Petroleum Science 22 (2025) 2353—2383

KeAi

CHINESE ROOTS
GLOBAL IMPACT

journal homepage: www.keaipublishing.com/en/journals/petroleum-science

®
Petroleum
Science

Contents lists available at ScienceDirect

Petroleum Science

Original Paper

Diffraction classification imaging using coordinate attention enhanced | g

DenseNet

Check for
updates

Tong-Jie Sheng ?, Jing-Tao Zhao ™", Su-Ping Peng , Zong-Nan Chen ?, Jie Yang *

2 College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
b Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal

University, Beijing, 100875, China

¢ State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing,

100083, China

ARTICLE INFO

Article history:

Received 27 January 2024
Received in revised form

10 February 2025

Accepted 26 March 2025
Available online 28 March 2025

Edited by Meng-Jiao Zhou

Keywords:

Diffraction imaging

Diffraction classification
Azimuth-dip angle image matrix
Coordinate attention

DenseNet

ABSTRACT

In oil and gas exploration, small-scale karst cavities and faults are important targets. The former often
serve as reservoir space for carbonate reservoirs, while the latter often provide migration pathways for
oil and gas. Due to these differences, the classification and identification of karst cavities and faults are of
great significance for reservoir development. Traditional seismic attributes and diffraction imaging
techniques can effectively identify discontinuities in seismic images, but these techniques do not
distinguish whether these discontinuities are karst cavities, faults, or other structures. It poses a chal-
lenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic
attribute maps and diffraction imaging profiles. In seismic data, the scattering waves are associated with
small-scale scatters like karst cavities, while diffracted waves are seismic responses from discontinuous
structures such as faults, reflector edges and fractures. In order to achieve classification and identification
of small-scale karst cavities and faults in seismic images, we propose a diffraction classification imaging
method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a
modified DenseNet. We introduce a coordinate attention module into DenseNet, enabling more precise
extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle
image matrix. Leveraging these extracted features, the modified DenseNet can produce reliable proba-
bilities for diffracted/scattered waves, achieving high-accuracy automatic classification of cavities and
faults based on diffraction imaging. The proposed method achieves 96% classification accuracy on the
synthetic dataset. The field data experiment demonstrates that the proposed method can accurately
classify small-scale faults and scatterers, further enhancing the resolution of diffraction imaging in
complex geologic structures, and contributing to the localization of karstic fracture-cavern reservoirs.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

reservoirs. Seismic diffraction is a key tool to establish super-
resolution which provides rich information related to small-scale

The important objective of seismic exploration is to obtain
high-precision seismic images of subsurface geological structures
(Li and Qu, 2022). With the development of oil and gas explora-
tion, the imaging accuracy of small-scale geological structures is
increasingly demanded. Traditional seismic exploration tech-
niques based on reflected waves can effectively unveil large-scale
continuous geological structures, but they are challenging to
finely delineate small-scale exploration targets such as tiny faults,
karst caves, and fractures which are related to oil and gas
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inhomogeneous geological bodies (Wang et al., 2022, 2023; Zhao
et al., 2021). However, the amplitude of diffractions is extremely
low, which makes strong reflections always mask the existence of
diffractions (Klokov et al., 2010). In the conventional seismic
processing flow, reflected waves are considered as the main signal
and thereby enhanced, while diffracted waves are often consid-
ered as noise and thereby dismissed (Zakarewicz et al., 2024a).
Due to the influence of strong reflected waves, the information of
small-scale exploration targets may be ignored in seismic images.
Removing strong reflections and enhancing diffractions are a
necessary step to detect small-scale geologic discontinuities by
diffraction imaging.
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Given the crucial importance of detecting small-scale objects in
seismic exploration, the investigation of diffraction separation and
imaging has garnered significant interest among researchers. In
view of dynamic and kinematic differences between diffractions
and reflections, the singular value decomposition (SVD) (Chen
et al,, 2023; Jiang et al., 2022; Lin et al., 2020, 2021a, 2021b; Liu
et al., 2025), plane wave destruction (PWD) filter (Fomel et al.,
2007; Lin et al., 2022a; Taner et al., 2006; Yu et al., 2017; Bashir
et al., 2024), common virtual source transform (Li et al., 2021),
double sparse transforms (Chen et al.,, 2022a) and deep learning
method (Kim et al., 2022; Lowney et al., 2021a; Sheng and Zhao,
2022; Sheng et al., 2023) have been proposed for separating dif-
fractions and reflections in post-stack or common-offset domain.
Zhang et al. (2024) exploited the conditional denoising diffusion
probabilistic model to separate diffractions and reflections in
common-offset domain. In the frequency-wavenumber domain,
the energy distribution of diffractions is over a wide range of
wavenumbers, while reflections are the opposite. Based on this
difference in energy distribution. Lin et al. (2022b) used the ge-
ometry mode decomposition method to extract diffracted waves in
the f-k domain. Chen et al. (2024) proposed a diffraction separation
method based on curvelet transform, which applies high-pass and
median cascaded filters to eliminate reflected waves in the curvelet
domain. Wei et al. (2024) exploited the principal component
analysis (PCA) method to separate diffractions and further describe
distribution of deep cavern-type reservoirs based on the extracted
diffractions. Li et al. (2024a) first used the median filter to remove
strong linear reflections, and then exploited the f-k filter and the
tau-p filter to further improve the proportion of diffraction in the
separated wavefield. Klokov and Fomel (2012) exploited the PWD
filter and the hybrid Radon transform to extract diffractions in
migrated dip-angle gathers. Lin et al. (2023) first used the geo-
metric mode decomposition method to extract the linear wavefield
in migrated dip-angle gathers, and then employed the least-
squares Gaussian distribution fitting method to separate diffrac-
tions in linear wavefield. Sun et al. (2022) extracted diffractions for
migrated dip-angle gathers based on convolutional neural network
(CNN) and adaptive subtraction strategy. Markovic et al. (2023)
used the self-supervised deep learning method to improve the
signal-to-noise ratio (SNR) of diffractions. They designed a
diffraction denoising autoencoder to improve the SNR of diffracted
signals in synthetic seismic data, ground-penetrating radar data,
and hard-rock seismic data. Sheng et al. (2024) proposed a two-
phase diffraction imaging method in migrated dip-angle gathers.
In the first phase, the pattern operator is used to suppress the re-
flected waves outside the stationary point. In the second phase, the
reflection energy attenuation function is used to further attenuate
the reflected waves near the stationary point. Li et al. (2023a)
achieved diffraction separation and imaging by combining short-
time singular spectrum analysis and least-squares reverse time
migration method of plane waves. Li et al. (2024b) proposed a least-
squares diffraction imaging method combining variational mode
decomposition and reverse time migration. Since the diffractions
have low rank characteristics and the reflections have sparse
characteristics in azimuth-dip angle domain, Zhao et al. (2020)
used the low-rank matrix decomposition to separate diffractions
in azimuth-dip angle domain. Zhao et al. (2019) proposed a shot-
domain diffraction separation method which used a space-
varying media filter to remove reflections. Li et al. (2023b) calcu-
lated the local slopes of reflections and diffractions in shot gathers
based on normal moveout velocity and ray parameters, and extend
the PWD-based diffraction separation method to the prestack data
domain.

