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a b s t r a c t

As the proportion of natural gas consumption in the energy market gradually increases, optimizing the
design of gas storage surface system (GSSS) has become a current research focus. Existing studies on the
two independent injection pipeline network (InNET) and production pipeline network (ProNET) for
underground natural gas storage (UNGS) are scarce, and no optimization methods have been proposed
yet. Therefore, this paper focuses on the flow and pressure boundary characteristics of the GSSS. It
constructs systematic models, including the injection multi-condition coupled model (INM model),
production multi-condition coupled model (PRM model), injection single condition model (INS model)
and production single condition model (PRS model) to optimize the design parameters. Additionally, this
paper proposes a hybrid genetic algorithm based on generalized reduced gradient (HGA-GRG) for solving
the models. The models and algorithm are applied to a case study with the objective of minimizing the
cost of the pipeline network. For the GSSS, nine different condition scenarios are considered, and iter-
ative process analysis and sensitivity analysis of these scenarios are conducted. Moreover, simulation
scenarios are set up to verify the applicability of different scenarios to the boundaries. The research
results show that the cost of the InNET considering the coupled pressure boundary is 64.4890 � 104 CNY,
and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655 � 104 CNY,
demonstrating greater applicability and economy than those considering only one or two types of
conditions. The algorithms and models proposed in this paper provide an effective means for the design
of parameters for GSSS.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

1.1. Motivation

In the context of the “dual carbon” targets (Jia et al., 2023),
natural gas, as a green, clean, and efficient energy source, plays a
significant role in the transformation of energy consumption
structures. Influenced by the complex and changing international
situation, the global natural gas production in 2022 was 4.094 �
1012 m3, with a consumption of 4.061 � 1012 m3, both experiencing
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a slight decline compared to the previous year (IEA, 2023). The
“China Natural Gas Development Report (2023)” indicated that in
the first half of 2023, China's natural gas production reached 1.155
� 1011 m3, a year-on-year increase of 5.4%, and the consumption
was 1.941 � 1011 m3, up by 5.6% from the previous year, predicting
that natural gas consumption will continue to grow over the next
20 years (Fan et al., 2022). Over the past five years, China's de-
pendency on imported natural gas has consistently exceeded 40%
(Du et al., 2023; Wei et al., 2023; Xu et al., 2023), with production
far from sufficient to meet consumption. Besides, the issue of
natural gas seasonal peak is becoming increasingly prominent,
highlighting the importance of using natural gas for emergency
and strategic reserves. Underground natural gas storage (UNGS), as
one of the main methods of gas storage and peak shaving in
the world, play an important role (Zhang G.X. et al., 2017; Zou et al.,
2019).
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The gas storage system mainly consists of underground storage
layers, wells and surface systems. In the gas storage surface system
(GSSS), the pipeline networks play a crucial role during operation. It
is an important equipment in injection and production conditions,
responsible for safely injecting natural gas into the storage and
transporting it to the bi-directional gas pipelines. Currently, many
studies focus on the underground part of UNGS and the injection
and production process, while research on optimizing the design
parameters of GSSS is not yet comprehensive. There is widespread
concern for the single pipeline network capable of both gas injec-
tion and production, yet the research on the two independent in-
jection pipeline network (InNET) and production pipeline network
(ProNET) is often neglected. Additionally, in actual production, the
control of boundary of flow and pressure at each well are crucial for
network stability. The change of conditions and the design pa-
rameters of the network interact with each other. To study the ef-
fect of changes in well conditions during injection and production
processes of GSSS on the design parameters and investment of the
pipeline network, and to obtain optimal design parameters with
economic efficiency and adaptability, this research work has been
conducted.

1.2. Literature review

Current research on UNGS optimization predominantly focuses
on the underground components, where numerous studies have
been conducted. Scholars often aim to achieve the lowest invest-
ment or the best investment strategies during the construction of
UNGS. For instance, �Zlender and Kravanja (2011) established the
NLP optimization model OPTUG to obtain optimal costs, Chen et al.
(2018) proposed a real option model analyzing the optimal in-
vestment strategies for UNGS considering the natural gas market
reform or not, and Jelu�si�c et al. (2019) predicted minimum invest-
ment and optimal UGS design. Moreover, to ensure the smooth
development and operation of UNGS,Wang and Economides (2012)
proposed new computational and estimation sequences for moni-
toring and predicting production rates and durations under the
constraints of reduced storage pressures in constructed reservoirs,
and Yang et al. (2016) conducted feasibility studies. Zheng et al.
(2020) established a geological integrity evaluation system for
UNGS geological bodies. To enhance the safety of UNGS operations,
Xue et al. (2023) used numerical simulation to predict the
maximum storage capacity of the gas storage facility and the var-
iations in pressure and temperature, some scholars have analyzed
the integrity failure risks (Zhao et al., 2019) or conducted facility
risk analyses (Syed and Lawryshyn, 2020) of UNGS. These studies
address technical issues related to the construction of UNGS to
achieve economical, efficient, and safe operations. However, there
is relatively less in-depth research on GSSS.

In the realm of research on GSSS, Peng et al. (2015) developed a
network model and conducted a hydraulic simulation analysis to
determine the best seasonal peak scheduling plan for the year. Yu et
al. (2018) assessed the reliability of UNGS operations under
different injection and production scenarios. Nonetheless, these
scholars did not design and study the parameters of GSSS from the
perspective of optimization. Zhou et al. (2020) proposed a special
genetic algorithm to solve for the model's optimal topology, loca-
tion of platforms and central stations, pipeline diameters etc. Zhou
et al. (2021a, 2021b) focused on optimizing gas storage networks,
establishing a mixed-integer nonlinear programming (MINLP)
model to find the optimal topology. They considered the affiliation
of wells, the number of stations, processing capacity, and flow/
pressure balance in their optimization of the layout and diameter
parameters of gas storage surface networks. For flow boundaries,
the GSSS under gas production conditions can be categorized into
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emergency production condition and peak production condition.
For pressure boundaries, the GSSS distinguishes between
maximum andminimum pressures under injection and production
conditions. Variations in boundaries typically affect the optimiza-
tion of design parameters for the pipeline network, and conversely,
the results of optimizing injection and production pipeline design
parameters can impact the efficient operation of the gas storage
facility. Although these studies focus on optimizing the design of
gas storage surface networks, they do not consider the different
boundaries under different conditions. The optimized pipeline
diameter parameters may not simultaneously meet the optimal
investment under different conditions, which cannot ensure flexi-
bility and safety stability of the UNGS. Our previous work (Zhou et
al., 2022) proposed a multi-condition hybrid model that can ach-
ieve the lowest investment and optimal design parameters. How-
ever, this research was on integrated pipelines network, which did
not consider the independent gas injection and production pipe
network system. For condensate or oil reservoir-based UNGS, InNET
and ProNET arrangements are preferred, such as China's Jing 58.
Additionally, this study focuses on the optimization of the param-
eters undermulti-condition, thus consideringmore comprehensive
conditions and resulting in more adaptable optimization outcomes.
To summarize, there is no literature currently addressing the
parameter optimization of two independent InNET and ProNET by
considering the coupling of different conditions.

In addition to focusing on the underground components, to
construct a model that closely aligns with the practical design pa-
rameters of the GSSS, inspiration can be drawn from optimization
models of networks with similar transportation characteristics. For
instance, Üster and Dilavero�glu (2014) designed an optimization
model for the periodic expansion of natural gas gathering and
transportation network.Wei et al. (2016) targeted theminimal total
investment in gas field gathering and transportation network
construction by optimizing design parameters such as pipeline
diameter and wall thickness. Wang et al. (2018) established a
mathematical model to simultaneously optimize gathering and
transportation networks and water injection network to reduce
investment. Zhou et al. (2018) developed a MINLP model aimed at
minimizing investment for natural gas gathering and trans-
portation network. For long-distance natural gas pipelines,
Kabirian and Hemmati (2007) created a comprehensive nonlinear
optimization model to determine the best design parameters. El-
Mahdy et al. (2010) used a genetic algorithm to optimize network
parameters and minimize pipeline costs. El-Shiekh (2013) opti-
mized design variables for gas steel pipelines of different diameters
and compression ratios to find the optimal design variables. Xue et
al. (2024) proposed an integrated model with stable numerical
methods for fractured underground gas storage, which contributes
to the understanding of optimal design parameters. However, these
pipe network systems were optimized under a single condition.

