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ABSTRACT

Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has
guiding significance for the exploration and development of oil and gas. The seismic inversion is a key
method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent
approach to suppress the ambiguity of the conventional inversion method. However, under the trace-by-
trace inversion strategy, there is a lack of constraints from geological structural information, resulting in
poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary vari-
ability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of
porosity, we consider the lateral continuity and variability and propose an improved structural modeling
deep learning porosity prediction method. First, we combine well data, waveform attributes, and
structural information as constraints to model geophysical parameters, constructing a high-quality
training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated
axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop
network system constrained by inversion and forward processes. The constraint coefficient is adap-
tively adjusted by the petrophysical information contained between the porosity and impedance in the
study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.
Finally, we compare the performance differences between the proposed method and conventional deep
learning methods using data from two study areas. The proposed method achieves better consistency
with the logging porosity, demonstrating the superiority of the proposed method.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

seismic inversion. Core logging directly measures porosity using
core data (Luffel and Guidry, 1992) or estimates it through a rock-

Porosity is related to the petrophysical properties, lithology, and
fluid characteristics of underground media (Doyen, 1988; Bernabé,
1995; Wong et al., 1995; Mukerji et al., 2001b), and determines the
favorable degree of reservoirs (Su et al., 2023). Fine prediction of
porosity plays a crucial role in the beneficial development of oil and
gas resources (Zheng et al., 2020; Liu et al., 2022; Yang et al., 2023).
Porosity is typically obtained through core logging analysis and

* Corresponding author.
E-mail address: zhouhuailaiO6@cdut.edu.cn (H.-L. Zhou).

https://doi.org/10.1016/j.petsci.2025.03.035

physics model derived from well data (Avseth et al., 2010;
Johansen et al.,, 2013; Liu et al., 2015, 2020; Zhang et al., 2024).
However, significant uncertainties arise when extrapolating them
to the lateral areas between wells (Han et al., 2022; Jin et al., 2024).
Seismic inversion, on the other hand, infers the physical properties
of geological media from observed seismic data (Aki and Richards,
2002). Seismic data provides abundant information about unex-
plored areas, enabling three-dimensional characterization of
geological structures and comprehensive analysis of reservoirs and
sedimentary environments (Aleardi et al., 2018; Das and Mukerji,
2020; Liu et al, 2022). Previous research indicates that the
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seismic wave propagation velocity within a certain depth range is
influenced by the porosity of the medium (Wyllie et al., 1956).
Although seismic data cannot directly reveal porosity information,
it exhibits an inherent physical correlation between wavefield
reflection and petrophysical properties (Sang et al., 2023). There-
fore, leveraging seismic data as an intermediary, the seismic
inversion method has achieved a reasonable extrapolation of
porosity from well sections to the underground space (Liu et al.,
2023c), which represents the most comprehensive porosity pre-
diction approach and provides important reference for further
evaluating the petrophysical properties of reservoir (Gholami et al.,
2022).

Seismic data referred to in seismic inversion methods encom-
passes a broad spectrum, including pre-stack seismic data (Zhang
et al., 2017; Yang et al., 2023), post-stack seismic data (Figueiredo
et al, 2017; Feng et al., 2020), and various seismic attributes
(Fattahi and Karimpouli, 2016; Zou et al., 2021; Song et al., 2023). In
addition, the implementation process of the inversion method
varies significantly depending on the specific approach employed.
A classic approach is to obtain elastic parameters through pre-stack
or post-stack seismic data inversion, and then calculate porosity
based on rock-physical relationships (Mukerji et al., 2001a;
Adelinet and Ravalec, 2015; Pang et al., 2020; Ali et al., 2023). This
process involves a multi-step process and carries the risk of accu-
mulating errors (Han et al., 2022). Another classic approach is
usually based on Bayesian inversion frameworks, ensuring consis-
tency between petrophysical and elastic parameters, and achieving
joint or synchronous inversion of petrophysical parameters (Bosch,
2004; Helgesen et al., 2000). The above methods adhere to the
principles of geophysical inversion, and the accuracy of porosity
inversion heavily depends on the reliability of inversion algorithms
and physical models. Despite these theoretical foundations, the
inversion process remains inherently uncertain and unstable
(Lindseth, 1979; Shahraeeni et al., 2012). In addition, the seismic
reflection mechanisms are highly complex and variable, with
nonlinearity and multiplicity running through the entire process of
seismic inversion (Das and Mukerji, 2020). These challenges
complicate the porosity prediction using seismic data and hinder
the precise evaluation of reservoir properties.

Deep learning methods provide a new way to achieve reservoir
inversion and simulation (Das et al., 2019; Liu et al., 2022). Deep
learning employs deep neural networks with powerful nonlinear
expression capabilities. In theory, deep neural networks can
establish complex nonlinear mapping relationships from observa-
tion data to any model data. By training a large number of labeled
datasets, they can deeply mine the reservoir information contained
in seismic data, effectively alleviating the nonlinear issue exhibited
by conventional inversion methods (Das et al., 2019; Figueiredo
et al.,, 2019; Zhang et al., 2022). In addition, an increasing number
of studies have shown that implementing a dual scale constrained
deep learning approach in inversion networks with external for-
ward networks can reduce the dependency of neural networks on
datasets (Alfarraj and AlRegib, 2019; Sun et al., 2019; Yuan et al.,
2022), and has been widely applied in examples of intelligent
prediction of porosity (Han et al., 2022; Sang et al., 2023).