Apart from diffraction separation, efforts have also been made to
improve resolution through diffraction pattern recognition and
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classification methods. de Figueiredo et al. (2013) employed the k-
nearest neighbors (KNN) pattern recognition algorithm to detect
diffractor points. Serfaty et al. (2017) used the PCA to extract the
geometric features of different wavefields in the directional gathers
and then trained a CNN based on these features to achieve auto-
matic classification of reflectors and diffractors. Tschannen et al.
(2020) constructed a large synthetic dataset and trained a CNN to
identify scattering objects in migrated dip-angle gathers. Markovic
et al. (2022) proposed a diffraction pattern recognition method
using U-Net for ground-penetrating radar (GPR) data. Znak and
Gajewski (2023) proposed a data-derived seismic event identifi-
cation method, which identified edge diffractions in the data
domain using wavefront curvature matrices. The main targets of
diffraction imaging include diffracted wave and wavefield from
subsurface small-scale scatterers or velocity perturbation with re-
gard to the limited scale of the Fresnel radius in all directions
(Landa and Keydar, 1998). The former is associated with faults,
reflector edges, and fractures, while the latter is called scattered
wave and typically arises from small-scale scattering objects such
as karst cavities. Accurately identifying and classifying diffracted
and scattered waves on a diffraction image can greatly assist in
locating different small-scale geologic structures and further
enhancing the resolution of seismic exploration. It holds significant
importance in achieving precise characterization of oil and gas
reservoirs. Existing diffraction classification methods are generally
performed in the common-offset gathers or the migrated dip-angle
gathers. In these gathers, diffracted and scattered waves exhibit
similar kinematic characteristics. The primary distinction between
them lies in their dynamic characteristics, specifically that dif-
fracted waves demonstrate a polarity reversal property, while
scattered waves do not. However, these methods often overlook the
azimuthal differences between diffracted and scattered waves and
can face challenges in distinguishing between the two in the
presence of complex geologic structures.

In fact, the propagation of diffracted and scattered waves in
three-dimensional media has an azimuth difference. Considering
the azimuth information of seismic data will help to distinguish
diffracted and scattered waves. Protasov et al. (2021) proposed
three new seismic diffraction attributes based on the propagation
behavior of diffractions in three-dimensional media to determine
fractures’ orientation and distinguish diffracted and scattered
waves. These attributes make full use of the azimuth information of
seismic data, and depict the fractured and cavernous geological
features in wide azimuth seismic data well. Smirnov et al. (2021)
used an ellipse to approximate the shape of diffraction in the dip-
azimuth angle gathers, and defined the major and minor axis ra-
tio of the ellipse as fracture reliability factor to distinguish dif-
fracted and scattered waves. This attribute takes into account the
kinematic characteristics of diffraction and is helpful for the eval-
uation of fractured reservoirs. Zhao et al. (2020) introduced the
azimuth-dip angle image matrix, in which the dynamic and azi-
muth differences between diffracted and scattered waves are pre-
served. Therefore, it is more suitable to distinguish between
diffracted and scattered waves in the azimuth-dip angle image
matrix.

In this study, we propose a novel method for classifying
different geologic structures related to diffracted and scattered
waves (e.g., faults and karst cavities) in the diffraction image. Ac-
cording to the azimuth and polarity differences between diffracted
and scattered waves in the azimuth angle image matrix, we use a
modified DenseNet with coordinate attention for classifying dif-
fracted and scattered waves. We refer to this modified DenseNet as
the diffraction classification network (DC-Net). After performing
DC-Net classification, the diffracted and scattered wave probability
image will be obtained to indicate the probability that each imaging
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point is scattered wave or diffracted wave, respectively. Finally, we
use these probabilities to multiply with diffraction image to obtain
high-resolution diffractor and scatterer image. The paper is orga-
nized as follows. First, we present the dynamic and kinematic
characteristics of diffracted and scattered waves in azimuth-dip
angle image matrix. Second, the proposed diffraction classifica-
tion imaging method is introduced, which includes DC-Net archi-
tecture and diffracted and scattered waves classification workflows.
Third, the numerical experiment on 3D synthetic data and real data
application confirm the availability of the proposed method.
Finally, we give some discussion about proposed method.

