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a b s t r a c t

Subsurface rocks, as complex porous media, exhibit multiscale pore structures and intricate physical
properties. Digital rock physics technology has become increasingly influential in the study of subsurface
rock properties. Given the multiscale characteristics of rock pore structures, direct three-dimensional
imaging at sub-micrometer and nanometer scales is typically infeasible. This study introduces a
method for reconstructing porous media using multidimensional data, which combines one-dimensional
pore structure parameters with two-dimensional images to reconstruct three-dimensional models. The
pore network model (PNM) is stochastically reconstructed using one-dimensional parameters, and a
generative adversarial network (GAN) is utilized to equip the PNM with pore morphologies derived from
two-dimensional images. The digital rocks generated by this method possess excellent controllability.
Using Berea sandstone and Grosmont carbonate samples, we performed digital rock reconstructions
based on PNM extracted by the maximum ball algorithm and compared them with stochastically
reconstructed PNM. Pore structure parameters, permeability, and formation factors were calculated. The
results show that the generated samples exhibit good consistency with real samples in terms of pore
morphology, pore structure, and physical properties. Furthermore, our method effectively supplements
the micropores not captured in CT images, demonstrating its potential in multiscale carbonate samples.
Thus, the proposed reconstruction method is promising for advancing porous media property research.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Digital rock physics is a potent tool for examining the structural
characteristics and physical properties of subsurface porous rocks.
This non-destructive and efficient analytical technique not only
complements laboratory-based rock physics experiments but also
n).
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facilitates rapid acquisition of pore structure data and simulation of
underground conditions across various temperatures and pressures
(Blunt et al., 2013; Fagbemi et al., 2018; Yang et al., 2021; Cai et al.,
2022; Tian et al., 2023; Lv et al., 2024). Consequently, digital rock
analysis has been extensively applied in fields such as oil and gas
exploration and development, carbon capture and storage, hydro-
geology, and geotechnical mechanics (Andhumoudine et al., 2021;
Alpak and Saxena, 2023; Evstigneev et al., 2023; Mitchell et al.,
2023; Zhang et al., 2023). The prevalent approaches for digital
rock reconstruction include both physical experimental and
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numerical reconstruction. Advances in three-dimensional (3D)
scanning imaging have positioned techniques like X-ray CT and
focused ion beam scanning electron microscopy (FIB-SEM) at the
forefront of 3D rock reconstruction. These methods enable the
capture of rock images across a spectrum of spatial scales
(Karimpouli et al., 2020). However, a trade-off exists between res-
olution and field of view in 3D imaging. Micro-CT offers a broader
field of view but lacks the capacity to resolve finer details (Chi et al.,
2022). Whereas FIB-SEM, while yielding precise structural infor-
mation, is limited to smaller physical dimensions (Dong et al.,
2023). Thus, employing a combination of 3D imaging techniques
in digital rock analysis ensures a thorough evaluation of pore
structures.

The traditional numerical reconstruction method was initially
designed to create idealized models of porous media for the anal-
ysis of fluid flow through pores (Zhu et al., 2019). Subsequently,
techniques such as simulated annealing (Hazlett, 1997), sequential
indicator simulation (Keehm et al., 2004), multi-point geostatistics
(Okabe and Blunt, 2004), and Markov chain Monte Carlo methods
(Wu et al., 2006) were employed, using two-dimensional (2D)
images and experimental data, to reconstruct actual pore struc-
tures. Moreover, the expansion and application of pore network
models have notably enhanced computational efficiency (Al-
Kharusi and Blunt, 2007). By employing rock physics experi-
mental data, the distributions of pores and throats can be deter-
mined, and the topological configuration of the pore network
model (PNM) can be reconstructed with statistical information.
Simulation of transport properties at the pore scale within the PNM
facilitates the analysis of physical properties like capillary force,
permeability, and resistivity (Golparvar et al., 2018; Wu et al., 2019;
Qin et al., 2024; Cai et al., 2024). PNMmore accurately represent the
multiscale structure of rocks by integrating both macropores and
micropores (Sun et al., 2021). Despite a remaining disparity in
effectiveness compared to direct 3D imaging, numerical recon-
struction methods provide significant efficiency and cost benefits
(Tahmasebi et al., 2015; Wu et al., 2020).

