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This paper introduces a novel approach combining radial borehole fracturing with Water-Alternating-
Gas (WAG) injection, enabling simultaneous WAG injection and shale oil production in a single verti-
cal well. A numerical reservoir model incorporating the modified exponential non-Darcy law, stress
sensitivity, and diffusion is established. The spatial distribution of permeability reduction shows that
stress sensitivity enhances the non-Darcy effect, with apparent permeability decreasing to 0—92.1% of
the initial value, highlighting the importance of maintaining reservoir pressure. Continuous CO, flooding
leads to early gas breakthrough, while continuous water flooding has less displacement efficiency. A 30%
water-to-gas injection time ratio improves oil production and delays gas breakthrough compared to
continuous CO; injection. Optimal conditions for effective recovery are identified as an initial production
period of 100 d and a well vertical spacing of 30 m. This study compares the production capacity of WAG
operations under radial borehole fracturing and horizontal well fracturing. When the number of wells is
two for both cases, the production capacity of radial borehole fracturing is comparable to that of five-
stage horizontal well fracturing, indicating that radial borehole fracturing can serve as an alternative
or supplement to horizontal well fracturing when the reservoir volume is limited. This study offers a new
method and theoretical basis for the efficient development of shale oil.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction with hydraulic fracturing is recognized as an effective mechanism

for creating a Stimulated Reservoir Volume (SRV), intended to

Regarded as an unconventional hydrocarbon resource, shale oil
is confined within organically-rich shale formations, representing
an estimated 20%—50% of the global crude oil reserves (Caineng
et al, 2013). The distinctive characteristics of shale oil include
ultra-low permeability, ranging from nano-Darcy to milli-Darcy,
along with the presence of nano- and micro-pores (Shen and
Sheng, 2018; Xia et al., 2021). Therefore, the employment of
reservoir simulation approaches that integrate horizontal wells
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enhance the reservoir permeability (Deng et al., 2022; Suliman
et al., 2013). Radial boreholes influences fracture orientation, and
can create multi-layer fractures (Guo et al., 2017; Dai et al., 2023a).
However, the initial production rate often undergoes a reduction to
roughly 10%—20% within the first few years of the depletion pro-
duction, leaving a substantial 75%—95% of the initial oil in place
(Altawati et al., 2021). Water flooding is preferred due to its
simplicity, cost-effectiveness, and effectiveness in conventional
reservoirs. However, applying water flooding in shale oil reservoirs
faces challenge of inability of water to effectively mobilize residual
oil (Afari et al., 2022). Therefore, the application of enhanced oil
recovery (EOR) methods to maintain reservoir pressure, displace
residual oil and promote shale oil production proves indispensable.

The injection of carbon dioxide (CO;) is gaining recognition for
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its EOR capacity (Khurshid and Afgan, 2021a). As one of the tech-
nological foundations for Carbon Capture, Utilization, and Storage
(CCUS), CO,-EOR is spearheading efforts to sequester captured CO;
in oilfields across the United States. Approximately 68 million tons
of CO, from natural and industrial sources were transported to EOR
sites in 2015 (Callahan et al., 2014). On a microscopic scale, CO,
molecules possess pronounced diffusion properties, allowing them
to migrate to locations beyond the reach of water (Jia et al., 2019b;
Zhao et al., 2020). Moreover, CO, can effectively replace part of the
adsorbed hydrocarbon molecules via competitive adsorption (Liu
et al., 2017). CO, generally exists in a supercritical state under
subsurface conditions. Sc-CO, efficiently extracts light hydrocarbon
components from oil (Li et al., 2019), and extensively dissolves into
oil (Tovar et al., 2021), leading oil swelling, viscosity reduction,
alteration of oil—water interfacial tension, and liberation of trapped
oil (Li et al., 2013; Wang et al., 2022; Zhu et al., 2018). On a
microscopic scale, when the pressure exceeds the minimum
miscibility pressure, the CO,—oil interface disappears, giving rise to
a piston-like front (Stalkup, 1978; Guo Y. et al., 2022). However, the
high mobility of CO, can easily meet the challenge of gas early
breakthrough (Gao et al., 2014), bypassing regions with low
permeability (Massarweh and Abushaikha, 2022). Consequently,
this poor sweep efficiency can diminish overall oil recovery and
lead to CO, wastage, especially in a continuous CO; flooding (CI)
case.

Considering the challenges of CI, Water-Alternating-Gas (WAG)
injection emerges as a promising solution (Khurshid and Afgan,
2021b, 2022). WAG achieves a more stable displacement front
and mitigates CO, breakthrough problems by reducing the mobility
ratio between the injectant and the oil (Afzali et al., 2018). The
water phase enhances sweep efficiency by obstructing high
permeability channels, thereby facilitating and directing the sub-
sequent injection of CO, (Wang et al., 2020). Additionally, water
helps control the reservoir pressure and reduce CO, requirements
(Chen et al., 2010). An average increase in oil recovery of up to 10%
of the original oil in place is found in previous study (Skauge and
Stensen, 2003; Afzali et al., 2018). For a nine-injection well sce-
nario proposed by Ren et al. (2023), WAG increases oil production
by 16.2% and reduce CO, consumption by 15%.

