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ABSTRACT

With the increasing demand for oil exploration and subsurface resource development, density imaging
plays an increasingly important role in identifying thin layers. However, conventional density imaging
tools are limited by poor vertical resolution and therefore suffer from errors in accurately estimating the
thickness and relative dip angle of thin layers. This affects the accurate evaluation of thin layer oil and
gas reserves. To address this issue, this study evaluates the feasibility of employing novel methods based
on advanced tool design. First, an electronically controllable X-ray source is selected to replace the
traditional Cs-137 source, aiming to improve the tool's vertical resolution while reducing the radioactive
risks commonly associated with chemical sources. Simulation results show that the X-ray tool provides
sufficient depth of investigation with better vertical resolution while maintaining the same level of
measurement sensitivity. Once the tool design is established, Fisher's optimal segmentation method is
improved to enhance the estimation of thin layer thickness and relative dip angle. This is completed by
transforming identifying thin layer interface into a mathematical clustering problem. The thin layer
interface is fitted using the nonlinear least squares method, which enables the calculation of its pa-
rameters. The results demonstrate a 38.5% reduction in RMSE (root mean square error) for thin layer
thickness and a 33.7% reduction in RMSE for relative dip angle, demonstrating the superior performance
of enhanced X-ray tool in thin layer identification. This study provides a new perspective on the design
of density imaging tools and assessment of thin layer, which can help in future thin layer hydrocarbon

reserves evaluation and development decisions.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

1. Introduction

real-time during drilling (Eldert et al., 2020, John and Turvill,
1983). In particular, LWD density imaging can measure the for-

As the global demand for oil exploration continues to grow, the
accurate identification and real-time monitoring of formation
characteristics become particularly important, especially in the
development of thin inter-bedded layers (Geng et al., 2022; Pang
et al., 2022), deep layers (Bai and Cao, 2014; Peng et al., 2016),
and low-permeability reservoirs (Hu et al., 2018; Kang et al., 2022)
in complex reservoir environments. Logging while drilling (LWD)
density measurements have been widely used in oil and gas
exploration because they can obtain formation density data in
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mation density distribution in all directions around the well,
helping explorers accurately identify formation features (Best
et al., 1995; Zhu et al., 2019) and determine reservoir properties
(Sun et al., 2021; Yuan et al., 2022). However, with the global
emphasis on environmental safety, density logging is gradually
moving towards source-less density (Zhang et al., 2023). The X-ray
source has shown excellent potential in replacing Cs-137 source
for formation density measurement because of its electronically
controllable characteristics. In 2014, Badruzzaman (2014) initially
investigated the feasibility of X-ray source density logging. In 2018,
Schlumberger Simon et al. (2018) introduced the first commer-
cially available four-detector X-ray density logging tool, noting
that X-ray density tool provides higher sensitivity and vertical
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resolution for formation density measurement. Using the energy
spectrum generated by its X-ray generator, Wu et al. (2022)
explored the application of controllable X-ray sources in downhole
density measurements through numerical simulations, providing
references for the design of related instruments. Singhal et al.
(2018) proposed an X-ray based high-pressure density and mass
flow sensor for real-time monitoring of drilling fluids in high-
pressure environments. Further exploration of X-ray digital radi-
ography techniques by Wang and Zhang (2023) and Li et al. (2023)
evaluated the performance of flexible detectors such as CsPbBr3
crystal detectors in X-ray imaging. Recently, the method proposed
by Fan et al. (2024), which combines X-ray sources and gamma
detectors to calculate cement density with a controllable error
margin, provides a new technical means for cement quality
assessment. These research demonstrate the excellent potential of
X-ray technology for density measurement and analysis capabil-
ities in density logging while drilling. The successful application of
these technologies demonstrates the significant potential of X-ray
technology in LWD.

