velocities (Zhou et al., 2020). Sub-
sequently, various scholars have refined the Eaton and Bowers
methods from multiple perspectives (Gholilou et al., 2017; Guo
et al.,, 2023; Sun et al., 2024; Zhang, 2011). Over the past few de-
cades, these theoretical models have provided accurate predictions
and inversion of formation pore pressure in petroleum drilling.
However, most of these models are empirical and single-variable,
thereby exhibiting lower stability (Wang and Wang, 2015).

In recent years, machine learning has been applied to various
aspects of petroleum drilling, including rate of penetration (ROP)
prediction, productivity evaluation, formation pore pressure pre-
diction, kick detection, and downhole complex condition recogni-
tion (Chen et al,, 2023, 2024; Li et al., 2022a; Mahmoud et al., 2024;
Wang et al., 2023). Machine learning models offer solutions to the
drawbacks of single-variable and empirical parameters in tradi-
tional theoretical models. Previous studies employing machine
learning for formation pore pressure prediction have predomi-
nantly focused on data-driven approaches (Li et al., 2022a). For
example, researchers have utilized logging data for formation pore
pressure prediction (Lockhart et al.,, 2023). Ahmed et al. (2019)
creatively applied support vector machine (SVM) to predict pore
and fracture pressures with high accuracy based on real field data,
outperforming traditional models in simplicity and prediction
ability. Xu et al. (2024) utilized parameters such as depth, sponta-
neous potential, natural gamma ray, and sonic differential time
from logging data as inputs to build and compare back propagation
neural network (BPNN), recurrent neural network (RNN), and LSTM
neural networks. They enhanced model applicability using LSTM
combined with transfer learning algorithms. The experimental re-
sults showed that compared with the LSTM model, the TCA-LSTM
model using transfer component analysis had a better prediction
effect, with an average absolute error of only 0.50%. Some re-
searchers have predicted and monitored formation pore pressure
using surface logging data (Li et al.,, 2023). Ahmed et al. (2021)
developed an artificial neural network using parameters recorded
at the wellhead, including rate of penetration, mud flow rate,
standpipe pressure, and rotary speed, for real-time monitoring of
formation pore pressure changes. The model achieved an R? of 0.98,
indicating its effectiveness in accurately inversing formation pore
pressure at the wellhead. Others have employed seismic data for
formation pore pressure prediction (Lockhart et al., 2023). Li et al.
(2023) introduced a unique deep learning model, TGG, inte-
grating temporal convolution, graph adaptive learning, and graph
convolution, which demonstrated remarkable performance in
predicting abnormal pore pressure with high accuracy and
robustness using field kick data. Zhang et al. (2024) introduced a
highly generalized CGP-NN model that utilized seismic attributes
such as instantaneous frequency, instantaneous Q related to energy
attenuation, and maximum curvature to train a multi-layer GRU
model. The model achieved an R? of 0.94 on the validation set,
surpassing the performance of traditional methods like Eaton and
Bowers. Furthermore, some researchers have integrated domain
knowledge into machine learning models for formation pore
pressure prediction. Cao et al. (2024) proposed the knowledge-
aware TFT Model, a new deep learning framework that combines
geological knowledge with formation pore pressure evolution
theory to achieve high-precision formation pore pressure
prediction.
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The aforementioned scholars have expanded the range of pa-
rameters used for predicting formation pore pressure and have
trained models that achieve relatively high accuracy. However,
many models developed in these studies using logging data appear
more like inversion models for formation pore pressure after dril-
ling rather than predictive models aimed at accurately character-
izing formation pore pressure in target wells (Wang and Wang,
2015). Data collected at the wellhead often suffers from latency
issues and cannot provide real-time reflections of conditions at the
bottom of the well (Jorden and Shirley, 1966). While using seismic
attribute parameters can address the challenge of predicting for-
mation pore pressure before drilling into target wells, acquiring
multiple seismic attribute parameters is difficult, and there
currently lacks mature theory and practical guidelines demon-
strating that using seismic attribute parameters alone can finely
describe formation pore pressure. Moreover, previous machine
learning models established by researchers are often black-box
models that do not provide insights into the contributions of each
parameter in predicting formation pore pressure.

Currently, with the advancement of LWD technology, some
logging tools can achieve ahead-of-the-bit detection, obtaining
formation property parameters from several tens of meters deep
beneath the drill bit (Guo et al., 2020; Hagiwara, 2018; Khalil et al.,
2018; Wang et al., 2022). These tools enable high-precision imag-
ing, long-range detection, proactive sensing, passive integrated
multi-parameter capabilities, and real-time formation testing dur-
ing drilling (Wang and Ye, 2024). Building upon the shortcomings
identified by previous scholars and the development of logging
tools, this study proposes a novel approach to accurately predict
formation pore pressure by integrating petrophysical theory into a
machine learning model using fused seismic and LWD data from
three deep-sea wells in the Bohai Oilfield. This method achieves
precise prediction of formation pore pressure beneath the drill bit,
addressing challenges in traditional methods and previous research
by accurately characterizing formation pore pressure in target wells
and providing interpretability of the machine learning models.

2. Geological background and data processing

All data in this study were sourced from the Bohai Oilfield,
China. The complex geological structures and sedimentary back-
grounds pose challenges for accurate prediction of formation pore
pressure, and insights gained from drilling complexities in histor-
ical wells are beneficial for assessing the distribution of formation
pore pressure in the study area. Therefore, understanding the
relevant geological background and certain historical drilling in-
cidents is crucial for data selection and model training. Wells A, B,
and C are all vertical wells drilled within the past five years.

