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a b s t r a c t

As seismic signals propagate underground, the subsurface media absorb highefrequency components,
decreasing seismic resolution and limiting the identification and characterization of thin reservoirs. To
address the limitation, this paper proposes a multichannel spectral fitting (MSF) method. The MSF
method aims to enhance seismic resolution by considering the spectral characteristics and the corre-
lations between adjacent seismic traces. The key to the MSF method involves utilizing the amplitude
spectrum of the attenuated Ricker wavelet to construct an objective function for spectral fitting, leading
to improved seismic resolution. Furthermore, the MSF method establishes the correlation between
adjacent seismic traces as a constraint to stably solve the target parameters based on the entire seismic
spectrum, which helps obtain horizontally consistent and more realistic seismic signals. Synthetic and
field seismic examples demonstrate that the proposed method not only provides higher-resolution
seismic signals but also reveals more fine details of thin reservoirs compared to the time-variant spec-
tral whitening method. It is concluded that the MSF method is a promising tool for seismic signal
processing.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Thin reservoirs are widely developed in oil and gas basins
within China and are essential targets for exploring lithological
reservoirs. However, identifying thin reservoirs poses challenges
due to the limited resolution of seismic signals (Alaei et al., 2018; Ni
et al., 2022). To overcome this technical bottleneck, seismic in-
terpreters detect subtle changes in the strata by analyzing the
spectral response of seismic signals. For example, changes in
amplitude (Widess,1973) and peak frequency (Zhang and Castagna,
2011; Chen et al., 2023) of the spectrum can qualitatively or
quantitatively identify the thickness of thin reservoirs based on
tuning theory. On the other hand, various methods have been
proposed to broaden the frequency bandwidth, which can improve
hen), huying15@cdut.edu.cn
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the vertical resolution of seismic signals, including Q compensation
(Liu et al., 2023; Mu et al., 2023; Xu et al., 2023; Wu et al., 2024),
deconvolution (Margrave and Lamoureux, 2001; Lan et al., 2023),
spectral whitening (Lee, 1986), and others (Sajid and Ghosh, 2014;
Zhang et al., 2023; Yang et al., 2024). These methods have been
successfully applied in production, but each has distinct applic-
ability and limitations. Spectral whitening and its variations
(Naghadeh and Morley, 2017) aim to enhance seismic resolution by
capturing all frequencies within the seismic signal's useful band.
This method is simple in principle and computationally efficient,
making it widely used in practical processing, but an incorrect
window length may lead to unsatisfactory results (Hu et al., 2020).
Unlike spectral whitening methods, deconvolution methods such
as homomorphic deconvolution (Jin and Eisner, 1984) and predic-
tive deconvolution (Gibson and Larner, 1984) estimate and com-
press seismic wavelets to improve the resolution of seismic signals.
However, wavelet compression may increase high-frequency noise,
directly impacting reservoir prediction accuracy (Guo et al., 2022).

Rosa and Ulrych (1991) introduced the spectral fitting decon-
volutionmethod. This method assumes a smoothwavelet spectrum
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and employs polynomial fitting to match the spectrum of seismic
signals with that of the seismic wavelet, thereby broadening the
wavelet amplitude spectrum and enhancing the resolution. Over
recent decades, rapid developments have occurred in spectral fit-
ting techniques. For example, Li et al. (2013) proposed an adaptive
spectral fitting deconvolution method using the signal-to-noise
ratio as a constraint. Chen et al. (2014) used the frequency scaling
factor to stretch the seismic wavelet's frequency band after
extracting its amplitude spectrum. In addition to implementing
deconvolution in the frequency domain, Margrave et al. (2002,
2005) extended the method to the time-frequency domain using
the Gabor transform and proposed time-frequency domain
deconvolution, which greatly improved the deconvolution effect.
However, the time window of the Gabor transform is fixed, which
makes it inflexible in practical applications (Zhou et al., 2014). With
the development of time-frequency analysis, the S transform was
proposed (Stockwell et al., 1996), which is more flexible than the
Gabor transform. Based on the advantages of the S transform, Zhou
et al. (2014) introduced Gabor deconvolution into the S transform
domain, improving the accuracy of deconvolution. Wang et al.
(2017) used the secondary time-frequency spectrum of the S
transform to construct a two-dimensional filter that adaptively
determines the frequency expansion range. Wu and Castagna
(2017) found that the spectrum of the S transform shifts upward
and proposed the unscaled S transform (UST) to prevent the fre-
quency shift in the spectrum. Based on the idea of spectral fitting,
some other high-resolution processing methods have been pro-
posed. For example, Tang et al. (2010) performed two Fourier
transform analyses on seismic signals and developed a quadratic
spectrum method to improve seismic resolution. Deng et al. (2023)
constrained the target wavelet with the seismic spectrum,
expanding the seismic frequency bandwidth and improving the
resolution of seismic signals effectively.