On the other hand, there are various algorithms for optimizing
natural gas network design parameters, such as Simulated
Annealing (Storn and Price, 1997), Differential Evolution (Babu et
al., 2005), Ant Colony Optimization (Chebouba et al., 2009), Parti-
cle Swarm Optimization (PSO) (Wu et al., 2014), and Genetic Al-
gorithms (GA) (Srivastava et al., 2015). As research into network
optimization problems deepens and design parameter models
become increasingly complex, many scholars have begun to
improve algorithms to create efficient and fast hybrid algorithms.
For example, Zheng andWu (2012) optimized a natural gas pipeline
design parameter model using an improved PSO. Zhou et al. (2015)
solved a hot oil pipeline design optimization model using a hybrid
algorithm that combines Differential Evolution and PSO. Zhang H.R.
et al. (2017) optimized a subsea oil pipeline design parameter
model using a multi-swarm cooperative PSO. Liang et al. (2020)
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improved the PSO to form a simulated annealing-particle swarm
optimization algorithm, obtaining a global optimum for a long-
distance pipeline network design parameter model. Among the
many optimization algorithms, the optimal solution can be found
more efficiently by GA and avoid getting trapped in local optima
(Arsegianto et al., 2003; Zhan et al., 2012). Chan et al. (2007)
created a hybrid GA by combining it with a local search algorithm
to study design parameters of dendritic networks. Tian et al. (2016)
proposed an improved parallel cooperative evolutionary GA to
optimize parameters like pipeline diameter and wall thickness.
Hassan et al. (2020) developed a hybrid GA model (GA-TGA) to
solve for the optimal layout design of sewer networks. While many
hybrid GA have been successfully used in network design optimi-
zation problems, most algorithms have only been applied to long-
distance or gathering network design parameter models. Howev-
er, the GSSS has complex structures and variable conditions.
Therefore, this study establishes a Hybrid Genetic Algorithm based
on Generalized Reduced Gradient (HGA-GRG) to solve the model
for the GSSS. The algorithm efficiently explores the solution space
in both continuous and discrete domains. By adaptively using the
optimization results fromGeneralized Reduced Gradient Algorithm
(GRG) as the initial population for GA, it accelerates convergence
speed and increases the likelihood of finding the global optimum.
Furthermore, the algorithm can dynamically adjust the feasible
regions for discrete decision variables, allowing it to flexibly
respond to changing constraints when addressing the complex
design of gas GSSS. This balance of global and local search capa-
bilities enables HGA-GRG to outperform traditional algorithms in
tackling complex network design optimization problems.
1.3. Contributions

(1) This study constructs a set of models for parameter optimi-
zation of GSSS, integrating the injection single condition
model (INS model), production single condition model (PRS
model), injection multi-condition coupled model (INM
model), and production multi-condition coupled model
(PRM model), with the aim of minimizing the investment in
InNET and ProNET.

(2) By incorporating the fluctuating hydraulic characteristics of
the InNET and ProNET, this approach uniquely couples
different flow and pressure boundaries under standard
single-condition designs.

(3) The proposed HGA-GRG is capable of solving in both
continuous and discrete spaces, ensuring the global opti-
mality of the optimization results.

(4) Through setting a case and different scenarios, this paper
conducts a comparative analysis of the iterative processes
and investments for InNET and ProNET and carries out
sensitivity analysis of boundaries based on the optimization
results.

(5) By establishing simulation scenarios, the applicability and
effectiveness of different scenarios are verified.
1.4. Paper organization

Section 2 describes the GSSS. Section 3 establishes the INS
model, PRS model, INMmodel, and PRMmodel under injection and
production conditions. Section 4 introduces the solving algorithm.
Section 5 presents case descriptions and scenario settings. Section 6
analyzes the solution results. Section 7 summarizes the paper.
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2. System framework

Globally, many countries are currently in the process of con-
structing UNGS, among which depleted oil and gas reservoir-type
UNGSs are the most common. The quality of gas extracted from
this kind of UNGS is usually poor, with defects such as wax, sulfur,
and water. To prevent the reinjection of residual impurities in the
pipelines during the UNGS injection process, causing secondary
pollution, these depleted reservoir-type UNGSs usually adopt
separate network layouts for injection and production. Unlike
traditional oil and gas field surface networks, the changing condi-
tions of injection and production gases lead to significant differ-
ences inwell flow and pressure. Therefore, this study optimizes the
parameters of the InNETand ProNETsuitable for various conditions.
The research approach is illustrated in Fig. 1.

2.1. Characteristics of GSSS

The well flow properties in production directly influence the
priority setting method for pipelines. For UNGS in condensate or oil
reservoirs, the well flow at the beginning often consists of three
phases: oil, gas, and water. Hence, the pipelines may experience
low-temperature condensation or wax deposition. Additionally, if
the pipelines are not thoroughly cleaned at the beginning of the
production phase, corrosive impurities in the pipelines can be
injected underground along with the dry gas during the injection
phase, causing secondary pollution to the formation and adversely
affecting the lifespan of the facility. Therefore, for UNGS in
condensate or oil reservoirs, two independent pipeline network are
used preferred.

Two sets of pipeline network are required for gas injection and
production, as indicated in Fig. 2. For partial wells, gas injection and
production are all in one well. The pipelines from I1 to I2 are for gas
injection, and from J1 to J2 are for gas production. For other wells
which can only be used for gas injection or production, the pipe-
lines from I3 to I4 are for gas injection, and from J3 to J4 are for gas
production. Therefore, unlike conventional oil and gas field that
only consider ProNET, the GSSS need to account for an additional
set of InNET.

2.2. Design of InNET and ProNET

A traditional design process for a GSSS is shown in Fig. 3. The
process starts by defining the UNGS's function orientation, pre-
dicting downstream natural gas demand to determine the monthly
uneven coefficient, and calculating the seasonal peak volume and
the emergency volume for non-interruptible customers to deter-
mine the peak volume. By determining the topology and pipeline
materials of pipeline networks, the pipeline design parametersare
calculated and selected, followed by simulation verification. Finally,
if the network parameters do not meet hydraulic constraints, they
are adjusted until they do, at which output the design results of
pipeline networks.

2.2.1. UNGS capacity
Generally, UNGSs are established mainly as seasonal peak re-

serves and emergency reserves for users. Therefore, calculating the
economically reasonable seasonal peak and emergency volumes is
crucial for determining the capacity of the UNGS. The determina-
tion of UNGS capacity can be divided into calculations based on the
unevenness coefficient, calculations according to natural gas
management regulations, and the capacity determined by field
surveys.

The injection capacity of the UNGS can be obtained based on the
peak volume of the UNGS and the number of injection days, as
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Fig. 1. Research approach.
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shown in Eq. (1). The production capacity of the UNGS is calculated
according to Eq. (2), with the emergency production capacity
calculated as shown in Eq. (3), and the peak production capacity as
shown in Eq. (4).

Q IC >
VPPC

tIC
(1)

QPC >max
h
QEPC;QPPC

i
(2)

QEPC ¼VEPC

tEPC
(3)

QPPC ¼VPPC

tPPC
(4)

where Q IC is the injection capacity of UNGS, m3/d. VPPC is the peak
production volume, m3. tIC is the number of injection days, d. QPC is
the production capacity of UNGS. QEPC is the emergency production
capacity of UNGS, m3/d. QPPC is the peak production capacity of
UNGS, m3/d. VEPC is the emergency production volume, m3. tEPC is
the number of emergency production days, d. tPPC is the number of
peak production days, d.
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2.2.2. Well injection and production capacity
While the injection and production capacity of an individual

well is typically determined early in the drilling engineering pro-
cess based on the optimization of the tubing, the well technology's
impact on adjusting the flow rates necessitates the design of indi-
vidual well capacities. The design injection capacity of a well is as
shown in Eq. (5), and the production capacity of a well as shown in
Eq. (6).

qIC ¼Q IC

NIC
i

(5)

qPC ¼QPC

NPC
i

(6)

where qIC is the injection capacity per well, m3/d. NIC
i is the number

of injectionwells, seats. qPC is the production capacity per well, m3/
d. NPC

i is the number of production wells, seats.
2.2.3. Pipeline layout and pipeline size
The topology of the GSSS is determined based on the type of

UNGS, the quality of the gas stored, and the distribution of wells.
Pipelines should be made from materials with high strength, good
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Fig. 3. Flowchart of traditional GSSS design.
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plasticity and toughness, goodweldability and corrosion resistance.
Additionally, the materials should be easy to process and manu-
facture while also being cost-effective. The grade of the steel is
mainly determined based on the pressure, temperature, and char-
acteristics of the transported medium. The flow rate of traditional
pipeline is calculated as shown in Eq. (7). The pipeline wall thick-
ness is calculated using Eq. (8).
2550
qv ¼5033:11ð10dÞ83
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21 � P22
DZTL

s
(7)

h¼ PD
2RfEsT

þ C (8)

where qv is the pipeline flow, m3/d. d is the pipeline inner diameter,
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mm. P1 is the starting pressure of pipeline, MPa. P2 is the ending
pressure of pipeline, MPa. D is the relative gas density. Z is the
compressibility coefficient of gas at average pressure and temper-
ature. T is the average thermodynamic temperature of gas, K. L is
the length of pipeline, km. h is the wall thickness of pipeline, mm. P
is the design pressure of pipeline, MPa. D is the diameter of pipe-
line, mm. R is the minimum yield strength, MPa. f is the strength
design coefficient. E is the axial joint coefficient. sT is the temper-
ature reduction coefficient, sT to be taken as 1.0 when temperature
is below 120 �C. C is the corrosion allowance, 2.0 mm.

2.3. Description of the optimization problem

Compared to the design of conventional gas field surface net-
works, GSSS require an additional injection process. These net-
works of GSSS demand higher safety requirements and longer life
cycles, making the reduction of the InNET and ProNET investment a
primary research focus.