In practices, porosity label data is derived from logging data,
which is inherently one-dimensional and limited in quantity due to
drilling cost. The "trace-by-trace" strategy is usually used to predict
the overall data. However, this strategy overlooks the lateral cor-
relation of seismic data, resulting in inadequate lateral continuity in
prediction results (Yuan et al., 2015; Wu et al., 2021). Meanwhile,
geological formations are highly heterogeneous and are affected by
tectonic movements and sedimentation processes. The spatial
distribution characteristics of geological bodies are extremely
complex (Liu et al, 2023a). Based on discrete well data,
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constructing an observation model of subsurface media poses a
substantial challenge, as it is difficult to ensure the reliability of the
model in areas with pronounced lateral variability.

The seismic horizon reflects geological structure information. A
multi-trace algorithm constrained by horizon can obtain inversion
results with high lateral continuity (Yuan et al., 2015; Liu et al,,
2023b; Tao et al., 2024). In addition, from the perspective of sedi-
mentology, seismic waveforms encapsulate seismic kinematic and
dynamic characteristics, serving as comprehensive representations
of geological information such as sedimentation, lithofacies com-
binations, reservoir properties, and fluids (Chen et al., 2020).
Changes in seismic waveforms often reflect the changes in lith-
ofacies combinations within the same stratum, which is a mani-
festation of sedimentary facies. As a result, similar sedimentary
environments typically exhibit similar seismic waveform charac-
teristics, and the lateral differences in seismic waveforms can
effectively indicate changes in sedimentary facies in space (Chen
et al., 2023). The modeling method based on seismic waveform
attributes fully considers the spatial variability of strata. The con-
structed reservoir parameter model is driven by geological
knowledge and laterally constrained by sedimentary facies, which
could reduce the uncertainty of the model between wells (Huang
et al.,, 2020).

In order to achieve fine porosity prediction, taking into account
the spatial continuity and sedimentary variability of strata, we use
seismic waveform and structural attributes for high-resolution
modeling, and propose a deep learning porosity prediction
method based on knowledge and data joint driven. Meanwhile, we
introduce a gated axial attention mechanism and design a neural
network for porosity inversion and seismic forward modeling to
achieve bidirectional closed-loop deep learning. Moreover, we
develop an adaptive loss function with dual scale constraints and
analyze its impact on prediction performance. The proposed
method is validated through two case studies involving buried hill
data and shale reservoir data. Comparative analyses with conven-
tional one-dimensional and two-dimensional deep learning
methods highlight the superior prediction performance of the
proposed method, providing an intelligent strategy for fine porosity
prediction.

2. Method and theory

Our method aims to achieve fine porosity prediction. First,
waveform-guided structural modeling is carried out through well
data, seismic waveforms, and structural information to construct
impedance and porosity models with sedimentary facies-
controlled significance. The impedance model is then used to
synthesize fine seismic datasets. Subsequently, the seismic and
porosity datasets serve as input and output, respectively, for
training the proposed bidirectional closed-loop neural network.
During this process, the weights of the forward network are
adaptively fed back by the petrophysical crossplot analysis between
porosity and impedance. After training, we can obtain the mapping
relationship between seismic data and porosity. Finally, the real
seismic data is input into the bidirectional network. The forward
network and the inversion network then output the predicted
seismic data and the predicted porosity respectively, based on the
mapping relationship, thereby fulfilling the task of this article. The
technical flowchart of the deep learning porosity prediction
method proposed in this article is shown in Fig. 1.

The main contributions are summarized as follows.

(1) The training set constructed by the proposed method in-
tegrates structural information and seismic waveform attri-
butes, which effectively considers the lateral continuity and
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Fig. 1. The workflow of the proposed method.

spatial variability of geological bodies during the training
process, reducing the prediction uncertainty.

(2) The designed bidirectional closed-loop neural network in-
troduces a gated axial attention mechanism, which alleviates
the dependency of deep learning on a large number of
labeled samples.

(3) Guided by the petrophysical information, the network
adaptively balances the matching between input and output
data during the training process, which helps the network
learn more effective porosity features.

2.1. Improved structural modeling method

The construction of the training sample is the first step in the
proposed method, providing a high-quality dataset foundation for
deep learning. According to research (Chen et al., 2020), while
different wells are in the same sedimentary stratum, their wave-
forms within well-nearby traces and logging curves have high
similarity, so a mapping relationship between seismic waveforms
and high-frequency logging curves can be established. Seismic
waveform guided modeling refers to using the similarity of seismic
waveforms as modeling principles, driving the simulation of
broadband logging parameters between wells with sedimentary
information, and achieving high-resolution reservoir parameter
modeling. In the modeling process, there are two steps involved:
seismic waveform clustering based on singular value decomposi-
tion and well frequency band information matching based on
wavelet transform.