2. Methodology

2.1. Kinematic and dynamic characteristics of diffracted and
scattered waves in the azimuth dip-angle image matrix

The Kirchhoff migration collects the scattered energy and shifts
the structures to their true positions on the seismic section (Uge
and Kanli, 2024). In the seismic exploration of subsurface oil and
gas reservoirs, migrated seismic images serve as the foundation for
structural interpretation and subsequent seismic inversion (Zhou,
2024; Li et al, 2025a). The 3D Kirchhoff time migration
(Schneider, 1987; Schleicher et al., 2007) can be written as
M(i, )= JW(i, 71,5.1) DS, t5 + i) ddr (1)
where s = (Xs, ys), = (Xg, yr) represent the surface locations of the
source S and the receiver R within the migration aperture,
respectively. i = (x, y;) is surface location of imaging point I. D is
seismic data and 7 is migrated time at imaging point I. W denotes
amplitude weight. ts; and tjg respectively represent the one-way
traveltime determined by the raypaths from source S to imaging
point I and from imaging point I to receiver R, as shown in Fig. 1.

In practice, the discrete form of Eq. (1) is used to calculate the
migration image M (Perez and Marfurt, 2007):

M, 7) =SS Wi r.s,r) %D(& It + ti), 2)
s r

Eq. (2) implies that Kirchhoff migration calculates the value of
imaging point I by weighted summation of data collected from
multiple positions within the migration aperture (Perez and
Marfurt, 2008). In fact, the two-way raypath from source S to im-
aging point I and back to receiver R corresponds to a set of dip angle
and azimuth angle (Cheng et al., 2012). Let gs and qr represent the
ray slowness of the source and receiver legs, respectively. The n,
denotes the vertical downward unit vector in the 7 direction. The
dip angle 6 corresponding to the given two-way raypath shown in
Fig. 1 is defined as follows (Zhao et al., 2020):

,c0571<7(q5+q}3)'n1’)7 s+ g >0
g — ‘q5+qR‘ (3)
_ +qg)-n ’
cos * (= T 95 e

And the azimuth angle ¢ corresponding to the given two-way
raypath is defined as (Cheng et al., 2011)

~12X; — (X5 + XR)
2y1 — (ys +¥r)
Therefore, according to the correspondence between the given

two-way raypath and a set of dip angle § and azimuth angle ¢, we
can define a matrix m; with dip and azimuth dimensions at the

@ =tan

(4)
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T

Fig. 1. The two-way raypath from source S to imaging point I and back to receiver R
defines a set of azimuth angle ¢ and dip angle 6. qs and qg represent the ray slowness
of the source and receiver legs, respectively. 7 is migrated time. n, denotes the vertical
downward unit vector in the 7 direction. The sum of the ray slowness qs and g pro-
duces the illumination vector, q; = gs + qg. The dip angle § corresponding to the given
two-way raypath is defined as the angle between vector q; and vector n,. K is the
middle point of source S and receiver R. I is the projection of the imaging point I onto
the surface. The azimuth angle ¢ corresponding to the given two-way raypath is
defined as the angle between I'K and y axis.

imaging point I. In order to generate the azimuth-dip angle image
matrix my, the seismic data D(s, r, tg;, tjg) should be migrated to the
dip angle # and azimuth angle ¢ in the matrix m; (Li et al., 2020). Eq.
(2) is then modified as

. 0
ml((pve): Z W(l,T],S,")&D(S,",ts]+t1R)7
(s,r)eQ

(5)

where @ is the set of two-way raypaths passing through the im-
aging point [ with dip angle # and azimuth angle ¢. Summation of
the azimuth-dip angle image matrix m; over the azimuth angle ¢
and dip angle 6 then produces a migration image according to the
stationary phase principle (Bleistein et al., 2001):

M(iv 7’1) = szl(q)a 6)
¢ 0

The energy-angle distributions in the azimuth-dip angle image
matrix, which indicates the variation of seismic wavefield energy
with azimuth angle and dip angle at the imaging point, are different
for diffracted and scattered waves. We designed a simple 3D
geologic model to show the dynamic and kinematic characteristics
of diffracted and scattered waves in azimuth-dip angle image ma-
trix. As shown in Fig. 2, the simple 3D geologic model contains a
horizontal reflector and a scatterer with a radius of 5 m. The
reflectivity of the horizontal reflector and the scatterer is set to 1
and 2, respectively. The velocity is set to 2000 m/s during modeling
and migration.

We use the Kirchhoff migration algorithm to generate azimuth-
dip angle image matrices. The scattered waves from the scatterer in
the azimuth-dip angle image matrix are shown in Fig. 3(a). The
scattered waves follow Huygens' principle and have their energy
spread across wide ranges of azimuth and dip angle. The diffracted

(6)
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Fig. 2. The simple 3D geologic model contains a horizontal reflector and a scatterer.
The scatterer with a radius of 5 m is located at x = 1500 m, y = 1000 m and z = 800 m.
The reflectivity of scatterer and horizontal reflector are set to 2 and 1, respectively.

waves from the horizontal reflector's edge in the azimuth-dip angle
image matrix are shown in Fig. 3(b). According to the geometrical
theory of diffraction (Keller, 1962), the diffracted waves are limited
by the azimuth angle, resulting in their energy is distributed in a
narrow range of azimuth angle. What's more, the diffracted waves
possess the polarity reversal property in the azimuth-dip angle
image matrix. These dynamic and kinematic features provide a
basis to classify diffracted and scattered waves in the azimuth-dip
angle image matrix. However, it is worth noting that the presence
of strong reflections, as indicated by the red arrow, obscures the
diffracted waves in the azimuth-dip angle image matrix shown
Fig. 3(b). It is difficult to observe the above-mentioned dynamic and
kinematic characteristics of the diffracted waves in Fig. 3(b).