2.3.1. Fluctuating hydraulic characteristic
As shown in Fig. 4, the GSSS undergoes annual variations from

“well production pressure upper limit to lower limit” and “well
injection pressure lower limit to upper limit.” Thus, traditional
designs often use the well's upper pressure limit as the network's
maximum design pressure requirement, using the maximum flow
as the design requirement for the pipeline's capacity. This method
is theoretically applicable to maximum operating conditions.
However, in practical applications, when the well pressure or flow
is low, the driving force for flow becomes insufficient, which may
result in designed network parameters failing to satisfy hydraulic
conditions such as flow velocities, thereby impacting the overall
efficiency of the system. Furthermore, low pressure can also lead to
flow that do not meet operational requirements, further affecting
the performance of the pipeline network.

This paper establishes INMmodel and PRMmodel for InNETand
ProNET respectively, forms INS model and PRS model at the same
time, and carries out optimization solution and comparative anal-
ysis through the designed algorithm. In past engineering practices,
the maximum flow and maximum pressure boundaries were often
Fig. 4. Diagram of injection and pr
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used for network parameter design. In this paper, INS model and
PRS model only consider one condition. For example, for the Pro-
NET, only one flow boundary and one pressure boundary are taken
into account. In contrast, INM model and PRM model integrate the
flow and pressure boundaries, enabling the optimized network
parameters to simultaneously meet multiple conditions.
2.3.2. Known data description

(1) Pipeline sets: injection pipeline set, denoted as AIC, with el-
ements z2AIC ¼ f1; 2; …; Nzg; production pipeline set,
denoted as APC, with elements o2APC ¼ f1;2;…;Nog.

(2) Node sets: well node set, denoted as W , with elements
i2W ¼ f1;2;…;Nig; platform node set, denoted as B, with
elements j2B ¼ f1; 2; …; Njg; central station node set,
denoted as G, with elements k2G ¼ f1;2;…;Nkg.

(3) Node parameters: design injection and production capacities
for well; gas temperature at the central station; gas pressure
at the central station; gas temperature at the ProNETwell;
gas pressure at the ProNET well.

(4) Pipeline parameters: relative density of natural gas; design
pressure for pipelines; minimumyield strength for pipelines;
axial joint coefficient for pipelines; strength design coeffi-
cient for pipelines; material performance coefficient for
selecting pipeline materials; diameter and wall thickness
design parameters are listed in Table S1 in supporting ma-
terial; maximum and minimum pressures for the networks;
economic flow velocity range for pipelines.
2.3.3. Solution description

(1) Algorithm: iterative process.
(2) Investment: each pipeline investment of the InNET and

ProNET.
(3) Pipeline parameters: internal diameter, wall thickness of

each pipeline in the InNET and ProNET, inlet and outlet flow
velocities and pressures for each pipeline.
oduction condition variations.
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3. Optimization model

The problem of optimizing design parameters can be trans-
formed into independent optimization problems for the InNET and
ProNET. INM model and PRM model are proposed respectively. On
this basis, the INS model and the PRS model, which only consider
one condition, are formed respectively.

3.1. Objective function

The total investment is represented as Eq. (9), where the cost of
the InNET is given by Eq. (10), and the cost of the ProNET is given by
Eq. (11). In addition, this paper introduces a set of conditions, X,
with x2X, and the number of conditions is set as n.

min F ¼ F IC þ FPC (9)

where F is the total investment of network, CNY. F IC is the invest-
ment of InNET, CNY. FPC is the investment of ProNET, CNY.

F IC ¼1
n

X
x2X

X
z2AIC

p
4
�
dz;x þDz;x

�
hz;xLzrsfs (10)

FPC ¼1
n

X
x2X

X
o2APC

p
4
�
do;x þDo;x

�
ho;xLorsfs (11)

where dz;x is the inner diameter of injection pipeline z under con-
dition x, mm. Dz;x is the diameter of injection pipeline z under
condition x, mm. hz;x is the wall thickness of injection pipeline z
under condition x, mm. Lz is the length of injection pipeline z, km. rs
is the density of steel, kg/m3. fs is the price of steel, CNY/kg. do;x is
the inner diameter of production pipeline o under condition x, mm.
Do;x is the diameter of production pipeline o under condition x, mm.
ho;x is the wall thickness of production pipeline o under condition x,
mm. Lo is the length of production pipeline o, km.

3.2. Constraints

3.2.1. Node flow balance constraints
For the InNET, the gas flow in pipeline ðj; iÞ between platform

node j and well node i equals the injection flow of well node i
connected to this pipeline, as shown in Eq. (12).

aj;i $ q
IC
i;x ¼ Q IC

ji;x ci2W;cj2B;cx2X (12)

where aj;i is the connection coefficient between platform node j and

well node i, connected if aj;i ¼ 1, otherwise aj;i ¼ 0. qICi;x is the in-

jection flow of well node i under condition x, m3/d. Q IC
ji;x is the gas

flow of injection pipeline ðj; iÞ under condition x, m3/d.
Given the injection flow for all pipelines ðj; iÞ, the injection flow

at each platform node j is the sum of all pipeline flows connected to
the well node i and the platform node j, as shown in Eq. (13).X
j2B

aj;i $Q
IC
ji;x ¼ qICj;x (13)

where qICj;x is the injection flow of platform node j under condition x,

m3/d.
For the InNET, the flow in pipeline ðk; iÞ between central station

node k and well node i equals the injection flow of well node i
connected to this pipeline, as shown in Eq. (14). The flow in pipeline
ðk; jÞ between central station node k and platform node j equals the
injection flow of platform node j connected to this pipeline, as
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shown in Eq. (15).

ak;i $ q
IC
i;x ¼ Q IC

ki;x ci2W;ck2G;cx2X (14)

ak;j $ q
IC
j;x ¼ Q IC

kj;x ci2W;ck2G;cx2X (15)

where ak;i is the connection coefficient between central station
node k and well node i, connected if ak;i ¼ 1, otherwise ak;i ¼ 0.

Q IC
ki;x is the gas flow of injection pipeline ðk; iÞ under condition x, m3/

d. ak;j is the connection coefficient between central station node k

and platform node j, connected if ak;j ¼ 1, otherwise ak;j ¼ 0. Q IC
kj;x is

the gas flow of injection pipeline ðk; jÞ under condition x, m3/d.
The injection flow at central station node k is the sum of all gas

flows in pipelines connected to this central station, which is also
equal to the sum of all injection flows fromwell nodes i, as shown in
Eq. (16).X
i2W

ak;i $Q
IC
ki;x þ

X
j2B

ak;j$Q
IC
kj;x ¼

X
i2W

qICi;x

¼ qICk;x ci2W; j2B;ck2G;cx2X

(16)

where qICk;x is the injection flow of central station node k under

condition x, m3/d.
Based on the flow balance constraints of the InNET, represented

by Eq. (12)e(16), the flow balance constraints for the ProNET can be
similarly defined. The production flow in pipeline ði; jÞ between
well node i and platform node j equals the production flow of the
well node, as shown in Eq. (17). The production flow at platform
node j is as shown in Eq. (18). Considering the gas flow of pipelines
between well node i, platform node j, and central station node k, as
given by Eq. (19) and Eq. (20), the production flow at central station
node k is as shown in Eq. (21).

aj;i $ q
PC
i;x ¼ QPC

ij;x ci2W;cj2B;cx2X (17)

X
j2B

aj;i $Q
PC
ij;x ¼ qPCj;x (18)

ak;i $ q
PC
i;x ¼ QPC

ik;x ci2W ;ck2G;cx2X (19)

ak;j $ q
PC
j;x ¼ QPC

jk;x ci2W ;ck2G (20)

X
i2W

qPCi;x ¼ qPCk;x ci2W ;ck2G (21)

where qPCi;x is the production flow of well node i under condition x,

m3/d. QPC
ij;x is the gas flow of production pipeline ði; jÞ under condi-

tion x, m3/d. qPCj;x is the production flow of platform node j under

condition x, m3/d. QPC
ik;x is the gas flow of production pipeline ði; kÞ

under condition x, m3/d. QPC
jk;x is the gas flow of production pipeline

ðj; kÞ under condition x, m3/d. qPCk is the production flow of central
station node k under condition x, m3/d.
3.2.2. Economic flow velocity constraints
To ensure that the flow velocity within the economic range,

constraints are placed on the flow velocity for both the InNET and
ProNET, as shown in Eq. (22) and Eq. (23).
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vz;min � vz;x � vz;max cz2AIC (22)

vo;min � vo;x � vo;max co2APC (23)

where vz;min is the minimum allowable flow velocity of injection
pipeline z, m/s. vz;x is the flow velocity of injection pipeline z under
condition x, m/s. vz;max is the maximum allowable flow velocity of
injection pipeline z, m/s. vo;min is the minimum allowable flow
velocity of production pipeline o under condition x, m/s. vo;x is the
flow velocity of production pipeline o, m/s. vo;max is the maximum
allowable flow velocity of production pipeline o, m/s.
3.2.3. Pipeline wall thickness constraints
The cost of the pipeline is closely related to its wall thickness

and is also influenced by the design pressure, minimum yield
strength, strength design coefficient, and axial joint coefficient. The
wall thickness of each pipeline in the InNET must meet the con-
straints, as shown in Eq. (24), and the wall thickness of each
pipeline in the ProNET must meet the constraints, as shown in Eq.
(25).

hz;x �
PzDz;x

2RfEsT
cz2AIC;cx2X (24)

ho;x �
PoDo;x

2RfEsT
co2APC;cx2X (25)

where Pz is the design pressure of injection pipeline z, MPa. Po is the
design pressure of production pipeline o, MPa.
3.2.4. Pipeline diameter constraints
Considering that the wall thickness and internal diameter are

discrete variables and that the pipeline specifications need to meet
the existing pipeline sets available on the market, constraints for
the external diameter of the InNET are as shown in Eq. (26), and for
the ProNET as shown in Eq. (27). Furthermore, all diameters must
exist within the set of available external diameters, as stated in Eq.
(28).