X-rays have also found some application in imaging, and for
LWD density images, accurate identification of formation in-
terfaces is critical for the assessment of thin layer thickness and
relative dip angle. Lanning and Johnson (1983) pioneered the use
of Walsh transform to analyze log data to detect formation
boundaries. Later, Wang et al. (2013) introduced the influencing
factors and basic theories of automated identification of LWD
density imaging, providing a theoretical basis for automated data
analysis. Shao et al. (2013) proposed a fast forward algorithm for
LWD gamma logging under the condition of complex formation
interface and well trajectory, as well as a key calculation method
for determining formation interface using gamma forward in real
time. Xie et al. (2014), Cheng and Zou, 2015 and Mukherjee et al.
(2016) studied the automatic identification method of formation
interface based on edge detection, Hough transform, and wavelet
transform. These methods usually require elaborate image pro-
cessing pipelines and require high performance of computing
devices. To address this problem, Gupta et al. (2019) and others
proposed algorithms for formation interface identification based
on a fully convolutional neural network model (FCN). However, the
method faces challenges in practical applications, such as algo-
rithm parameter selection, high-resolution data acquisition, and
theoretical background combination. To overcome these chal-
lenges, this manuscript employs the Fisher optimal segmentation
method (FOSM) (Fisher, 1958), which transforms the interface
recognition problem into a clustering problem in mathematical
form, and realizes the interface recognition of formation. Specif-
ically, the FOSM is applied to optimize the segmentation points at
the formation interfaces by minimizing the density data intraclass
scatter, which enables the distinction of different formation zones.

Based on this, the structure of this manuscript is organized as
follows: In Section 2, the design of the X-ray tool is introduced. X-
ray tool is developed by replacing the chemical source with an X-
ray source. The optimization of source spacing is conducted,
ensuring that the tool maintains sufficient depth of investigation
(DOI) and good density sensitivity while improving vertical reso-
lution. Section 3 presents the application of Fisher's optimal seg-
mentation method to the density images obtained from both the
X-ray and conventional LWD tools. This method is employed to
estimate the thickness and relative dip angle of thin layers, key
indicators for thin layer recognition. In Section 4, the results and
discussion are presented, demonstrating that the X-ray tool
significantly improves the accuracy of thin layer thickness and
relative dip angle calculations compared to the conventional tool,
based on two different models. Finally, Section 5 concludes the
paper, summarizing the main findings and contributions.
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2. X-ray density tool design

Geant4 (Agostinelli et al., 2003; Allison et al. 2006, 2016) is a
widely used and open source Monte Carlo particle transport tool
that supports the transport simulation of various particles (such as
neutrons, photons, electrons, etc.). It is widely used in particle
physics experiments, medical physics, radiation protection, radi-
ation measurement, nuclear well logging and other fields. In this
study, Geant4 is used to design and validate an X-ray tool (X_tool),
and optimize the detector-to-source distance based on density
sensitivity to ensure that the tool has sufficient DOI. This improves
the tool's vertical resolution and ability to identify thin layers.

2.1. Tool model construction

First, a gamma tool model, denoted as G_Tool, is established
using Geant4, shown schematically in Fig. 1. Fig. 1(a) shows the
structure of the G_tool, which is mainly composed of Cs-137
source, short- and long-spaced Nal detectors, detector shell and
tungsten-nickel-iron shield and other key components. The
source-to-detector distance of the long- and the short-spaced
detectors are 380 mm and 183 mm, respectively. The short-
spaced Nal crystal has a size of ¢20.32 mm x 19.05 mm, while
the long-spaced Nal crystal measures ¢20.32 mm x 57.15 mm. The
tool has an external diameter of 304 mm. Fig. 1(b) shows the
schematic of X_tool, where the Cs-137 source is replaced by an X-
ray source.

Fig. 1(c) presents the energy spectra of X_tool and G_tool,
highlighting a distinct difference in their spectral characteristics.
To reduce the influence of lithology on density measurements,
X_tool employs a density energy window ranging from 140 to
250 keV, whereas G_tool operates within a window of
200-410 keV. To verify the accuracy of the G_tool model, simulated
results are compared with experimental measurements from 13
test pits, as shown in Fig. 2. The results indicate that the density
energy windows for both the short- and long-spaced detectors
exhibit a high degree of consistency between simulation and
measurement, with statistical errors remaining within 5%. These
findings confirm the reliability and correctness of the model.

Based on the validated G_tool, the X_tool model is designed by
replacing the 0.662 MeV monoenergetic Cs-137 source with an X-
ray spectra of an end energy 350 keV. The X-ray energy distribu-
tion can be referred to Schlumberger's X-ray energy spectrum
(Simon et al., 2018). Moreover, considering that the intensity of the
X-ray source is an order of magnitude higher than that of the
7.4 x 10'° Bq Cs-137 source, the intensity of the X-ray source is
62.9 x 10 Bq.