2.1. Historical drilling complications

The study area features an overall buried-hill structural back-
ground, with the basement developed in the Archean, Paleozoic,
and Mesozoic eras (Xue and Wang, 2020). The strata are divided
into the Pingyuan Formation (Qp), Minghuazhen Formation (Nym),
Guantao Formation (N;g), Dongying Formation (Esd), Shahejie
Formation (E;_38), Mesozoic (Mz), Paleozoic (Pz), and Archean (Ar)
from top to bottom. The Dongying Formation is further subdivided
into three members, Dong 1 Member, Dong 2 Member (including
three submembers of E3d2 T and E3d2 11) and Dong 3 Member.
Historical drilling instances demonstrate abnormal overpressure in
the Dong 3 Member to the Shahejie Formation (Liu et al., 2019; Pu
et al,, 2020). The statistics of the complex situation of well kick
(Kick) and drilling fluid loss (Loss) in some adjacent wells are
shown in Table 1.
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Table 1
Statistics of complex accidents in adjacent wells.
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Well Wellbore size, in Depth, m Complex situations Measure Stratigraphic level
Z-1 8-1/2 4446 Kick Cycle to increase specific gravity to 1.52 g/cm?>. Dong 3 Member
8-1/2 4607 Loss Reduce displacement to 1600 L/min.
8-1/2 4803 Kick Normal after cyclic exhaust. Shahejie Formation
8-1/2 4825 Kick Increase the drilling fluid density to 1.55 g/cm®.
8-1/2 4871 Loss Reduce the displacement to 400 L/min. Paleozoic
6 4882 Kick Increase the drilling fluid density to 1.33 g/cm?>.
6 4962 Loss Add plugging material.
Z-2 12-1/4 3963 Loss Reduce the displacement to 3000 L/min. Dong 2 Member
6 5224 Loss - Archean
Z-3 6 4378 Kick Increase the drilling fluid density to 1.20 g/cm?>. Paleozoic
Z-4 12-1/4 4223 Loss - Dong 3 Member
12-1/4 4212 Kick —
12-1/4 4328 Loss —
12-1/4 4438 Loss Add plugging material with drilling.
8-1/2 4645 Kick - Mesozoic

During drilling of Well Z-1, there were recorded 7 instances of
complex drilling fluid losses and well kicks. Fig. 1 illustrates the
wellbore design guided by pre-drill predictions of the three-
pressure profiles for Z-1, juxtaposed with the complexities
encountered during actual drilling. Specific analysis was conducted
on the application of pre-drill predictions of formation pore pressure
in the Z-1 well during its drilling in the Bohai Oilfield, highlighting
shortcomings of the traditional Eaton method. Both the predicted
three-pressure profiles and the drilling complexities indicated an
initial rise in formation pore pressure in the lower section of Dong 2
Member. The predicted profiles suggested a subsequent decline in
formation pore pressure towards the base of Dong 2 Member, yet in
actual drilling, elevated pressures persisted within the Shahejie
Formation, reaching densities of 1.52—1.55 g/cm?>.

Formation pressure, g/cm®
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This indicates that there is a continuous high-pressure interval
encountered in the formations drilled by Well Z-1 from the lower
section of Dong 2 Member down to the base of Shahejie Formation,
rather than the predicted scenario where pressure was expected to
peak at the base of Dong 2 Member and then decline. It also suggests
that regressing well logging data obtained from neighboring wells
post-drilling cannot directly refine the description of formation pore
pressure in the target well.

2.2. Raw data analysis
Fig. 2 illustrates the relative positions of wells A, B, and C. Wells

B and C are situated within the same block, while Well A is located
in a different block. Fig. 3 depicts the variation of seismic velocity-

Drilling to 4446 m,
well kick, specific
gravity 1.50 g/cm®.

Drilling to 4803 m,
well kick, specific

gravity 1.52 g/em®. Drilling to 4825 m,

well kick, specific
gravity 1.55 g/cm?.

Drilling to 4882 m,
well kick, specific
gravity 1.08 g/cm?.

.
L
G

Fig. 1. Design of well structure guided by pre-drilling prediction of three pressure profiles in Well Z-1 and complications arising from the actual drilling.
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Fig. 2. Position of wells A, B, and C.
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Fig. 3. Original data and corrected formation pore pressure.

related parameter (seismic layer velocities (PVSEI)) and four
logging-related parameters (natural gamma ray (GR); sonic differ-
ential time (DT); rock density (Den); porosity (CNCF)) with depth
for these three wells. From the figure, it is evident that wells B and
C, which are in the same block, exhibit similar trends in formation
pore pressure, whereas Well A from the different block shows
dissimilar trends compared to wells B and C.

From Fig. 3, significant variations in PVSEI among the three wells
are observed. Wells B and C exhibit similar changes in DT, Den, and
CNCF in the shallow formations. In terms of GR, notable differences
between these two wells begin around 3068 m, aligning with their
PVSEI variations. It is evident that before 2800 m, the trends in for-
mation pore pressure for both wells are nearly identical, mirroring
the changes in PVSEIL However, at 3150 m, a slight increase in for-
mation pore pressure is observed in Well C, while a slight decrease is
seen in Well B. This significant trend change is minimal reflected in
GR, DT, Den, and CNCF, though GR and CNCF show numerical
changes, these are marginal and could easily be dismissed as data
recording errors. In contrast, PVSEI clearly indicates a minor decline
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in Well B and a slight increase in Well C. Furthermore, below 4500 m,
significant fluctuations in GR, DT, CNCF, and PVSEI values distinctly
capture the sharp decrease followed by a rapid increase in formation
pore pressure. This highlights the seismic parameters' ability to
effectively and intuitively characterize formation pore pressure
variations with depth. This reaffirms the effectiveness of integrating
multiple sources, including seismic and LWD parameters, for for-
mation pore pressure prediction in this study.