Numerous projects proves that the WAG technique caneffec-
tually enhance oil recovery (Khurshid et al., 2022a, 2022b; Sun
et al., 2021), with example from Norwegian WAG project accom-
plishing an ultimate recovery factor between 53% and 66% (Tovar
et al., 2021; Hinderaker and Njaa, 2010). However, within homog-
enous and significantly thick conventional reservoirs, water and gas
articulate a discernible separation. The disparate densities of water
and gas further amplify gravitational segregation during the
displacement, subsequently diminishing the efficiency of the
displacement (Faisal et al., 2009; Claridge, 1982). Due to the
imperative of large-scale hydraulic fracturing for the development
of unconventional reservoirs (Orangi et al., 2011; Wan and Sheng,
2015), the direct application of continuous gas driving has been
prone to gas breakthrough; consequently, WAG is considered
(Ghaderi et al., 2012a).

This study presents a new solution to gravitational segregation
challenges by an integrated WAG method coupled with radial
borehole fracturing, as shown in Fig. 1. In a single vertical or in-
clined well, the radial borehole fracturing-WAG method involves
creating hydraulic fractures in both upper and lower layers using
radial boreholes, with one layer serving as the production well and
the other as the WAG injection well. This approach alters the flow
direction vertically, distinguishing it from traditional WAG
methods, thus avoiding gravitational segregation and reducing
drilling costs (Bruni et al., 2007; Ragab and Kamel, 2013; Maut et al.,
2017; Dai et al., 2023b).
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Fig. 1. Schematic diagram of the radial borehole fracturing-WAG process (In the nat-
ural fractures, blue represents water, white represents CO,, and black represents shale
oil).

The geological settings considered in WAG studies have pro-
gressed from homogeneous idealized formations to more complex
configurations, such as heterogeneous, fractured, and multi-layered
reservoirs (Khan and Mandal, 2022a). Previous study builds WAG
numerical models, incorporating the effects of multiphase perme-
ability characteristics (capillary pressure and hysteresis effects) and
phase behavior characteristics (immiscible, miscible, and near-
miscible) (Afzali et al, 2020). WAG injection has also been
considered for application in CO; storage in saline aquifers. Based
on multiphase flow dynamics, the modeling framework has been
further coupled with heat transfer and chemical reactions (Awolayo
et al,, 2025; Wang et al., 2023). In recent years, artificial intelligent
models integrated with numerical methods for WAG production
are built. For example, Qi et al. (2024) utilized an XGBoost model in
conjunction with a hybrid genetic algorithm to predict oil recovery
and carbon storage efficiency. Based on the LSTM neural network
approach, Asante et al. (2024) developed a predictive model for oil
production under CO, WAG injection. The model incorporated
parameters including pressures, WAG cycles, and injection volumes
to predict oil recovery.

WAG injection is considered advantageous for mitigating the
issues of early-breakthrough caused by uneven fracture distribu-
tion and heterogeneity in shale oil reservoirs. However, the unique
mechanisms of shale oil reservoirs, such as complex fracture net-
works and strong matrix-fracture interactions, necessitate adjust-
ments to the conventional WAG flow simulation approaches used
in conventional reservoirs (Yang et al., 2022; Afzali et al., 2018;
KKhan and Mandal, 2022b). In the SRV formed post-fracturing, stress
sensitivity is a key effect affecting fluid flowing through the matrix
and fractures (Xiao et al.,, 2016). Changes in effective stress can
induce alterations in fracture width, potentially causing fracture
closure and significantly impacting fluid conductivity (Yang D.
et al.,, 2019). Therefore, Gangi (1978) developed a model using a
conceptual bed of nails to account for changes in fracture perme-
ability due to pressure and confining stress. The non-Darcy flow is
another effect that is commonly encountered in the shale oil
reservoir. When non-Darcy flow is significant, the relation between
pressure differential and fluid velocity demonstrates a deviation
from the linear relationship typically described by Darcy's law,
particularly at lower pressure differentials (Yao and Ge, 2011). This
non-linearity can be attributed to fluid inertia, fluid slippage at the
rock surface, or altered flow paths (Zeng et al., 2010).
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While previous studies generally demonstrate the impact of the
stress sensitivity and non-Darcy effect on the final recovery rate
(Wang et al., 2017). For example, Zhao et al. (2023) observed that
stress sensitivity-induced reductions in hydraulic fracture perme-
ability can lead to a 5% decrease in cumulative gas production over a
decade. Meanwhile, Wang and Sheng (2017) indicated that the
ultimate oil recovery factor under non-Darcy flow approximates
80% of that under Darcy flow. Moreover, according to Wang and
Sheng's model, non-Darcy behavior correlates with apparent
permeability and viscosity. It demonstrates that the variation of
permeability under stress sensitivity affects non-Darcy flow
behavior. Therefore, investigating the coupling relationship be-
tween these two phenomena provides guidance for accurately
understanding the fluid flow in shale oil reservoirs. Wu et al. (2021)
have experimentally measured the data on critical pressure
gradient and stress sensitivity in WAG injection. A model coupling
non-Darcy flow and stress sensitivity in shale oil reservoirs can
provide valuable references for WAG applications. Table 1 sum-
marizes representative studies considering the effects of non-Darcy
flow and stress sensitivity. Non-Darcy models are exemplified by
the boundary-layer effect model, the threshold pressure gradient
(TPG) linear model, and the exponential model, while stress
sensitivity models are represented by the exponential model and
the Gangi model. It is currently widely acknowledged that stress
sensitivity can enhance the non-Darcy effect. However, the spatial
distribution analysis of the coupled effects of these two phenomena
remains inadequate.