Density sensitivity is employed as an important parameter to
evaluate the performance of density tools. It refers to the change in
the logarithm of density window photon count caused by a unit
density change. The equation is shown as Eq. (1), where N is the
density window photon count and p is the formation density.

o(In N)'
dp

x 100%

5| (1)
Fig. 3 shows the sensitivity comparison of density measure-
ment of two tools under different densities. It shows that under
the same source spacing condition, the sensitivity of X_Tool is
significantly higher than that of G_tool. Although the photon en-
ergy is lower than that of the Cs-137 source, the number of par-
ticles recorded by the X_tool detector is higher, mainly because the
intensity of X-ray is one order of magnitude higher than Cs-137.
Since tool sensitivity to formation decreases as detector-to-
source distance reduces, the source-detector spacing of the
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Fig. 1. Schematic of tools for two different density sources.
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Fig. 2. Comparison of density window counts between simulation and measurement.

X_tool can be further optimized on the premise of ensuring that
the density sensitivity of the X_tool is no less than that of the
G_tool. This could provide several advantages such as more fitting
space for the X-ray tube and more flexible tool design. Further-
more, the appropriate source-detector spacing adjustment can
improve the vertical resolution of the tool, this helps enhancing
the ability of the tool in identifying thin layers.

2.2. Optimization of X-ray source spacing

Using the X_tool model, the source spacing of the short- and
long-spaced detectors are adjusted to achieve optimized perfor-
mance. Among them, the source spacing of the long-spaced de-
tector is gradually adjusted from 380 mm to 240 mm, and the
source spacing of the short-spaced detector is gradually adjusted
from 183 mm to 113 mm. Change gradually in decreasing steps. At
the same time, under each source spacing, the formation density is
adjusted, and the detection energy spectrum counts under
different density conditions are simulated and recorded, so as to
obtain the response relationship between density window counts
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and formation density under the condition of source spacing.
Finally, the density sensitivity under different detector source
spacing conditions are obtained, as shown in Fig. 4.

From Fig. 4, it is evident that the density sensitivities of both the
short- and long-spaced detectors decrease as the source spacing
decreases, exhibiting a clear linear relationship with the source
spacing. Fig. 3 shows that, without adjusting the source spacing,
the density sensitivities of both the short- and long-spaced de-
tectors of X_tool are higher than those of G_tool. Therefore, to
ensure that the density sensitivity of X_tool is not lower than that
of G_tool, the minimum long- and short-source spacing for X_tool
can be determined based on the linear relationship. Under these
source spacing conditions, the density sensitivity of X_tool be-
comes comparable to that of G_tool. According to Fig. 3, the den-
sity response sensitivities of the short- and long-spaced detectors
of G_tool are 0.450 and 1.748, respectively. By combining this with
the fitting relationship shown in Fig. 4, it can be concluded that the
short source spacing of X_tool should exceed 112.987 mm, while
the long source spacing should exceed 258.952 mm.

In view of the actual design of the tool, a longitudinal shielding
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Fig. 4. Variation of density sensitivity with source

body is set between the source and short-spaced detector, which
imposes certain restrictions on the optimization of the short
source spacing. After comprehensive analysis, the maximum
adjustable distance of the short-spaced detector is 45 mm. On this
basis, the optimized source spacing of X_tool is finally shown in
Table 1, where the source spacing of short- and long-spaced de-
tectors is 138 mm and 260 mm, respectively.

To validate the effectiveness of the new source spacing, a
simulation-based comparison of the DOI is conducted for the
optimized tool. As shown in Fig. 5(a), the DOI of the long-spaced

Table 1

Source spacing of the X_tool after optimization.
Source spacing G_tool X_tool
Short source spacing 183 mm 138 mm
Long source spacing 380 mm 260 mm

Source spacing, mm

spacing for short- and long-spaced detectors.