In fact, as seismic wavelets propagate underground, factors like
geometrical spreading, absorption, and scattering decrease the
amplitude. Absorption particularly affects seismic resolution
(Dasgupta and Clark, 1998). Therefore, the wavelet spectrum used
for spectral fitting should also consider this absorption attenuation.
Furthermore, most of these methods process seismic traces indi-
vidually and then perform joint analysis without considering the
interrelations between adjacent traces. However, seismic signals
are recorded in the form of multichannel. Single trace processing
lacks lateral information, which may lead to discontinuities in
geological information that confuse the interpreters (Wu et al.,
2020). Recently, multichannel deconvolution methods that con-
sider certain prior constraints in the objective function have been
gradually developed, improving the lateral continuity of the
inversion results (Ma et al., 2017; Zhang et al., 2022). Thus, we can
employ multichannel processing to ensure the lateral continuity of
high-resolution seismic signals.

This paper introduces a multichannel spectral fitting (MSF)
method to identify thin reservoirs. The first step involves con-
structing the target equation using the spectrum of the attenuated
Ricker wavelet to enhance the vertical seismic resolution. Next,
multichannel constraints are employed to solve the target param-
eters stably and thus maintain the continuity of seismic signals.
This paper is organized as follows. Section 2 provides the theoret-
ical formulas of the proposed MSF method. In Sections 3 and 4, we
demonstrate the feasibility and effectiveness of the MSF method in
thin reservoir identification using synthetic and field seismic ex-
amples. Finally, Section 5 presents the conclusions.
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2. Method

Step 1: According to the nonstationary convolution model
(Sheriff and Geldart, 1995; Margrave, 1998), the seismic signal
can be expressed as

sðtÞ¼wðt; tÞ)rðtÞ ¼
ðþ∞

�∞
wðt� t; tÞrðtÞdt (1)

where ) and t denote the convolution operation and time variable,
respectively. Symbols wðt; tÞ and rðtÞ mean the dynamic wavelet
and reflectivity.

Seismic signals attenuate during underground propagation. The
seismic attenuation includes geometric expansion, scattering, and
absorption attenuation, among which absorption attenuation has
a wide impact on seismic resolution (Dasgupta and Clark, 1998).
The attenuation function aðt; f Þ is used to describe the absorption
attenuation:

jaðt; f Þj ¼ e�atf (2)

where a is the attenuation factor. By combining Eq. (1) and Eq. (2),
the frequency domain attenuation convolution model is obtained
as follows:

bsðf Þ¼ bwðf Þ
ðþ∞

�∞
aðt; f ÞrðtÞe�2piftdt (3)

where bsðf Þ and bwðf Þ are calculated by the Fourier transform, which
represent the frequency spectrum of the attenuated seismic signal
and the frequency spectrum of the source seismicwavelet. Thus, we
have

sðtÞ¼
ðþ∞

�∞

ðþ∞

�∞
bwðf Þaðu; f ÞrðuÞe2pif ðt�uÞdfdu (4)

where u denotes the time variable.