In recent years, deep learning technology has been applied to 3D
porousmedia modeling as a new numerical reconstruction method
(Wang et al., 2021). Deep convolutional neural networks are pri-
marily used for the 3D reconstruction of porous media, image
super-resolution, and image transformation (Mosser et al., 2017;
Buono et al., 2023; Zhu et al., 2024). For example, digital rock
reconstruction can be achieved through the use of generative
adversarial networks (GANs) and diffusion models, which allow for
the imposition of conditional constraints to regulate the pore
structure parameters within the reconstructed porous media (Chi
et al., 2023; Luo et al., 2024). Post-training of these neural net-
works, a variety of digital rock types can be efficiently produced in
Fig. 1. Two methods for generating a PNM: (a) extraction from a digita
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batch under specified conditions to meet numerical simulation
demands. Super-resolution reconstruction techniques, such as
SRCNN, SRGAN, and diffusion models, are employed to significantly
improve the resolution of rock images, rendering finer details with
clarity (Alqahtani et al., 2022; Ma et al., 2024). Super-resolution
reconstruction can increase the resolution of rock images by
several times, while also significantly increasing the amount of
image data. Furthermore, image transformation techniques are
pivotal for converting low-resolution images to high-resolution
counterparts, often facilitating the integration of multi-source
rock information, such as the transition between CT and scanning
electron microscopy (SEM) images (Liu and Mukerji, 2022; Chi
et al., 2024). Consequently, deep learning can effectively improve
the precision and efficiency of digital rock reconstruction.

In current research, deep learning primarily reconstructs 3D
digital rocks from an imaging perspective, rather than directly
focusing on the topological aspects of pore structures. As a result,
while the image quality of the generated digital rocks is
commendable, there is a tendency for the outcomes to be overly
uniform. That is, the generated data volumes are consistent with
the training datasets, making it difficult to effectively expand the
datasets. Firstly, it is not always feasible to have abundant 3D
datasets for training, necessitating consideration of scenarios
where 3D images are lacking (Tahmasebi and Sahimi, 2012;
Hajizadeh et al., 2011). Secondly, generating digital rocks using only
rock images without constraints from rock physics informationwill
result in a lack of physical significance. Hence, the true virtue of
numerical reconstruction methods lies in their ability to construct
3D digital rocks from limited pore structure data when compre-
hensive 3D data is not available.

This study addresses the challenge of lacking 3D images in
practical applications by proposing a multidimensional data-driven
approach to porous media reconstruction. The process integrates
one-dimensional (1D) pore-throat distribution parameters with 2D
rock images, enabling 3D digital rock reconstruction that in-
corporates multidimensional information. Our methodology com-
prises two stages: the stochastic generation of a PNM and the
subsequent reconstruction of the digital rock. We used Berea
sandstone and Grosmont carbonate samples, validating the digital
rock reconstruction's precision through a comparison of the gen-
eration results of extracted and stochastically generated PNM. Post-
reconstruction, the accuracy of the reconstructed samples
compared to actual samples was evaluated through visual obser-
vation, pore structure parameter computation, and simulation of
pore transport. Finally, we presented an application example of
reconstructing 3D digital rocks from 1D and 2D data in a carbonate
sample, highlighting the promising prospects of our method.
l rock, (b) stochastic generation using pore structure parameters.



Fig. 2. Process of PNM extraction and digital rock reconstruction. Digital rock and PNM
can be converted into each other within this cycle.
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2. Methodology

2.1. Pore network model extraction and stochastic reconstruction

The PNM is a simplified model that characterizes the spatial
structure of pores and throats using spheres and tubes, which can
be obtained either by extracting from digital rocks or by stochastic
generation, as shown in Fig. 1. This study generates PNM using both
methods to meet different application conditions. A common
method for extracting PNM from existing digital rocks is the
maximum ball algorithm (Dong and Blunt, 2009). This algorithm
examines each pore voxel, expanding spherically to identify sur-
rounding voxels. If no skeletal voxels are detected, the search radius
expands until the rock skeleton is reached, ascertaining the
maximum ball radius for that voxel. Upon completion of this pro-
cess for all voxels, a comprehensive set of inscribed spheres is
compiled. Any spheres with centers closer than the difference of
their radii are eliminated to avoid overlap. The resulting non-
redundant set of spheres defines the maximum sphere set, effec-
tively mapping the pore space within the digital rock. A sorting
algorithm is employed to order all elements in the maximum
sphere set from largest to smallest by radius, and the spheres are
divided into a series of subsets based on their radii. For each subset,
a clustering algorithm is applied to the maximum spheres to
determine whether they belong to pores or throats and to obtain
the corresponding radii. After identifying pores and throats, various
pore structure parameters can be obtained.