2.3. Data processing

To effectively demonstrate the effectiveness of this method, this
study used data from the upper well sections of wells A, B, and C as
both training and testing sets to establish models. These models were
then used to predict formation pore pressure in the lower well sec-
tions of each respective well. Directly inputting data into the model
could lead to issues such as large numbers dominating small ones,
potentially causing the model to overlook certain parameters (Chen
et al., 2023). Therefore, Min-Max normalization was employed to
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scale all data into the [—1, 1] range. This normalization aids in faster
convergence of optimization algorithms and enhances model accu-
racy. The formula for Min-Max normalization is:

_ Xx—min(x)
~ max(x) — min(x)

/

(1)

In the formula, x is a certain set of feature data, and x’ is the data
after the change, max and min indicate the maximum and mini-
mum values of the data, respectively.

The interpolation and supplementation of data aim to retain as
many data points as possible while introducing a limited and
acceptable level of error. The purpose of this operation is to reduce
the impact of anomalous data on model convergence and to pre-
vent errors during model training. When handling anomalies in the
data, Kriging interpolation is used to fill in the missing values.
Kriging interpolation combines the data from known locations
using weights to estimate the values at missing points. For the
missing value at x;, it can be expressed as:

n

Y(x) =D [A4*Y(x))]

j=1

(2)

where, Y(x;) is the value at the missing point; Y(x;) is the value at the
known point; n is the number of known points involved in the
interpolation; 4; is the weight for each known point. The core of
Kriging interpolation is to determine the weights that minimize bias
and ensure the smallest variance in the interpolation results. The
calculation of the weights depends on the spatial correlation between
the points, which can be measured using a semivariogram. The defi-
nition of the semivariogram is as follows:

¥y = E[(V0) — Yo+ ))?] 3)

where, h is the distance between two points; Y(x) and Y(x +h) are
the measurements at locations x and x + h, respectively. E is the
mathematical expectation measuring the average of
[(Y(x) — Y(x + h))?]. The weights /; can be determined by solving
the following system of linear equations:
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(4)

(5)

j=1

where  is the Lagrangian residual constrained to ensure the un-
biasedness of the weight. After calculating the semivariogram
v(x; —x;) between each point using the above Eq. (10), each 4 is
determined by solving the linear equation system determined by
Eqs. (11) and (12). Finally, 4; is substituted into the Kriging inter-
polation formula of Eq. (9) to obtain the missing value Y(x;) at x;.

To further validate the relationships and dependencies among
the selected variables in this study, Spearman’s rank correlation
coefficient was employed to analyze the correlations between
various parameters. This analysis helps uncover patterns and re-
lationships within the data. Spearman’s correlation coefficient can
be calculated using the following formula (He et al., 2023):

=

(R(x;) = R(x))(R(yi) — R(¥))

p— i=1
J (% ; (R(x) —R(x>>2> : <% ; (Ry) —R(y))2>

1
n

(6)

Here, R(x) and R(y) denote the ranks of x and y, respectively, while

R(x) and R(y) represent the average ranks.

Fig. 4 depicts the computed Spearman correlation coefficients.
From the correlation plot, Depth, GR, DT, and Den show a positive
correlation with formation pore pressure, with values around 0.6,
indicating a moderate correlation, which meets the requirements
for machine learning input parameters. On the other hand, PVSEI
exhibits a weak correlation with formation pore pressure. This is
expected because the formation pore pressure data used in this
study are derived from the Eaton method and adjusted during
drilling operations for factors such as drilling fluid density.

Depth
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e
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CNCF
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WoNe' B
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'
i~

n

CNCF PVSEI
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Fig. 4. Spearman'’s correlation coefficient.
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3. Methodology
3.1. Formation pore pressure prediction model

Hubbert and Rubey (1959) introduced the concept of effective
stress into the field of geology. They established the relationship
between formation pore pressure, overburden pressure, and ver-
tical effective stress as follows:
Dp=Do—0 (7
where pj is predicted formation pore pressure, p, is overburden
pressure, and ¢ is vertical effective stress.

Based on logging data, Eaton (1972, 1975) proposed two well-
known theoretical models for predicting formation pore pressure,
including models based on shale resistivity and sonic differential
time. According to extensive historical research, the primary
mechanism for abnormal high pressure in the Bohai Qilfield, China,
is attributed to under compaction of shale, consistent with the
effective utilization scope of the Eaton method. Under the principle
of effective stress, the Eaton method can be expressed as:

DTy\"
Pp=Po — (Po —Ph) (DTZ)

where py, is normal hydrostatic pressure, DTy, is normal sonic transit
time, DT, is logging-determined rock sonic transit time, and n is the
Eaton exponent.

The Eaton method is based on the principle of effective stress
and the intrinsic relationship between formation pore pressure and
seismic wave propagation velocity. The mechanical and physical
properties of rocks are significantly influenced by effective stress.
Effective stress refers to the stress acting on the rock framework,
and it has a specific relationship with the total stress and pore
pressure. In the subsurface geological environment, total stress can
be considered as the overburden pressure, which is borne jointly by
the rock framework and pore fluids. When pore pressure changes,
effective stress also undergoes modifications, thereby affecting the
rock’s porosity structure and other physical properties. When pore
pressure causes structural changes in the rock, the contact re-
lationships between the rock particles also change, leading to a
reduction in the rock’s stiffness. According to the theory of elastic
wave propagation, the speed of seismic waves in rock is closely
related to the rock’s stiffness, and a decrease in stiffness results in a
reduction in wave propagation speed. The Eaton method effectively
applies this physical principle to correlate seismic wave velocity
with pore pressure.