The mapping relationship between seismic waveforms and
reservoir parameters of wells can be described in the following
form:
A=SAWT (1)
where S represents seismic waveform data, which is a n x n order
orthogonal matrix; W represents the well parameters, which is a
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m x m order orthogonal matrix; W' is its conjugate transpose; A
represents the correlation between seismic waveforms and well
parameters, which is a n x m order non negative diagonal matrix; A
represents the mapping relationship between waveform and well
parameters, and is a n x m order matrix.

Further utilize the Singular Value Decomposition (SVD) method
to perform orthogonal decomposition on the matrix A, in order to
achieve dynamic clustering of waveforms:

.
A=> gswi! (2)
i=1

where i represents singular value; r represents the rank of the
matrix A; s; is the i-th eigenvector of A; w; is the i-th eigenvector of
AT; §; is the square root of the eigenvalue AA”. So matrix A can be
decomposed into the algebraic sum of r eigenvectors, and its total
energy can be expressed as

IA]I? = Z 5% 3)

By using the singular vectors corresponding to the first r non-
zero singular values to represent the main features of matrix A,
efficient dynamic clustering of seismic waveforms is achieved,
thereby generating datasets of waveform and well parameter with
different sedimentary characteristics. In addition, considering the
mismatch between waveform data and logging data in the fre-
quency band, frequency domain filtering is performed on the log-
ging curves based on the discrete wavelet transform shown in Eq.
(4) to extract the common structure of all logging curves in the
datasets. This common structure is the macroscopic feature of
logging parameters, which is a low to medium frequency filtering
result compared to logging data. However, for seismic data, it is a
high-resolution information:
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I
J
where [ is the cutoff frequency related to the common structure, Cis
the logging curve, C is its mean, and ¢(w, t) is the wavelet function.

Furthermore, we use structural information as a framework
constraint and interpolate common structures along the horizon to
construct high quality facies-controlled porosity model and
impedance model. The porosity model will be used to construct the
labeled dataset, which is the learning objective of this article, while
the impedance model will be used for further seismic modeling.
The seismic modeling follows the same process as post-stack for-
ward modeling (Russell, 1988). The impedance Z, can be expressed
as the product of the dielectric density p and velocity v:

Zp(t;) = p(t;) -v(t;)

where t;(i=1,2,...,n+1) represents the depth of two-way travel
for the i-th discrete grid. According to the theory of elastic waves, in
the case of vertical incidence of plane waves, the impedance de-
termines the reflection coefficient of the geological interface:

~Zp(ti1) — (&)

O(l) = arg(min||C — C||) = arg (min

o(w, t)dw—f”) (4)

(5)

R = 2 ) + Zo(ty)

(6)
By using convolution theory, the simulated seismic wavelet W and
calculated reflection coefficient R according to Eq. (6) are convolved
to synthesize the seismic model Sydel:

Smodet(t) = D R(t) - W(t =) =R(£)*W(t) (7)
i=1

The porosity model and synthetic seismic model using con-
straints of structure and waveform information integrates multi-
source geological information and has facies-controlled signifi-
cance, and this modeling method is named the improved structural
modeling (ISM) method in this article.

2.2. Gated axial attention mechanism

The quality and quantity of the training set are important factors
that affect the training effectiveness. When there is limited training
data, deep learning models are difficult to demonstrate good per-
formance. In practice, drilling data is usually expensive and scarce,
and a small number of well samples is a huge challenge for building
a training set to deep learning. How to achieve effective deep
learning with few samples? To address this, we introduce a gated
axial attention (GAA) mechanism model (Valanarasu et al., 2021).

Unlike the self-attention mechanism, the axial attention
mechanism performs attention calculations along the height and
width axes of the feature map, simulating the self-attention
mechanism through axial encoding coverage. This greatly reduces
the complexity of attention calculations and enables the axial
attention model to obtain information more efficiently. Meanwhile,
positional encoding information is an important concept in atten-
tion mechanisms and is crucial for modeling long-range de-
pendencies. The axial attention mechanism introduces a positional
encoding bias term, namely relative positional encoding, which
makes the mechanism more sensitive to positional encoding.
Finally, in order to make the training applicable to a limited dataset,
we introduce a gated mechanism G for relative position encoding. If
the relative position encoding is accurately learned, the corre-
sponding gated weight should be higher, and vice versa, in order to
improve the accuracy of encoding information learning. The gated
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axial attention layer is shown in Fig. 2. For a given input feature
map x, the attention calculation along the width axis can be
expressed as

W .
yij = »_ Softmax (q? Kiw + Goajre, + GKkiTWr},(N) (in + Gvr,\’,‘,>
w=1
(8)

where the input feature map x passes through the weight matrices
Wg, Wy, and Wy to generate the q¥ (query), kI (key), and v,