One-dimensional pore structure parameters can be used to
construct a PNM inversely. Fig. 1(b) shows the process whereby
parameters such as pore radius, throat radius, coordination num-
ber, and shape factor are utilized to stochastically generate a novel
PNM (Dong et al., 2018). Initially, the size and porosity of the sto-
chastically generated PNM must be determined. Following this,
spheres representing pores are randomly introduced into the PNM,
in accordance with the pore radius distribution curve, until the
cumulative volume aligns with the pre-set porosity. Subsequently,
topological information of the PNM is incorporated by considering
the coordination number and throat distribution, with each pore
assigned a specific weight as

Pi ¼
�

Di � Dmin
Dmax � Dmin

�n

(1)

where Pi represents the ith pore, Di is the diameter of the ith pore,
Dmin and Dmax are the minimum and maximum pore diameters,
respectively. n is the correlation factor, it indicates that when n > 0,
larger throats are more likely to be connected to larger pores,
whereas for n < 0, larger throats preferentially link to smaller pores.

In accordance with the coordination number distribution, each
pore is connected to the closest neighboring pores, continuing this
process until the last pore is connected. Upon completion of these
connections, the weight of each throat is determined as

Ti ¼
P1 þ P2

2
(2)

where Ti represents the ith throat, while P1 and P2 denote the pore
weights at the ends of the throat. The radius of each throat is
determined based on these weights. Additionally, the shapes of the
pores and throats are randomly assigned using a shape factor.

The pore structure parameters approximately follow a Weibull
distribution. When the specific distribution of pore structure pa-
rameters cannot be completely enumerated, the Weibull distribu-
tion can be used for approximation as (Weibull, 1951)
2779
f ðx; l; kÞ¼

8><
>:

k
l

�x
l

�
e�ðx=lÞk x � 0

0 x<0
(3)

where x represents the continuous random variable, l represents
the scale parameter, and k represents the shape parameter.

For an existing digital rock, it is possible to carry out the two
processes shown in Fig. 1. The initial method entails the extraction
of the PNM and the computation of its structure parameters, sub-
sequently followed by the stochastic generation of a novel PNM. In
instances where digital rock images are absent, the procedure
outlined in Fig. 1(b) can be exclusively executed, utilizing 1D pa-
rameters derived from experimental analyses to reconstruct the
PNM. Each of these approaches can achieve the augmentation of
PNM datasets.
2.2. Reconstructing real porous media from the pore network model

Constructing a PNM using only 1D parameters may result in an
unrealistic representation of pore morphology. Hence, it is neces-
sary to integrate 2D data to reconstruct realistic pore shapes. Given
a digital rockmodel, its PNM can be extracted and then reconverted
into a digital rock model. Fig. 2 shows this iterative process. By
voxelizing, each pore and throat in the PNM is replaced with a 3D
image voxel at the corresponding position. Deep learning tech-
niques are then applied, using 2D pore images to transform the
PNM into a true pore shape. This methodology is significant as it
enables the conversion of a stochastically generated PNM into a
form that reflects realistic pore morphologies, facilitating a 3D
digital rock reconstruction that integrates 1D and 2D data.

Deep convolutional neural networks are frequently used for
image fusion and style transfer tasks. This study utilizes a GAN
model to integrate PNM with 2D rock images, facilitating the con-
version of PNM into digital rocks (Goodfellow et al., 2014; Dahari
et al., 2023). Fig. 3 shows the network architecture designed for
this transformation, comprising a generator and a discriminator.



Fig. 3. Network architecture for converting a PNM into a digital rock.

Table 1
The network architecture of the generator and discriminator.