detector for both tools is evaluated under standard limestone
formation conditions. It can be observed that the X-ray long-
spaced detector achieves a DOI of approximately 8.5 cm, which
is sufficient for acquiring formation information in LWD environ-
ments. Furthermore, to quantitatively assess the improvement in
vertical resolution, formation models with different thin layer
thicknesses (25, 20, 15, 10, and 5 cm) are constructed, and the tool
responses are simulated to analyze the capability of identifying
formation boundaries under varying conditions. The simulation
results, as presented in Fig. 5(b) and (c), where the black solid lines
represent the formation density values defined by the model. The
blue and red dashed lines correspond to the simulated responses
of G_tool and X_tool, respectively. All curves are aligned based on
the midpoint between the short- and long-spaced detectors as the
reference depth. As shown in the figures, the vertical resolution of
X_tool is approximately 15 c¢m, while that of G_tool is around
20 cm. These findings further confirm the superior vertical
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Fig. 5. DOI comparison and vertical resolution simulation results for X_tool and G_tool.

resolution of X_tool, which is primarily attributed to its reduced
source-to-detector spacing.

2.3. Density calculation

In order to verify the performance of the improved X_tool, its
density response is evaluated through simulation under different
logging environments. Specifically, the formation is set as lime-
stone with porosity varying between 0% and 40% (density range:
2.112-2.710 g/cm?); the borehole fluids are set as water, light mud
(density 1.440 g/cm?) and heavy mud (density 2.440 g/cm?), and
the standoff is set from O to 20 mm. By constructing the simulation
databased including the above models, we fit and obtain the
compensation density response of the two tools, as shown in Fig. 6.
The horizontal axis represents the density, difference between the
short- and long-spaced detectors and the vertical axis is the den-
sity correction added to the long -spaced detector apparent den-
sities when calculating the final formation density.
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To quantitatively evaluate the accuracy of the tools, we used a
test set covering a range of formation porosities and mud den-
sities. The mean absolute error (MAE) and root mean square error
(RMSE) are employed as evaluation metrics, defined as follows:

(2)

1 .
MAE = > "l = 7|
i=1

(3)

The error results are summarized in Table 2. For G_tool, the MAE
and RMSE of the formation density are 0.0146 and 0.0148 g/cm?,
respectively. In contrast, X_tool achieves improved accuracy, with
an MAE of 0.0140 g/cm? and an RMSE of 0.0143 g/cm®. These results
indicate that X_tool delivers more accurate and reliable formation
density measurements compared to G_tool.
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Fig. 6. Fitting compensation density correction.
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Table 2

Comparison of formation density error between G_tool and X_tool.
Error G _tool X_tool
MAE 0.0146 g/cm> 0.0140 g/cm?
RMSE 0.0148 g/cm® 0.0143 g/cm?

3. Thin layer identification

Since the LWD tool can collect density data in 16 sectors around
the well while the tool is rotating, it is possible to utilize the
density data in 16 sectors around the well to realize the imaging of
formation density. Firstly, the boundaries of thin layers can be
recognized by the formation density image, and then the thickness
and relative dip angle of thin layers can be calculated.

Fig. 7 illustrates the 16 sector density values and their density
images simulated by the X_tool model while passing through the
high and low density layers. The density value and composition of
the high and low density layer are shown in Table 3. The thick-
nesses of the high- and low-density layers are set to 50, 40, 30, 20,
and 10 cm, with a specific relative dip angle to the borehole. The
traces in the figure show, from left to right, the density of each
sector in azimuths ranging from 11.25° to 348.75° in 22.5° in-
crements, with the red dashed line indicating the 16-sector den-
sity curve, and the black boxed lines indicating the values of the
formation density under each azimuth under the forward model.
The rightmost display is the density image obtained by circum-
ferential interpolation of the left 16 sector densities.

From the density image, it can be seen that when the tool
crosses the thin layers of high and low density, the image shows
obvious sinusoidal curve characteristics. This is because when
there is an interface between the layers, there is a difference in the
density of the formations above and below the interface, which is
reflected in the density image as the sinusoidal response curve in

11.26°  33.75° 56.25° 78.75° 101.25° 123.75° 146.25° 168.75° 191.25° 213.75°

Petroleum Science 22 (2025) 2403-2413

Fig. 7. By analyzing the sinusoidal features in the LWD density
image, the relative dip angle ¢ of the thin layer with respect to the
borehole and its thickness T can be deduced (Yin et al., 2008), as
shown in Fig. 8:

o=tan"! ( (4)

D+ 2AD>
T=L-sin(90° — 6) (5)

where H represents the amplitude of the sinusoidal curve in the
density image. D is the diameter of the hole; AD represents the
range of density imaging response to formation density in the
direction perpendicular to the well axis (i.e., the DOI). L is the
distance value of the sine curve in the direction of the well axis in
the density image.

