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a b s t r a c t

With the increasing demand for oil exploration and subsurface resource development, density imaging 
plays an increasingly important role in identifying thin layers. However, conventional density imaging 
tools are limited by poor vertical resolution and therefore suffer from errors in accurately estimating the 
thickness and relative dip angle of thin layers. This affects the accurate evaluation of thin layer oil and 
gas reserves. To address this issue, this study evaluates the feasibility of employing novel methods based 
on advanced tool design. First, an electronically controllable X-ray source is selected to replace the 
traditional Cs-137 source, aiming to improve the tool's vertical resolution while reducing the radioactive 
risks commonly associated with chemical sources. Simulation results show that the X-ray tool provides 
sufficient  depth of investigation with better vertical resolution while maintaining the same level of 
measurement sensitivity. Once the tool design is established, Fisher's optimal segmentation method is 
improved to enhance the estimation of thin layer thickness and relative dip angle. This is completed by 
transforming identifying thin layer interface into a mathematical clustering problem. The thin layer 
interface is fitted  using the nonlinear least squares method, which enables the calculation of its pa
rameters. The results demonstrate a 38.5% reduction in RMSE (root mean square error) for thin layer 
thickness and a 33.7% reduction in RMSE for relative dip angle, demonstrating the superior performance 
of enhanced X-ray tool in thin layer identification. This study provides a new perspective on the design 
of density imaging tools and assessment of thin layer, which can help in future thin layer hydrocarbon 
reserves evaluation and development decisions.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This 
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

As the global demand for oil exploration continues to grow, the 
accurate identification  and real-time monitoring of formation 
characteristics become particularly important, especially in the 
development of thin inter-bedded layers (Geng et al., 2022; Pang 
et al., 2022), deep layers (Bai and Cao, 2014; Peng et al., 2016), 
and low-permeability reservoirs (Hu et al., 2018; Kang et al., 2022) 
in complex reservoir environments. Logging while drilling (LWD) 
density measurements have been widely used in oil and gas 
exploration because they can obtain formation density data in 

real-time during drilling (Eldert et al., 2020, John and Turvill, 
1983). In particular, LWD density imaging can measure the for
mation density distribution in all directions around the well, 
helping explorers accurately identify formation features (Best 
et al., 1995; Zhu et al., 2019) and determine reservoir properties 
(Sun et al., 2021; Yuan et al., 2022). However, with the global 
emphasis on environmental safety, density logging is gradually 
moving towards source-less density (Zhang et al., 2023). The X-ray 
source has shown excellent potential in replacing Cs-137 source 
for formation density measurement because of its electronically 
controllable characteristics. In 2014, Badruzzaman (2014) initially 
investigated the feasibility of X-ray source density logging. In 2018, 
Schlumberger Simon et al. (2018) introduced the first  commer
cially available four-detector X-ray density logging tool, noting 
that X-ray density tool provides higher sensitivity and vertical * Corresponding author.
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resolution for formation density measurement. Using the energy 
spectrum generated by its X-ray generator, Wu et al. (2022)
explored the application of controllable X-ray sources in downhole 
density measurements through numerical simulations, providing 
references for the design of related instruments. Singhal et al. 
(2018) proposed an X-ray based high-pressure density and mass 
flow  sensor for real-time monitoring of drilling fluids  in high- 
pressure environments. Further exploration of X-ray digital radi
ography techniques by Wang and Zhang (2023) and Li et al. (2023)
evaluated the performance of flexible detectors such as CsPbBr3 
crystal detectors in X-ray imaging. Recently, the method proposed 
by Fan et al. (2024), which combines X-ray sources and gamma 
detectors to calculate cement density with a controllable error 
margin, provides a new technical means for cement quality 
assessment. These research demonstrate the excellent potential of 
X-ray technology for density measurement and analysis capabil
ities in density logging while drilling. The successful application of 
these technologies demonstrates the significant potential of X-ray 
technology in LWD.