Layer Kernel Stride Padding Output shape

Generator Input e e e 1 � 64 � 64 � 64
1. Convolutional 3 1 1 32 � 64 � 64 � 64
2. Convolutional 4 2 1 64 � 32 � 32 � 32
3. Convolutional 4 2 1 128 � 16 � 16 � 16
4. Residual 3 1 1 128 � 16 � 16 � 16
5. Transposed 4 2 1 64 � 32 � 32 � 32
6. Transposed 4 2 1 32 � 64 � 64 � 64
7. Convolutional 3 1 1 1 � 64 � 64 � 64

Discriminator Input e e e 1 � 64 � 64
1. Convolutional 4 2 1 64 � 32 � 32
2. Convolutional 4 2 1 128 � 16 � 16
3. Convolutional 4 2 1 256 � 8 � 8
4. Convolutional 4 2 1 512 � 4 � 4
5. Convolutional 4 2 0 1 � 1 � 1
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The generator's function is to take the PNM as input and convert it
into a digital rock, whereas the discriminator evaluates the con-
sistency of the generated digital rock with actual two-dimensional
pore images. During the training phase, both the generator and
discriminator participate in the training, whereas only the gener-
ator is retained for testing or application. The generator is struc-
tured with an encoder, a decoder, and residual blocks: the encoder
performs data downsampling through 3D convolutional layers, the
decoder upsamples the data using 3D transposed convolutional
layers, and the residual blocks are tasked with deep feature
extraction. The discriminator is composed of a series of 2D con-
volutional layers, with inputs being real 2D pore images and slices
of reconstructed digital rocks. Table 1 presents the network archi-
tecture of the generator and discriminator, showing that a PNM
with a dimension of 64 is input into the generator, where the
dimension is reduced to 16 after the encoder, and then restored to
64 after passing through the residual blocks and decoder.

During the training of deep neural networks, the Wasserstein
2780
GAN with gradient penalty (WGAN-GP) framework has been
implemented. This framework offers more stable gradient infor-
mation by leveraging the continuous Wasserstein distance and
employs gradient penalties to ensure the discriminator adheres to
Lipschitz continuity. This approach effectively addresses the chal-
lenges of gradient explosion and vanishing gradients (Gulrajani
et al., 2017). The generator loss utilized is defined as follows:

LG¼ � Ez�pzðzÞ½DðGðzÞÞ� (4)

The discriminator loss is defined as follows:

LD ¼ � Ex�pdataðxÞ½DðxÞ�
þEz�pzðzÞ½DðGðzÞÞ�
þlEz�pzðzÞ

h�kVDðaxþ ð1� aGðzÞÞÞk2 � 1
�2i

(5)

To enable the generator to acquire the distribution characteris-
tics of authentic data, the discriminator undergoes training five



Fig. 4. Detailed process of PNM and digital rock reconstruction. The reconstruction under both extracted PNM and stochastic PNM is considered.

Fig. 5. Comparison of reconstruction results for Berea samples.
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times for each training iteration of the generator. During the
training phase, we conducted random sampling across the entire
dataset with a batch size of 32. The training was executed using
PyTorch on an NVIDIA GeForce RTX 3060 GPU, completing in
approximately 15 h. The model employs a fully convolutional
structure, and once trained, it can convert a PNM of any dimension
2781
into realistic pores representative of that sample class. Conse-
quently, by integrating the stochastic generation of PNM with the
accurate depiction of real pore morphologies, PNM reconstructed
from 1D pore structure parameters can be integrated with a limited
number of 2D images to construct realistic pore models. This
approach facilitates the reconstruction of 3D digital rocks from both



Fig. 6. Comparison of reconstruction results for Grosmont carbonate samples.

Fig. 7. Comparison of autocorrelation functions A(r) for Berea sandstone and Grosmont carbonate, where r stands for distance.
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1D and 2D data.
3. Results and discussion