3.1. Fisher optimal segmentation method

Based on the simulation model constructed in the previous
section and the equations for calculating the relative dip angle and
thickness of thin layers, a method is developed to identify thin layer
interfaces in each azimuth using the FOSM, enabling the accurate
evaluation of relative dip angle and thickness in the density image.
This method consists of three main steps, as shown in Fig. 9. First,
the 16-sector density matrix data are interpolated to enhance res-
olution and obtain a finer density distribution. Next, key points on
the thin layer interfaces in each azimuth of the interpolated density
matrix are identified using FOSM to delineate thin layer boundaries.
Finally, the nonlinear least squares (NLS) method is applied to fit
the identified thin layer interfaces in order to achieve a quantitative
assessment of the relative dip angle and thickness.

The goal of FOSM is to minimize the total sum of squared de-
viations of the layers after stratification so that the differences
within the layers are minimized and the differences between the
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Fig. 7. 16-sector density curves and density images.
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Table 3
Material composition of the high and low density layers.

Petroleum Science 22 (2025) 2403-2413

Composition Low density layer (2.20 g/cm?) High density layer (2.60 g/cm?)
Si0, 21.00% 45.00%
CaCo; 50.00% 50.00%
H,0 29.00% 5.00%
; points {sq,S; -+, Sky1} that segment each azimuthal profile into k
: Depth thin layer bins and minimize the density difference within each
bin and maximize the density difference between the bins.
Therefore, the procedure of the optimal segmentation method for
thin layer interface identification are as follows.
I A 1. Define the interval diameter. Denote the t ordered densities of a
i H thin interval at orientation as j and the mean vector as
i -l m
H = (x 6
: Pj m_l+1;pj() (6)
; 0° a 360° Then the class diameter of this vector is
: Sector azimuth uL 2
AD AD Dii,m) =" (pix) ~77) (7

Fig. 8. Schematic diagram of the formation interface and the sinusoidal response
curve of the interface.

layers are maximized. This clustering method of ordered rules can
segment the data efficiently. In applying the Fisher optimal seg-
mentation method, the density image is represented as a data
matrix: R € R™", where m is the depth dimension and n is the
azimuth dimension. For each column j (i.e., an azimuth), the
density data are {p;(1), pj(2), ---, pj(m)}. By Fisher's optimal seg-
mentation method, the goal is to find a set of k+ 1 segmentation

Xx=i

2. Compute the classification loss. The recursive equation of the
classification loss function is as follows:

Li(m,2) = ZrSr;iSnm{Dj(i,s ~ 1) +Dj(i, s)}

8
Li(m. k) = min {Lj(s— 1,k — 1)+ Dj(i, m)} ®)

where (m, k) is a partition that clusters the m ordered densities

Step 1. Radial interpolation of density matrix

density matrix.
D(i, j+ 1) = D(i,j)

Gt = &

(o= o)

D(i, ) = D(i, j) +

<

Radial interpolation on 16-sector density matrix data to obtain a high-resolution

(DmxSGO)

Step 3. Calculation of thin layer thickness and relative dip angle

Nonlinear least-squares fitting of formation boundaries based on a sine
function model:

S(A,B,C,d) = i[sf — (Asin(By + C) + d)P
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(3 Determining the optimal number of
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Relative dip angle and thickness calculation:

Fig. 9. An overview of formation interface identification using Fisher optimal segmentation method.
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under m orientation into k classes; L;(m, k) is the loss function of
(m, k) partition. According to Eq. (8), the classification loss function
table for 2-partition to k-partition can be derived.

3. Determine the optimal number of layers k;. The inflection point
in the trend graph of L;(m, 2) changing with the optimal num-
ber of layers k is the optimal number of layers. The loss function
ratio §; can be calculated, and the larger the ratio is, the better
the division into k segments than k + 1 segments.