Q K
T Tiwe @nd

(value) in Eq. (8), which are all linear projections of x.
r}"N are all learnable relative position codes, while Gq, G, and Gy are
learnable gated factors that control the impact of the learned
relative position codes on the encoding context. We initialize gated
factors as 0.1, and after matrix multiplication, addition, and softmax
activation operations as shown in Fig. 2, we obtain the output
feature map y. Similarly, the attention calculation along the height

axis is also consistent with the above process.
2.3. The bidirectional closed-loop network

This article constructs a high-quality sample set through the ISM
method and introduces the GAA mechanism for feature enhance-
ment. Another key to the success of deep learning is a targeted
neural network. In network training, the training data will be
projected onto a high-dimensional information space, and a neural
network that matches the task can efficiently and accurately extract
feature information from it. Our work is essentially a data regres-
sion task, and examples of using neural networks to predict
geophysical parameters are not uncommon, among which con-
volutional neural network (CNN) is the most classic example. CNN
has the ability of local perception, enabling precise encoding of
local detail information. Meanwhile, CNN benefits from the prop-
erty of kernel sharing, which allows for efficient dimensionality
reduction when processing large amounts of seismic data.

Softmax

Weights

‘ Gates
. Positional embeddings

@ Matrix addition
® Matrix multiplication

Fig. 2. Gated axial attention layer, which is a basic module for calculating attention
along the width and height axes.
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However, CNN has the drawback of fixed convolution kernels, and
mismatched convolution kernels may lead to incomplete extraction
of data features by the network.

The prediction of reservoir parameters is a systematic and
comprehensive process, and relying solely on local data encoding
may lead to significant uncertainty. Within the same stratum, un-
der the influence of compaction and tectonic movements, reservoir
parameters have inherent physical correlations in the vertical di-
rection, representing the whole sedimentary trend. Therefore,
long-range dependencies during training are crucial, which can
reflect the sedimentary characteristics of the strata at a macro level.
On this basis, Transformer networks have emerged (Vaswani et al.,
2017), which interact and transmit information through attention
mechanisms, achieving effective long-range relationship modeling.
This makes training guided by global vertical information (strati-
graphic sedimentary trends), effectively solving the problem of lack
of macroscopic stratigraphic information in prediction results.
However, the representation of classic Transformer networks is
one-dimensional, and the network cannot capture local details
horizontally, resulting in a lack of constraints on spatial structure
and sedimentary details during training, making it difficult to
achieve fine prediction of reservoir parameters.

Based on the above considerations, this article introduces a
TransUNet network structure (Chen et al., 2021) that combines the
characteristics of CNN and Transformer and expands the network
dimension, and proposes a porosity inversion neural network
based on Fig. 3(a). The seismic data is encoded and decoded by the
network to obtain the predicted porosity, and the training process
is carried out in the form of data patches. In encoding, seismic data
is extracted through three initial convolutional layers equipped
with GAA modules for shallow feature collection. Each GAA module
consists of a normalization layer, a gated multi-head attention
module calculated along the height axis, a gated multi-head
attention module calculated along the width axis, and a feature
combination layer. Each gated multi-head attention module has 8
gated attention layers as shown in Fig. 2. On this basis, the collected
shallow features such as structural and sedimentary information
are projected into Transformer layers as shown in Fig. 3(b). The
Transformer encoder implemented in this article mainly consists of
multi-head self-attention layers (MSA), multi-layer perception
(MLP), layer normalization (LayerNorm), and residual connections.
The overall architecture is based on the classic Transformer model
(Vaswani et al., 2017), and the output of each encoder module will
serve as the input for the next module. In the specific configuration,
we set the attention head of MSA to 4, the hidden dimension of MLP
to 2048 and the number of transformer layers to 12. The Trans-
former layers deeply mine the petrophysical property information

Petroleum Science 22 (2025) 2325—2338

of labeled data, thus implementing the encoding process of fea-
tures. During the decoding process, deep communication involves
reshaping and convolution to restore the shape before entering the
Transformer layers. Then, the feature data is reconstructed through
three progressive upsampling, convolution, and GAA module op-
erations. Skip connections are used to combine the upsampled
features with different high-resolution CNN features in the
encoding, achieving accurate localization of petrophysical property
information. Finally, the porosity results are output through a set of
upsampling and two consecutive convolutional layers. The pro-
posed inversion network takes into account both the long-range
dependence of information, namely the sedimentary patterns of
petrophysical properties in vertical space, and local details, such as
lateral structural information, which helps to construct accurate
encoding and decoding relationships.

In addition, we refer to the generalized seismic inversion and
forward process, and construct a porosity-seismic forward network
to achieve bidirectional closed-loop learning, reducing dependence
on labeled datasets by simulating geophysical processes. As shown
in Fig. 4, in order to accelerate computational efficiency and reduce
task complexity, the forward network abandons the Transformer
layer and retains the same structure as the inversion network for
the remaining units. We used the Mish function (Misra, 2019) as a
non-linear activation for all convolutional layers, and the output
convolutional layer used a 1 x 1 kernel. In addition, the other
convolutional layers used a 3 x 3 kernel.