3.1. Evaluation of the effectiveness of digital rock reconstruction

To verify the accuracy of the stochastic PNM and reconstructed
digital rocks separately, we have designed a series of experimental
procedures as shown in Fig. 4. Initially, the PNM is extracted from
the original digital rock using the maximum ball algorithm,
2782
ensuring that the pores in the extracted PNM correspond one-to-
one with those in the original digital rock. Subsequently, the 1D
pore structure parameters of the extracted PNM are calculated,
which are then utilized to generate a stochastic PNM. Following
this, both sets of PNM are voxelized and fed into the GAN for
training, using authentic 2D pore images as the ground truth for the
discriminator, completing the fusion of the PNM with the real 2D
images. Through this process, the reconstruction of 3D digital rocks
from 1D and 2D data is achieved, and the accuracy of the recon-
struction results is evaluated separately.
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Berea sandstone and Grosmont carbonate were selected for the
experimental dataset and subjected to the previously described
procedure, yielding two sets of PNM and corresponding digital rock
models (Andr€a et al., 2013). The feasibility of the reconstruction
method was initially assessed through image analysis. Fig. 5 pre-
sents the 3D volumes and 2D cross-sections of the actual Berea
sandstone, extracted PNM-generated Berea sandstone, and sto-
chastic PNM-generated Berea sandstone. The porosity measure-
ments for these samples are 19.6%, 19.8%, and 19.6%, respectively.
Fig. 8. Comparison of pore structure
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The extracted PNM-generated sample has an identical PNM to the
actual sample, resulting in very similar pore images. The pore sizes
and positions of these two sets of images can be largely correlated
one-to-one, and their connectivity is similar, indicating that the
digital rock reconstructed from the PNM effectively restored the
pore morphology of the actual Berea sandstone. This validation
demonstrates the reliability of the digital rock reconstruction al-
gorithm. Although the stochastic PNM is created by distributing
pores of varying sizes randomly within a cubic framework, leading
parameters for Berea sandstone.
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to non-matching pore positions with the extracted PNM, the sta-
tistical distribution remains consistent. The digital rock generated
from the stochastic PNM shows a high similarity to the actual Berea
sample in terms of image, with consistent types of pores and grains,
signifying the successful outcome of the stochastic PNM generation
process.

The Grosmont carbonate samples underwent identical process-
ing and comparison. Fig. 6 shows the 3D volumes and 2D cross-
sections of the actual carbonate sample, the extracted PNM-
Fig. 9. Comparison of pore structure pa
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generated sample, and the stochastic PNM-generated sample. The
porosities of the three samples are 19.1%, 19.4%, and 19.3%, respec-
tively. In contrast to Berea sandstone, the Grosmont carbonate
samples display significant heterogeneity, characterized by a non-
uniform distribution of pores sizes. In the case of Grosmont car-
bonate samples, the extracted PNM-generated sample still main-
tains consistency in the distribution of pore size and position with
the actual sample, showing a good correspondence and effectively
restoring the pore morphology of the carbonate. Although the
rameters for Grosmont carbonate.
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stochastic PNM-generated sample does not preciselymirror the pore
spatial distribution of the actual sample, it does reflect similar pore
sizes and shapes. Consequently, the images of both sandstone and
carbonate indicate that the PNM-derived samples accurately reflect
pore sizes and position, indicating that the algorithm for generating
digital rocks using PNM is reliable. Although the stochastic PNM-
generated pore network cannot fully replicate the positions of
pores of different sizes, the pore morphology in the generated im-
ages is similar to that of the actual samples.

Image observation only provides the similarity of the pores, but
does not allow for a direct comparison of pore structure informa-
tion, necessitating further comparison of pore structure parame-
ters. The pore structure parameters of the generated digital rocks
were statistically analyzed and compared with the actual samples.
The autocorrelation function, which indicates the likelihood of two
points at a distance r in a binary image both in pore space, is utilized
to characterize the pore structure of the rock. Fig. 7 shows the
autocorrelation functions of Berea sandstone and Grosmont car-
bonate, with the autocorrelation functions of the reconstructed
samples being consistent with those of the actual samples. Figs. 8
and 9 present the calculation results of the pore structure param-
eters for Berea sandstone and Grosmont carbonate, respectively,
comparing the distributions of pore radius, throat radius, pore
shape factor, throat shape factor, tortuosity, and coordination
number between the two types of samples. The sandstone samples
Fig. 10. Comparison of simulation results for permeability and for
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exhibit larger average pore throat radius compared to carbonate
samples. The range of pore structure parameters for both the actual
and reconstructed samples derived from both extracted PNM and
stochastic PNM is similar. Although the pore space distribution of
the stochastic PNM does not completely match that of the actual
samples, the pore types and their distribution ranges are consistent.
Consequently, the digital rocks generated from the extracted PNM
closely resemble the actual samples in terms of pore structure
parameters, further demonstrating the effectiveness of the digital
rock reconstruction method.

By simulating the transport properties of pores, the effective-
ness of digital rock reconstruction can be verified. Permeability
reflects the fluid flow capacity of porous media, while the for-
mation factor reflects the electrical conductivity. The lattice
Boltzmann method (LBM) and the finite element method (FEM)
were utilized to simulate permeability and formation factor,
respectively. LBM, based on the statistical theory of the Boltzmann
equation, solves fluid flow problems by simulating the distribution
of particles on the pore lattice (Chen et al., 1992; Yan et al., 2021).
In the initial state of the 3D pore structure, the pores are saturated
with a certain fluid. Under periodic boundary conditions, the same
fluid is injected from one end of the model. By combining Darcy's
law and LBM simulation, the absolute permeability of the digital
rock in a certain direction can be calculated. FEM (Garboczi, 1998;
Dong et al., 2022) determines the energy of the porous media by
mation factors of Berea sandstone and Grosmont carbonate.