X-rays have also found some application in imaging, and for 
LWD density images, accurate identification  of formation in
terfaces is critical for the assessment of thin layer thickness and 
relative dip angle. Lanning and Johnson (1983) pioneered the use 
of Walsh transform to analyze log data to detect formation 
boundaries. Later, Wang et al. (2013) introduced the influencing 
factors and basic theories of automated identification  of LWD 
density imaging, providing a theoretical basis for automated data 
analysis. Shao et al. (2013) proposed a fast forward algorithm for 
LWD gamma logging under the condition of complex formation 
interface and well trajectory, as well as a key calculation method 
for determining formation interface using gamma forward in real 
time. Xie et al. (2014), Cheng and Zou, 2015 and Mukherjee et al. 
(2016) studied the automatic identification method of formation 
interface based on edge detection, Hough transform, and wavelet 
transform. These methods usually require elaborate image pro
cessing pipelines and require high performance of computing 
devices. To address this problem, Gupta et al. (2019) and others 
proposed algorithms for formation interface identification based 
on a fully convolutional neural network model (FCN). However, the 
method faces challenges in practical applications, such as algo
rithm parameter selection, high-resolution data acquisition, and 
theoretical background combination. To overcome these chal
lenges, this manuscript employs the Fisher optimal segmentation 
method (FOSM) (Fisher, 1958), which transforms the interface 
recognition problem into a clustering problem in mathematical 
form, and realizes the interface recognition of formation. Specif
ically, the FOSM is applied to optimize the segmentation points at 
the formation interfaces by minimizing the density data intraclass 
scatter, which enables the distinction of different formation zones.

Based on this, the structure of this manuscript is organized as 
follows: In Section 2, the design of the X-ray tool is introduced. X- 
ray tool is developed by replacing the chemical source with an X- 
ray source. The optimization of source spacing is conducted, 
ensuring that the tool maintains sufficient depth of investigation 
(DOI) and good density sensitivity while improving vertical reso
lution. Section 3 presents the application of Fisher's optimal seg
mentation method to the density images obtained from both the 
X-ray and conventional LWD tools. This method is employed to 
estimate the thickness and relative dip angle of thin layers, key 
indicators for thin layer recognition. In Section 4, the results and 
discussion are presented, demonstrating that the X-ray tool 
significantly  improves the accuracy of thin layer thickness and 
relative dip angle calculations compared to the conventional tool, 
based on two different models. Finally, Section 5 concludes the 
paper, summarizing the main findings and contributions.

2. X-ray density tool design

Geant4 (Agostinelli et al., 2003; Allison et al. 2006, 2016) is a 
widely used and open source Monte Carlo particle transport tool 
that supports the transport simulation of various particles (such as 
neutrons, photons, electrons, etc.). It is widely used in particle 
physics experiments, medical physics, radiation protection, radi
ation measurement, nuclear well logging and other fields. In this 
study, Geant4 is used to design and validate an X-ray tool (X_tool), 
and optimize the detector-to-source distance based on density 
sensitivity to ensure that the tool has sufficient DOI. This improves 
the tool's vertical resolution and ability to identify thin layers.

2.1. Tool model construction

First, a gamma tool model, denoted as G_Tool, is established 
using Geant4, shown schematically in Fig. 1. Fig. 1(a) shows the 
structure of the G_tool, which is mainly composed of Cs-137 
source, short- and long-spaced NaI detectors, detector shell and 
tungsten-nickel-iron shield and other key components. The 
source-to-detector distance of the long- and the short-spaced 
detectors are 380 mm and 183 mm, respectively. The short- 
spaced NaI crystal has a size of φ20.32 mm × 19.05 mm, while 
the long-spaced NaI crystal measures φ20.32 mm × 57.15 mm. The 
tool has an external diameter of 304 mm. Fig. 1(b) shows the 
schematic of X_tool, where the Cs-137 source is replaced by an X- 
ray source.