This study builds a new flow model integrating stress sensitivity,
non-Darcy effects, and diffusion. A coupling mechanism between
stress sensitivity and non-Darcy effects is considered. The issue of
negative formula factors in the Wang and Sheng's model under low
mobility conditions is addressed and corrected, thereby enhancing
the model's applicability. The spatial distribution characteristics of
the coupled effects of stress sensitivity and non-Darcy effects are
also presented for the first time. This provides insights into iden-
tifying hard-to-mobilize regions in the reservoir caused by non-
Darcy flow and stress sensitivity, and offers a basis for adjusting
production strategies. Moreover, the effects of operating and dril-
ling parameters, including water-to-gas injection time ratio, pri-
mary production time, and layer spacing, are investigated in this
study, presenting an innovative approach and its theoretical foun-
dation to enhance the cost-effective development of shale oil
resources.

Table 1
Non-Darcy and stress sensitivity model review.
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2. Methodology
2.1. Radial borehole fracturing-WAG method

A method of WAG combined with radial borehole fracturing is
proposed. As shown in Fig. 2, a vertical main well is drilled from the
surface to the target shale reservoir and cemented with a casing.
Using a hydraulic drill bit, four radial boreholes are drilled in the
upper and lower layers of the main well, followed by hydraulic
fracturing. These radial boreholes, with radii generally ranging
from 20 to 50 mm, extend outward from the main well to lengths
between 10 and 100 m (Liu et al., 2018). The radial boreholes affect
hydraulic fractures propagate direction (Guo Z. et al., 2022). After
hydraulic fracturing, tubing is lowered into the wellbore, and
isolating packers are placed between the upper and lower radial
boreholes. This design allows for two operational modes: depletion
production and WAG. In the former, both upper and lower radial
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Fig. 2. Schematic illustration of the drilling, fracturing, and WAG processes in a radial
well.
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boreholes serve as production wells, with the oil produced from the
radial boreholes and flowing to surface through tubing and
annulus. In the latter, at the surface, the annulus is connected to a
water pump and a CO, injection pump. Water and CO, gas are
alternately injected into the subsurface through the annulus. The
upper radial boreholes act as the WAG injection layer, displacing oil
downward to the lower radial boreholes.

Radial borehole fracturing-WAG method can utilize multi-layer
fractures to enhance reservoir utilization and reduce the cost of
well drilling. The same radial borehole fracturing configuration can
also be applied to scenarios such as water flooding, continuous CO;
injection, and CO, huff-n-puff (Dai et al., 2023b, 2023c, 2023d). In
order to characterize the downhole fluid flow of the method and
predict the oil production and CO; storage of the WAG method, the
following numerical simulation method is established.

2.2. Model assumptions

A compositional model affords a more accurate portrayal of the
multiphase and multicomponent dynamics during the WAG pro-
cess (Tian et al., 2019). To optimize simulation convergence, several
assumptions are made: The reservoir temperature remains
isothermal, unaffected by the injection of CO,; CO, sorption and
dissolution in water, capillary pressure, hysteresis in relative
permeability, nano-pore confinement effects, and impacts of
asphaltenes and hydration formation are ignored.

2.3. Compositional mode formulation

For the oil and gas phases, the mass conservation equation for
the matrix considering molecular diffusion can be expressed as
follows:

dt |:¢ Z pasaxtix

+ 3 v (pax;va +]§;) — 3 puXiqe/V =0

a=0.,g a=0.g a=0,g
(1)

where Ji represents the diffusive mass flux of component i in phase
a, m?/s. It is written as follows:

_#5a
To

Ji= =200 v (ruxl) (2)

For the water phase, generally ignoring the diffusion effect, the
mass conservation equation is

(3)

where ¢ represents the porosity of the matrix; p represents phase
density, kg/m>; S represents phase saturation; X represents the
mass fraction; v is the Darcy velocity, m/s; q is the volumetric flow
rate, m>/s; Vis the volume of the cell, m?; D represents the diffusion
coefficient of component i in phase &, m?/s; 7 is the tortuosity;
subscripts w, 0, and g denote the water, liquid, and gas hydrocarbon
phases correspondingly. The division of volumetric flow rates (q,)
by volume (V) ensures dimensional consistency across all terms in
the equation.

When considering both gravity, stress-sensitive and non-Darcy
flow, the relationship between velocity and pressure can be
expressed as follows (Wang and Sheng, 2017):

at[¢prW] +V- (PWVW) - pqu/V =0
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IN[VP — p.&VZ] (4)

Kok
Vo = N6NNaVoa = %

o

where g is the gravity, g = 9.8 N/kg; Z is the depth, m; Ky is the
apparent permeability, mD; ki, is the relative permeability of phase
a; g is the viscosity of phase «, cP; ng denotes the coefficient of
permeability decline due to stress sensitivity and is equal to the
ratio of permeability at pressure P to Kp; nn represents the flow rate
drop coefficient caused by the non-Darcy's law. When gravity is not
considered, the last term in Eq. (4) needs to be ignored. According
to Gangi's law (Gangi, 1978)

-
where ap represents Biot's constant; ¢ stands for confining stress,
Pa; g1 signifies the maximum effective stress leading to full fracture
closure, Pa; Ky denotes the permeability at zero confining stress,
mD; m is the constant associated with fracture surface roughness.
The Gangi model elucidates alterations in fracture permeability due
to pressure and confining stress in fractures or fractured rock. In the
model, which accounts for hydraulic fractures, natural fractures,
and matrix, the decrease in formation pressure during shale oil
production elevates net stress, resulting in reduced fracture aper-
ture and an inclination towards closure. The 7y, in Eq. (4) can be
expressed as a function of the differential pressure VP, proposed by
Wang and Sheng (2017):

K

nG:E:

L“BP)"T 5)

01

1
e = 17 e buIVP.]