Fig. 12. Rock images generated after the PNM pore throat radius was changed by 0.5e1.5 times. (a) Berea sandstone and (b) Grosmont carbonate.

Fig. 11. Pore networks that has been voxelized after changing the parameters of the pore throat radius. Here, 0.5 and 1.5 represent the multiples of radius change.
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establishing an electric field across its extremities, with the
voltage distribution across each voxel dictating the model's total
energy. According to the principle of variation, the calculation of
the voltage distribution can be transformed into a problem of
finding the extreme value of the system's energy, ultimately
determining the digital rock's effective electrical conductivity. The
permeability and formation factor of Berea sandstone and Gros-
mont carbonate were calculated using both LBM and FEM. Fig. 10
shows a comparison of the numerical simulation results, with the
permeability and formation factor of the original samples,
extracted PNM-generated samples, and stochastic PNM-generated
samples being close to each other. This indicates that the recon-
structed digital rocks of Berea sandstone and carbonate possess
the same physical properties as the actual samples, thus our digital
rock reconstruction process is effective.
3.2. Effect of PNM parameters on digital rock reconstruction

We adjusted the PNM parameters to validate our approach and
highlight its advantages over existing methods. While current
studies show that 3D structures can be generated from random
noise, these processes tend to be random and uncontrollable. A
random porous medium generation method has limited utility in
2786
the study of subsequent physical phenomena. Consequently, we
modified PNM parameters to influence the resulting 3D pore
structure. In this subsection, instead of retraining on Berea sand-
stone and carbonate, we used the neural network parameters
trained in the previous subsection to ensure the controllability of
the experiment. By keeping the neural network parameters con-
stant, we controlled the generation of 3D digital rocks by adjusting
the PNM's pore throat radius. This was achieved by systematically
altering the radius and volume in the PNM parameters by a scaling
factor. Fig. 11 shows the PNM after adjusting the original pore
throat radius to 0.5 times and 1.5 times and voxelizing, fromwhich
a clear change in the size of the pores and throats can be observed,
while the topological structure remains unchanged. Using the
trained neural network parameters, the voxelized PNM was
transformed into 3D digital rocks, with the PNM pore throat radius
ranging from 0.5 to 1.5 times the original radius. Fig. 12 shows the
cross-sections of the 3D structures generated from two sets of
samples. As the PNM parameters change, the generated pore throat
radii follow a similar trend. Since the PNM's topological structure
remains constant, the position of the pores and throats is un-
changed, with only their size varying. Thus, our PNM-based
approach to generating 3D structures provides enhanced control
compared to methods using random noise or 2D images.



Fig. 13. Comparison of Berea pore structure parameters when the pore throat radii are varied.

P. Chi, J.-M. Sun, R. Zhang et al. Petroleum Science 22 (2025) 2777e2793
We calculated the pore structure parameters of 3D digital rocks
generated after adjusting the pore throat radius to quantitatively
analyze the generation results. Figs. 13 and 14 present the calcu-
lation results of the pore structure parameters for Berea sandstone
and Grosmont carbonate following PNM parameter adjustments.
As the PNM pore throat radius changes, the calculated pore radius
and throat radius both exhibit significant corresponding shifts.
However, parameters including the pore shape factor, throat shape
factor, tortuosity, and coordination number remained relatively
2787
stable, suggesting that the pore morphology and topological
structure are largely preserved despite changes in size. The effects
of PNM parameter alterations on the digital rocks can be further
explored through image processing and numerical simulation.
Fig. 15 shows the influence of changes in pore throat parameters on
porosity, permeability, and formation factor. The initial porosity
and its variation for both sets of samples are similar. Permeability
and formation factor align with the variations in pore throat pa-
rameters, consistent with the general principles of rock physics,



Fig. 14. Comparison of Grosmont carbonate pore structure parameters when the pore throat radii are varied.
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without altering the topological structure. This indicates that the
quantitative control over the pore structure of generated digital
rocks can be effectively managed by modifying PNM parameters.
3.3. Application