To mitigate the interference caused by reflections, we need to
remove reflections before migration and then perform Kirchhoff
migration algorithm on separated diffractions to produce the
azimuth-dip image matrix. The PWD filter is a simple and powerful
tool for separating diffraction and reflection. It assumes that
reflection has better spatial coherence than diffraction, and there-
fore can be predicted by adjacent traces along the smooth local
slope field, while diffraction is included in the prediction residuals
(Wang et al., 2020). Its effectiveness has been widely recognized by
researchers and has been successfully applied in many fields, often
used as a comparison for new methods (Decker et al., 2015; Wang
et al., 2020; Ford et al., 2021; Lowney et al.,, 2021b; Chen et al.,
2022b, 2024; Li et al., 2023b; Sheng et al., 2024). It can eliminate
strong reflections and highlight weak diffraction with minimal
parameter adjustments (Zakarewicz et al., 2024b). This simplicity is
beneficial for quickly processing large amounts of data (such as
training dataset). Therefore, in this paper, we use the PWD method
to extract diffraction. After removing reflections using PWD, the
energy level of the wavefield in Fig. 3(c) has decreased from 108
(in Fig. 3(b)) to 10719 and the azimuth characteristic and polarity
reversal property of diffracted waves masked by reflections can be
clearly observed in Fig. 3(c). It demonstrates the necessity of
removing reflections before classifying scattered and diffracted
waves within the azimuth-dip angle image matrix.

2.2. Seismic wavefield classification in the diffraction image

In this work, we aim to classify the seismic wavefield in the
diffraction image. There are three kinds of wavefield in the
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diffraction image: scattered wave, diffracted wave, and noise. The
above problem can be regarded as an imaging point classification
problem.

As mentioned above, each subsurface imaging point I has its
own azimuth-dip angle image matrix m;. Therefore, we can obtain
the category of subsurface imaging point I by identifying the
category of azimuth-dip angle image matrix m,. By introducing the
azimuth-dip angle image matrix, the imaging point classification
task naturally becomes a 2D image matrix classification task. The
CNN is a deep learning algorithm. CNNs have a large number of free
parameters learned from the training data, which characterize
certain patterns in the training data, establishing a non-linear
mapping between the training data and the labels (Tschannen
et al,, 2020; Sheng and Zhao, 2022). And CNNs complete tasks on
new data based on this non-linear mapping. CNNs have exhibited
excellent performance in image recognition and classification tasks
(Ke etal., 2017; Liu et al., 2017; Zhang et al., 2018; Wang et al., 2019),
rendering them highly suitable for the classification of azimuth-dip
angle image matrices.

For each subsurface imaging point, we use its azimuth-dip angle
image matrix as the input to the network and make predictions to
obtain the probabilities of each imaging point being a scattered
wave, a diffracted wave, and noise, achieving pixel-level classifi-
cation prediction. This classification process can be expressed as
p=Net(my), (7)
where p = (po, p1, p2), such that Ziz:opi = 1. po, p1, p2 represent the
probabilities of noise, scattered wave and diffracted wave, respec-
tively. Net(- ) represents the DC-Net architecture. m; is an azimuth-
dip angle image matrix whose size is M x N. M and N respectively
represent the number of sampling points in the dip angle and az-
imuth angle.

The flowchart of scattered and diffracted waves classification
based on DC-Net is shown in Fig. 4. Its implementation steps are
sketched as follows.

1) Apply the PWD method to 3D common-offset data to obtain 3D
common-offset diffraction data.

2) Implement the Kirchhoff migration on 3D common-offset
diffraction data to generate azimuth-dip angle image matrices.

3) Input azimuth-dip angle image matrices to trained DC-Net and
then perform DC-Net classification to gain diffracted and scat-
tered wave probability.

4) Multiply the predicted diffracted and scattered wave probabil-
ities with the diffraction image to obtain the high-resolution
diffractor image and scatterer image.

2.3. DC-net architecture

It has been proven that short connections are beneficial in
improving the performance of deep learning models in many deep
learning studies (He et al., 2016). These short connections directly
link early layers to later layers, allowing the feature maps from early
layers to flow directly into the later layers. This alleviates vanishing
gradients and network degradation. The DenseNet takes the
concept of short connections to the extreme: it connects each layer
to all subsequent layers through short connections (Huang et al.,
2017), i.e., dense connection. Dense connections enable DenseNet
to achieve high efficiency and accuracy in classification tasks.
Hence, we utilize DenseNet to classify the diffracted and scattered
waves in the azimuth-dip angle image matrix.

The DenseNet is primarily composed of a convolutional layer,
dense blocks, transition layers, and a classification layer. When an


mailto:Image of Fig. 2|tif

T-J. Sheng, ].-T. Zhao, S.-P. Peng et al.