Step 2: The UST of sðtÞ is defined as (Wu and Castagna, 2017)

Vgsðt; f Þ¼
ðþ∞

�∞
sðtÞgðt� t; f Þe�2piftdt (5)

where gðt�t; f Þ ¼ 1ffiffiffiffiffi
2p

p e�
ðt�tÞ2 f2

2 is the window. Substituting Eq. (4)

into Eq. (5) gives

Vgsðt; f Þ ¼
ðþ∞

�∞

�ðþ∞

�∞

ðþ∞

�∞
bwðxÞaðu; xÞrðuÞe2pixðt�uÞdxdu

�
gðt� t; f Þe�2piftdt

(6)

where x denotes the frequency variable.
Then the asymptotic result for Eq. (6) can be derived as

(Margrave et al., 2002; Zhou et al., 2024)��Vgsðt; f Þ
��zj bwðf Þ jjaðt; f Þ j��Vgrðt; f Þ

�� (7)

where j$j denotes absolute values. We now assume that the UST of
the reflectivity,

��Vgrðt; f Þ
��, is white with a mean of unity, which

means that the spectral shape of seismic wavelets j bwðf Þjjaðt; f Þj
primarily provides the general shape, while

��Vgrðt; f Þ
�� provides only
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the detail of
��Vgsðt; f Þ

�� (Grossman et al., 2001; Margrave and
Lamoureux, 2001). Thus, we rewrite Eq. (7) as

Sðt; f Þ¼cW ðf Þe�atf (8)

where Sðt; f Þ ¼ ��Vgsðt; f Þ
��, cW ðf Þ ¼ j bwðf Þj.

Step 3: The Ricker wavelet finds extensive application in seismic
signal processing and interpretation, including seismic to well
tie, quality-factor estimation, and forward modeling (Gholamy
and Kreinovich, 2014; Mamasani et al., 2017). The frequency
domain representation of the Ricker wavelet is

Wðf ; fdÞ ¼
2ffiffiffiffi
p

p f 2

f 3d
e
�f2

f2
d (9)

where fd is the dominant frequency of the wavelet. Its mean fm and
variance fs can be expressed as (Zhang et al., 2017)

fm ¼

ðþ∞

0
fWðf ; fdÞdfðþ∞

0
Wðf ; fdÞdf

z1:06fd (10)

fs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðþ∞

0
ðf � fmÞ2Wðf ; fdÞdfðþ∞

0
Wðf ; fdÞdf

vuuuuut z0:34fd (11)

In many seismic explorations, the source wavelet spectrumwith no
attenuation can be approximated by the Ricker spectrum (Ricker,
1953; Zhang and Ulrych, 2002), that is

cW ðf ÞzAWðf ; fdÞ (12)

where A means the amplitude coefficient of the Ricker wavelet.
Combining Eq. (8) and Eq. (12), we have

Sðt; f ÞzAWðf ; fdÞe�atf (13)

where has parameters a. To obtain a, we can establish an objective
function, based on Eq. (13):

argmin
At;fd;at

(XN
n

���Sðt; fnÞ � AtWðfn; fdÞe�attfn
���2
2

)
(14)

where k$k2 represents L2-norm. The symbol N is the number of
frequency points for fitting. The symbol fn means the n-th fre-
quency point. At and at mean the amplitude coefficient and the
attenuation factor at time t. By solving this function, we can obtain
the attenuation factor.

Step 4: Eq. (14) solves the objective function of the seismic
traces individually and then forms a solution vector. However,
the solution for a single trace is easily affected by noise or
complex structures, resulting in abnormal values and reducing
the spatial continuity of seismic signals (Gao et al., 2014; Guo
et al., 2022). While underground strata are not uniform in the
lateral direction, the lateral variation of the sedimentary strata is
relatively stable, showing local lateral continuity and similarity
in adjacent seismic traces (Dai and Yang, 2022). Therefore, it can
be considered that the attenuation in adjacent seismic traces at
the same time is locally similar. This similarity can be used to
2820
formulate joint vertical and horizontal constraints on the target
parameters, thereby enhancing the stability of the target
parameter solution.