Utilizing a carbonate sample from the Sichuan Basin in south-
western China, this section illustrates the application of our
method in multidimensional data-driven digital rock modeling.
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Carbonate reservoirs typically exhibit multiscale characteristics
with a wide range of pore sizes. Common testing methods, such as
CT scanning, struggle to identify micropores, leading to poor con-
nectivity in the reconstructed digital rocks. FIB-SEM, on the other
hand, can only display a very small area, which is not representa-
tive. Therefore, multidimensional data can be integrated for mul-
tiscale digital rock reconstruction. Specifically, we used CT scan
images as the basic framework, guided by pore structure parame-
ters obtained from nuclearmagnetic resonance (NMR) experiments



Fig. 15. Effects of pore throat radius changes on porosity, permeability, and formation
factor.
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and mercury intrusion capillary pressure (MICP) experiments, and
supervised by high-resolution SEM images, to reconstruct digital
rocks that reflect multiscale information.

Firstly, CT scanning, SEM testing, NMR experiments, and MICP
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experiments are conducted on the carbonate sample. These are
standard rock physics analysis methods, and the specific principles
of the experiments will not be reiterated here. Fig. 16 shows SEM
images and their binary processing, revealing the presence of mi-
cropores within the carbonate, but with a relatively low porosity.
Formicropore reconstruction, pore and throat distributions derived
from NMR and MICP experiments were compared with those from
CT scanning. Unidentified pores and throats at the current resolu-
tion were selected for stochastic PNM reconstruction. The pore
radius distributionwas determined as the difference between NMR
and CT pore radius curves, while the throat radius distribution was
the difference between MICP and CT throat radius curves. Other
pore structure parameters that were difficult to obtain in experi-
ments were approximated using the Weibull distribution and
further obtained from 2D SEM images during GAN model training.
The parameters used for the Weibull distribution are shown in
Table 2. The voxelized PNM and binary SEM images were then
utilized to train the GAN model for micropore reconstruction.
Finally, the pores from CT scanning were superimposed with the
reconstructed micropores to obtain a multiscale digital rock. Fig. 17
shows the digital rocks at these three stages, which are the pores
obtained from CT scanning, the reconstructed micropores, and the
total pores after superposition. The porosities of the samples are
4.6%, 3.3%, and 7.8%, respectively. The permeability for the recon-
structed digital rock is 0.031 mD, while the corresponding experi-
mental permeability measures 0.045 mD. The resolution of the CT
images is 2 mm, and the resolution of the SEM images is 0.5 mm. A
total of 60 training images weremade from the SEM images used in
the training, with a size of 512 � 352 pixels. It is evident that the
pores from CT scanning are mostly isolated, with larger pore sizes,
while the connectivity of the reconstructed micropores has been
significantly improved. The superposition of the two can represent
pores of different sizes at the same time.

A comparison of the pore structure parameters from recon-
structed digital rocks with experimental test results is presented.
Fig. 18 shows these comparisons, with Fig. 18(a) depicting the CT-
scanned digital rock, the reconstructed micropore digital rock,
and the superimposed multiscale digital rock. The superimposed
multiscale digital rock exhibits pores of different scales. The portion
of the radius distribution that exceeds the resolution is attributed to
one-voxel pores. We apply a multiplier between 0 and 1 to the pore
radius of these one-voxel pores during our calculations, which re-
sults in the calculated radii values exceeding the resolution.
Applying this factor allows the calculated distribution of pore radii
to conform to a normal distribution, aligning with the laws of pore
distribution and enabling better comparison with experimental
results such as NMR. Fig. 18(b) contrasts the pore radius distribu-
tions of the multiscale digital rock with those derived from NMR
experiments, revealing congruence. Fig. 18(c) presents a compari-
son of the throat radius distribution between the multiscale digital
rock and the MICP experiments, with both showing consistent
distribution ranges. We also conducted a comparison of the throat
radius distribution obtained from the capillary pressure conversion
using PNM simulation. The throat radius obtained from MICP rep-
resents the pore volume controlled by throats of that size, and we
approximate this volume fraction as the proportion of the throats.
Consequently, our reconstruction method is capable of effectively
integrating 1D pore-throat parameters with 2D SEM images, and by
superimposing these with 3D CT data to produce a 3D digital rock
that combines multidimensional data.

3.4. Discussion

We established a correlation between PNM and actual pores
using image processing techniques, enabling mutual



Fig. 16. SEM images of carbonate reservoir sample and the segmented pores.