(8)

3.2. Physical mechanisms embedded in machine learning

To enable machine learning models to better capture natural
laws, some scholars have integrated physical theories into machine
learning models by modifying the loss function (Bommidi et al.,
2023; Ribeiro et al.,, 2024; Loutfi et al,, 2022; Xiong et al., 2024).
Studies have shown that this approach effectively enhances the
predictive efficiency and stability of models. The loss function
measures the difference between model predictions and actual
values, serving as the core of optimization algorithms. Different loss
functions are suitable for different problems and data types, leading
to different models being trained. In regression problems, Mean
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Squared Error (MSE) is commonly used as a loss function, defined
as:

n
MSE = %Z = ypk)2 (9
k=1

where yy, is the true values on the test set and yp is the predicted
values on the test set. MSE measures the squared difference be-
tween model predictions and actual values, providing a quantita-
tive assessment of prediction accuracy.

Embedding physical theories into the loss function integrates
domain knowledge into the process of training machine learning
models. The primary objective is to introduce domain knowledge to
enhance the applicability of the models for predicting formation
pore pressure, thereby improving model performance and inter-
pretability (Lan et al., 2023). Petrophysical theory impose addi-
tional constraints on model outputs, ensuring better alignment
with physical laws governing the natural world, thereby enhancing
model reliability and robustness. In traditional machine learning
models, such as those mentioned above that use MSE as the loss
function, the primary mechanism is to measure the deviation be-
tween the model’s predicted values and the true values. The model
primarily relies on the data itself for training, and in some complex
problems, machine learning models may fail to capture the un-
derlying patterns within the data. In particular, when there is sig-
nificant data noise, the robustness of the model during training
may not be stable. The introduction of rock physics theory can assist
the model in making more reasonable predictions when faced with
unseen data. Moreover, aligning the model’s outcomes with
established physical laws or mechanisms in the domain enhances
the interpretability of integrating physical theories into machine
learning models. Previous machine learning models were often
considered “black-box” models, making it difficult to explain their
internal working mechanisms. The introduction of rock physics
theory ensures that the model’s output not only aligns with the
data but also adheres to physical laws.

This study implemented the calculation of formation pore pres-
sure based on the Eaton method using Python, formulated as follows:
pp =pp-Compute(Depth, DT, Den) (10)
where Den is rock density. Since machine learning is fundamentally
data-driven, it learns relationships and patterns within data
through extensive datasets. Using only physical theories as the loss
function may not fully utilize the potential information within the
data, thereby limiting the model’s performance and generalization
ability. Real-world data inherently includes noise and uncertainty,
whereas theoretical mechanisms are often derived under idealized
conditions. Relying solely on physical theories as the loss function
could lead to overfitting. Complex deep learning models tend to
perform well on the training data but poorly on the test data
because the model learns noise or irrelevant features in the data.
Integrating MSE with a physical theory formula as the loss function
balances the influences of data and physical theories on the model.
The loss function in this study is expressed as:

2
Loss=A- \/(pp,Compute(Depth,DT7Den)—ypk> +(1-1)-MSE
(11)

Here, A is the weight of the physical mechanism.
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Fig. 5. GRU principle diagram.

3.3. Introduction to machine learning models as applied to pore
pressure prediction

This study investigates two machine learning models, GRU and
LSTM. GRU and LSTM are specifically designed to handle long-term
dependencies in time series data. They can capture long-range
temporal correlations through memory and forget mechanisms,
and are suitable for complex time series tasks. During the drilling
process, various parameters that vary with depth can be considered
as time series data. Therefore, it is more appropriate to use GRU and
LSTM. Both GRU and LSTM embed physical mechanisms into ma-
chine learning by modifying the Loss function. GRU and LSTM are
common sub-models of recurrent neural networks (RNNs) used for
sequential processing (Chen et al., 2023, 2024). Schematics illus-
trating the principles of GRU and LSTM for predicting formation
pore pressure are shown in Figs. 5 and 6, respectively.

3.4. Shapley additive explanations of pore pressure prediction
model

Understanding why machine learning models make certain
predictions and analyzing the impact of parameters on these pre-
dictions is crucial. Recently, SHAP has been widely applied in
various fields to interpret machine learning models (Kannangara
et al., 2022). For instance, Zhao et al. (2023) used SHAP visualiza-
tions to clarify the decision-making process and interpret their tree
model’s predictions for formation pore pressure under high-
temperature and high-pressure conditions. In their study, SHAP
was employed to explain the model’s behavior and assess the
contribution of each parameter to the predicted pore pressure
values. SHAP, grounded in game theory, is a method for explaining
model outputs by assigning an importance value—known as the
Shapley value—to each feature, based on its contribution to the
model’s predictions (Biatek et al., 2022). The Shapley value, derived

Ci_

from cooperative game theory, ensures a fair distribution of total
rewards based on each player’s contribution. SHAP calculates each
feature’s contribution by evaluating all possible feature combina-
tions and their respective outputs from the machine learning
model. To simplify the interpretation, SHAP maps simplified inputs
back to the original input space using a function (Song et al., 2024).
This explanatory model can be defined as follows:

e@)=go+> 1 92, (12)

Here, e is the explanation function, Z’ is a subset of simplified binary

features (hence z’ {0, 1}”), N is the number of simplified features,
and ¢; is coefficients in the explanation model indicating the
contribution of the i-th feature to the model prediction. ¢q is a
constant known as the expected value of the model prediction,
which in SHAP equals the mean prediction of the model on the
dataset. Importantly, models of this form exhibit specific properties
where the sum of contributions from all important features
approximately equals the output of the original model f, hence
f(x)=e(x). The computation for each feature’s contribution is:

aif. 0= Y2 ex B EL= Dl (1) e

The contribution of feature i-th is the average difference in
predictions for all simplified feature subsets that include and
exclude the feature.