(6)

To account for the non-Darcy effect, Wang and Sheng (2017)
suggested that the dimensionless coefficients a, and b, in the
non-Darcy term of phase « can be formulated as functions con-
nected to the apparent permeability and viscosity. This paper ex-
tends their equation to a multiphase case, for the phase «a:

3 2
ay = —0.6095 (M) 1 2.5821 (M)

o o«

_ 3.4594(K0kﬂ) +1.5836 (7)

(44

2
b = 0.3603 (K‘)kﬂ) ~0.1049 (K"kﬂ) £1.0935  (8)

a o«

Egs. (7) and (8) reveal that the stress sensitivity and non-Darcy
flow are coupled through mobility affecting parameter 7¢. At con-
stant differential pressure, a larger value of a,, represents a stronger
non-Darcy effect. As the ratio of apparent permeability to viscosity
increases, the non-Darcy effect in the reservoir weakens, causing
the value of a, to gradually approach O and 7y to approach 1.
However, when the ratio of apparent permeability to viscosity ex-
ceeds 2 mD/cP, Eq. (7) indicates that the value of a, tends to be
negative, as depicted in Fig. (3).

The negative value of a, may lead to a reversal of the simulated
flow direction, which in turn makes the calculation not converge.
Therefore, for the first time, this study employs an exponential
function (Eq. (9)) to depict the relationship between a, and the
ratio of apparent permeability to viscosity. The exponential equa-
tion predicts a, such that the model of Wang and Sheng is appli-
cable under any mobility conditions. At higher mobility, a, tends
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towards zero, during which the flow behavior transitions from non-
Darcy to Darcy flow.

~1.176 (K—ka”ﬂ)
m
a, =e ‘ 9)

To solve Eq. (1), using the backward Euler scheme for time
discretization (Roe, 1986):

:| n+1

dov (raXLVa +];> -y v (rax;qa)/v + g /V = R;

a=0.g a=0,g

n

1

At +

¢ TaSaXi

«=0,g

[¢ > paSaXl

a=0.8

(10)

As shown in Eq. (1) in the figure, the non-Darcy and stress
sensitivity effects are related through the pressure-velocity equa-
tion, while the diffusion effect is reflected in the flux term.

The equation employs n + 1 to denote the current time step,
while n denotes the previous step. R; stands for residual of
component i and is assessed at the present step. This study employs
the two-point flux approximation (TPFA) to discretize the
temperature-pressure relationship. TPFA is a widely used numeri-
cal discretization technique for simulating fluid flow in porous
media. The TPFA assumes that the flux across a grid cell interface is
approximated using only the pressure values at the two adjacent
cell centers. The reconstructed pressure value at the cell center is
identical to the average pressure P; within the cell. When non-
Darcy flow and stress sensitivity are present, the interfacial flux v
from cell i to cell k can be expressed as
Vik =NGMNaTi ke (Pi — Pi) (11)
where T represents the transmissibility between cell i and cell k.
The detailed derivation of this equation can be referred to in the
cited literature (Aavatsmark, 2002).

3. Model development and validation
3.1. Model parameters

The numerical simulation employs parameters of the Eagle Ford
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shale reservoir. The simulation integrates six pseudo-components,
namely CO», Na, C1, C2—Cs, C—Cyp, and Cq1,. The properties of these
pseudo-components, along with their binary interaction parame-
ters, presented in the reference (Yu et al., 2019), are used in phase
behavior computations. The Peng—Robinson equation of state and
flash calculation under reservoir temperature is adapted. Table 2
displays the diffusion coefficients utilized in this paper for all the
pseudo-components within the liquid phase. The diffusivity values
are consistent with those adopted in the study by Yu et al. (2019).
The reason for not providing the gaseous diffusion coefficients is
that under the pressure conditions considered in this study, there is
no vapor phase present.

A 3D reservoir model including radial boreholes and hydraulic
fractures is built. This paper assumes that the area after fracturing
exhibiting a relatively high permeability (1 mD) (Yang S. et al,,
2019). Conversely, the region beyond this zone belongs to a low-
permeability shale reservoir, where the significantly low perme-
ability enables the boundary to be regarded as a closed boundary.
The vertical permeability of the matrix is set at 0.01 of the hori-
zontal permeability. Fig. 4 shows a closed-boundary reservoir with
two layers of radial boreholes, distributed along a vertical main well
at the center of the reservoir. Each layer encompasses four radial
boreholes positioned perpendicularly to each other.

Previous study indicates that in the presence of stress differ-
entials, radial boreholes alter the stress distribution in the vicinity
of the main well, prompting fractures to initiate along the radial
boreholes. After extending for a certain distance, these fractures
then gradually propagate toward the direction of the maximum
principal horizontal stress (Guo et al., 2016). Therefore, this paper
assumes that each radial borehole guides a single hydraulic frac-
ture. We provide a method for approximating fracture distribution,
conceptualizing fractures as a series of concatenated rectangles
(Dai et al., 2023a).