Fig. 1(c) presents the energy spectra of X_tool and G_tool, 
highlighting a distinct difference in their spectral characteristics. 
To reduce the influence  of lithology on density measurements, 
X_tool employs a density energy window ranging from 140 to 
250 keV, whereas G_tool operates within a window of 
200–410 keV. To verify the accuracy of the G_tool model, simulated 
results are compared with experimental measurements from 13 
test pits, as shown in Fig. 2. The results indicate that the density 
energy windows for both the short- and long-spaced detectors 
exhibit a high degree of consistency between simulation and 
measurement, with statistical errors remaining within 5%. These 
findings confirm the reliability and correctness of the model.

Based on the validated G_tool, the X_tool model is designed by 
replacing the 0.662 MeV monoenergetic Cs-137 source with an X- 
ray spectra of an end energy 350 keV. The X-ray energy distribu
tion can be referred to Schlumberger's X-ray energy spectrum 
(Simon et al., 2018). Moreover, considering that the intensity of the 
X-ray source is an order of magnitude higher than that of the 
7.4 × 1010 Bq Cs-137 source, the intensity of the X-ray source is 
62.9 × 1010 Bq.

Density sensitivity is employed as an important parameter to 
evaluate the performance of density tools. It refers to the change in 
the logarithm of density window photon count caused by a unit 
density change. The equation is shown as Eq. (1), where N is the 
density window photon count and ρ is the formation density. 

S=
⃒
⃒
⃒
⃒
∂(ln N)

∂ρ

⃒
⃒
⃒
⃒× 100% (1) 

Fig. 3 shows the sensitivity comparison of density measure
ment of two tools under different densities. It shows that under 
the same source spacing condition, the sensitivity of X_Tool is 
significantly higher than that of G_tool. Although the photon en
ergy is lower than that of the Cs-137 source, the number of par
ticles recorded by the X_tool detector is higher, mainly because the 
intensity of X-ray is one order of magnitude higher than Cs-137.

Since tool sensitivity to formation decreases as detector-to- 
source distance reduces, the source-detector spacing of the 
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X_tool can be further optimized on the premise of ensuring that 
the density sensitivity of the X_tool is no less than that of the 
G_tool. This could provide several advantages such as more fitting 
space for the X-ray tube and more flexible tool design. Further
more, the appropriate source-detector spacing adjustment can 
improve the vertical resolution of the tool, this helps enhancing 
the ability of the tool in identifying thin layers.

2.2. Optimization of X-ray source spacing

Using the X_tool model, the source spacing of the short- and 
long-spaced detectors are adjusted to achieve optimized perfor
mance. Among them, the source spacing of the long-spaced de
tector is gradually adjusted from 380 mm to 240 mm, and the 
source spacing of the short-spaced detector is gradually adjusted 
from 183 mm to 113 mm. Change gradually in decreasing steps. At 
the same time, under each source spacing, the formation density is 
adjusted, and the detection energy spectrum counts under 
different density conditions are simulated and recorded, so as to 
obtain the response relationship between density window counts 

and formation density under the condition of source spacing. 
Finally, the density sensitivity under different detector source 
spacing conditions are obtained, as shown in Fig. 4.

From Fig. 4, it is evident that the density sensitivities of both the 
short- and long-spaced detectors decrease as the source spacing 
decreases, exhibiting a clear linear relationship with the source 
spacing. Fig. 3 shows that, without adjusting the source spacing, 
the density sensitivities of both the short- and long-spaced de
tectors of X_tool are higher than those of G_tool. Therefore, to 
ensure that the density sensitivity of X_tool is not lower than that 
of G_tool, the minimum long- and short-source spacing for X_tool 
can be determined based on the linear relationship. Under these 
source spacing conditions, the density sensitivity of X_tool be
comes comparable to that of G_tool. According to Fig. 3, the den
sity response sensitivities of the short- and long-spaced detectors 
of G_tool are 0.450 and 1.748, respectively. By combining this with 
the fitting relationship shown in Fig. 4, it can be concluded that the 
short source spacing of X_tool should exceed 112.987 mm, while 
the long source spacing should exceed 258.952 mm.