2.4. Adaptive bidirectional constrain loss function
The proposed inversion network ®; and forward network ®,

form a bidirectional conductive and closed-loop network system.
The objective function of network training is jointly constrained by

Input
(64, 64, 1)

(b)
h Layer / N\
| Norm =) Conv 3x3, Mish
= —> Shallow feature N — -
) ! MSA GAA
ProJefhon % = Up-Sampling 2x2
Transformer layer ( o £ Siip sonnection
L (N=12) Y
\ Norm
Transformer layer = Conv 1x1, Mish
\ MLP
<«— Deep feature
Reshape

=
\ 1 Feature concat

\ -

v \ J/
v

Fig. 3. The proposed inversion neural network: (a) the network architecture, (b) the schematic of the transformer layer.
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inversion error and forward error, which can be expressed formally
as

LB =ZLo, +1 7%, 9)
where Zg, represents the training loss of the porosity inversion
network, g, represents the training loss of the seismic forward
network, and 5; represents the weighted bidirectional loss. 1 is
the weight coefficient of the forward network, which balances the
matching between seismic data and target parameters. If the cor-
relation between seismic data and target parameters is high, then
the network should focus more on the prediction process of target
parameters and reduce forward weights. On the contrary, if the
correlation is low, the forward weight should be appropriately
increased to strengthen the bidirectional constraint to alleviate this
complex nonlinear problem and reduce the uncertainty of network
prediction.

We measure the training loss of the network using mean
squared error (MSE) and construct a training form suitable for the
multi-source geological information training set in this article. Eq.
(9) can be specifically represented as

i

1

1 M
N 2 2
Jj=1
$(i.j) — O1(s(i, )15 +Als(i.f) — O2(O1(s(i.f)))l3

Lo

Zo 2

(10)

where N and M represent the number of samples in both vertical
and horizontal directions, s represents seismic data, ¢ represents
target data, i.e. porosity, ®1(s) represents porosity predicted from s
through inversion network, and ®,(®1(s)) represents seismic data
further synthesized from predicted porosity. Another key to the
objective function is to set the weight coefficients A. Our task is to
establish a high-precision mapping relationship between seismic
data and porosity. Seismic data characterizes the reflection of the
strata, which is the convolution result of reflection coefficient and
seismic wavelet. The reflection coefficient of the strata is deter-
mined by the difference in impedance between the upper and
lower media. Therefore, fundamentally speaking, our study can
trace the inherent physical correlation between impedance and
porosity. If the negative correlation between impedance and
porosity is high in the well data of the study area, a lower 4 should
be set, and vice versa. Meanwhile, the principle of inversion
network as the main body should be followed, so A0, 1] can be
quantitatively expressed as

A=1-a (11)
where « represents the negative correlation between impedance
and porosity in logging data. When « = 1, it indicates that there is a
complete negative correlation between impedance and porosity.
Therefore, the task of this article can also be regarded as an
approximate post-stack impedance solving problem. The determi-
nation of weight coefficients is guided by petrophysical informa-
tion, serving as a regularization coefficient that adapts to the
elastic-petrophysical property relationship. This makes it easier
for the network to fit the petrophysical characteristics contained in
seismic data, further enhancing the interpretability of deep
learning models.
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3. Examples and results

In order to verify the effectiveness of the proposed method, we
show examples of two different types of reservoirs in this section.
Commonly used deep learning methods are introduced for com-
parison to demonstrate the advantages of the proposed method. In
addition, we test several groups of weight coefficients A and
demonstrate the performance of adaptive coefficients guided by
petrophysical information.

3.1. The study area A: a buried hill reservoir example

The study area A is located in southern China, and its typical
seismic data is shown in Fig. 5. The exploration objective is a
Mesozoic buried hill structure, and Well A1 is an important
geological structure well deployed at the high-position buried hill
interface. Geological experts mark favorable horizon as T1, which is
a lithological boundary. The target horizon for this case study is the
clastic rock strata that extends upwards for 100 ms and the granite
strata that extends downwards for 300 ms in T1. The clastic rock
strata marked by T1 horizon have high porosity characteristics due
to weathering, strong seismic response, moderate continuity, and
great exploration and development potential. The strata below T1
horizon represent the interior of the buried hill. The impedance of
this strata increases, while the porosity decreases rapidly. However,
there are also intersecting fracture systems developed, which still
have certain exploration potential. The seismic reflection within the
granite strata is of medium-high amplitude, with chaotic reflection
characteristics and poor continuity. Therefore, the conventional
structural modeling (SM) method struggles to achieve the required
lateral accuracy, resulting in cumulative inversion errors.