The main well is cemented and does not come into direct con-
tact with the reservoir, it is not considered within the model.
Table 3 enumerates the basic reservoir properties. The fundamental
reservoir parameters are consistent with those in the study by Yu
et al. (2019), and references are provided for the drilling and frac-
turing parameters. The operational parameters of a basic case:
Initially, both the upper and lower radial boreholes produce 200 d
under a constant bottom-hole pressure of 2000 psi. Subsequently,
the lower radial sustains production at a constant bottom-hole
pressure, while the upper radial boreholes transitions into an
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Table 2
Diffusivity of components in the liquid phase.
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Table 3
Basic reservoir properties.
Parameter Value Unit Reference
Reservoir size (X x Y x Z) 250 x 250 x 90 m
Division of gridblocks (X x Y x Z) 41 x 41 x 31 -
Reservoir permeability (SRV) 1 mD Yu et al. (2019)
Reservoir permeability (non-SRV) 700 mD Yu et al. (2019)
Ky/Ky 0.01 — Yu et al. (2019)
Porosity 10 % Yu et al. (2019)
Tortuosity 2 — Yu et al. (2019)
Initial reservoir pressure 7000 psi Yu et al. (2019)
Reservoir temperature 350 °F Yu et al. (2019)
Gangi model —p\99;3 Fitting
K'=ko [1 - (70701000 P) }
Initial water saturation 17 %
Lateral length 15 m Li et al. (2022)
Fracture half-length 100 m Dai et al. (2023c¢)
Fracture height 9 m Dai et al. (2023c)
Fracture conductivity 1400 mD-ft Dai et al. (2023c)

injection well initiating the WAG at a constant pressure of 8000 psi.
Within each 100-day WAG cycle, water is injected for the first 30 d,
followed by 70 d of CO, injection. A water-to-gas injection time
ratio is defined by the ratio of water injection duration during a
cycle. The Gangi model represents the optimal fitting result ob-
tained through validated fitting examples in Section 3.2.
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3.2. Model validation

Collecting the production data from January 2010 to July 2012
during the hydraulic fracturing stages of a single well in the Eagle
Ford shale condensate oil field as a benchmark, the simulation
model was validated (Yang S. et al., 2019). This horizontal well was
fractured into nine stages, with the production from the sixth stage
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Fig. 5. Simulated data and field data of production rate over time.

used as the standard for validation. The specific parameters are as
follows: dimensions of 220 ft in length, 450 ft in width, and 90 ft in
height; a total of 2210 grid cells; a top layer depth of 10,000 ft;
reservoir pressure of 7000 psi; matrix porosity of 0.1; matrix
permeability of 0.64 mD; reservoir temperature of 347 °F; initial
gas saturation of 0.65; initial water saturation of 0.35; hydraulic
fracture half-length of 135 ft; hydraulic fracture height of 50 ft;
initial fracture conductivity of 140 mD-ft. The bottom hole pressure,
a primary constraint in the production well, was maintained at a
constant 3000 psi. As shown in Fig. 5, there is a slight discrepancy
between the simulated and actual oil and gas production rates,
thereby demonstrating the accuracy of the numerical model in
predicting oil and gas production. Ignoring stress sensitivity could
lead to overestimate the production rate at initial stage.

4. Results and discussion
4.1. The effect of gravity

The gravitational segregation is crucial for WAG applied in high
permeability condition. Fig. 6 illustrates the temporal variation in
oil production and CO; production when gravity is considered. The
production profile of CO,-WAG in radial borehole fracturing

Petroleum Science 22 (2025) 2950—2966

exhibits a trend of decline-increase-decline, which is similar to the
pattern observed in depletion followed by water/gas injection to
maintain reservoir pressure (Zhou et al., 2019; Hook et al., 2014).
The entire process can be segmented into four distinct stages.

Stage 1 (0—200 d): Both upper and lower radial boreholes serve
as production wells. The pressure depletion results in a rapid
decline in oil production to 0.437% of the initial value after
200 d.

Stage I1 (200—600 d): One layer of radial boreholes turns to WAG
mode. The reduced number of production boreholes results in a
sudden decline in the oil production rate at the beginning of
Stage II. As the reservoir pressure gradually recovers, the oil
production rate increases. The CO, produced is naturally present
in the reservoir in Stages I and II.

Stage Il (600—1200 d): The injected CO, flows through the oil
reservoir between the radial boreholes and begins to be pro-
duced from the production boreholes (Khan and Mandal, 2020).
However, it constitutes a relatively small proportion of the
produced substances. The oil production rate continues to in-
crease, reaching its peak at 287.4 bbl/d on the 1200th day.
Stage IV (1200—6000 d): As the ratio of CO, in the produced
substances increases over time and the rate of CO, production
climbed, the oil production rate declined. The amount of CO,
production in Stages IIl and IV represents the degree of gas
channeling.

Due to the vertical alignment of radial boreholes, fluid move-
ment is largely governed by vertical pressure gradients, with fluid
flow primarily occurring in the vertical direction, same as gravity
direction. Therefore, no significant separation occurs. Conse-
quently, the influence of gravity on the segregation of oil and CO;
production is comparatively minor, as shown in Fig. 6. Furthermore,
gravitational segregation exerts a limited influence on the pro-
duction of both oil and CO». This effect typically becomes significant
only when the permeability exceeds 10 mD (Khan and Mandal,
2020; Faisal et al., 2009).