Dz;x ¼dz;x
.
10þ 2hz;x cz2AIC;cx2X (26)

Do;x ¼do;x
.
10þ 2ho;x co2APC;cx2X (27)

Dz;x;Do;x 2H cz2AIC;co2APC;cx2X (28)

where H is the external diameter set.
3.2.5. Node pressure constraints
The pressure at each well node i, platform node j, and central

station node k in both InNET and ProNET must remain within
specified pressure limits, resulting in node pressure constraints as
shown in Eq. (29) and Eq. (30).

pICmin �pICi;x; p
IC
j;x; p

IC
k;x � pICmax ci2W ;cj2B;ck2G;cx2X

(29)
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pPCmin �pPCi;x ; p
PC
j;x ; p

PC
k;x � pPCmax ci2W;cj2B;ck2G;cx2X

(30)

where pICmin is the minimum allowable pressure of the InNET nodes,

pICi;x is the pressure of InNET well node i under condition x, pICj;x is the

pressure of InNET platform node j under condition x, pICk;x is the

pressure of InNETcentral station node k under condition x, and pICmax

is the maximum allowable pressure of the InNET nodes, MPa. pPCmin

and pPCmax is the minimum and maximum allowable pressures of the
ProNET nodes, respectively, MPa. pPCi;x , p

PC
j;x , and pPCk;x are respectively

the pressures of ProNET well node i, platform node j, and central
station node k under condition x.
3.2.6. Pipeline pressure drop constraints
For gas transporting from starting point 1 to endpoint 2, the

pressure balance constraints are as shown in Eq. (31) and Eq. (32).

p2z;1;x �p2z;2;x ¼
Lz
d5z;x

Kz;xQ2
z;x cz2AIC;cx2X (31)

p2o;1;x �p2o;2;x ¼
Lo
d5o;x

Ko;xQ2
o;x co2APC;cx2X (32)

where pz;1;x is the starting pressure of injection pipeline z under
condition x, MPa. pz;2;x is the ending pressure of injection pipeline z
under condition x, MPa. Kz;x is the hydraulic coefficient of injection
pipeline z under condition x.Qz;x is the gas flow of injection pipeline
z under condition x, m3/d. po;1;x is the starting pressure of pro-
duction pipeline o under condition x, MPa. po;2;x is the ending
pressure of production pipeline o under condition x, MPa. Ko;x is the
hydraulic coefficient of production pipeline o under condition x.
Qo;x is the gas flowof production pipeline o under condition x, m3/d.

The hydraulic coefficients Kz;x and Ko;x, which are determined by
the friction coefficient, compression coefficient, gas temperature,
and relative gas density, are described in Eq. (33) and Eq. (34).

Kz;x ¼ lz$Zz$Tz$Dz

0:01292
cz2AIC;cx2X (33)

Ko;x ¼ lo$Zo$To$Do

0:01292
co2APC;cx2X (34)

where lz is the hydraulic friction coefficient of injection pipeline z.
Zz is the compression coefficient of injection pipeline z. Tz is the
average gas temperature of injection pipeline z, K. Dz is the relative
gas density of injection pipeline z. lo is the hydraulic friction co-
efficient of production pipeline o. Zo is the compression coefficient
of production pipeline o. To is the average gas temperature of
production pipeline o, K. Do is the relative gas density of production
pipeline o.
3.3. Models’ discussion

This section introduces the PRM model, PRS model, INM model
and INS model. Among them, PRMmodel and INMmodel integrate
multi-condition to obtain a set of pipeline parameters. PRS model
and INS model are formed on the basis of PRM model and INM
model, and they only consider one condition.
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3.3.1. PRM model and PRS model
In the PRM model, pipelines optimized for different conditions

must have the same inner diameter and wall thickness. Thus,
constraints for the inner diameter and wall thickness of pipelines
under different conditions are given by Eq. (35) and Eq. (36),
respectively.

do;x ¼1
n

X
x2X

do;x co2APC (35)

ho;x ¼
1
n

X
x2X

ho;x co2APC (36)

As the PRM model solves for the ProNET under n conditions by
coupling, its objective function is the investment of a single
network, as shown in Eq. (37). When considering only one type
condition independently in the ProNET, with n ¼ 1, it is referred to
as the PRS model.

min FPC ¼ 1
n

X
x2X

X
o2APC

p

4
�
do;x þ Do;x

�
ho;xLorsfs

s:t:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

aj;i$q
PC
i;x ¼ QPC

ij;x ci2W;cj2B;cx2X

ak;i$q
PC
i;x ¼ QPC

ik;x ci2W;ck2G;cx2X

ak;j$q
PC
j;x ¼ QPC

jk;x ci2W;ck2G;cx2X

X
j2B

aj;i$Q
PC
ij;x ¼ qPCj;x

X
i2W

qPCi;x ¼ qPCk;x ci2W;ck2G;cx2X

vo;min � vo;x � vo;max co2APC;cx2X

ho;x �
PoDo;x

2RfEsT
co2APC;cx2X

do;x ¼ 1
n

X
x2X

do;x co2APC

ho;x ¼
1
n

X
x2X

ho;x co2APC

Do;x2H co2APC;cx2X

pPCmin � pPCi;x ;p
PC
j;x ; p

PC
k;x � pPCmax ci2W;cj2B;ck2G;cx2X

po;1;x
2 � po;2;x

2 ¼ Lo
do;x

5Ko;xQo;x
2 co2APC;cx2X

(37)

3.3.2. INM model and INS model
Based on the PRM model, as represented by Eq. (37), the INM

model for the gas InNET is constructed, as shown in Eq. (38). When
considering only one type of flow boundary and one type of pres-
sure boundary independently in the InNET, with n ¼ 1, it is referred
to as the INS model.
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min F IC ¼ 1
n

X
x2X

X
z2AIC

p

4
�
dz;x þ Dz;x

�
hz;xLzrsfs

s:t:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

aj;i$q
IC
i;x ¼ Q IC

ji;x ci2W;cj2B;cx2X

ak;i$q
IC
i;x ¼ Q IC

ki;x ci2W ;ck2G;cx2X

ak;j$q
IC
j;x ¼ Q IC

kj;x ci2W ;ck2G;cx2X

X
j2B

aj;i$Q
IC
ji;x ¼ qICj;x

X
i2W

qICi;x ¼ qICk;x ci2W ;ck2G;cx2X

vz;min � vz;x � vz;max cz2AIC;cx2X

hz;x �
PzDz;x

2RfEsT
cz2AIC;cx2X

dz;x ¼ 1
n

X
x2X

dz;x cz2AIC

hz;x ¼
1
n

X
x2X

hz;x cz2AIC

Dz;x2H cz2AIC;cx2X

pICmin � pICi;x; p
IC
j;x; p

IC
k;x � pICmax ci2W ;cj2B;ck2G;cx2X

pz;1;x
2 � pz;2;x

2 ¼ Lz
dz;x

5Kz;xQz;x
2 cz2AIC;cx2X

(38)

4. Optimization method

4.1. Optimization framework

To address the challenges and models described, this study es-
tablishes HGA-GRG algorithm. The optimization framework is
illustrated in Fig. 5.

4.2. Algorithm

The Genetic Algorithm (GA) is a metaheuristic search method
inspired by Darwinian natural selection and genetic evolution
(Zhang and Liu, 2017). First introduced by Goldberg in 1987 to
optimize natural gas pipelines (Deb et al., 2002), GA is widely
recognized for its high likelihood of finding global optima (Arai et
al., 2009; Zhan et al., 2012), though it does not guarantee global
optimality in all cases. Its primary advantage lies in its ability to
directly handle discrete pipeline sizes and effectively track optimal
solutions (El-Mahdy et al., 2010). However, GA is limited by chal-
lenges in efficiency and precision. The Generalized Reduced
Gradient (GRG) algorithm, originally proposed by Abadie and Car-
pentier and further developed by Lasdon in the 1970s (Abadie and
Carpentier, 1969), extends linear optimization methods to
nonlinear constraints. GRG simplifies constrained problems by



Fig. 5. Optimization framework.
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transforming them into unconstrained ones. While effective for
many applications, GRG does not always ensure the discovery of
global optima.