~ Limk)

' Lm k1) ®)

After determining the optimal number of layered layers and the
position of the interface of the thin layer under each orientation,
the interface curve of the thin layer, i.e., the sinusoidal curve
shown in Eq. (10), is finally obtained by nonlinear least-squares
fitting.

S(A,B,C,d) = zm: [{sl} - (A sin(BajJrC) +d)]2 (10)

where, A,B,C,d is the coefficient of the sine curve obtained by
fitting, and ¢/ is the position of the thin layer interface determined
in all directions. The interfacial curve parameters of each interface
are finally obtained, and then the thickness and relative dip angle
of the thin layer can be calculated from the parameter information
of these curves.

4. Result and discussion

In this section, the advantages of the X_tool over the conven-
tional G_tool for thin layer identification are verified by evaluating
the thickness and relative dip angle of the thin layers. This is
achieved by constructing two thin layered formation models, then
employing FOSM to identify the thickness and relative dip angle of
the thin layers. Results are then compared between two tools.

4.1. Thin layer thickness evaluation

The density response of 16 sectors with different layer thick-
nesses (40, 30, 20, and 10 cm) is simulated at 60° relative dip.
Subsequently, the density images under the corresponding con-
ditions are obtained, as shown in Fig. 10. The results indicate a
significant difference in boundary clarity and vertical resolution
between the two tools. In the image obtained from X_tool, for-
mation boundaries are more distinct, with narrower transition
zones and sharper interface transitions. In contrast, the image
from G_tool presents relatively blurred boundaries with wider
transition areas, resulting in lower boundary distinguishability.

Fig. 11 illustrates the results of formation boundary segmen-
tation using the FOSM, with fitted sine curves indicating the
identified interfaces. The thicknesses of different layers are clearly
distinguishable in the image, and the distances between the curves
accurately reflect the variations in layer thickness. Additionally,
the positions of the fitted curves align well with the actual thin-
layer boundaries. Notably, even when the thin layer thickness is
reduced to 10 cm—approaching or slightly below the vertical
resolution of the tool—FOSM is still capable of segmenting the
layer regions and extracting structural contours to a certain extent.
This suggests that the method retains a degree of applicability
under low-resolution conditions. The comparison between the
layer thicknesses calculated using Eq. (4) and the preset simulation
values is presented in Table 4.

As shown in Table 4, the calculation errors for layer thickness in
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both tools increase as the thickness decreases. This is because,
when the thin layer thickness is small, the measured density
values are more susceptible to interference from adjacent layers,
making it difficult to accurately reflect the actual formation con-
ditions. Consequently, the calculation of thin layer thickness based
on density images results in larger errors. It can also be observed
that, under all thin layer thickness conditions, the calculation er-
rors of X_tool are consistently lower than those of G_tool. This is
attributed to the shorter source spacing of X_tool, which provides
relatively higher vertical resolution and reduces the influence of
adjacent layers. Table 5 compares the results of the two tools,
showing that the RMSE of thin layer thickness calculated by X_tool
is 0.512 cm, while that of G_tool is 0.834 cm. The RMSE of X_tool is
reduced by 38.5%, demonstrating its better performance in thin
layer identification.

4.2. Thin layer dip evaluation

Similarly, the density imaging results of the two tools under
different relative dip angles are also simulated, as shown in Fig. 12.
Fig.12(a) shows the schematic diagram of the simulation model, in
which the strata includes formations with relative dip angles of
15°, 30°, 45° and 60°. Fig. 12(b) shows the comparison results of
density images.

Fig. 13 shows the interface identification results of the two tool
density images under different relative dip angle models. The
relative dip angle is calculated by combining with Eq. (4), and the
results are shown in Table 6.

As can be seen in Table 6, as the relative dip angle of the thin
layer increases, the calculation error of the relative dip angle of the
thin layer tends to increase for both tools. This is because the tool
has a certain DOI, when the thin layer dip angle is larger, the thin
layer density interaction area enlarges as the amplitude deviation
of the interface curve increases, therefore, obtaining the thin layer
relative dip angle through the amplitude will produce a larger
error. Meanwhile, the error of the thin layer relative dip angle of
X_tool is lower than that of G_tool pertaining to all thin layer
relative dip angles. This is due to the relatively smaller DOI of
X_tool and the smaller area where thin layer densities interact.
Results of the two tools are compared in Table 7, where the RMSE
calculated by the relative dip angle of thin layers is 1.275° for
X_tool and 1.946° for G_tool, and the RMSE of X_tool is reduced by
38.5%, which indicates that the X_tool performs better in identi-
fying thin layers.