Injecting water and CO; from the top layer can be more ad-
vantageous for their downward migration. Consequently, on the
6000th day, the cumulative oil production and CO, production
from upper injection case are respectively 1.85% and 5.85% higher
than that of lower injection case. When gravity is not considered,
CO, and water are less prone to migration after injection, leading to
a decline in injectivity and resulting in a lower oil and CO;

I: Depletion production H

1I: Start WAG

}__,|

III: Gas channeling IV: Oil rate decline

Qil production rate

— - — - - Cumulative oil production -
No gravity e
Lower injection o

Upper injection =

10¢

Qil production rate, bbl/d
S

102

Cumulative oil production, 10 bbl

100 ¥ - . - r : 0
0 1000 2000 3000 4000 5000 6000

Time, d

(b) 102 8
CO, production rate
— - — - - Cumulative CO, production +7
- - A
10 No gravity o
Lower injection P
Upper injection 9 e

10 4

102

CO, production rate, kg/d

10~ o

IS
Cumulative CO, production, 10® kg

T T T
0 1000 2000 3000 4000 5000 6000

Time, d

Fig. 6. Effect of CO, injection directions on WAG performance over time: (a) oil production, (b) CO, production.
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Fig. 7. CO; distribution in the reservoir under different diffusion coefficients on the 1000th day.
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Fig. 8. Effects of CO, diffusion coefficient on WAG performance over time: (a) oil production, (b) CO, production.

production when gravity is considered. All subsequent discussion
in this paper takes into account gravity, with CO, being injected
from the upper radial borehole.

4.2. The effect of diffusion

The intensity of the diffusion effect of CO, is directly propor-
tional to the gradient of CO; concentration. Although its intensity is
relatively smaller compared to the pressure gradient, it plays a
dominant role in areas where the pressure gradient is small and the
CO; concentration gradient is large.

As shown in Fig. 7, in addition to the flow driven by pressure
gradients, a higher diffusion coefficient indicates a stronger ability
of CO, to migrate under concentration difference. Consequently,
some of the injected CO, migrates towards the top and outward to
the boundary region of the reservoir, leading to a decrease in the
amount of CO, moving downwards driven by the pressure gradient,
thus resulting in a reduction of CO, production and a more
extensive distribution of CO,. Previous study of CO, huff-and-puff
simulation shows that a higher CO, diffusion coefficient
(10-8—107% m?/s) leads to a more extensive distribution of CO, (Yu
et al., 2019), which is consistent with the findings of this study.

Owing to the increased migration of CO, towards the periphery
of the reservoir, the amount of CO, reaching the production layer is
reduced. Therefore, as depicted in Fig. 8(b), the cumulative CO;
production with a Dco, of 1078 m?/s amounts to 85.47% of that
achieved with a Do, of 107'? m?/s. In addition, the CO, migrating
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due to diffusion causes an increase in pressure in the upper and
surrounding area of the central axis, enhancing the tendency of
fluid flow downwards and towards the vertical well, thus
increasing oil production. As shown in Fig. 8(a), the cumulative oil
production at a D¢q, of 108 m?/s is 1.07 times that when the Dco, is
10~'2 m?/s. A diffusion coefficient of 10~1° m?/s for CO, is applied in
the subsequent analyses of this study. The phenomenon of a limited
effect on decreasing CO, production and increasing oil production
under high permeability conditions is consistent with the results in
previous studies of CO; huff-and-puff and displacement (Jia et al.,
2019b). Moreover, the influence of CO, diffusion becomes signifi-
cant only when the permeability is relatively low (Jia et al., 2019a).

4.3. The effect of stress sensitivity and non-Darcy effect

The permeability reduction caused by stress sensitivity is a
function of reservoir pressure. Fig. 9 shows the distribution of g
over time. At the end of depletion production, due to the decrease
in reservoir pressure, 7 is less than 27.3% throughout the entire oil
reservoir. Upon initiation of WAG, the pressure near the injection
well rises to the injection pressure, forming a gradually decreasing
pressure gradient from the injection layer to the production layer
vertically.

The increase in pressure causes 7 to rise, indicating an increase
in the permeability. For example, on the 6000th day, ¢ is 95.1%
around the injection radial borehole, while it remains at 34.5%
around the production boreholes. Therefore, as shown in Fig. 10(b),
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when the stress sensitivity is present, the cumulative oil production
is 58.4% of that when the stress sensitivity is not considered. Pre-
vious study shows that the production under stress-sensitive
conditions typically decreases by approximately 50% (Cui et al.,
2021; Jiang and Yang, 2018). However, the stress sensitivity ex-
tends the time from the start of WAG to gas breakthrough.

The flow velocity decay coefficient 5y, resulting from non-Dar-
cy's law, is a function of pressure difference and saturation. Using
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the water phase as an example, at the end of the depletion stage,
the pressure differences are small except around the production
layer, where 7y is about 50%, as shown in Fig. 11. When WAG starts
and vertical pressure gradient is established, the vertical nnw be-
tween the injection and production layers recovers to 60%—99%,
while the nnw in areas outside the injection and production layers
remains around 50%.

Different nnw value is also affected by water saturations. A lower
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water saturation leads to a reduction in the relative permeability of
the water phase. The water saturation is less at locations far from
the main well and the injection layer, so the area with larger nnw
values show an inverted cone-shaped distribution. As shown in
Fig. 12, when considering non-Darcy's law, oil production and CO,
production are 96% and 99%, respectively, of the values when
considering Darcy's law. The relatively minor impact of non-Darcy
flow on production can be attributed to the overall high perme-
ability of the reservoir.