Combining the strengths of GRG and GA, this paper develops an
HGA-GRG algorithm, and its solution process is shown in Fig. 6. This
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algorithm integrates solutions in both continuous and discrete
spaces, applying GRG for continuous space optimization and
adjusting feasible regions for discrete decision variables based on
continuous optimization outcomes. This process uses continuous
optimization results as the initial population for iterative
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optimization in discrete space, followed by further optimization
using the genetic algorithm. The algorithm's steps include:

(1) Define objective functions and constraints: represent the
design parameter problem with an objective function and a
set of equality and inequality constraints.

(2) Initialize algorithm parameters and design variables:
initialize algorithm parameters, define design variables as Xk,
set iteration count k ¼ 0, and specify maximum iterations
kmax and precision ε. Initialize design variables.

(3) Calculate the values for objective and constraint functions:
substitute Xk into the objective function and constraint
function to calculate the corresponding function value FðXkÞ
and constraint function value gðXkÞ.

(4) Calculate gradients and Jacobian matrix: calculate the
gradient hk of the objective function and constraint function
values with respect to the design variable Xk, as well as the
Jacobian matrix Jk.

(5) Compute the generalized gradient vector: The GRG algorithm
employs a technique known as the reduced gradient to
calculate gradients within a numerical error margin, accel-
erating optimization. The generalized gradient vector Gk can
be calculated as shown in Eq. (39).

Gk ¼hk � JTk $
�
Jk$J

T
k

��1
$ðJk $hk � gðXkÞÞ (39)
(6) Check termination constraints: terminate the algorithm and
output Xk as the optimal solution if kGkk< ε are met, and
proceed to step (12); otherwise, proceed to the next step.

(7) Solve for step size ak: use Newton's method to find the step
size ak that minimizes FðXk þ akGkÞ.

(8) Update iteration point: calculate the next iteration point
Xkþ1 ¼ Xk þ akGk.

(9) Incremental update algorithm: update the Jacobian matrix
and generalized gradient vector as shown in Eq. (40).

Jkþ1 ¼ Jk þ DJk
Gkþ1 ¼ Gk þ DGk

(40)
Fig. 7. Topology diagra
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(10) Increase number of iterations: increment the iteration count
k ¼ kþ 1.

(11) Check if the number of iterations has reached the maximum:
If k< kmax, return to step (3); otherwise, note that GRG has
not found an optimal solution in continuous space.

(12) Output continuous space optimization results. Form the
initial population for discrete space. Input the initial popu-
lation and other algorithm parameters.

(13) Evaluate fitness of each individual in the initial population,
calculating corresponding objective function values.

(14) Determine if the highest fitness individual meets GA termi-
nation conditions. If it does, proceed to step (17) to output
the design variables. Otherwise, proceed to the next step.

(15) Perform genetic operator operations:
1) Select operator operation: select individuals with higher

fitness to serve as parents for the next generation. The best-
preserved selection method is used to calculate the proba-
bility of being selected.

2) Crossover operator operation: based on the characteristics of
decision variables, floating-point encoding is adopted for the
recombination algorithm to cross individual genes.

3) Mutation operator operation: real-value mutation method
based on order mutation is used for the mutation operation.
This method randomly generates twomutation positions and
then swaps the genes at these two positions.

(16) Form a new population and return to step (13).
(17) Output the optimized discrete pipeline design parameters.
5. Case description

5.1. Basic data

UNGSs are currently in rapid development, with the scale of
operational UNGS being relatively small. To facilitate the manage-
ment of injection and production operations, many current UNGS
adopt a star-shaped topology design, such as China's Hutubi Gas
Storage. A case study is established as shown in Fig. 7. According to
Table 1, the injection flow for well nodes is defined as 11.5 � 104

m3/d, the peak production flow is 15.4 � 104 m3/d, and the emer-
gency production flow is 60 � 104 m3/d. The economic flow ve-
locity range for both InNET and ProNET is between 1 and 15 m/s.
m of the network.



Table 1
Parameters of each node in the InNET and ProNET.

No. Parameter type Value

1 Central station parameters Number of central stations 1
2 Maximum pressure, MPa 32
3 Minimum pressure, MPa 12
4 Outlet temperature, �C 50
5 Injection capacity of GSSS, 104 m3/d 149.5
6 Peak production capacity of GSSS, 104 m3/d 200.2
7 Emergency production capacity of GSSS, 104 m3/d 780
8 Platform parameters Number of platforms 3
9 Maximum pressure, MPa 32
10 Minimum pressure, MPa 12
11 Maximum flow, 104 m3/d 300
12 Injection and production well parameters Number of wells 13
13 Maximum pressure per well, MPa 32
14 Minimum pressure per well, MPa 12
15 Production temperature per well, �C 75
16 Injection capacity per well, 104 m3/d 11.5
17 Peak production capacity per well, 104 m3/d 15.4
18 Emergency production capacity per well, 104 m3/d 60

Table 2
Components of natural gas.

No. Component Mole fraction, %

1 H2 2.6
2 N2 1.41
3 CO2 0.48
4 H2S 0.01
5 COS 0.03
6 H2O 0.04
7 CH4 92.51
8 C2H6 2.54
9 C3H8 0.27
10 CH3SH 0.06
11 C2H5SH 0.02
12 He 0.03
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The natural gas transported in this case study has a complex
composition. The components of the natural gas are shown in Table
2. It's important to note that temperature and pressure significantly
affect the physical properties of natural gas. Specifically, under
different injection and production temperatures (50 and 75 �C) and
pressure boundaries (32 and 12 MPa), the physical properties of
natural gas are as shown in Table 3.
5.2. Scenario setting

To verify themodels and algorithms proposed in this paper, three
scenarios for the InNETand six scenarios for the ProNETare set up. In
the InNET, as gas is injected into UNGS, the well pressure gradually
transitions from the minimum pressure to the maximum pressure.
Therefore, this paper employs the INSmodel to set up two scenarios:
INS(QICPmax) and INS(QICPmin), where the scenario using the
maximum pressure boundary is INS(QICPmax), and the scenario using
Table 3
Physical properties of natural gas.

No. Physical properties Injection condition (32 MPa, 50
�C)

Injection condition (
�C)

1 Average molecular weight 13.8412 13.8412
2 Specific heat, kJ/kg$�C 47.6107 42.9215
3 Kinematic viscosity, cSt 0.1279 0.2149
4 Viscosity, cP 0.0213 0.0144
5 Thermal conductivity, W/

m$K
0.0873 0.0617
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the minimum pressure boundary is INS(QICPmin). Additionally, the
INM model is used to set up the scenario INM(QICPmax þ QICPmin),
which simultaneously couples both the maximum and minimum
pressure boundaries. The conditions for these three scenarios are
shown in Fig. 8.

This paper considers emergency production boundary and peak
production boundary for the different flow, and maximum and
minimum pressure boundaries. The six scenarios for the ProNET are
shown in Fig. 9. Among them, PRS(QPPCPmax), PRS(QEPCPmax), and
PRS(QEPCPmin) utilize the PRS model, operating under a single con-
dition. The scenario PRM(QEPCPmax þ QPPCPmax) in the maximum
pressure couples the well flow boundary, being capable of satisfying
both the emergency production boundary at maximum pressure
and the peak production boundary at maximum pressure. Similarly,
the scenario PRM(QEPCPmax þ QEPCPmin) couples the well pressure
boundary; and PRM(QEPCPmax þ QPPCPmax þ QEPCPmin) simulta-
neously couples three conditions.

To analyze the applicability of the optimization results under
different conditions, this paper simulates and analyzes the hy-
draulic characteristics of the optimization model results. For
instance, for INS(QICPmin), optimized under the minimum pressure
boundary, its performance under the maximum pressure boundary
needs to be comparatively studied. Therefore, this paper employs
simulation software to simulate the optimized results under other
conditions, as shown in Table 4.