(13)

3.5. Workflow of predicting formation pore pressure ahead of the
drill bit

Fig. 7 illustrates the workflow of this study. In this work, we
utilized integrated seismic and LWD data and employed a machine
learning model embedded with petrophysical theory as the
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Fig. 6. LSTM principle diagram.
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Fig. 7. Workflow of predicting formation pore pressure ahead of the drill bit.

processor. We propose a novel approach placing the integrated
model downhole to predict formation pore pressure beneath the
drill bit. This method involves recording seismic data of the for-
mations, logging data from upper drilled sections, and downhole
LWD data measured by the remote detection equipment (RDE).
Data collection and processing are completed downhole, and re-
sults are computed in real-time, transmitted to surface equipment
via mud pulse telemetry. Direct identification of formation pore
pressure downhole and transmitting computed results to the sur-
face significantly mitigates current downhole data transmission
bottlenecks. To demonstrate the feasibility of this new method in
model implementation, this study unfolds through model estab-
lishment and engineering application simulations.

This study unfolds through six key steps of the proposed
method:

Step 1: Data collection. It is necessary to extract pre-drilling
seismic exploration data from the block and logging data from
the drilled sections of the operational wells, along with forma-
tion physical property data, for the inversion of formation pore
pressure. Formation pore pressure of the drilled sections is
computed using physical method such as Eaton method, and
adjusted for encountered conditions during drilling, such as
drilling fluid density, formation physical properties, and com-
plexities conditions during drilling, serving as the result labels.
Step 2: Data processing. The step intervals recorded in seismic
and logging data are inconsistent, necessitating data normali-
zation. Occasional data gaps due to downhole complexities,
instrument issues, or data recording require interpolation using
Kriging. Proper partitioning of training data into testing and
validation sets enhances the predictive model’s generalization
capabilities effectively (Chen et al., 2023; Ma et al., 2024).

Step 3: Embedding petrophysical mechanisms. Embedding
physical theories into machine learning models incorporates
natural world operating principles beyond mere data-driven
operation, detailed in Section 1.3.

Step 4: Training formation pore pressure prediction models.
Models are trained using data from drilled well sections with
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two machine learning approaches. Different machine learning
mechanisms, such as GRU and LSTM models selected in this
study, may perform differently in various applications.

Step 5: Engineering application. During the drilling process of
operational wells, seismic data for the operational well is
known, while downhole formation data is sourced from RDE.
Cleaning and passing seismic data and ahead-of-the-bit LWD
data to the selected formation pore pressure prediction model
enable precise prediction of formation pore pressure. Contin-
uous updating of the model with data from the target well
during drilling improves prediction accuracy continually.

Step 6: Post-drilling model interpretation. Utilizing SHAP, the
predictions of the applied machine learning models across all
depths of the operational well are interpreted. This analysis
assesses the relative importance and impact of each feature in
the model, guiding model improvements, feature selection, or
engineering.

3.6. Model evaluation criteria

In order to assess the accuracy of the model of this study in
many aspects, this paper uses six evaluation models to evaluate the
effectiveness of the model trained in this study in each well. Each

evaluation method is calculated as follows (Zhang et al., 2023):

(1) Root mean square error (RMSE):

1& 2
RMSE = |- >~ (Vi — Vi) (14)
k=1
(2) Mean absolute error (MAE):
1 n
MAE =~ [y — Vpi| (15)
k=1
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Table 2
Hyperparameter usage of GRU and LSTM.
Hyperparameters GRU LSTM Hyperparameters GRU LSTM
Test set ratio 0.3 Loss function Weight of MSE and Eaton loss
Random seed 42 MSE weight 0.5
First layer neurons 64 Eaton loss weight 0.5
Second layer neurons 32 Number of epochs 100
Output layer neurons 1 Batch size 32
Optimizer Adam L1 regularization 0.01

(3) Mean absolute percentage error (MAPE):

n

>

k=1

MAPE = 1
n

Yik

Ytk — Ypk

(4) Coefficient of determination (R?):

n 2
> (ytk _ypk>
R
> Y _y)z
k=1

(16)

(17)

(5) Percent deviation between measured and predicted values
for the k-th dataset record (PDy):

4. Results analysis and discussion
4.1. Choice of model hyperparameters and physical weights

In order to reflect the effectiveness of the case study, all GRU and
LSTM models in this study use the same and simple hyper-
parameters, but the loss function is not the traditional MSE eval-
uation method. Table 2 lists the hyperparameter usage of GRU and
LSTM.

For a specific block and method, determining an appropriate
physical weight, is a crucial foundation for building a pore pressure
prediction model. In this study, we set physical weights to (0, 0.2,
0.5, 0.8) for iterative training. When A = 0, it indicates the absence
of physical constraints, making the model a purely data-driven pore
pressure prediction model. In this study, we used the first 20000
records of Well B as training sets and validation sets to train the
model, and the lower 9032 records as the test set for engineering
application simulation. The model performance under different
physical weights is analyzed to determine the optimal x for estab-

Ypk — ik . lishing the model in this article.