When both stress sensitivity and the non-Darcy effect are
considered, a distribution of flow velocity decay coefficient nnng is
shown in Fig. 12. At the end of the depletion stage, the range of
nnwic 1S between 0 and 21.2%. After WAG starts, nnwfc increases
with the growth of pressure and pressure difference. In this case,
the distribution of the nnwnc value combines the characteristics of
stress-sensitive and non-Darcy flow, showing a higher value area
(not strongly affected by stress sensitivity and the non-Darcy effect)
around the injection layer and a gradual shrink towards the pro-
duction layer. On the 6000th day, the range of nnw?c rises to be-
tween O and 92.1%. This shows that when stress sensitivity and
non-Darcy's law coexist, the nnw7 is not simply the product of ynw
and n¢ when they are considered separately. When stress sensi-
tivity and non-Darcy's law are coupled, the cumulative oil pro-
duction is 55.9% of the cases where neither is considered, and the
time duration from WAG beginning to gas breakthrough is three
times longer. The result demonstrates that the non-Darcy effect is
more pronounced in the presence of stress sensitivity, resulting in
lower production rate when both effects coexist. This finding is
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consistent with the results reported by Dong et al. (2019). Stress
sensitivity and non-Darcy flow are taken into account in the
following analysis.

4.4. The effect of water-to-gas injection time ratio

Fig. 13 shows the variation in production rate over time for
water-to-gas injection time ratio ranging from 0 (CI) to 100%
(continuous water injection). Because K; of water and CO, are
different, at the same injection pressure, the rate of gas injection is
slightly higher than the water injection rate, resulting in a fluctu-
ating rate over time. Meanwhile, due to the low viscosity of sc-CO»,
CO; flows more easily than water. Therefore, the larger the pro-
portion of CO, injection time, the lower the mobility ratio is, more
likely that gas breakthrough occurs. As shown in Fig. 14, the mass
fraction of CO, is about 50% for WAG with 30% water-to-gas in-
jection time ratio, while it is over 80% for Cl. However, the distri-
bution of CO, in WAG is more uniform, which can effectively slow
down the gas breakthrough. The time before gas breakthrough in CI
case is 500 d less than that of WAG with 30% water-to-gas injection
time ratio.

In the case with a 30% water-to-gas injection time ratio, the
amount of gas breakthrough decreases, subsequently causing a
slight increase in oil production. However, after 5660 d, water
breakthrough occurred, leading to a decline in the rate of oil pro-
duction. On the 6000th day, the oil production rate during CI is
87.2% of that observed in WAG with a 30% water-to-gas injection
time ratio, resulting in a cumulative oil production reduction of
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Fig. 13. Effect of water-to-gas injection time ratio on WAG performance over time: (a, b) oil production, (c, d, e) CO, production and storage, (f) water production.

3.5 x 10® bbl. However, because the amount of CO;, injected during
Cl is the largest, its CO, storage volume on the 6000th day is the
greatest, being 2.04 times that of WAG with a 30% water-to-gas
injection time ratio. During continuous water injection, a water
breakthrough also occurs on the 4250th day, and the oil displace-
ment performance of water is worse than CO,. Therefore, on the
6000th day, the oil production volume of continuous water injec-
tion case is only 53.7% of that for WAG with 30% water-to-gas in-
jection time ratio.
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In the optimization of WAG parameters for the Pubei Oilfield
reservoir by Chen et al. (2010), various injection modes are
compared, including continuous gas injection, continuous water
injection (which yielded the lowest recovery), water injection fol-
lowed by gas injection, and gas injection followed by water injec-
tion. They concluded that the optimal recovery was achieved with a
WAG ratio of 1:2, which is similar to the findings of this study.
Depending on the reservoir type and permeability, the WAG ratio
may vary from higher than 4:1 to 1:1 (Afzali et al., 2018; Ghaderi
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et al., 2012b), but its production rate is always greater than that of
CI. Therefore, for subsequent discussion, WAG with a 30% water-to-
gas injection time ratio is chosen for the following discussion.

4.5. The effect of primary production duration

The primary production duration, or the period before the start
of WAG injection, is a critical operational factor affecting the
reservoir pressure. The longer the primary production duration, the
greater the extent of reservoir pressure depletion, and the more
pronounced the effects of stress sensitivity and non-Darcy effect.
When the total time duration is fixed, a reduced WAG time duration
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leads to a decrease in the volume of injected CO,, thereby causing
insufficient recovery of reservoir pressure. As shown in Fig. 15,
when the initial primary production duration exceeds 100 d, oil
production, CO, production, and CO, storage amount all decrease
with the increase in initial production time. However, if the primary
production duration is too short, the high oil production rate at the
beginning of depletion production cannot be fully utilized. There-
fore, as shown in Fig. 15(a), the maximum oil and gas production is
achieved at 100 d. In conclusion, the subsequent discussion is based
on an initial production time of 100 d. The concave-upward curve of
oil and gas production rates varying with depletion time is
consistent with previous studies, with the optimal value depending
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on the size of the reservoir and the type of reservoir boundaries
(Chen and Gu, 2017; Sheng, 2017).

4.6. The effect of spacing between radial borehole layers

The relative position between the two layers is an essential
parameter in the design of radial borehole fracturing. The definition
of vertical spacing is the distance between the upper and lower
radial boreholes projected onto the vertical plane, while horizontal
spacing is the distance projected onto the horizontal plane. When
the pressures of the injection and production layers are kept con-
stant, increasing the spacing between layers reduces the pressure
gradient while also enhancing the non-Darcy effect, resulting in
decreased CO, injection and oil production rates. However,
enlarging the layer spacing increases the flow distance for CO-,
leading to an increased duration before gas breakthrough.

When the vertical spacing between wells is less than 20 m, the
early gas breakthrough causes a decrease in the oil production rate,
as shown in Fig. 16(a). The cumulative oil production of the case
with a vertical spacing of 20 m is 91% of that at a vertical spacing of
30 m on the 6000th day. The latter mitigates the CO, breakthrough
time by 500 d compared to the former. Previous research identifies
that excessively close well spacing can lead to early water break-
through (Zhang et al., 2017), while overly wide well spacing results
in an insufficient pressure gradient (Nwachukwu et al., 2018). These
findings validate the rationality of the layer spacing results pre-
sented in this study.