(a) Azimuth angle, deg

0 60 120 180  x10-10
-90 +
4.0
35
3.0
il
3 25
g
2 2.0
©
2
a 15
1.0
05
90 0
(b) Azimuth angle, deg
0 60 120 180  x10°
90 . . 5
4
—45 4
3
{2
@
©
o 2
= 0
g |
© F
[o%
a 1
45 0
-1
90
(c) Azimuth angle, deg
0 60 120 180  x1071
-90
75
a5 5.0
o 25
o)
©
g
® 0 0
c
©
2
a -25
4 -5.0
-75

20

Fig. 3. The azimuth-dip angle image matrix. (a) Scattered waves at x = 1700 m,
y = 1000 m and z = 800 m; (b) diffracted waves and reflections at x = 1700 m,
y = 1000 m and z = 800 m; (c) separated diffracted waves at x = 1700 m, y = 1000 m
and z = 800 m.
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M x N azimuth-dip angle image matrix is inputted into DenseNet, it
is first processed by convolutional layer filtering. Let Hy( - ) denotes a
cascade of convolution, nonlinear activation function and batch
normalization:

Hg( - ) =Conv?*?{ReLUBN( - )]}, (8)
where d indexes the size of convolution kernel, Conv?*4(-) is the
d x d convolution, ReLU(-) = max{0,-} is the rectified linear unit.
BN(-) is the batch normalization (loffe and Szegedy, 2015). The
convolutional layer performs a cascade function Hy(-) and 2 x 2
max pool on the azimuth-dip angle image matrix to generate
feature maps, which are then inputted into the dense blocks.

The dense block is shown in Fig. 5(a). The dense block comprises
K layers, where each layer performs composite non-linear trans-
formation Gy( - ). The composite non-linear transformation Gg(-) can
be expressed as follows:
Gi(-)=Hsz(Hq(-)), 9)
where k indexes the layer.

Each layer within a dense block is connected to every other layer
that follows. It means that any layer will receive the output feature
maps of all the previous layers:
ak:Gk[Cat(a07a17-"7ak7])}a (10)
where ay represents the output feature map of the kth layer, Cat(ag,
ay, ..., ai_1) indicates the concatenation of the output feature maps
in layers 0, 1, ..., k—1. The implementation of dense connection
enables the features of diffracted and scattered waves extracted in
each layer to be reused. It promotes the information flow between
layers and alleviates the vanishing-gradient which makes the
network easier to train and improves performance of the network
on classification task.

The concatenation operation in Eq. (10) is unavailable when the
operation of changing the size of feature maps, such as down-
sampling, is executed. The transition layer is introduced to con-
nect two dense blocks to solve the above problems. The transition
layer performs a composite non-linear transformation T(-) to
change the size of feature maps:
T(-) = AvgPool*?(H; (- )), (11)
where AvgPool>*?(-) is the 2 x 2 average pool.

In the azimuth-dip angle image matrix, besides the dynamic
difference of polarity reversal between the diffracted wave and
scattered wave, another important difference is the energy distri-
bution difference between them in the azimuth angle direction.
The coordinate attention module is helpful for network captures
direction-aware and position-sensitive information about feature
maps (Hou et al,, 2021). We introduce the coordinate attention
module before the classification layer to enhance the DenseNet's
ability to extract features related to the energy distribution in the
azimuth angle direction of diffracted and scattered waves. The co-
ordinate attention module comprises two stages: coordinate in-
formation embedding and coordinate attention generation. The
extraction of precise positional information and long-range de-
pendencies along the spatial direction in coordinate information
embedding involves the utilization of two pooling techniques:

> ac(h,i).

% 0<i<N,

1

(12)
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azv =N Z ak,C(j7 W)

4o<j<M,

(13)

where a is the c-th channel of feature map a. My and N, are the
number of rows and columns of a. h and w represent row and
column indexes of a.

The coordinate attention generation first concatenates the
output of the coordinate information embedding and then input
them into 1 x 1 shared convolution:

f=0 (Conv1 x1 (Cat (ah, a"") ) ) .

where §(-) is non-linear activation function, a" and a” represent the
data obtained after processing all channels of feature map a
through Eqgs. (12) and (13), respectively.

The f is split into }h and f* along the spatial direction. The co-
ordinate attention weights of feature map are generated by the
following:

(14)

g" = Sigmoid (COHV1 <1 (fh) ) . (15)

g" =Sigmoid (Conv1 < (f"")) . (16)
where Sigmoid(-) is sigmoid function. Finally, the feature map b
adjusted by the coordinate attention module can be written as
be(i.j) = ac(i.j) > gl (i) > g (). (17)
where gl' and gV represent g" and g" of the c-th channel, respec-
tively. The b, is b of the c-th channel.

After passing through a series of dense blocks, transformation
layers, and coordinate attention module, the feature maps will be
inputted into the classification layer to output the probabilities for

different classes. The classification layer executes a batch normal-
ization, linear layer and SoftMax on the final output feature map to

b
( 1nput + Dense block Dense block
(a) Dense block %
______________ I 'f 3
| : =00 00 OO
| =
BN + ReLU + Conv'™! ! z
|
| 3
|
|
| Coordinate attention
|
: Output Dense block
|
______________ Po = 0 _Conca( + Conv
pi=1 +—10-0 - 00
pr=0
, =
Conv +
-

Conv: Convolution BN: Batch normalization RelU: Rectified linear unit activation MaxPool: Max pooling
AvgPool: Average pooling Concat: Concatenate Sigmoid: Sigmoid activation

Fig. 5. The DC-Net architecture. (a) The dense block. (b) The DC-Net.
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Fig. 6. Four types of basic geological models. (a) Inclined reflector model; (b) random curved reflector model; (c¢) Gaussian-type high slope reflector model; (d) S-type high slope

reflector model.

obtain the probability vector p. The DC-Net architecture is shown as
Fig. 5(b).