In view of the actual design of the tool, a longitudinal shielding 
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Fig. 1. Schematic of tools for two different density sources.
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Fig. 2. Comparison of density window counts between simulation and measurement.
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body is set between the source and short-spaced detector, which 
imposes certain restrictions on the optimization of the short 
source spacing. After comprehensive analysis, the maximum 
adjustable distance of the short-spaced detector is 45 mm. On this 
basis, the optimized source spacing of X_tool is finally shown in 
Table 1, where the source spacing of short- and long-spaced de
tectors is 138 mm and 260 mm, respectively.

To validate the effectiveness of the new source spacing, a 
simulation-based comparison of the DOI is conducted for the 
optimized tool. As shown in Fig. 5(a), the DOI of the long-spaced 

detector for both tools is evaluated under standard limestone 
formation conditions. It can be observed that the X-ray long- 
spaced detector achieves a DOI of approximately 8.5 cm, which 
is sufficient for acquiring formation information in LWD environ
ments. Furthermore, to quantitatively assess the improvement in 
vertical resolution, formation models with different thin layer 
thicknesses (25, 20, 15, 10, and 5 cm) are constructed, and the tool 
responses are simulated to analyze the capability of identifying 
formation boundaries under varying conditions. The simulation 
results, as presented in Fig. 5(b) and (c), where the black solid lines 
represent the formation density values defined by the model. The 
blue and red dashed lines correspond to the simulated responses 
of G_tool and X_tool, respectively. All curves are aligned based on 
the midpoint between the short- and long-spaced detectors as the 
reference depth. As shown in the figures, the vertical resolution of 
X_tool is approximately 15 cm, while that of G_tool is around 
20 cm. These findings  further confirm  the superior vertical 
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Fig. 3. Comparison of density measurement sensitivity of two tools.
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Table 1 
Source spacing of the X_tool after optimization.

Source spacing G_tool X_tool

Short source spacing 183 mm 138 mm
Long source spacing 380 mm 260 mm
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resolution of X_tool, which is primarily attributed to its reduced 
source-to-detector spacing.

2.3. Density calculation

In order to verify the performance of the improved X_tool, its 
density response is evaluated through simulation under different 
logging environments. Specifically, the formation is set as lime
stone with porosity varying between 0% and 40% (density range: 
2.112–2.710 g/cm3); the borehole fluids are set as water, light mud 
(density 1.440 g/cm3) and heavy mud (density 2.440 g/cm3), and 
the standoff is set from 0 to 20 mm. By constructing the simulation 
databased including the above models, we fit  and obtain the 
compensation density response of the two tools, as shown in Fig. 6. 
The horizontal axis represents the density, difference between the 
short- and long-spaced detectors and the vertical axis is the den
sity correction added to the long -spaced detector apparent den
sities when calculating the final formation density.

To quantitatively evaluate the accuracy of the tools, we used a 
test set covering a range of formation porosities and mud den
sities. The mean absolute error (MAE) and root mean square error 
(RMSE) are employed as evaluation metrics, defined as follows: 

MAE =
1
n

∑n

i=1

|ρi − ρ̂i| (2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1

(ρi − ρ̂i)
2

√
√
√
√ (3) 

The error results are summarized in Table 2. For G_tool, the MAE 
and RMSE of the formation density are 0.0146 and 0.0148 g/cm3, 
respectively. In contrast, X_tool achieves improved accuracy, with 
an MAE of 0.0140 g/cm3 and an RMSE of 0.0143 g/cm3. These results 
indicate that X_tool delivers more accurate and reliable formation 
density measurements compared to G_tool.
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3. Thin layer identification

Since the LWD tool can collect density data in 16 sectors around 
the well while the tool is rotating, it is possible to utilize the 
density data in 16 sectors around the well to realize the imaging of 
formation density. Firstly, the boundaries of thin layers can be 
recognized by the formation density image, and then the thickness 
and relative dip angle of thin layers can be calculated.