The effect of reducing the vertical spacing on the CO, injection
rate is greater than its effect on the CO, production rate, reducing
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the vertical spacing is more beneficial for CO; storage. As shown in
Fig. 16(b), the cumulative CO, production on the 6000th day of the
case with 20 m vertical spacing is 1.33 times that at a vertical
spacing of 30 m. The effect of horizontal spacing is generally
consistent with the effect of vertical spacing. However, because the
horizontal permeability of the reservoir is higher than the vertical
permeability, increasing the horizontal layer spacing has a small
impact on oil production and CO, storage (Fig. 16(c) and (d)).

4.7. Comparison of radial borehole fracturing and horizontal well
fracturing

Radial borehole fracturing is based on vertical wells and has a
lower implementation cost compared to horizontal well drilling
and fracturing. In previous studies, we compared the applicability
of radial borehole fracturing and horizontal well fracturing in a
depletion case (Dai et al., 2023a) and a CO; huff-and-puff case (Dai
et al., 2023c). The findings indicated that, radial borehole fracturing
changes the flow direction, making it more suitable under condi-
tions of low vertical permeability and limited hydraulic fracture
height. In this study, a simplified horizontal well fracturing case
was established. The horizontal wells have length of 200 m, a
diameter of 300 mm, and a well spacing of 200 m. The relative
position on the Z axis was 45 m. The fractures are evenly distributed
along the horizontal well with a fracture length of 20 m and a
fracture height of 9 m. Other parameters are consistent with those
of radial borehole fracturing. The parameters for radial borehole
fracturing are same as those described earlier, with the two wells
positioned as shown in Fig. 17. The production parameters for both
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Fig. 17. (a) Two fractured horizontal wells with nine fracture stages each and (b) two vertical wells with radial fracturing.
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Fig. 18. Comparison of cumulative oil production between radial borehole fracturing
and horizontal well fracturing in WAG operations. HW represents horizontal well
hydraulic fracturing. RJD represents radial borehole fracturing.

cases are consistent with those described previously.

As shown in Fig. 18, when the number of main wells for radial
borehole fracturing is one, the production is only 84.87% of that of
three-stage fractured horizontal well. When the number of main
wells for radial borehole fracturing is two, its oil production is
comparable to that of five-stage fractured horizontal wells. When
the length of horizontal wells is kept constant and the number of
stages increases, the increase in oil production diminishes. In
contrast, the deployment of vertical wells with radial fracturing is
more flexible. Therefore, when the horizontal well fracturing is not
economically viable in reservoirs with dispersed dessert, that is,
when the well length is limited, radial borehole fracturing can be
considered as a supplementary or alternative option.

5. Conclusions

To reduce the degree of water—gas separation during the WAG
process and lower costs, this study first introduces a novel
approach to apply WAG in a vertical well with radial borehole
fractures. A compositional model is built to analyze the influences
of gravity, diffusion, stress sensitivity, and non-Darcy effect on fluid
flow. This study highlights the issue of negative values in the
exponential non-Darcy law at high mobility. Furthermore, the ef-
fects of the water-to-gas injection time ratio, primary production
duration, and layer spacing on oil production, gas breakthrough,
and CO, storage volumes are investigated. Main findings are as
follows.

(1) The radial borehole fracturing-WAG operation can be divided
into four distinctive stages, each marked by specific oil and
CO, production trends. Unlike traditional WAG schemes, the
radial borehole fracturing-WAG approach aligns the direc-
tion of pressure gradients vertically, thereby substantially
reducing the influence of gravity on production capacity.
Moreover, under conditions of high permeability, the impact
of CO, diffusion is also insignificant.

(2) This study reveals the distribution of pesudo permeability
when the exponential non-Darcy law and stress sensitivity
coexist. The reduction in apparent permeability reaches to
22% during the depletion production stage. After the initia-
tion of WAG, the unaffected regions are located around the
injection layer, with a gradual shrinkage towards the pro-
duction well. The presence of stress sensitivity enhances the
influence of the non-Darcy effect.

(3) WAG with a 30% water-to-gas injection time ratio can pro-
vide the highest cumulative oil production, delay gas
breakthrough, and achieve more evenly distributed CO,
within the reservoir. While continuous CO; injection initially
yields high oil production but experiences a rapid decline
after gas breakthroughs, resulting in lower cumulative oil
production over time.

(4) The initial production period before WAG injection de-
termines the magnitude of the average reservoir pressure,
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while the vertical distance between wells determines the
magnitude of the pressure gradient. These two factors are
respectively associated with stress sensitivity and non-Darcy
effects. The initial production period, well spacing, and oil
production exist optimal values.

(5) This study compares radial borehole fracturing and hori-
zontal well fracturing in WAG operations, finding that radial
borehole fracturing yields slightly lower production than
five-stage fractured horizontal well fracturing when the
number of main wells is two, indicating that radial borehole
fracturing can serve as an alternative or supplement to hor-
izontal well fracturing when the dessert volume is limited.

(6) Limitations: The numerical model utilized in this study still
has shortcomings in simulating the WAG process, such as
overlooking capillary forces, the dissolution of CO, in water,
and the mechanism of wettability hysteresis. For instance,
when CO, dissolves in water, it alters the water density,
viscosity, and oil-water relative permeability, thereby
affecting the fluid flow processes. In the future, we will
further analyze the impact of the above factors on the WAG.
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