3. Experiment
3.1. Dataset preparation

The effectiveness of the network is critically dependent on the
quality of the training dataset (Goyes-Penafiel et al., 2024; Li et al.,
2024c). To obtain a deep learning model with high performance, it
is widely recognized that a large and diverse training dataset is
required (Park et al., 2019). We design four distinct types of three-
dimensional geological models to construct a dataset of azimuth-
dip angle image matrices. These four modes comprise the in-
clined reflector model, random curved reflector model, Gaussian-
type high slope reflector model, and S-type high slope reflector
model. The formula for constructing the inclined reflector model is
as follows:

depth(lx, ly) =dp + Ix - tan Ox + I, -tan 6y, (18)

where Iy represents the position in the crossline direction of the
model, I, represents the position in the inline direction of the

model. depth(ly, I;) represents the function describing the variation
of reflector depth with position. dj is the depth of the reflector at
Iy =0 and I, = 0. 0, represents the dip angle of the reflector along
the crossline direction, while ¢, represents the dip angle of the
reflector along the inline direction. The three-dimensional
geological model constructed according to Eq. (18) is shown in
Fig. 6(a).

In field data, reflectors often exhibit small undulations. We can
simulate these small undulations in the reflectors using random
functions and smooth functions. The random curved reflector
model can be constructed using the following equation:

depth(ly,ly) = do + lx-tan(smooth(rand(fxmin, fxmax) ) )
+ ly-tan(smooth(rand (fymin, fymax) ) ), (19)

where rand(-) represents the random number generator function,
Oxmin and Oxmax represent the minimum and maximum values of
the dip angles along the crossline direction generated by the
random number generator. fymin and fymax represent the minimum
and maximum values of the dip angle along the inline direction
generated by the random number generator. smooth(-) represents
the smooth function used to smooth the randomly generated dip
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Fig. 7. Six 3D complex geological model examples used to generate training dataset.
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Fig. 8. Nine examples from the training dataset. The (a)—(c) show diffracted waves. The (d)—(f) show scattered waves. The (g)—(i) show residual reflections. There is some noise

caused by the migration algorithm in the azimuth-dip angle image matrix.
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Fig. 9. The training and validation loss curves decreased steadily during the whole
training process. The CE loss represents the cross entropy value defined in Eq. (22).
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Fig. 10. The 3D geologic model, which contains curved reflectors, faults and scatterers.
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angles. The three-dimensional geological model constructed ac-
cording to Eq. (19) is shown in Fig. 6(b).

In addition to constant dip angles and small undulations, the
reflection layer in practice may also have continuously changing
high slope. We simulate continuously varying high slope reflectors
using Gaussian and sigmoid functions. The Gaussian-type high
slope reflector can be constructed using the following equation:

(xoma)? O )2

depth(lx,ly) =dg +px; - € *x° +Py1"37 o

(20)

where px1, ix1, Ox1, Py1, My1 and oy are six parameters that control
the shape of the Gaussian function. The three-dimensional
geological model constructed according to Eq. (20) is shown in
Fig. 6(c).

The high slope S-type reflector can be constructed using the
following equation:

py2
1+ e*(’y*#yz)‘”yz ’

Px2

depth(ly, ly) =dg + T e thin) 70

(21)

where px2, px2, 0x2, py2, y2 and gy are six parameters that control
the shape of the Sigmoid function. The three-dimensional geolog-
ical model constructed according to Eq. (21) is shown in Fig. 6(d).
After constructing the reflector model, faults can be generated
by dividing A into piecewise functions or adding displacement
values in the depth direction. After adding faults to the reflector, we
can introduce scatterers with different diameters into the model.
These scatterers are used to generate scattered waves. More com-
plex models can be obtained by combining these basic models.
Based on the above process, training data can be generated in a
batch manner by randomly generating reflector parameters, fault
parameters, and scatterer parameters within specific ranges.
Finally, we generate 140 three-dimensional geological models
whose size is 4000 m x 4000 m x 4000 m, which contain karstic
caves of different scales, faults of different scales, and diverse large-
scale reflection structures (including inclined strata of different dip
angles, syncline, anticline and so on). The diameter of scatterers
representing karstic caves is randomly set between 5 and 50 m, and
these scatterers are randomly placed in the three-dimensional
geological model to generate scattered waves of different shapes
and amplitudes. Similarly, we randomly set the horizontal and
vertical fault displacements between 5 and 50 m, and add different
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fault displacements to the reflection structures to generate dif-
fracted waves of different shapes and amplitudes. From our ex-
periments, including more scatterers and faults in the geological
model is helpful to train a better DC-Net, so we randomly set the
number of faults in each three-dimensional geological model from
8 to 16 and the number of scatterers from 10 to 40. Six three-
dimensional geological models from these 140 three-dimensional
geological models are shown in Fig. 7.

After generating three-dimensional geological models in a batch
manner, we establish a synthetic common-offset dataset by the 3D
Kirchhoff modeling algorithm and implement the PWD method on
the synthetic dataset to obtain a common-offset diffraction dataset.
Subsequently, the azimuth-dip angle image matrices are generated
using 3D Kirchhoff time migration algorithm on the common-offset
diffraction dataset. A total of 210192 azimuth-dip angle image
matrices are generated, we randomly divided the whole dataset
into the training dataset and the validation dataset. Finally, the
number of training dataset and validation dataset is 168591 and
41601, respectively. Nine azimuth-dip angle matrices from the
training dataset are shown in Fig. 8.

3.2. Training DC-net

We train the DC-Net using the synthetic dataset. The training
hyperparameters are set as follows: the batch size is set as 32 and
the number of epochs is set as 20. We use the Adam algorithm to
minimize loss function and update learnable parameters of DC-Net.
We set the initial learning rate to 0.001 and use the cosine
annealing algorithm to decay the learning rate in each epoch.
During the training process, we use the cross entropy for the three
classes to measure the difference between the output of the
network and the expected output:

2

> log

c=0

EXD(me) 5
> nc»

s (22)
Zi:O exp (pn,i

] B
Leg= _EZ

n=1

where Lcg is cross entropy value, B is the number of training sam-
ples, pnc and p, . respectively represent the network's output
probability and actual probability for class ¢ of the n-th training
sample.