PDy = Yok x 100% (18) Fig. 8 presents a comparative analysis of true and predicted
values using GRU and LSTM models under varying physical
weights. The results indicate that incorporating physical con-

(6) Absolute average percent deviation (AAPD): straints significantly impacts the model’s predictive ability. When
A = 0, the pure data-driven approach shows relatively poor per-
0 formance in both GRU and LSTM models (GRU R? = 0.75998, LSTM
S |PDy| R? = 0.84719). This suggests that data-driven learning alone may
AAPD = k=1 (19) not fully capture the complex physical underpinnings of pore
n pressure. Notably, both models achieve optimal performance when
X = 0.2, with the LSTM model (R?> = 0.93884) outperforming the
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Fig. 8. Performance comparison of models built with different physical weights in GRU and LSTM frameworks.
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GRU model (R? = 0.89585). This optimal weight represents a well-
balanced integration of physical constraints and data-driven
learning, effectively preventing underfitting and overfitting in the
model. The enhanced performance of the LSTM model can be
attributed to its superior ability to capture complex sequential
patterns in data with long-term dependencies. However, increasing
the physical weight may lead to a decline in model performance. In
this study, the performance of models with A=0.5 and A= 0.8
weights was lower than that of the model with A = 0.2. This
suggests that an overemphasis on physical constraints may weaken
the model’s ability to learn from actual data patterns, particularly in
regions where physical theories cannot fully capture or describe the
complexities of local geology.

4.2. Results and evaluation

In this study, Well A had a dataset of 14453 records, with the
first 10000 records (up to a depth 0of 4996.1 m) used for training and
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testing. Well B had a dataset of 29032 records, with the first 10000
(up to a depth of 3176.6 m) and the first 20000 records (up to a
depth of 4176.6 m) used separately for training and testing. Well C
had a dataset of 22352 records, with the first 20000 records (up to a
depth of 5097.3 m) used for training and testing. The proposed
method trained GRU and LSTM models for each well, and the
prediction results are shown in Fig. 9. The yellow boxes in the figure
represent the training and validation sets, while the red boxes
indicate the application of models trained using upper formation
data to predict lower formation pressures. Figs. 10 and 11 depict the
errors and distributions of the GRU and LSTM model predictions
compared with post-drilling corrections across the three wells.
The trends in results obtained from applying both machine
learning frameworks in wells A, B, and C generally align with post-
drilling corrections. For instance, at 5316 m in Well A, GR, DT, DEN,
and CNCF all exhibit significant trends, with both models identi-
fying a minor sharp rise in formation pore pressure. This consis-
tency indicates that both machine learning models incorporating

16
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14 wa\
A_GRU
|
134 A_LSTM ' '
A_Actual
) I [ ‘
121 T — aill |H n
| Engineering application (EA)
11 4
1.5 1 A N
/TVAT l "‘IL 1‘” ! ' “M |
14 4 I
] 1 [ ! = i
1.3 - | 1 ::‘ f :
12 4 0
| B_GRU
EREE B_LSTM
IS —— B_Actual
O 1 1 1 1 ; - .
(o]
a ——— B_GRU_2
Q 154 —BLSTM2
—— B_Actual
14
45 TAT
12 4
11 4
——— C_GRU
1514 —— C_LSTM
—— C_Actual
13 4
s TAT
11 4 '
3000 3300 3600 3900 4200 4500 4800 5100 5400
Depth, m

Fig. 9. Comparison between the predicted results of the three wells and the true values.
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petrophysical theory, whether based on empirical formulas or the
methods proposed in this study, adhere to natural physical prin-
ciples. It further underscores the feasibility of embedding petro-
physical theory into machine learning models.

It is noteworthy that while the predicted trends generally align
with post-drilling corrections, some segments in the wells show
slight overestimations or underestimations of formation pore
pressure values. This discrepancy arises because actual formation
pore pressure values for all segments are not directly obtainable.
The formation pore pressure values used for training and validation
in this study are derived from comprehensive inversion of logging
data and drilling complexities. While highly informative for engi-
neering applications, these values do not represent exact formation
pore pressure values. For example, in Well B, both models trained
on the first 10000 records (B_GRU, B_LSTM) and the first 20000
records (B_GRU_2, B_LSTM_2) predict higher formation pore
pressure values between 4423.8 and 4690.3 m compared to cor-
rected formation pore pressure values. Reviewing Well B’s drilling
logs revealed a kick at 4890 m, resulting in a mud pit increase of
1.8 m°, a shut-in pressure of 9.5 MPa, and a static pressure of
415 MPa after hard shut-in. After a three-week well control
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operation, drilling fluid density was raised from 1.45 to 1.54 g/cm?,
and conditions returned to normal. During post-drilling formation
pore pressure corrections, only the formation pore pressure at the
kick point was adjusted, not the entire preceding normal drilling
section’s formation pore pressure.