We introduce a penalty term that contains time and seismic
trace information into the objective function. Finally, we solve the
following least squares problem to estimate at;c:

argmin
At;c;fdc ;at;c

8>><>>:
XN
n

���Sðt; fn; cÞ � At;cW
�
fn; fdc

�
e�at;ctfn

���2
2

þu1kAk22 þ u2kfdk22 þ u3kak22

9>>=>>; (15)

where c is the trace number. At;c and at;c represent the amplitude
coefficient and the attenuation factor at c-th trace and time t,
respectively. The symbol fdc

means the dominant frequency of the
Ricker wavelet at c-th trace. Symbols u1, u2, and u3 are regulari-
zation parameters, which are employed to balance the respective
constraints. Optimizing the regularization parameters is a complex
issue, and we determine them through trials. The optimal attenu-
ation factor can be obtained by solving Eq. (15) using the Matlab
optimization toolbox.

Step 5: Oncewe obtain at;c, The spectrum of the high-resolution
seismic signal at c-th trace is

Shðt; f ; cÞ¼ Sðt; f ; cÞeat;ctf (16)

However, the spectrum obtained using Eq. (16) contains high-
frequency noise. Due to the absorption attenuation of seismic sig-
nals during propagation, the spectrum of the source wavelet has
the broadest frequency range. When broadening the bandwidth of
seismic signals, it is necessary to filter out amplitude values above
this frequency range to suppress high-frequency noise. For each
seismic trace, consider the following filter:

Fðf ; cÞ¼

8>>>>><>>>>>:
1; f � fmc þ 4fsc

fmc þ 6fsc � f
2fsc

; fmc þ 4fsc < f � fmc þ 6fsc

0; f > fmc þ 6fsc

(17)

where fmc and fsc represent the mean and standard deviation of the
Ricker wavelet at c-th trace, and are related to fdc

. Combining Eqs.
(10), (11) and (17), we have

Fðf ; cÞ ¼

8>>>><>>>>:
1; f � 2:42fd

3:1fd � f
0:68fd

; 2:42fd < f � 3:1fd

0; f >3:1fd

(18)

where designed based on the sigma criterion and can retainmost of
the information within the frequency band of the source seismic
wavelet. This ensures that no useful signals are filtered out. Com-
bining Eq. (16) and Eq. (18), the time-frequency spectrum of the
c-th high-resolution seismic signal can be determined by

Shðt; f ; cÞ¼ Fðf ; cÞSðt; f ; cÞeat;ctf (19)

Finally, we use the inverse UST to get the high-resolution signal:

Shðt; cÞ ¼
ðþ∞

�∞

ðþ∞

�∞
Shðt; f ; cÞjf jei2pftdtdf (20)



Fig. 1. Synthetic noise-free velocity model.
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3. Synthetic examples

3.1. Synthetic noise-free example

In order to evaluate the effects of the MSF method on improving
Fig. 2. The synthetic noise-free example: (a) the synthetic original example, (b)
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seismic data resolution, we design a noise-free example. The model
consists of a horizontal layer, two thin layers, and a wedge-shaped
layer. The first layer, located at a depth of 140 m, has a thickness of
11 m, while the second layer, at a depth of 220 m, has a thickness of
13 m. The trace interval is 2 m, the sampling interval is 1 ms, and
the velocity of the wedge is 3150 m/s.

In Fig. 2(a), the synthetic seismic response is obtained by con-
volving the 40 Hz Ricker wavelet with the reflectivity calculated in
Fig. 1. Chung and Lavvton (1995) demonstrated that the tuning
thickness of the thin layer illuminated by the Ricker wavelet is

TR ¼
ffiffiffi
6

p
2pfd

. For the above model, TR ¼ 9:7 ms, near trace 20. Fig. 2(b)

shows the attenuated synthetic seismic signal with Q ¼ 50. We
first observe two thin layers. Due to the low resolution, the thin
layers in Fig. 2(a) and (b) cannot be identified. Fig. 2(c) and (d)
display the results of the time-variant spectral whitening (TVSW)
and MSF methods. Both methods effectively enhance seismic res-
olution and identify the two thin layers. Nevertheless, the MSF
method better resolves the thin bed compared to the result
obtained using the TVSW method.