6. Result and discussion

6.1. Iteration process analysis

6.1.1. Algorithm comparison
To validate the characteristics of the HGA-GRG algorithm pro-

posed in this paper, both the HGA-GRG and traditional GA were
12 MPa, 50 Production condition (32 MPa, 75
�C)

Production condition (12 MPa, 75
�C)

13.8412 13.8412
46.8315 42.4744
0.1365 0.2448
0.0207 0.0148
0.0871 0.0652



(a) INS(QICPmax)

(b) INS(QICPmin)

(c) INM(QICPmax + QICPmin)

Maximum pressure boundary

Injection flow boundary

Injection flow boundary

Minimum pressure boundary

Maximum pressure boundary

Injection flow boundary

Injection flow boundary

Minimum pressure boundary

Fig. 8. Scenario diagrams for the InNET: (a) INS(QICPmax); (b) INS(QICPmin); (c)
INM(QICPmax þ QICPmin).
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used to optimize INS(QICPmax), with the iterative processes shown
in Fig. 10. The HGA-GRG converged to 54.2806 � 104 CNYafter only
5025 iterations, while the GA required 37,992 iterations to converge
to 57.9451 � 104 CNY. The GRG can extend linear constraint opti-
mization to nonlinear scenarios, effectively handling constraint
Peak production boundary E

(a) PRS(QPPCPmax) (b) PRS(QEPCPmax)

(d) PRM(QEPCPmax + QPPCPmax)

(e) PRM(QEPCPmax + QEPCPmin)

(f) PRM(QEPCPmax + QPPCPmax + QEPCPmin)

Maximum pressure boundary

Emergency produc

Maximum pressu

Maximum pressur

Emergency product

Emergency production boundary

Maximum pressure boundary

Fig. 9. Scenario diagrams for the ProNET: (a) PRS(QPPCPmax); (b) PRS(QEPCPmax); (c) PRS(QEPC

þ QPPCPmax þ QEPCPmin).
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optimization and thus compensating for the shortcomings of GA. As
shown in Fig. 10, the HGA-GRG combines the global search capa-
bility of GA with the fine-grained local search capability of GRG,
enhancing the algorithm's convergence speed and accuracy. This
algorithm maintains lower error fluctuations over extended itera-
tions, resulting in more stable optimization performance.
6.1.2. Convergence analysis of the InNET
To investigate the iterative convergence differences under

various conditions within the InNET, the HGA-GRG algorithm was
employed to optimize scenarios INS(QICPmax), INS(QICPmin), and
INM(QICPmax þ QICPmin). The iteration process is depicted in Fig. 11,
showing the scatter data distribution and fitting curves under three
scenarios. As the iterations increase, the fluctuation range of the
objective function gradually decreases, the distribution density of
data points increases, and they tend to concentrate along the fitting
curves. INS(QICPmax) is the first to converge, with an initially steep
fitting curve that gradually stabilizes. Next is INS(QICPmin), which
convergesmore slowly compared to the former. Finally, INM(QICPmax
þ QICPmin) converges. Overall, the trend of the iteration fitting curves
for the three scenarios indicates that INS(QICPmax) converges more
quickly and requires the fewest iterations, resulting in the smallest
convergence result. INM(QICPmax þ QICPmin) starts to show conver-
gence after 5800 iterations due to considering both minimum and
maximum pressure boundaries, leading to the longest number of
iterations.
6.1.3. Convergence analysis of the ProNET
To explore the iterative convergence differences under various

conditions within the ProNET, the algorithm was utilized to opti-
mize six scenarios, as shown in Fig. 12.

In Fig. 12(a), PRS(QPPCPmax) has the fewest iterations and yields
the lowest network cost. However, the optimized pipeline diameter
parameters may not satisfy the emergency production boundaries.
mergency production boundary
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Table 4
Simulation scenario settings for the InNET and ProNET.

Network Simulation naming Optimization condition Simulation condition

InNET SIMINS-HP INS(QICPmin) Maximum pressure condition
SIMINS-LP INS(QICPmax) Minimum pressure condition

ProNET SIMPRS-EPC PRS(QPPCPmax) Emergency production condition
SIMPRS-PPC PRS(QEPCPmax) Peak production condition
SIMPRS-HP PRS(QEPCPmin) Maximum pressure condition
SIMPRS-LP PRS(QEPCPmax) Minimum pressure condition
SIMPRM-(PPC þ LP) PRM(QEPCPmax þ QEPCPmin) Peak production condition þ Minimum pressure condition
SIMPRM-(PPC þ HP) PRM(QEPCPmax þ QEPCPmin) Peak production condition þ Maximum pressure condition
SIMPRM-(LP þ EPC) PRM(QEPCPmax þ QPPCPmax) Minimum pressure condition þ Emergency production condition
SIMPRM-(LP þ PRC) PRM(QEPCPmax þ QPPCPmax) Minimum pressure condition þ Peak production condition
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Fig. 11. Comparison of iteration processes in the InNET.

Fig. 12. Comparison of iteration processes in the ProNET: (a) flow variation conditions;
(b) pressure variation conditions; (c) flow and pressure variation conditions.
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PRM(QEPCPmax þ QPPCPmax), which considers both emergency and
peak production boundaries during its iteration process, shows a
relatively slow convergence speed compared to the other two sce-
narios. It begins to gradually converge around 7500 iterations, with
its final convergence cost lying between those of PRS(QPPCPmax) and
PRS(QEPCPmax). In Fig. 12(b), the three scenarios exhibit a rapid
convergence speed in the initial 4000 iterations. PRS(QEPCPmin) is the
first to begin converging, followed by PRM(QEPCPmax þ QEPCPmin),
which starts showing convergence around 11700 iterations. In Fig.
12(c), since PRM(QEPCPmax þ QPPCPmax þ QEPCPmin) simultaneously
couples three conditions, satisfying the single-condition scenarios of
PRS(QEPCPmax), PRS(QPPCPmax), and PRS(QEPCPmin) compared to
PRM(QEPCPmax þ QPPCPmax) and PRM(QEPCPmax þ QEPCPmin).
2560
6.2. Network investment analysis

Fig. 13 shows the iteration results for each scenario. During the
iteration process, after obtaining continuous optimal solutions, the
algorithm narrows down the range of solutions in the discrete space
and continues to solve using the GAwithin the constraints. Since the
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Fig. 14. Optimization results for the InNET: (a) diameter parameters for INS(QICPmax); (b) diameter parameters for INM(QICPmax þ QICPmin); (c) diameter parameters for INS(QICPmin);
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S.-T. Liu, C.-Y. Li, J. Zhou et al. Petroleum Science 22 (2025) 2546e2569

2561



In
ve

st
m

en
t, 

10
4  C

N
Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

20

PRS(QEPCPmax)
PRS(QPPCPmax)
PRM(QEPCPmax + QPPCPmax)

Pipeline

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

20

25

30

PRS(QEPCPmax)
PRS(QEPCPmin)
PRM(QEPCPmax + QEPCPmin)

In
ve

st
m

en
t, 

10
4  C

N
Y

Pipeline

(d)

(a)
154.05 154.05 154.05

102.26 102.26 102.26

154.05 154.05 154.05

5 10
0

20

40

60

80

100

120

140

160

Trunk pipeline connected to G1

D
ia

m
et

er
, m

m

102.26 102.26 102.26 102.26

77.93 77.93 77.93 77.93

6 7 8 9
0

20

40

60

80

100

120

140

160
D

ia
m

et
er

, m
m

D
ia

m
et

er
, m

m

Branch pipeline connected to P2

Pipeline 8

D
ia

m
et

er
, m

m

102.26 102.26 102.26 102.26 102.26

77.93 77.93 77.93 77.93 77.93

11 12 13 14 15
0

20

40

60

80

100

120

140

160

Branch pipeline connected to P3

ne 8

G1

P2

P1

P3

Pipeline 14

Pipeline 15

102.26 102.26 102.26 102.26

77.93 77.93 77.93 77.93

1 2 3 4
0

20

40

60

80

100

120

140

160

Branch pipeline connected to P1 PRS(QEPCPmax)

PRS(QPPCPmax)

PRM(QEPCPmax + QPPCPmax)

16

Pipeline 9

Pipeline 7

Pipeline 4

Pipeline 2
Pipeline 3

Pipeline 5

Pipeline 16

Pipeline 12

Pipe
lin

e 1
1

Pi
pe

lin
e 

13

Pipeline 1

Pipeline 10

D
ia

m
et

er
, m

m

D
ia

m
et

er
, m

m

D
ia

m
et

er
, m

m

D
ia

m
et

er
, m

m

11

(c)

102.26 102.26 102.26 102.26
90.12 90.12 90.12 90.12

6 7 8 9
0

20
40
60
80

100
120
140
160
180
200

Branch pipeline connected to P2

0
20
40
60
80

100
120
140
160
180
200

Trunk pipeline connected to G1

154.05 154.05

202.72

154.05

102.26 102.26 102.26 102.26 102.26
90.12 90.12 90.12 90.12

11 12 13 14 15
0

20
40
60
80

100
120
140
160
180
200

Branch pipeline connected to P3

G1

P2

P1

P3102.26 102.26 102.26 102.26

1 2 3 4
0

20
40
60
80

100
120
140
160
180
200

Branch pipeline connected to P1

90.12 90.12 90.12
90.12

PRS(QEPCPmax)

PRS(QEPCPmin)

PRM(QEPCPmax + QEPCPmin)

5 10 16

Pipeline 12

Pi
pe

lin
e 

13

Pipeline 8 Pipeline 14

Pipeline 15

Pipeline 9

Pipeline 7

Pipeline 4

Pipeline 2
Pipeline 3

Pipeline 5

Pipeline 16

Pipe
lin

e 1
1

Pipeline 1

Pipeline 10

Fig. 15. Optimization results for the ProNET: (a) diameters parameters for flow boundary variations; (b) investment in flow boundary variations; (c) diameter parameters for
pressure boundary variations; (d) investment in pressure boundary variations.