B_GRU exhibited significant errors in predicting formation pore
pressure in the lower formations. This is expected as the model,
trained on 10000 out of 29032 records from Well B, did not fully
capture the principles underlying the prediction of formation pore
pressure based on the selected parameters. Specifically, the model
failed to learn the relationship between formation pore pressure in
deeper formations and the various parameters, leading to sub-
stantial errors when predicting formation pore pressure below
4300 m, with errors remaining around 0.1 g/cm> between 4700 and
5000 m. It is noteworthy that while this model showed large errors
in predicting deeper formations, it accurately predicted formation
pore pressure within the lowermost 1000 m beneath the drill bit. In
contrast, both B_GRU_2 and B_LSTM_2 demonstrated good adapt-
ability in predicting high-pressure intervals in the lower forma-
tions. This indicates that with sufficient data, the proposed method
in this study effectively predicts formation pore pressure in the
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Table 3
Performance of various models.
A_GRU A_LSTM B_GRU B_LSTM B_GRU_2 B_LSTM_2 C_GRU C_LSTM

RMSE 0.02127 0.02227 0.03072 0.02487 0.03051 0.02338 0.00937 0.008964
MAE 0.01415 0.01464 0.02273 0.01914 0.02361 0.01970 0.00676 0.00656
MAPE 1.08635 1.12355 1.77914 1.48314 1.79964 1.50620 0.55633 0.53982
R? 0.94928 0.94444 0.92040 0.94784 0.89585 0.93884 0.82165 0.83682
AAPD 1.10270 1.13934 1.75709 1.49085 1.77667 1.48305 0.55915 0.54024

lower formations beneath the drill bit. These results also suggest
that the models continuously update as drilling progresses, grad-
ually converging towards real-world conditions.

The error distribution of predictions from all eight models
converges 0.1 g/cm> across the three wells, with the majority of
data points converging around 0.05 g/cm>. Although these models
may not precisely invert formation pore pressure for deeper for-
mations with partial data, they can accurately forecast the distri-
bution of formation pore pressure within a certain distance
beneath the drill bit. Such models are effective in practical drilling
operations for avoiding complex incidents such as kicks and losses.

The models applying the method proposed in this study to three
wells were evaluated using five performance metrics to assess their
application in detecting formations at remote depths, as summa-
rized in Table 3 and illustrated in Fig. 12 for model performance
evaluation. The method proposed in this study demonstrated
favorable outcomes across all three wells. For instance, the GRU
model applied to Well A performed optimally in four out of eight
models considered in this study.

It is important to note that based on the model evaluation re-
sults, B_GRU_2 and B_LSTM_2 appear to exhibit poorer perfor-
mance compared to B_GRU and B_LSTM. However, this observation
is somewhat misleading due to the nature of the data. B_GRU and
B_LSTM were applied within the depth range of 3176.7—5081.4 m,
encompassing both normal-pressure intervals and the entire high-
pressure interval. The accurate predictions in normal-pressure in-
tervals offset the poorer predictions in the high-pressure interval.
In contrast, B_GRU_2 and B_LSTM_2 were applied within the depth
range of 4176.7—5081.4 m, which exclusively covered high-
pressure intervals. Moreover, incidents of kicks occurred during
drilling, and some high-pressure intervals were not corrected to
reflect actual conditions, resulting in approximately 260 m length
discrepancy between predicted and corrected formation pore
pressure values. Consequently, B_GRU_2 and B_LSTM_2 appear to
exhibit poorer performance compared to B_GRU and B_LSTM based
on their performance metrics.

4.3. Explanation of machine learning models

This study employs the SHAP to elucidate the machine learning
models B_GRU, B_LSTM, B_GRU_2, and B_LSTM_2 in predicting
formation pore pressure across the entire wellbore. Fig. 13 depicts
bee swarm plots of SHAP analyses for the four models, illustrating

RMSEx50

RMSEx50
~ B_GRU
| B_LSTM

MAPE R?

MAPE

the contribution of each feature to the accurate prediction of for-
mation pore pressure. Fig. 14 presents dependency plots showing
the relationship between each feature and PVSEI for the four
models. Here, features are colored from blue (indicating lower
feature values) to red (indicating higher feature values).

From the SHAP analysis results of the four models, Depth
consistently exhibits significant importance across all models,
indicating its stable and strong impact on predicting formation pore
pressure. Depth shows a clear positive correlation with model
outputs, aligning with geological principles that relate depth to
formation pore pressure (Zhao et al., 2023). The GR feature dem-
onstrates a complex relationship in predicting formation pore
pressure, as evident from the overlapping colored regions in Fig. 14,
showing both positive and negative impacts on the models. DT
consistently ranks second in SHAP contributions across all models,
highlighting its crucial role in predicting formation pore pressure.
DT is proportional to SHAP value, which is consistent with the law
that the abnormal increase of DT in nature indicates the existence
of under compacted high-pressure fluid. CNCF and Den show
relatively lower importance in all models but still contribute to the
accurate prediction of formation pore pressure. It is noteworthy
that this study incorporates the PVSEI feature, not traditionally
used in models, as an input parameter, and it demonstrates sig-
nificant importance in models B_GRU, B_LSTM, B_GRU_2 and
B_LSTM_2. PVSEI exhibits a pronounced positive correlation with
formation pore pressure, consistent with trends observed in Fig. 3
of the original data, indicating that machine learning has
captured the relationship between PVSEI and formation pore
pressure. It shows that PVSEI provides a strong contribution to the
accurate prediction of formation pore pressure.

Comparing the SHAP value bee swarm plots of the four models
reveals that overall feature importance ranking and their impact
on the models are quite similar. Minor differences may arise from
variations in model architecture and the size of the training
dataset used. The primary principle of the Eaton method for
predicting formation pore pressure involves measuring the
acoustic travel time through the formation, comparing it with the
travel time under normal pressure conditions, and incorporating
changes in vertical and effective stresses to determine formation
pore pressure. Across all models, Depth and DT consistently
occupy the first and second positions in terms of contribution,
indicating that the models in this study reflect certain natural
geological laws.
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Fig. 12. Evaluation of model performance (values of RMSE and MAE are multiplied by 50 for better presentation of results).
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Fig. 15 is the force diagram of four models at 4680 m. At 4680 m,
since there is no subsequent overflow high pressure after drilling to
correct the predicted Pp at this location. All four models predict the
pressure increase identified by the traditional method error at this
location. This indicates that the three models consistently capture
similar formation pressure characteristics. Among them, the B_GRU
and B_LSTM models trained based on the first 10000 samples show
similar characteristic distribution patterns, and the final predicted
values are both 1.32 g/cm>. In both models, PVSEI has a large
contribution, which indicates that seismic data can provide some
geological insights that traditional methods cannot discover,
further enriching the understanding and prediction methods of
formation pressure. As the number of samples reaches 20000, the
Depth feature has a more important contribution. However, DT,
Den, and PVSEI are still the top four contributions. This indicates
that the coupling of Depth, DT, Den, and PVSEI can better under-
stand the change of pressure.