The training process costs a total of 13.29 h on a Dell precision
tower 7910 workstation with one Quadro K6000 GPU and the
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Fig. 11. (a) The XZ reflectivity section at y = 1000 m. (b) The YZ reflectivity section at x = 500 m. Black curves represent curved reflectors whose reflectivity is 1.0, 1.3, 1.6 and 2.0,
respectively. Red dots represent scatterers with a radius of 5 m, and their reflectivity is set to 2.
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CentOS7 operating system. The training and validation loss curves
are shown in Fig. 9. The training and validation loss curves gradu-
ally converge steadily at the end of training.

3.3. Numerical examples

We meticulously design a 3D geologic model to test the effec-
tiveness of the DC-Net. The 3D geologic model which contains
curved reflectors, faults and scatterers is shown in Fig. 10. The
reflectivity of the 3D geologic model is shown in the XZ section and
YZ section in Fig. 11(a) and (b). The size of faults in the 3D geologic
model is set to 10—100 m, and the radius of the scatterers is set to
5 m.

We generate common-offset data using 3D Kirchhoff modeling
algorithm with a constant velocity of 2000 m/s and a 35 Hz Ricker
wavelet. The common-offset data and the corresponding 3D
Kirchhoff time migration are shown in Figs. 12 and 13, respectively.
In Fig. 13, the reflections mask the existence of the scattered waves,
especially area circled by red box, four scatterers are completely
invisible due to their proximity to the reflector. Strong reflections
will mask scattered and diffracted waves in the azimuth-dip angle
image matrix, which is unfavorable to the classification of diffracted
and scattered wave. We apply the PWD method to 3D common-
offset data to obtain 3D common-offset diffraction data. The
common-offset diffraction data and the corresponding 3D Kirchh-
off time migration are shown in Figs. 14 and 15, respectively.
Compared to the 3D Kirchhoff time migration in Fig. 13, the
diffraction image highlights faults and scatterers in Fig. 15. How-
ever, the distinction between diffracted and scattered waves is not
obvious in the diffraction image due to the complexity of geological
models. The diffracted waves indicated by the red arrows do not
have obvious polarity reversal feature in Fig. 15, which makes it
easy to be confused with scattered waves in the diffraction image.
The residual reflections also cause a challenge in accurately locating
scatterers and faults, for example, the diffracted waves indicated by
the yellow arrows are covered by the residual reflections in Fig. 15,
which are difficult to identify and locate. We generate the azimuth-
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Fig. 12. The common-offset data of the 3D geologic model contains diffracted waves

from the faults, scattered waves from the scatterers, and reflections from the curved
reflectors.

Petroleum Science 22 (2025) 2353—2383

2000

1600

1200

800

400

400

800

1200

Time, ms

1600

2000 .
0 600 1200 1800 2400 0 400 800 1200 1600 2000

X, m Y, m
Fig. 13. The 3D Kirchhoff time migration of the 3D synthetic data. The 3D Kirchhoff

time migration reveals curved reflectors and large-scale faults, while scatterers and
small-scale faults are invisible due to the masking of reflections.

dip angle image matrix of each imaging point during the migration
process, as shown in Fig. 16. When the subsurface structure is
complex, the seismic wavefield also becomes complex, leading to
the introduction of a large amount of migration noise in the
azimuth-dip angle image matrix. Moreover, the complex wavefield
makes it difficult for the PWD method to separate diffractions,
resulting in residual reflections also present in the azimuth-dip
angle image matrix. Compared to diffracted waves, the amplitude
of scattered waves is weaker. This means that during the
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Fig. 14. Separated diffraction from the PWD method. The flat parts of the reflections
are removed, but some of the high-slope parts of the reflection remain in the separated
diffraction.
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Fig. 15. The 3D diffraction image of the synthetic data. The small-scale faults and
scatterers are highlighted. However, it is still difficult to distinguish the scattered and
diffracted waves due to the complexity of the geological model and the residual
reflections.

classification process, scattered waves are more affected by
migration noise and residual reflections. The residual reflections
and noise make the accurate classification of scattered and dif-
fracted waves more challenging.

We use the DC-Net to classify the azimuth-dip angle image
matrices of the diffraction data, and obtain diffracted and scattered
wave probability images. We use evaluation metrics such as accu-
racy, precision, recall and F1-score in image segmentation tasks
(Yang et al., 2024) to quantitatively evaluate the performance of DC-
Net. The accuracy, precision, recall and F1-score of DC-Net on test
dataset (generated from the 3D model shown in Fig. 8) are 96.03%,
88.16%, 54.76% and 62.71%. The diffracted and scattered wave
probability images are shown in Fig. 17. The highlighted areas
accurately indicate the positions of diffracted and scattered waves.
However, as analyzed earlier, migration noise and residual re-
flections affect the classification results of scattered and diffracted
waves. Some imaging points without scattered and diffracted
waves are also considered to have a high probability of scattered or
diffracted waves. The amplitude of these imaging points that do not
have scattered and diffracted waves but have high probability
values on the scattered or diffracted wave probability image may
not be very strong in the diffraction image (due to the weakening of
migration noise in the azimuth-dip angle image matrix after su-
perposition along the dip and azimuth angles). In order to alleviate
the interference of the noise and residual reflections, we multiply
the diffracted and scattered wave probabilities as imaging point
weights with the diffraction image to obtain the high-resolution
diffractor and scatterer images. As shown in Fig. 18, the diffractor
and scatterer images clearly reveal the positions of faults and
scatterers. The faults masked by residual reflections (indicated by
the yellow arrow) and without obvious polarity reversal charac-
teristics (indicated by the red arrow) in the diffraction image are
also clearly revealed on the diffractor image in Fig. 18(a). It dem-
onstrates the effectiveness of the proposed method in locating and
identifying faults and scatterers.