We conduct ISM method using seismic and horizon data from
three other wells in study area A (A1 well not involve in modeling).
A waveform-guided impedance model and porosity model are
constructed. Impedance model will be used to calculate the
reflection coefficient and convolve with statistical wavelets
extracted from study area to synthesize a seismic dataset. To
demonstrate the differences between the ISM method and the
conventional SM method, we present the modeling results of three
random profiles using different methods. As shown in Fig. 6, the
training datasets constructed by both modeling methods reflect
complex structural information, and the models also exhibit sedi-
mentary trends consistent with the area vertically, highlighting the
high porosity characteristics of the T1 horizon. However, the model
constructed by the ISM method exhibits lateral variability and has
sedimentary facies-controlled significance. The synthesized
seismic data (Fig. 6(c)) also has better matching with real situation.
We ultimately randomly select modeled results from 5 profiles as
the training dataset for the task, and perform data segmentation
with a patch size of 64 x 64 and a step size of (8, 8). Although our
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Fig. 5. The seismic data of study area A. The vertical black dotted line represents the
trajectory of well A1 and the black double dotted line represents the horizon line T1.
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Fig. 6. Modeling results of study area A. The SM method constructed (a) seismic and (b) porosity dataset. The ISM method constructed (c) seismic and (d) porosity dataset. Each

column result from the same profile.

task is in a small sample scenario, there is no need for additional
data augmentation work due to the unique geological significance
of the constructed training dataset. After removing invalid samples,
a total of 2 x 24156 x 64 x 64 training patches are obtained.
After constructing the training set, it is necessary to further
focus on the network training strategy. For designing a closed-loop
network, clarifying the regularization coefficients A and con-
structing a highly adaptive objective function are significant steps.
We conduct petrophysical crossplot analysis based on well A1 to
explore the inherent relationship between the impedance and
porosity within the target horizon of the study area. The crossplot
result is shown in Fig. 7, which showcases that there is an overall
negative correlation between the two attributes, but there is a
certain degree of deviation of the data points on the black fitting
line. The negative correlation between porosity and impedance is
not high, only 0.583. According to Eq. (8), A will be set to 0.417.
Based on the A and the constructed training dataset, the ratio of
the training and testing sets is 5:1. Further adjusting the hyper-
parameters of the network, we set the network learning rate to
0.001, the optimization algorithm to Adam, the batch size to 128,
and 200 epochs. The porosity model modeled using ISM method is
used as the training output, and the corresponding seismic model is
used as the training input. The designed closed-loop network is
used for iterative training. The loss during the training process is
shown in Fig. 8, and we distinguish different networks and training
validation modes to demonstrate this process. It can be seen that
the training losses of both the inversion network and the forward
network decrease rapidly. The inversion loss is generally lower than
the forward loss, but some oscillations in the loss values are
observed. These fluctuations can be attributed to the incomplete
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Fig. 7. Petrophysical crossplot between porosity and impedance of A1 well, the for-
mula of the black fitting line is ¢ = — 0.0022Z,2 — 1.7111Z, + 27.7503, and the color
of each point denotes its porosity value.

matching between the petrophysical and elastic properties in the
study area. The network needs to use gradient descent to adapt to
the complex mapping relationship between these attributes.
However, porosity and seismic data are essentially characterized
from different perspectives for the same geological body, and their
similar response characteristics and physical correlations are
inherent. Therefore, this relationship can be captured by training
the network. The total training loss and validation set loss jointly
constructed based on inversion loss and forward loss are shown in
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Fig. 8. Training loss of dataset from study area A. (a) Separate network loss, and (b) training and validation loss.

Fig. 8(b), which effectively reduces and tends to be stable. It can be
considered that the network has learned the correct porosity fea-
tures, and the trained model can be used for subsequent testing.
We test the effect of different forward network weights on the
learning and prediction performance of ISM method, as shown in
Fig. 9. We showcase the predicted porosity of well A1 nearby traces,
with three sets of parameters from left to right: A =0, A = 0.417, and
A= 1. When A = 0, the network lacks the constraints of the forward
modeling process, leading to a lower level of precision in result and
a more severe chunking effect on the profile; when 1 = 0.417,
introducing forward constraints alleviates the chunking effect and
optimizes the correspondence between the thin layer indicated by
the blue arrow and the well data; when A = 1, the identifiable detail
information of the profile significantly increases. We further
conduct the error analysis shown in Fig. 10. Fig. 10(a) shows the
crossplot of predicted porosity and logging porosity. It can be seen

that the deviation between the prediction results guided by pet-
rophysical information (A = 0.417) and the ground truth is the
smallest, and almost all inversion sample points are concentrated
within an absolute error range of +2. Fig. 10(b) further summarizes
the error histograms of different network parameters, verifying the
above conclusion that the sample points with a normal distribution
of A = 0.417 are within the low error interval. After testing, we
believe that higher weights help optimize the fineness of the re-
sults, but guided by the petrophysical information contained in
impedance-porosity, the matching with well information is better.