In summary, applying SHAP analysis in formation pore pressure
prediction models provides valuable insights into the relative
importance and impacts of input features. These insights can
effectively guide model improvement, feature selection, or feature
engineering to achieve more accurate predictions of formation pore
pressure.

4.4. Discussion and limitations

Despite providing the insights above, future research still faces
several limitations that need to be addressed. Considering the
inability to directly obtain extensive field measurements of for-
mation pore pressure, the models proposed in this study use su-
pervised learning labels derived from theoretical calculations,
combined with log data and corrections based on drilling com-
plexities. While such results effectively reflect the distribution of
formation pore pressure in engineering applications, they do not
necessarily represent the actual distribution patterns of formation
pore pressure. In future research, obtaining extensive field

B_GRU Base value

1.125 1.150 1.175 1.200 1.225
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measurements of formation pore pressure remains a significant
challenge for petroleum geologists and engineers. Additionally, the
physical theory employed in this study is based on the Eaton
method, which is suitable for undercompaction-related over-
pressure. Directly applying this model to other blocks or regions
may yield inaccurate predictions. When using this method to pre-
dict pore pressure in different regions, it is essential to first identify
the overpressure mechanism specific to the area and then select an
appropriate physical theory model to integrate with the machine
learning model for Pp prediction. Therefore, understanding the
mechanisms behind overpressure formation remains a key focus
for future research.

Furthermore, embedding physical theories into the loss function
may also raise controversies and issues. Machine learning is data-
driven, aiming to fully learn and uncover hidden relationships
and patterns behind the data when constructing models. However,
in practical engineering operations, theoretical calculation
methods often involve empirical formulas derived from extensive
operations. For instance, there are many methods to determine
normal sonic travel time curves, with some scholars using curves
established across entire blocks and others fitting measured sonic
travel times in segments sorted in ascending order (Li et al., 2022b).
Both methods may deviate from reality. Introducing such empirical
formulas into data-driven methods may potentially hinder the
thorough exploration of relationships and patterns hidden within
the data by machine learning.

Although this study employs SHAP methods to explain forma-
tion pore pressure prediction models, there are still several limi-
tations. Firstly, there are computational complexity and time
expenses. In this study, it took 70 min to perform SHAP analysis on
all data from Well B using a single model. Extensive computations
consume considerable time, and with an increase in feature pa-
rameters, this time will exponentially grow. Additionally, SHAP
analysis depends on model complexity; the nonlinearity and
complexity of neural network models complicate interactions be-
tween features. SHAP values assume independence between
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X.-Y. Chen, C.-K. Weng, L. Tao et al.

features or calculate through conditional independence, which may
not accurately reflect complex feature interactions in actual
models. Moreover, the interpretability of SHAP methods is limited.
SHAP values provide feature contribution scores to model outputs,
which may still be challenging for non-technical users to directly
comprehend. Despite attempts by SHAP to simplify the explanation
process, interpreting complex neural network models may remain
overly abstract.

5. Conclusions

This study proposes a novel methodology for predicting for-
mation pore pressure ahead of the drill bit by integrating petro-
physical theory into machine learning models driven by seismic
and LWD data. The developed rock physics-informed model effec-
tively bridges machine learning with geological principles,
ensuring predictions adhere to physical laws by embedding prior
geological knowledge through a refined loss function. Operating
within the downhole environment, the model processes real-time
sensor data directly and transmits only predicted pore pressure
values to the surface, addressing significant constraints in down-
hole data transmission bandwidth.

A detailed examination of drilling history and pore pressure
distribution reveals that traditional methods, such as the Eaton
method, are limited in their ability to capture complex formation
pressures accurately. PVSEI is demonstrated to be a reliable indi-
cator of pore pressure fluctuations, effectively capturing trends not
reflected in traditional parameters such as GR and DT. Tests using
65,837 data records from three Bohai Oilfield wells confirm the
effectiveness of this approach: the GRU and LSTM models exhibit
strong adaptability across varying depths. Nearly all model pre-
diction errors converge around 0.05 g/cm?, with the maximum root
mean square error (RMSE) being 0.03072 and the minimum RMSE
being 0.008964. Moreover, predictive accuracy improves as drilling
progresses and the volume of available data increases.

SHAP analysis confirms that key features such as Depth and DT
exert significant influence on model outputs, consistent with
Eaton's foundational principles of vertical and effective stress
variation. Additionally, PVSEI proves essential for pore pressure
prediction, highlighting its potential for enhancing predictive ac-
curacy and broadening the scope of parameter selection in future
formation pressure modeling endeavors. Analyses based on
different data samples further indicate that combining Depth, DT,
Den, and PVSEI can provide a clearer understanding of pressure
variations. This study demonstrates the feasibility of embedding
petrophysical theory into machine learning frameworks, offering a
robust pathway for more precise, real-time formation pore pres-
sure prediction in complex drilling environments.
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