Fig. 3(a)e(d) show the enlarged results of the red rectangle in
Fig. 2(a)e(d) to better compare the wedge-shaped layer results. In
Fig. 3(a), the unresolved event of the wedge is separated near trace
20. With the addition of attenuation, the seismic signal resolution
the attenuated synthetic example, (c) the TVSW result, (d) the MSF result.
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decreases, and the resolved thickness of the wedge occurs near
trace 26, corresponding to a layer thickness of 12.6 ms, as Fig. 3(b)
shows. After TVSW, the wedge-shaped layer can be identified at
trace 22, corresponding to a thickness of 10.6 ms, as shown in
Fig. 3(c). The resolution limit of the proposed MSF for the wedge-
shaped layer appears near trace 18, corresponding to 8.6 ms,
which is better than the TVSW method, as shown in Fig. 3(d).
Fig. 4(a) depicts the Fourier spectra of the above signal, represented
Fig. 3. The enlarged results in the red rectangle in Fig. 2: (a) the synthetic original exam

Fig. 4. (a) Fourier spectra comparison, (b) regularization p
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in purple, blue, yellow, and red lines, respectively. It is evident that
the frequency bandwidth experiences a significant widening after
employing the MSF method. Hence, the MSF method is more
effective and satisfactory for improving seismic signal resolution
and characterizing thin reservoirs.

In the experiment, we optimize the regularization parameters
by calculating the average correlation coefficient between the
reconstructed and original signals (Du et al., 2018). Testing reveals
ple, (b) the attenuated synthetic example, (c) the TVSW result, (d) the MSF result.

arameter optimization based on correlation analysis.
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that the values of u2, and u3 are dominant, while changes in u1 have
minimal impact. The average correlation coefficient under different
u2 and u3 values is calculated to determine the optimal regulari-
zation parameter. Fig. 4(b) shows the correlation coefficient values
with changes in u2 and u3, indicating that the highest correlation
coefficient is obtained when u2 ¼ 0:001 and u3 ¼ 0:1, which are
the optimal regularization parameters.
3.2. Synthetic noisy example

The second example is the Marmousi example, which is used to
verify the robustness and stability of the MSF method in complex
and noisy geological conditions. This paper convolves the velocity
model (Wang et al., 2019) with the 30 Hz Ricker wavelet to obtain
the Marmousi example in the time domain, which has a sampling
interval of 8 ms, totaling 663 traces. Fig. 5(a) shows the obtained
example with 10 dB random noise. On this basis, the Q model
(Wang et al., 2019) is added to obtain Fig. 5(b). Fig. 5(c)e(f) show
Fig. 5. The synthetic noisy example, (a) the original synthesized Marmousi example, (b) the
in (a), (d) the enlarged result of the blue rectangle in (a), (e) the enlarged result of the yell
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the enlarged results of the yellow and blue rectangles in Fig. 5(a)
and (b), respectively. Comparing Fig. 5(e) with Fig. 5(c), it can be
seen that, due to the influence of noise and energy attenuation, the
reflective interfaces in Fig. 5(e) are challenging to distinguish.
Meanwhile, identifying and tracking seismic events becomes more
difficult in Fig. 5(f) compared to Fig. 5(d).

Fig. 6(a) and (b) show the processing results of the TVSW and
MSF methods. The enlarged results of the yellow and blue rectan-
gles in Fig. 6(a) and (b) are shown in Fig. 6(c)e(f). Overall, both
methods improve the resolution of the signals compared to
Fig. 5(b). However, as observed in Fig. 6(c)e(f), there are differences
between the results of the TVSW and MSF methods. While the
TVSW method improves the imaging quality of seismic signals, it
disrupts the continuity of seismic reflection, as shown in Fig. 6(c).
As shown in Fig. 6(e), the thin reservoir details are well revealed.
Additionally, theMSF preserves the lateral continuity of the section,
benefiting from its multichannel constraints and filtering approach.
A comparison of Fig. 6(d) with Fig. 6(f) demonstrates that the MSF
attenuated synthetic Marmousi example, (c) the enlarged result of the yellow rectangle
ow rectangle in (b), (f) the enlarged result of the blue rectangle in (b).
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method significantly enhances the resolution of seismic signals and
provides a clearer identification of seismic events compared to the
TVSW method. These benefits demonstrate that the proposed MSF
has advantages in identifying thin reservoirs.