After validating the effectiveness of forward weighting, we
utilize ISM learning to achieve porosity prediction for the seismic
data shown in Fig. 5. To compare the performance of different deep
learning methods, we introduce the results of one-dimensional
network learning (1D learning) and two-dimensional network
structural modeling learning (SM learning). Fig. 11(a)—(c) show the
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Fig. 9. The predicted porosity of A1 well with regularization coefficients A = 0, 0.417, and 1, from left to right respectively. The color columns represent the logging porosity of well

Al
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Fig. 11. Prediction results of seismic data cross well A1 in study area A based on different methods. Predicted porosity of (a) 1D learning, (b) SM learning and (c) ISM learning, the
projected black curves represent logging porosity. The residual between real seismic data and synthetic seismic data of (d) 1D learning, (e) SM learning and (f) ISM learning.

predicted porosity of the above methods. The prediction results of
the study area A through the three methods are in line with prac-
tical understanding and have a certain correspondence with the
projected porosity curve. The predicted porosity using the 1D
learning method is shown in Fig. 11(a). Unlike the two-dimensional
network, the one-dimensional algorithm only establishes the
mapping relationship between the well nearby seismic trace and
the logging porosity. However, the overall prediction results are
relatively fragmented, and the structural details of the interior are
not continuous due to algorithm limitations. As indicated by the
blue box in the figure, there are many vertical artifacts caused by
the algorithm; Fig. 11(b) shows the predicted porosity based on SM
learning, which effectively improves the lateral continuity of the
results; Fig. 11(c) shows the predicted porosity of ISM learning,
which further optimizes spatial variability while maintaining good
lateral continuity, as indicated by the blue arrow, highlighting more
detailed information. In addition, we also demonstrate the re-
siduals between the synthetic seismic data and the real seismic
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data using the above method. As shown in Fig. 11(d), the 1D
learning method has a more significant residual, confirming its
weak adaptability to chaotic reflections. In contrast, the residuals
generated by two-dimensional algorithms are relatively small,
while the residuals of ISM learning are weaker, indicating that
introducing waveform constraints helps the network learn more
accurate elastic-petrophysical property transformation
relationships.

We compare the predicted porosity and true logging porosity of
the well A1 nearby trace, as shown in Fig. 12. It can be seen that the
1D learning method exhibits large fluctuation in the prediction
results, which shows a significant deviation from the true porosity.
However, the SM learning and ISM learning methods achieve better
alignment with the true porosity, maintaining consistency in the
trend. Therefore, in order to quantitatively evaluate the prediction
performance of different methods, we further calculate the Pearson
correlation coefficient (PCC) and MSE between the well A1 nearby
properties and the true porosity. The results, summarized in Table 1,
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Table 1
Prediction performance of well Al.

Metrics Learning method

1D SM ISM
PCC 0.8313 0.9032 0.9225
MSE 0.0261 0.0116 0.0037

the PCC calculated based on ISM learning is higher, reaching 0.9225,
indicating better matching with well data. Furthermore, the MSE
index confirms that the deviation between this method and the
true porosity is also minimal, indicating the practicality and supe-
riority of the ISM learning method in predicting porosity in study
area A.

3.2. The study area B: a shale reservoir example

We further extend the proposed method to a shale reservoir
research area to explore its feasibility for unconventional

0.5

Time, ms
Amplitude

Fig. 13. The seismic data of study area B. The vertical black dotted lines represent the
trajectory of wells B1 and B2 and the black double dotted lines represent the H1 and
H2 horizon lines.
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reservoirs. Study area B is located in the Sichuan Basin in south-
western China, and its seismic survey covers four wells. Fig. 13
shows the seismic profiles crossing wells B1 and B2 in the area,
with the stratigraphic layers between horizon lines H1 and H2
being the target horizon for this study. The main lithology of the
target horizon is black gray shale. The overlying strata of the H2
horizon are considered as a continuous favorable gas layer with a
relatively stable thickness, generally between 44 and 72 m, and
have high porosity and high TOC logging response characteristics.
The logging interpretation suggests that the favorable degree of the
reservoir in this area is highly correlated with porosity, therefore
the fine prediction of porosity have significant guiding significance
for the beneficial development of shale reservoirs in this area.

We use impedance and porosity data from two wells in study
area B, except for B1 and B2, as well as seismic horizons, to conduct
training set modeling for the SM method. As shown in Fig. 14(a) and
(b), the modeling results of seismic and porosity of three profiles
are randomly displayed. The results reflect the structural charac-
teristics of the area and the vertical sedimentary state of petro-
physical properties. The essence of two-dimensional deep learning
methods is still to establish the relationship between elastic and
petrophysical properties of wells, and then expand well data from
one-dimensional space to multi-dimensional space by structural
information. Its lateral variability mainly depends on well data.
Therefore, the lateral differences in SM modeling results are not
significant, and the issue of modelization is severe, which does not
match the real situation. In contrast, the seismic and porosity
datasets modeled by the ISM method are shown in Fig. 14(c) and
(d). After adding constraints of waveform information, the lateral
variability of the model is further reflected. At this point, the model
has sedimentary facies-controlled significance and better fit with
real seismic data, which is beneficial for the network to learn more
accurate porosity features.

We analyze the negative correlation between impedance and
porosity based on well data from study area B, and determine the
weights of the forward network. As shown in Fig. 15, there is a
quadratic negative correlation of impedance and porosity in this
area. The negative correlation « between logging data and the fitted
nonlinear formula is 0.764, which A will be further set to 0.236. We
randomly divide the training set and validation set in a 5:1 ratio,
and set 200 epochs for network training. The loss changes of the
forward and inversion networks, as well as the training and vali-
dation sets, are shown in Fig. 16. Although some oscillations in the
loss value are observed during the training process, it is gradually
decreasing and tends to a stable low value after 150 epochs, indi-
cating the effectiveness of the training.