Fig. 7 illustrates the 16 sector density values and their density 
images simulated by the X_tool model while passing through the 
high and low density layers. The density value and composition of 
the high and low density layer are shown in Table 3. The thick
nesses of the high- and low-density layers are set to 50, 40, 30, 20, 
and 10 cm, with a specific relative dip angle to the borehole. The 
traces in the figure show, from left to right, the density of each 
sector in azimuths ranging from 11.25◦ to 348.75◦ in 22.5◦ in
crements, with the red dashed line indicating the 16-sector den
sity curve, and the black boxed lines indicating the values of the 
formation density under each azimuth under the forward model. 
The rightmost display is the density image obtained by circum
ferential interpolation of the left 16 sector densities.

From the density image, it can be seen that when the tool 
crosses the thin layers of high and low density, the image shows 
obvious sinusoidal curve characteristics. This is because when 
there is an interface between the layers, there is a difference in the 
density of the formations above and below the interface, which is 
reflected in the density image as the sinusoidal response curve in 

Fig. 7. By analyzing the sinusoidal features in the LWD density 
image, the relative dip angle θ of the thin layer with respect to the 
borehole and its thickness T can be deduced (Yin et al., 2008), as 
shown in Fig. 8: 

θ= tan− 1
(

H
D + 2ΔD

)

(4) 

T = L⋅sin(90∘ − θ) (5) 

where H represents the amplitude of the sinusoidal curve in the 
density image. D is the diameter of the hole; ΔD represents the 
range of density imaging response to formation density in the 
direction perpendicular to the well axis (i.e., the DOI). L is the 
distance value of the sine curve in the direction of the well axis in 
the density image.

3.1. Fisher optimal segmentation method

Based on the simulation model constructed in the previous 
section and the equations for calculating the relative dip angle and 
thickness of thin layers, a method is developed to identify thin layer 
interfaces in each azimuth using the FOSM, enabling the accurate 
evaluation of relative dip angle and thickness in the density image. 
This method consists of three main steps, as shown in Fig. 9. First, 
the 16-sector density matrix data are interpolated to enhance res
olution and obtain a finer density distribution. Next, key points on 
the thin layer interfaces in each azimuth of the interpolated density 
matrix are identified using FOSM to delineate thin layer boundaries. 
Finally, the nonlinear least squares (NLS) method is applied to fit 
the identified thin layer interfaces in order to achieve a quantitative 
assessment of the relative dip angle and thickness.

The goal of FOSM is to minimize the total sum of squared de
viations of the layers after stratification so that the differences 
within the layers are minimized and the differences between the 
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Table 2 
Comparison of formation density error between G_tool and X_tool.

Error G _tool X_tool

MAE 0.0146 g/cm3 0.0140 g/cm3

RMSE 0.0148 g/cm3 0.0143 g/cm3
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layers are maximized. This clustering method of ordered rules can 
segment the data efficiently. In applying the Fisher optimal seg
mentation method, the density image is represented as a data 
matrix: R ∈ Rm×n, where m is the depth dimension and n is the 
azimuth dimension. For each column j (i.e., an azimuth), the 
density data are {ρj(1); ρj(2); ⋯; ρj(m)}. By Fisher's optimal seg
mentation method, the goal is to find a set of k+ 1 segmentation 

points {s1; s2;⋯; sk+1} that segment each azimuthal profile into k 
thin layer bins and minimize the density difference within each 
bin and maximize the density difference between the bins. 
Therefore, the procedure of the optimal segmentation method for 
thin layer interface identification are as follows.