Table 2
Parameters of the Weibull distribution used in the generation of stochastic PNM.

Parameters Minimum Maximum l k

Coordination number 0 50 0.11 1.2
Pore shape factor 0.01 0.07 0.05 3.5
Throat shape factor 0.01 0.06 0.03 2.7

Fig. 17. Reconstructed 3D digital rocks and slices, derived from CT scan
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transformation between the two. The experimental procedures
designed involve reconstructing digital rocks from both extracted
PNM and stochastic PNM, fully validating the effectiveness of our
method. Visual assessments reveal that the digital rocks recon-
structed from the extracted PNM closely resemble actual samples,
ning, micropore reconstruction, and dual-scale pore superposition.



P. Chi, J.-M. Sun, R. Zhang et al. Petroleum Science 22 (2025) 2777e2793
confirming the accuracy of our approach. Statistical analyses and
numerical simulations demonstrate that the pore structure pa-
rameters and transport properties of the digital rocks reconstructed
by these methods are very similar. Typically, in practical applica-
tions, the PNM is reconstructed using stochastic method. We
illustrate a practical application with a case study detailing the 3D
reconstruction process using experimental 1D parameters and 2D
imaging. In this process, the sizes of pores and throats are derived
from experiments, while other parameters that are difficult to
obtain are replaced by the Weibull distribution. Subsequently, the
real pore morphology is gradually obtained using 2D images in the
training of GAN. This method enables the quantitative adjustment
of pore structures in digital rock generation, enhancing the
controllability of the modeling process. In this case study, we also
performed CT scanning, so the reconstruction was defined as the
part not identifiable by CT images, and then the CT digital rock was
superimposed with the reconstructed micropore digital rock. The
total pore distribution in the superimposed sample matches well
with experimental data, indicating that our method effectively
complements the identification of micropores not discernible by CT
scans. In the 3D reconstruction, reconstructing the PNM is a pre-
requisite, with its pore and throat distribution being dictated by
and aligned with the 1D data. Furthermore, the 2D data must align
with the PNM's pore and throat distribution range; otherwise, the
reconstruction technique becomes inapplicable. Our method en-
ables the reconstruction of 3D porous media from 1D and 2D data,
and it can stably control the size of the pores and throats in 3D
reconstruction without altering the topological structure. This
characteristic allows for the efficient construction of databases with
different pore structures of porous media, which holds great
promise for further analysis of the effects of pore throat structures
on rock physical properties. It is important to note that the
method's effectiveness in rocks exhibiting strong heterogeneity or
anisotropy is not satisfactory, representing a challenge that requires
attention in our future work.
Fig. 18. Pore structure parameters of reconstructed multiscale digital rocks. (a) Com-
parison of CT pores, reconstructed micropores, and total pores in digital rocks.
(b) Comparison of pore radius distribution between digital rock and NMR. (c) Com-
parison of throat radius distribution between digital rock, MICP, and simulated
capillary pressure (Pc).
4. Conclusion

This study introduces an efficient method for reconstructing 3D
porous media using 1D and 2D data. It encompasses the recon-
struction of the PNM from 1D data and the subsequent generation
of digital rocks from the PNM using 2D images. The stochastic
reconstruction method employs 1D pore structure parameters to
produce a 3D PNM, serving as input for training a GAN. The GAN
takes the voxelized pore network as input for the generator and real
2D images as true input for the discriminator, producing digital
rocks with consistent pore distribution. The method was exempli-
fied using Berea sandstone and Grosmont carbonate samples,
where digital rock reconstruction was performed using PNM
extracted by the maximum ball algorithm and stochastic PNM. The
generated 3D digital rocks align with the 1D pore structure pa-
rameters and the 2D image pore morphologies, ensuring a high
degree of realism. Simulations of permeability and conductivity
were undertaken for the actual samples and samples reconstructed
by the two methods, validating the precision of our approach. Our
method exhibits superior controllability in the generation of digital
rocks. It was extended to a carbonate sample with a multiscale pore
structure, enabling the reconstruction of micropores undetectable
by CT scanning and their integration with macropores to create a
multiscale digital rock. Hence, our method enables the recon-
struction of 3D porous media from 1D and 2D data, showing po-
tential applications in the study of the micro-mechanisms of
unconventional oil and gas reservoirs, as well as in the analysis of
complex porous materials.
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