Fig. 16. Optimization results for the ProNET: (a) diameter parameters for PRM (QEPCPmax þ QPPCPmax þ QEPCPmin); (b) investment.
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number of iterations in the continuous space is significantly small
compared to the total number of iterations and the investment range
is much smaller than in the discrete space, the investment range of
the objective function in this studymainly targets the discrete space.
2562
In the InNET, the final investment for INM(QICPmax þ QICPmin) is
64.4890 � 104 CNY, which lies between the other two scenarios. In
the discrete space, INS(QICPmax) has the smallest investment range,
while INM(QICPmax þ QICPmin) and INS(QICPmin) have larger
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investment ranges during the iteration process.
In the ProNET, for the flow boundary, since PRS(QEPCPmax) re-

quires larger pipeline diameters and wall thicknesses due to
higher well node flows, it results in a higher investment in the
discrete space. Conversely, PRS(QPPCPmax) has a lower investment.
PRM(QEPCPmax þ QPPCPmax) shows a smaller investment range of
the objective function value in the discrete space compared to the
first two scenarios, thus stabilizing more easily during iterations.
For the pressure boundary, the investment of PRM(QEPCPmax þ
QEPCPmin) lies between the investment of PRS(QEPCPmax) and
PRS(QEPCPmin), but its optimization results are more applicable.
PRM(QEPCPmax þ QPPCPmax þ QEPCPmin) achieves a investment that
is 2.8538 � 104 CNY lower than PRM(QEPCPmax þ QEPCPmin) and
14.3346 � 104 CNY higher than PRM(QEPCPmax þ QPPCPmax).
However, from the perspectives of cost-effectiveness and appli-
cability, its optimized results are more attractive.
6.3. Multi-condition optimization result analysis

6.3.1. Pressure boundary analysis for the InNET
The optimization results and pipeline investment under three

pressure conditions of the InNET are shown in Fig. 14. The trunk
pipelines optimized in the three scenarios have the same diameter
and wall thickness, among which pipeline 16 has the longest
transportation distance, hence the largest investment at 17.5855 �
104 CNY in Fig. 14(b). It is found that the pipeline diameter pa-
rameters optimized by INS(QICPmin) are relatively larger, followed
2563
by INM(QICPmax þ QICPmin), confirming the observation that the
pipeline investment optimized by INS(QICPmin) are generally higher
as shown in Fig. 13(b).

6.3.2. Flow boundary analysis for the ProNET
The optimization results and pipeline investment under flow

boundaries of the ProNET are shown in Fig. 15. As seen in Fig. 15(a),
three scenarios optimized two different sets of pipeline parameters.
Since trunk pipelines 5, 10, and 16 transport larger flows, larger
pipeline parameters were optimized. The pipeline parameters
optimized by PRS(QEPCPmax) are larger than those by PRS(QPPCPmax),
while the parameters obtained by PRM(QEPCPmax þ QPPCPmax)
match the trunk pipeline parameters of PRS(QEPCPmax) and the
branch pipeline parameters of PRS(QPPCPmax), leading to identical
corresponding pipeline investment in Fig. 15(b). The minimum
pipeline investment in all three scenarios are for pipelines 1, 8, and
13, which is attributed to the lengths of the pipelines.

6.3.3. Pressure boundary analysis for the ProNET
The optimization results and pipeline investment under pres-

sure conditions of the ProNETare shown in Fig.15. From Fig.15(c), it
can be seen that PRM(QEPCPmax þ QEPCPmin) yielded pipeline pa-
rameters with greater diversity. Compared to PRS(QEPCPmax), the
pipeline parameters optimized by PRS(QEPCPmin) only differed for
pipeline 16, resulting in identical investment for pipelines 1 to 15
between the two scenarios in Fig. 15(d). The larger parameters for
pipeline 16 in PRS(QEPCPmin) ensure the network operates normally
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under emergency peak conditions and the lowest pressure condi-
tions. In PRM(QEPCPmax þ QEPCPmin), the shortest branch pipelines 1
and 8 have the smallest optimized wall thicknesses and diameters,
hence having the lowest investment of 0.339 � 104 CNY.
6.3.4. Pressure and flow boundary analysis for the ProNET
The pipeline types and investment optimized by PRM(QEPCPmax

þ QPPCPmax þ QEPCPmin) are shown in Fig. 16, with a comparison of
scenarios using the PRM model in Fig. 16(b). Fig. 16(a) reveals that
the network optimized by PRM(QEPCPmax þ QPPCPmax þ QEPCPmin)
used three different types of pipelines. Compared to all previously
discussed optimization results for the ProNET, the trunk pipeline 16
optimized by PRM(QEPCPmax þ QPPCPmax þ QEPCPmin) had the largest
parameters, and the parameters for trunk pipelines 5 and 10
showed a high consistency with those from all scenarios. The
branch pipeline parameters optimized by PRM(QEPCPmax þ
QPPCPmax þ QEPCPmin) were the larger ones among PRM(QEPCPmax þ
QPPCPmax) and PRM(QEPCPmax þ QEPCPmin), with a wall thickness of
5.74 mm and an inner diameter of 90.12 mm. Therefore, its opti-
mization results can ensure safe operation of each pipeline under
multiple conditions. Moreover, since the branch pipeline parame-
ters optimized by PRM(QEPCPmax þ QPPCPmax þ QEPCPmin) and
PRM(QEPCPmax þ QEPCPmin) were mostly the same, these pipelines
had the same investment in Fig. 16(b), making the total investment
of these two scenarios similar.
2564
6.4. Hydraulic result analysis

6.4.1. Hydraulic analysis of the InNET
Hydraulic analysis was performed on the optimization results

for INS(QICPmax), INS(QICPmin), and INM(QICPmax þ QICPmin), as
shown in Fig. 17. Since the trunk pipeline diameters optimized in
the three scenarios were the same, the flow velocities of pipelines
5, 10, and 16 under the constraint conditions were the same in Fig.
17(a) and (c). Similarly, the branch pipeline parameters optimized
by INS(QICPmax) and INM(QICPmax þ QICPmin) were the same, so in
Fig. 17(a), the inlet and outlet flow velocities for pipelines 1, 8, and
13 were identical. In Fig. 17(b) and (d), the three scenarios showed
the same pressure distribution trend under maximum and mini-
mum pressures. Since INS(QICPmax) optimized smaller branch pipe
diameters with higher velocities, it resulted in a larger pressure
drop compared to the others. The velocity and pressure of each
pipeline were within the constraint range, effectively verifying the
correctness of the model and algorithm.
6.4.2. Hydraulic analysis of the ProNET
For the different flow boundaries, hydraulic analysis was con-

ducted on the optimization results for PRS(QEPCPmax), PRS(QPPCPmax),
PRM(QEPCPmax þ QPPCPmax), and PRM(QEPCPmax þ QPPCPmax þ
QEPCPmin), as depicted in Fig. 18. The velocity and pressure of each
pipeline were within the constraint range. In Fig. 18(a), the average
flow velocity was lower in the branch pipelines optimized by
PRS(QEPCPmax) due to their larger diameters. Due to the higher flow
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Fig. 19. Velocity and pressure distribution in ProNET. (a) velocities under maximum pressure boundary; (b) pressures under maximum pressure boundary; (c) velocities under
minimum pressure boundary; (d) pressures under minimum pressure boundary.
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rate of emergency production boundary, Fig. 18(b) shows larger
pressure drops across the pipelines. In Fig. 18(c) and (d), since
PRS(QPPCPmax) optimized smaller diameters for the trunk pipelines
compared to the other two scenarios, the inlet and outlet velocities
for pipelines 5, 10, and 16 were higher, resulting in larger pressure
drops.

For the different pressure boundaries, hydraulic analysis was
performed on the optimization results for PRS(QEPCPmax),
PRS(QEPCPmin), PRM(QEPCPmax þ QEPCPmin), and PRM(QEPCPmax þ
QPPCPmax þ QEPCPmin), as shown in Fig. 19. The velocity distribution
at the inlets and outlets of each scenario's pipelines in Fig. 19(a) and
(c) was similar, with differences in pipeline velocities primarily
caused by pipeline parameters. Comparing Fig. 19(b) and (d), the
pressure distribution in the network had the same trend, with
trunk pipelines experiencing lower pressures compared to branch
lines due to differences in diameter and velocity. Additionally, the
pipeline pressures in all four scenarios were within the constraint
range, indicating safe operation.

6.4.3. Comparative analysis of simulations
The flow velocities and the extreme values of inlet and outlet

pressures for each simulation scenario are shown in Fig. 20. From
Fig. 20, it can be seen that simulations that cannot meet the
2565
constraints include SIMINS-HP, SIMINS-LP, SIMPRS-EPC, SIMPRS-PPC,
SIMPRS-LP, SIMPRM-(PPC þ HP), and SIMPRM-(LP þ EPC).

In Fig. 20(a), the minimum inlet and outlet flow velocities for
SIMINS-HP are around 0.6 m/s, failing to meet the flow velocity
constraints. This is because the pipeline diameters optimized by
single condition model INS(QICPmin) are relatively large, leading to
lower simulated flow velocities in most pipelines. Meanwhile, the
maximum inlet flow velocity and maximum inlet and outlet
pressures simulated by SIMPRS-EPC exceed the upper constraint
limit, as PRS(QPPCPmax) is optimized for peak production condi-
tions with smaller pipeline diameters. Therefore, when trans-
porting larger flows, the overall pipeline flow velocity and
pressure rise, especially for trunk pipelines, making it easier to
exceed flow velocity constraints. Similarly, the remaining simu-
lation scenarios fail to meet the constraints for the same reasons
of inapplicability of their pipeline parameters to the simulated
conditions. Generally, a larger proportion of simulation scenarios
fail to meet the constraints, indicating that the fewer conditions
considered during the pipeline parameter design process, the
more limited its applicability. Therefore, through simulation sce-
nario analysis, the widely applicability of PRM(QEPCPmax þ
QPPCPmax þ QEPCPmin) in this case study is further highlighted,
indirectly reflecting the multi -condition coupled models’
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Fig. 20. Hydraulic results of simulation scenarios. (a) inlet flow velocities; (b) outlet flow velocities; (c) inlet pressures; (d) outlet pressures.
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advantages of the INM model and PRM model proposed in this
paper.