1. Define the interval diameter. Denote the t ordered densities of a 
thin interval at orientation as j and the mean vector as

ρj =
1

m − i + 1

∑m

x=i

ρj(x) (6) 

Then the class diameter of this vector is 

Dj(i;m)=
∑m

x=i

(
ρj(x) − ρj

)2
(7) 

2. Compute the classification  loss. The recursive equation of the 
classification loss function is as follows:

⎧
⎨

⎩

Lj(m;2) = min
2≤s≤m

{
Dj(i; s − 1) + Dj(i; s)

}

Lj(m; k) = min
k≤s≤m

{
Lj(s − 1; k − 1) + Dj(i;m)

} (8) 

where (m; k) is a partition that clusters the m ordered densities 

Table 3 
Material composition of the high and low density layers.

Composition Low density layer (2.20 g/cm3) High density layer (2.60 g/cm3)

SiO2 21.00% 45.00%
CaCO3 50.00% 50.00%
H2O 29.00% 5.00%

Sector azimuth

Depth

360°0° α

α

θ

ΔD ΔD

H

D

Fig. 8. Schematic diagram of the formation interface and the sinusoidal response 
curve of the interface.

Step 3. Calculation of thin layer thickness and relative dip angle

Nonlinear least-squares fitting of formation boundaries based on a sine
function model:

Relative dip angle and thickness calculation:

Azimuthal density image Segmentation result

Step 1. Radial interpolation of density matrix

Radial interpolation on 16-sector density matrix data to obtain a high-resolution
density matrix.
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S(A,B,C,d) =      [s j - (A sin(Bαj + C) + d)]2∑
n

j=1

θ = tan-1                       T = |dk - dk+1|·sin(90° - θ)H
D + 2ΔD

D(i, α) = D(i, j) +                              ·(α - αj)
D(i, j + 1) - D(i, j)

αj+1 - αj

(Dm×16) (Dm×360)

① Calculating the diameter of density
classes within the interval

② Calculating the classification loss
function

③ Determining the optimal number of
segments and their breakpoints

Dj(i, m) =      (ρj(x) - ρ̂j)2∑
m

x=1

kj
best = arg max

Lj(m, kj)
Lj(m, kj + 1)

Lj(m, 2)
= min {Dj(i, s - 1) + Dj(i, s)}

Lj(m, k)
= min {Lj(s - 1, k - 1) + Dj(i, m)}

2  s  m

k  s  m

Fig. 9. An overview of formation interface identification using Fisher optimal segmentation method.
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under m orientation into k classes; Lj(m; k) is the loss function of 
(m; k) partition. According to Eq. (8), the classification loss function 
table for 2-partition to k-partition can be derived.

3. Determine the optimal number of layers kj. The inflection point 
in the trend graph of Lj(m;2) changing with the optimal num
ber of layers k is the optimal number of layers. The loss function 
ratio δj can be calculated, and the larger the ratio is, the better 
the division into k segments than k + 1 segments.

δj =
Lj(m; k)

Lj(m; k + 1)
(9) 

After determining the optimal number of layered layers and the 
position of the interface of the thin layer under each orientation, 
the interface curve of the thin layer, i.e., the sinusoidal curve 
shown in Eq. (10), is finally  obtained by nonlinear least-squares 
fitting. 

S(A;B;C; d)=
∑m

x=i

[{
sj
}
−
(

A sin
(

Bαj + C
)
+ d

)]2
(10) 

where, A;B;C; d is the coefficient  of the sine curve obtained by 
fitting, and sj is the position of the thin layer interface determined 
in all directions. The interfacial curve parameters of each interface 
are finally obtained, and then the thickness and relative dip angle 
of the thin layer can be calculated from the parameter information 
of these curves.

4. Result and discussion

In this section, the advantages of the X_tool over the conven
tional G_tool for thin layer identification are verified by evaluating 
the thickness and relative dip angle of the thin layers. This is 
achieved by constructing two thin layered formation models, then 
employing FOSM to identify the thickness and relative dip angle of 
the thin layers. Results are then compared between two tools.