4. Field data example

We apply the proposed MSF to gas-bearing tight sandstone
reservoirs in the Sichuan Basin of China to validate its practicability.
Seismic signals in this area have a narrow bandwidth due to energy
attenuation, which affects the identification of geological targets.
Fig. 7(a) is the original seismic section comprising 300 seismic
traces, each sampled at 2 ms intervals. The green line represents
well A. In low-quality seismic signals, the indistinct reflection layer
makes it challenging to track certain seismic events. Therefore,
enhancing the vertical resolution of seismic signals is essential for
improving the geological body characteristics and well location
deployment of existing data. Fig. 7(b) and (c) display the results
after applying the TVSW and the proposed MSF. By comparing
Fig. 6. The synthetic noisy example, (a) the TVSW result, (b) the MSF result, (c) the enlarged
(e) the enlarged result of the yellow rectangle in (b), (f) the enlarged result of the blue rec
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Fig. 7(b) and (c) with Fig. 7(a), we observe that both methods
improve the vertical resolution and showmore detailed reflections.
In Fig. 7(b), the red ellipses highlight that the TVSWmethod results
in lateral discontinuities, possibly due to excessive high-frequency
noise introduced during processing. In the MSF method, the sta-
bility of multichannel processing and the suppression of high-
frequency noise contribute to better continuity of the seismic sec-
tion, as shown in the red ellipses in Fig. 7(c). In addition, we extract
three seismic signals near the seismic trace through the well,
named trace 229, trace 230, and trace 231. The average amplitude
spectra are shown in Fig. 7(d). The frequency band comparison
reveals that the MSF method effectively compensates for energy in
the high-frequency compared to the original seismic section and
the TVSW result.

To compare the ability of different methods to identify thin
reservoirs more clearly, we enlarge the results displayed in the
black rectangular box of Fig. 7(a)e(c), as shown in Fig. 8. Fur-
thermore, the gamma-ray (GR) of well logs is employed to verify
the validity of the high-resolution results. The black arrow in
result of the yellow rectangle in (a), (d) the enlarged result of the blue rectangle in (a),
tangle in (b).



Fig. 7. Field seismic section, (a) the original section, (b) the TVSW result, (c) the MSF result, (d) amplitude spectra comparison.

Fig. 8. The enlarged results of the black rectangle in Fig. 7, (a) the original section, (b) the TVSW result, (c) the MSF result.
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Fig. 8(b) indicates a new seismic event detected by the TVSW
method. This event is also identified using the proposed method.
Moreover, the MSF method detected two additional seismic events,
as shown in Fig. 8(c). These three seismic reflection events can be
interpreted as sandstone reservoirs and confirmed by the GR log.
Overall, both methods effectively improve the seismic resolution.
The proposed MSF significantly enhances the resolution of seismic
signals, revealing fine details of thin reservoirs.

5. Conclusions

This paper proposes a novel method called MSF to enhance
seismic resolution, which is applied and analyzed in thin reservoir
characterization. The effectiveness and accuracy of theMSFmethod
are verified using synthetic and field seismic examples and are
compared with the TVSWmethod. Based on the analysis above, the
following conclusions can be drawn.

(1) The MSF method extends the bandwidth of seismic signals
by fitting the spectrum of the attenuated Ricker wavelet, thus
improving the seismic resolution.

(2) The MSF method's multichannel constraint ensures the sta-
bility of the parameter solution and helps maintain the lat-
eral continuity of seismic signals, making it more conducive
to seismic interpretation.

(3) The proposed MSF method maintains the lateral continuity
of seismic signals while improving the seismic resolution,
demonstrating its advantages in thin reservoir
characterization.
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