7. Conclusions

This paper constructs single condition models (INS model, PRS
model) and multi-condition models (INM model and PRM model),
aiming for the minimum pipeline investment. Furthermore, by
integrating the GRG algorithmwith GA, an HGA-GRG algorithmwas
proposed for the optimization of the models. Additionally, multiple
scenarios were set up to study the impact of different conditions on
the design results and the applicability of themodels, leading to the
following conclusions:

(1) The HGA-GRG algorithm established solves in continuous
space using the GRG algorithm. Based on the continuous
optimization of pipeline parameters, the feasible domain of
decision variables in discrete space is corrected, narrowing
the discrete solution space. Discrete space iterative optimi-
zation is then performed using the continuous optimization
results as the initial population. The iteration curve demon-
strates stability throughout the iteration process.

(2) A comparative analysis of the optimization results for
INS(QICPmax), INS(QICPmin), and INM(QICPmax þ QICPmin) un-
der the InNET was conducted. The study shows that the cost
of the InNET considering coupled pressure boundaries is
64.4890 � 104 CNY, and the optimization results can meet
the constraints of both maximum and minimum pressures.
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(3) To clarify the impact of flow boundaries on pipeline param-
eters, a comparative analysis of the optimization results for
PRS(QEPCPmax), PRS(QPPCPmax), and PRM(QEPCPmax þ
QPPCPmax) was conducted. Also, to reveal the impact of
pressure boundaries on ProNET design parameters, a
comparative analysis of the optimization results for
PRS(QEPCPmax), PRS(QEPCPmin), and PRM(QEPCPmax þ QEPCP-
min) was performed. Lastly, the differences between
PRM(QEPCPmax þ QPPCPmax þ QEPCPmin), PRM(QEPCPmax þ
QPPCPmax), and PRM(QEPCPmax þ QEPCPmin) were analyzed.
Results indicate that for the ProNET, the network cost is
87.7655 � 104 CNY, proving to be more economical and
applicable than other scenarios.

(4) To explore the applicability of the optimization results
simulation scenarios were set for simulating different flow
and pressure boundaries. The results show that optimization
results considering only a single condition or coupling two
conditions are difficult to apply to other conditions. This
confirms the widely applicability characteristic of scenarios
considering coupled multiple conditions.

(5) This paper primarily studies the impact of changes in well
conditions during the injection and production processes on
the optimization results of pipeline parameters. Future work
could consider increasing the complexity of pipeline
network design, selecting and investing in various surface
facilities, studying the impact of different boundary charac-
teristics on equipment operation, thereby obtaining the
optimal pipeline investment and operating costs.



Parameters

aj;i Connection coefficient between platform node j and well node i,
connected if aj;i ¼ 1, otherwise aj;i ¼ 0.

ak;i Connection coefficient between central station node k and well
node i, connected if ak;i ¼ 1, otherwise ak;i ¼ 0.

ak;j Connection coefficient between central station node k and
platform node j, connected if ak;j ¼ 1, otherwise ak;j ¼ 0.

C Corrosion allowance, 2.0.
D Diameter of pipeline, mm.
Dz;x , Do;x , Diameter of injection pipeline z or production pipeline o under

condition x, mm.
E Axial joint coefficient.
fs Price of steel, CNY/kg.
F Total investment of network, CNY.
F IC, FPC Investment of InNET or ProNET, CNY.
Kz;x , Ko;x Hydraulic coefficient of injection pipeline z or production

pipeline o under condition x.
L Length of pipeline, km.
Lz , Lo Length of injection pipeline z or production pipeline o, km.
NIC
i , NPC

i
Number of injection or production wells, seats.

P1, P2 Starting or ending pressure of pipeline, MPa.
P Design pressure of pipeline, MPa.
Pz , Po Design pressure of injection pipeline z or production pipeline o,

MPa.
pICmin, p

PC
min

Minimum allowable pressure of InNET or ProNET nodes, MPa.

pICmax,

pPCmax

Maximum allowable pressure of InNET or ProNET nodes, MPa.

pICi;x , p
PC
i;x

Pressure of InNET or ProNET well node i under condition x, MPa.

pICj;x , p
PC
j;x

Pressure of InNET or ProNET platform node j under condition x,
MPa.

pICk;x , p
PC
k;x

Gas pressure of InNET or ProNET central station node k under
condition x, MPa.

pz;1;x ,
po;1;x

Starting pressure of injection pipeline z or production pipeline o
under condition x, MPa.

pz;2;x ,
po;2;x

Ending pressure of injection pipeline z or production pipeline o
under condition x, MPa.

qIC, qPC Injection or production capacity per well, m3/d.
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Nomenclature
Abbreviations

GSSS Gas Storage Surface System

InNET Injection Pipeline Network
ProNET Production Pipeline Network
UNGS Underground Natural Gas Storage
IC Injection Condition
PC Production Condition
EPC Emergency Production Condition
PPC Peak Production Condition
INS model Injection Single Condition Model
PRS model Production Single Condition Model
INM model Injection Multi-condition Coupled Model
PRM model Production Multi-condition Coupled Model
GA Genetic Algorithm
GRG Generalized Reduced Gradient Algorithm
HGA-GRG Hybrid Genetic Algorithm based on Generalized Reduced Gradient

Indexes and sets

AIC Injection pipeline set, z2AIC ¼ f1;2;…;Nzg
APC Production pipeline set, o2APC ¼ f1;2;…;Nog
B Platform node set, j2B ¼ f1;2;…;Njg
G Central station node set, k2G ¼ f1;2;…;Nkg
H External diameter set, Dz;Do2H ¼ fD1;D2;…;Dng
W Well node set, i2W ¼ f1;2;…;Nig
X Condition set, x2X ¼ f1;2;…;Nxg

qv Pipeline flow, m3/d.
qICi;x Injection flow of well node i under condition x, m3/d.

qICj;x Injection flow of platform node j under condition x, m3/d.

qICk;x Injection flow of central station node k under condition x, m3/d.

qPCi;x Production flow of well node i under condition x, m3/d.

qPCj;x Production flow of platform node j under condition x, m3/d.

qPCk;x Production flow of central station node k under condition x, m3/d.

Q IC Injection capacity of UNGS, m3/d.

QPC Production capacity of UNGS, m3/d.

QEPC Emergency production capacity of UNGS, m3/d.

QPPC Peak production capacity of UNGS, m3/d.
Qz;x , Qo;x Gas flow of injection pipeline z or production pipeline o under

condition x, m3/d.
Q IC
ji;x

Gas flow of injection pipeline ðj; iÞ under condition x, m3/d.

Q IC
ki;x

Gas flow of injection pipeline ðk; iÞ under condition x, m3/d.

Q IC
kj;x

Gas flow of injection pipeline ðk; jÞ under condition x, m3/d.

QPC
ij;x

Gas flow of production pipeline ði; jÞ under condition x, m3/d.

QPC
ik;x

Gas flow of production pipeline ði; kÞ under condition x, m3/d.

QPC
jk;x

Gas flow of production pipeline ðj; kÞ under condition x, m3/d.

R Minimum yield strength, MPa.
tIC Number of injection days, d.

tEPC Number of emergency production days, d.

tPPC Number of peak production days, d.
T Average thermodynamic temperature of gas, K.
Tz , To Average temperature of injection pipeline z or production

pipeline o, K.
vz;min,

vo;min

Minimum allowable flow velocity of injection pipeline z or
production pipeline o, m/s.

vz;x , vo;x Flow velocity of injection pipeline z or production pipeline o
under condition x, m/s.

(continued on next page)
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Decision variables

d Pipeline inner diameter, mm.
dz;x ,

do;x

Inner diameter of injection pipeline z or production pipeline o under
condition x, mm.

h Wall thickness of pipeline, mm.

(continued )

vz;max,
vo;max

Maximum allowable flow velocity of injection pipeline z or
production pipeline o, m/s.

VPPC Peak production volume, m3.

VEPC Emergency production volume, m3.
Z Compressibility coefficient of gas at average pressure and

temperature.
Zz , Zo Compressibility coefficient of injection pipeline z or production

pipeline o.
D Relative gas density.
Dz , Do Relative gas density of injection pipeline z or production pipeline

o.
f Strength design coefficient.
sT Temperature reduction coefficient, sT to be taken as 1.0 when

temperature is below 120 �C.
rs Density of steel, kg/m3.
lz , lo Hydraulic friction coefficient of injection pipeline z or production

pipeline o.
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