4.1. Thin layer thickness evaluation

The density response of 16 sectors with different layer thick
nesses (40, 30, 20, and 10 cm) is simulated at 60◦ relative dip. 
Subsequently, the density images under the corresponding con
ditions are obtained, as shown in Fig. 10. The results indicate a 
significant  difference in boundary clarity and vertical resolution 
between the two tools. In the image obtained from X_tool, for
mation boundaries are more distinct, with narrower transition 
zones and sharper interface transitions. In contrast, the image 
from G_tool presents relatively blurred boundaries with wider 
transition areas, resulting in lower boundary distinguishability.

Fig. 11 illustrates the results of formation boundary segmen
tation using the FOSM, with fitted  sine curves indicating the 
identified interfaces. The thicknesses of different layers are clearly 
distinguishable in the image, and the distances between the curves 
accurately reflect  the variations in layer thickness. Additionally, 
the positions of the fitted curves align well with the actual thin- 
layer boundaries. Notably, even when the thin layer thickness is 
reduced to 10 cm—approaching or slightly below the vertical 
resolution of the tool—FOSM is still capable of segmenting the 
layer regions and extracting structural contours to a certain extent. 
This suggests that the method retains a degree of applicability 
under low-resolution conditions. The comparison between the 
layer thicknesses calculated using Eq. (4) and the preset simulation 
values is presented in Table 4.

As shown in Table 4, the calculation errors for layer thickness in 

both tools increase as the thickness decreases. This is because, 
when the thin layer thickness is small, the measured density 
values are more susceptible to interference from adjacent layers, 
making it difficult to accurately reflect the actual formation con
ditions. Consequently, the calculation of thin layer thickness based 
on density images results in larger errors. It can also be observed 
that, under all thin layer thickness conditions, the calculation er
rors of X_tool are consistently lower than those of G_tool. This is 
attributed to the shorter source spacing of X_tool, which provides 
relatively higher vertical resolution and reduces the influence of 
adjacent layers. Table 5 compares the results of the two tools, 
showing that the RMSE of thin layer thickness calculated by X_tool 
is 0.512 cm, while that of G_tool is 0.834 cm. The RMSE of X_tool is 
reduced by 38.5%, demonstrating its better performance in thin 
layer identification.

4.2. Thin layer dip evaluation

Similarly, the density imaging results of the two tools under 
different relative dip angles are also simulated, as shown in Fig. 12. 
Fig. 12(a) shows the schematic diagram of the simulation model, in 
which the strata includes formations with relative dip angles of 
15◦, 30◦, 45◦ and 60◦. Fig. 12(b) shows the comparison results of 
density images.

Fig. 13 shows the interface identification results of the two tool 
density images under different relative dip angle models. The 
relative dip angle is calculated by combining with Eq. (4), and the 
results are shown in Table 6.

As can be seen in Table 6, as the relative dip angle of the thin 
layer increases, the calculation error of the relative dip angle of the 
thin layer tends to increase for both tools. This is because the tool 
has a certain DOI, when the thin layer dip angle is larger, the thin 
layer density interaction area enlarges as the amplitude deviation 
of the interface curve increases, therefore, obtaining the thin layer 
relative dip angle through the amplitude will produce a larger 
error. Meanwhile, the error of the thin layer relative dip angle of 
X_tool is lower than that of G_tool pertaining to all thin layer 
relative dip angles. This is due to the relatively smaller DOI of 
X_tool and the smaller area where thin layer densities interact. 
Results of the two tools are compared in Table 7, where the RMSE 
calculated by the relative dip angle of thin layers is 1.275◦ for 
X_tool and 1.946◦ for G_tool, and the RMSE of X_tool is reduced by 
38.5%, which indicates that the X_tool performs better in identi
fying thin layers.