Based on the trained model, porosity prediction of seismic data
from wells B1 and B2 is carried out, and the spatial distribution of
favorable gas layers is explored, as shown in Fig. 17(c). Meanwhile,
we compare and demonstrate the predicted porosity using 1D
learning and SM learning, as shown in Fig. 17(a) and (b). Three deep
learning prediction methods have effectively identified favorable
shale gas layers at the H2 horizon, aligning with existing geological
knowledge as a whole. However, one-dimensional algorithm
struggles to adapt to the structural variability of undulating strata,
so some discontinuous vertical bar shaped artifacts appear at the
blue box markings in the figure. These artifacts caused by the al-
gorithm mechanism will further interfere with subsequent reser-
voir interpretation. The SM learning improves the lateral continuity
of the prediction results, but overestimates the favorableness of
reservoirs at the blue arrow markings, which contradicts the log-
ging conclusion. In contrast, the ISM learning results that introduce
constraint of waveform attribute into the training set accurately
capture the vertical petrophysical properties and sedimentation
patterns of the strata, while achieving more precise porosity
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Fig. 14. Modeling results of study area B. The SM method constructed (a) seismic and (b) porosity dataset. The ISM constructed (c) seismic and (d) porosity dataset. Each column

result from the same profile data.

Porosity, %

Impedance, (km-g)/(s-cmq)

Fig. 15. Petrophysical crossplot between porosity and impedance of well log data in
study area B, the formula of the black fitting line is ¢ = 0A0731Zp2 — 2.5795Z, +
23.6868, and the color of each point denotes its porosity value.

predictions. The petrophysical property information identified at
the B2 well indicated by the blue arrow is consistent with the well
logs. Furthermore, Fig. 17(d)—(f) show the forward residual of the
predicted porosity. The one-dimensional algorithm is difficult to
adapt to discontinuous undulating structures, so the residual is
relatively large; the conventional two-dimensional algorithm
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considers the lateral continuity of seismic data, and the forward
residual is sharply reduced; on this basis, the ISM learning with
waveform constraints effectively considers the spatial variability of
the strata, and the residual is further suppressed. This reflects the
technical adaptability and superiority of ISM learning for inter-
preting complex and discontinuous reflection strata.

We further extract the predicted porosity using different
methods for the B1 and B2 wells, and quantitatively evaluate the
correlation and relative error with the logging porosity, as shown in
Fig. 18 and Table 2. Compared with two-dimensional algorithms, 1D
learning has a larger overall deviation, which is also confirmed by
the mean square error in Table 2. The overall correlation of SM
learning has been improved to a certain extent, but there is a sig-
nificant deviation in the prediction performance at favorable res-
ervoirs in well B2, as indicated by the blue arrow in Fig. 18(b). This
also indicates that the method needs further optimization in the
fineness of modeled sample set. The consistency between the
prediction results of well nearby trace extracted by ISM learning
and the logging porosity is the best. In addition, the PCC and MSE
indicators also confirm that the performance of this method is
quantitatively optimal, reaching 0.9415 and 0.9322, as well as
0.0029 and 0.0079, respectively, in well B1 and B2, leading the
comparison method. This can demonstrate the applicability and
effectiveness of the proposed ISM learning method in unconven-
tional shale study area B. The porosity prediction results based on
this method can further explain favorable areas and guide well
deployment.
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learning.

4. Conclusion

We propose a porosity prediction method based on ISM learning
to enable intelligent and fine prediction of reservoir properties in
structurally complex and well limited study areas. We use seismic
waveforms, horizons, and well data to jointly construct a dataset
with sedimentary facies-controlled significance, which effectively
considers the lateral continuity and variability of seismic data and
increases the adaptability to complex structures. In order to break
through the bottleneck of small sample, we introduce the gated
axial attention mechanism and design an improved inversion-
forward bidirectional closed-loop network system, which makes
the proposed method highly adaptable to few wells study areas. In
addition, we introduce petrophysical information as guidance and
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construct an adaptive weight coefficient using the inherent phys-
ical correlation between impedance and porosity. Numerical tests
have confirmed that adaptive weight coefficient improves the ac-
curacy of predicted porosity, and it is conductive for network to
capture a more accurate elastic-petrophysical property mapping
relationship. Finally, we present the examples of a buried hill study
area and an unconventional shale study area. Compared to con-
ventional one-dimensional deep learning method and SM deep
learning method, the proposed ISM learning algorithm improves
the accuracy and lateral continuity of predicted porosity, achieving
better alignment with logging porosity. These results highlight the
promising application potential of ISM learning method in complex
reservoir prediction.
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Fig. 18. Comparison of the prediction results at the location of the (a) well B1 and (b) well B2.

Table 2
Prediction performance of wells B1 and B2.
Metrics Well B1 Well B2
1D SM ISM 1D SM ISM
PCC 0.9071 0.9137 0.9415 0.8889 0.8916 0.9322
MSE 0.0178 0.0105 0.0029 0.0202 0.0283 0.0079
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