5. Conclusions

Based on an actual LWD density tool, this work replaces the
traditional gamma source with a controllable X-ray source and
optimizes the source spacing of the short- and long-spaced de-
tectors in the X_tool without compromising measurement sensi-
tivity. In addition, the FOSM is employed to identify thin layer
interfaces in the density image, and the thin layer thickness as well
as the relative dip angle are calculated. Finally, the accuracy of the
X_tool in imaging the relative dip angle and thickness of the thin
layer is verified. The conclusions are as follows:

(1) Employing a downhole LWD density tool, the gamma source
is replaced with an X-ray source, and the source spacing of
the X_tool is optimized based on sensitivity to density
measurement. The source spacing of the short- and long-
spaced detectors is determined to be 138 mm and
260 mm, respectively. Compared to the G_tool, the source
spacings of the short- and long-spaced detectors are
reduced by 24.5% and 31.5%, respectively, resulting in a
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Fig. 10. Formation models with different thicknesses and density image comparison (left: X_tool; right: G_tool).
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Fig. 11. Layer interface identification at different thickness (left: X_tool; right: G_tool).

significant improvement in vertical resolution—from 20 cm
to 15 cm. In terms of formation densities, G_tool results in
an MAE of 0.0146 g/cm® and an RMSE of 0.0148 g/cm?, in
contrast to the results obtained by X_tool, which show a
higher accuracy with an MAE of 0.0140 g/cm® and an RMSE
of 0.0143 g/cm’.

Table 4

Comparison of thin layer thickness calculation results between the two tools.

Layer thickness, cm X_tool Relative error G_tool Relative error
40 40.15 0.375% 40.47 1.175%
30 30.48 1.600% 30.61 2.033%
20 20.53 2.650% 20.93 4.650%
10 10.72 7.200% 11.15 11.500%
Table 5
MAE and RMSE between calculated and real thin layer thickness for two tools.
Error X_tool G_tool
MAE 0.470 cm 0.790 cm
RMSE 0.512 cm 0.834 cm
(2) The enhanced FOSM is employed to identify thin layer in-

terfaces in density images. The X_tool provides higher ac-
curacy than the G_tool in calculating thin layer thickness
and relative dip angle. Specifically, as the layer thickness
decreases, both X_tool and G_tool exhibit increasing errors
in the estimation of thin layer thickness and relative dip
angle. When the formation thickness is 10 cm, the relative
errors of X_tool and G_tool are 7.20% and 11.50%, respec-
tively. Overall, the RMSE of thin layer thickness estimation
using X_tool is reduced by 38.5% compared to G_tool, and
the RMSE of relative dip angle estimation is reduced by
33.7%, indicating that X_tool offers higher accuracy in thin
layer identification and further demonstrates the potential
of the X-ray source for density measurement and thin layer
identification.

Future work will focus on further optimizing the X-ray density
imaging tool, particularly in terms of enhancing its vertical reso-

lution
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and DOI. This involves refining the source spacing and
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Fig. 13. Layer interface identification at different relative dip angles of two tools (left:
X_tool; right: G_tool).

detector layout to improve sensitivity in detecting thin layers.
Additionally, further research will explore the integration of
advanced signal processing algorithms and machine learning
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Table 6
Comparison between calculated and real relative dip angle for two tools.

Relative dip angle X_tool Relative error G_tool Relative error

15° 14.86° 0.933% 14.78° 1.467%

30° 29.57° 1.433% 28.96° 3.467%

45° 43.74° 2.800% 42.87° 4.733%

60° 57.83° 3.617% 56.92° 5.133%

Table 7

MAE and RMSE between calculated and real relative dip angle for two tools.
Error X_tool G_tool
MAE 1.000° 1.618°
RMSE 1.275° 1.946°

techniques to enhance real-time formation evaluation. Experi-
mental validation in field applications will also be conducted to
assess the tool's performance under various borehole conditions
and geological settings, ensuring its reliability and robustness for
LWD density imaging.
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