5. Conclusions

Based on an actual LWD density tool, this work replaces the 
traditional gamma source with a controllable X-ray source and 
optimizes the source spacing of the short- and long-spaced de
tectors in the X_tool without compromising measurement sensi
tivity. In addition, the FOSM is employed to identify thin layer 
interfaces in the density image, and the thin layer thickness as well 
as the relative dip angle are calculated. Finally, the accuracy of the 
X_tool in imaging the relative dip angle and thickness of the thin 
layer is verified. The conclusions are as follows:

(1) Employing a downhole LWD density tool, the gamma source 
is replaced with an X-ray source, and the source spacing of 
the X_tool is optimized based on sensitivity to density 
measurement. The source spacing of the short- and long- 
spaced detectors is determined to be 138 mm and 
260 mm, respectively. Compared to the G_tool, the source 
spacings of the short- and long-spaced detectors are 
reduced by 24.5% and 31.5%, respectively, resulting in a 
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significant improvement in vertical resolution—from 20 cm 
to 15 cm. In terms of formation densities, G_tool results in 
an MAE of 0.0146 g/cm3 and an RMSE of 0.0148 g/cm3, in 
contrast to the results obtained by X_tool, which show a 
higher accuracy with an MAE of 0.0140 g/cm3 and an RMSE 
of 0.0143 g/cm3.

(2) The enhanced FOSM is employed to identify thin layer in
terfaces in density images. The X_tool provides higher ac
curacy than the G_tool in calculating thin layer thickness 
and relative dip angle. Specifically, as the layer thickness 
decreases, both X_tool and G_tool exhibit increasing errors 
in the estimation of thin layer thickness and relative dip 
angle. When the formation thickness is 10 cm, the relative 
errors of X_tool and G_tool are 7.20% and 11.50%, respec
tively. Overall, the RMSE of thin layer thickness estimation 
using X_tool is reduced by 38.5% compared to G_tool, and 
the RMSE of relative dip angle estimation is reduced by 
33.7%, indicating that X_tool offers higher accuracy in thin 
layer identification and further demonstrates the potential 
of the X-ray source for density measurement and thin layer 
identification.

Future work will focus on further optimizing the X-ray density 
imaging tool, particularly in terms of enhancing its vertical reso
lution and DOI. This involves refining  the source spacing and 
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Fig. 10. Formation models with different thicknesses and density image comparison (left: X_tool; right: G_tool).
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Fig. 11. Layer interface identification at different thickness (left: X_tool; right: G_tool).

Table 4 
Comparison of thin layer thickness calculation results between the two tools.

Layer thickness, cm X_tool Relative error G_tool Relative error

40 40.15 0.375% 40.47 1.175%
30 30.48 1.600% 30.61 2.033%
20 20.53 2.650% 20.93 4.650%
10 10.72 7.200% 11.15 11.500%

Table 5 
MAE and RMSE between calculated and real thin layer thickness for two tools.

Error X_tool G_tool

MAE 0.470 cm 0.790 cm
RMSE 0.512 cm 0.834 cm
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detector layout to improve sensitivity in detecting thin layers. 
Additionally, further research will explore the integration of 
advanced signal processing algorithms and machine learning 

techniques to enhance real-time formation evaluation. Experi
mental validation in field  applications will also be conducted to 
assess the tool's performance under various borehole conditions 
and geological settings, ensuring its reliability and robustness for 
LWD density imaging.
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Table 6 
Comparison between calculated and real relative dip angle for two tools.

Relative dip angle X_tool Relative error G_tool Relative error

15◦ 14.86◦ 0.933% 14.78◦ 1.467%
30◦ 29.57◦ 1.433% 28.96◦ 3.467%
45◦ 43.74◦ 2.800% 42.87◦ 4.733%
60◦ 57.83◦ 3.617% 56.92◦ 5.133%

Table 7 
MAE and RMSE between calculated and real relative dip angle for two tools.

Error X_tool G_tool

MAE 1.000◦ 1.618◦

RMSE 1.275◦ 1.946◦
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