To further demonstrate the effectiveness of the proposed DC-
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Fig. 16. The azimuth-dip angle image matrix of synthetic data. (a) Scattered wave at
Xx = 2300 m, y = 1000 m, t = 450 ms; (b) diffracted wave at x = 800 m, y = 1000 m,
t = 586 ms; (c) residual reflection at x = 500 m, y = 750 m, ¢t = 790 ms.
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Fig. 17. The probability images. (a) The diffracted wave probability image. (b) The scattered wave probability image.
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Fig. 18. The product images of diffraction image and probability image. (a) The diffractor image. (b) The scatterer image.

Net, we test and compare it with conventional the ResNet (He et al.,
2016) and the DenseNet (Huang et al., 2017). We use the same
training dataset to train ResNet and DenseNet. Table 1 presents the
prediction performance of these networks on test data. The DC-Net
receives the highest scores in accuracy and precision. The predic-
tion results are shown in Fig. 19. These three networks effectively

Table 1

Evaluation statistics of classification results of ResNet, DenseNet and DC-Net.
Evaluation,% ResNet DenseNet DC-Net
Accuracy 95.64 95.59 96.03
Precision 87.79 80.87 88.16
Recall 51.49 58.12 54.76
F1-score 58.13 64.29 62.71

2365

indicate the location of faults. There are differences among these
three networks in predicting weak amplitude scatterers. As shown
in Fig. 19(f), ResNet predicts poorly the scatterers indicated by the
white arrows. DenseNet can effectively predict the position of
certain scatterers, but there are false scatterers indicated by white
arrows in Fig. 19(d). Compared to DenseNet and ResNet, DC-Net
exhibits better scatterer prediction results in Fig. 19(b). We
perform prediction using these three networks on one Quadro
K6000 GPU to test imaging speed of these three networks. The time
required by DC-Net, DenseNet, ResNet to predict one azimuth-dip
angle image matrix is 36.39, 33.99 and 40.89 ms, respectively.
Due to the introduction of the coordinate attention module, the
imaging speed of DC-Net is slightly lower than that of DenseNet.
This sacrifice in imaging speed is worthwhile because coordinate
attention effectively improves prediction precision (compare
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Fig. 19. The prediction results of DC-Net, DenseNet and ResNet. The (a) and (b) are the diffracted and scattered wave probability images predicted by DC-Net, respectively. The (c)
and (d) are the diffracted and scattered wave probability images predicted by DenseNet, respectively. The (e) and (f) are the diffracted and scattered wave probability image

predicted by ResNet, respectively.
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Fig. 19(b) and (d)). The comparison experiments validate the ad-
vantages of the proposed DC-Net over other conventional networks
in the diffraction classification imaging task.

Accurately distinguishing diffracted and scattered waves in the
diffraction image is a key to identify and locate faults and scatterers.
There may be no obvious dynamic differences between diffracted
and scattered waves in the diffraction image when subsurface
structures are complex. Meanwhile, the reflections remaining in
the diffraction image also further improve the difficulty of dis-
tinguishing diffracted and scattered waves. This 3D geologic model
application proves that our proposed classification method can
effectively classify diffracted and scattered waves, primarily owed
to DC-Net's great performance in extracting distinctive character-
istics of diffracted and scattered waves in the azimuth-dip angle
image matrix.

3.4. Field data application

We further verify the effectiveness of the proposed method on a
3D real post-stack dataset from North China. The research area
where the 3D real post-stack dataset is located is developed with
Ordovician limestone karst fracture-cavern reservoirs. These res-
ervoirs exhibit several distinct characteristics, including small scale,
strong heterogeneity, and deep burial depth. These characteristics
make it difficult to accurately depict the location of the reservoir
with reflection imaging. In contrast, diffraction imaging, which
focuses on imaging small-scale elements, can provide high-
resolution information about subsurface heterogeneity. It is help-
ful to detect small-scale caves and faults in the research area, and to
realize the fine characterization and accurate identification of karst
fracture-cavern reservoirs in the research area.

The 3D real post-stack dataset is shown in Fig. 20(a) and the
corresponding Kirchhoff time migration is displayed in Fig. 20(b).
We use the red dots and dashed lines to indicate the location of the
well A and B. The location of the target layer is indicated by a blue
curve. Well A exhibits low yield, whereas well B has produced in-
dustrial gas flow, suggesting the presence of reservoirs in its
proximity. The resolution of the reflection image is low, and only
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large-scale reflectors can be clearly observed in the reflection im-
age. Although some parts of the reflector can be observed to be bent
in the reflection image, these bends may be caused by small-scale
geological bodies near the reflector or by reflector fluctuations.
The reflection image cannot provide enough information to accu-
rately locate small-scale geological bodies. The separated diffrac-
tion using the PWD method and the corresponding Kirchhoff time
migration are displayed in Fig. 21. Compared with the reflection
image, the diffraction image provides more detailed information
about small-scale geological bodies. However, distinguishing faults
and scatterers still remains difficult in the diffraction image. This
makes it challenging to accurately identify karst fracture-cavern
reservoirs within the research area.

The synthetic dataset generated under ideal conditions often
cannot effectively represent all the features of field data. Especially,
in addition to the differences in waveforms and amplitudes, there is
“background noise” in the real data that is not present in the syn-
thetic data. It is worth noting that the real data in Fig. 20(a) are the
data that can be directly used for migration after denoising and
other pre-processing. This background noise is the background
value that still exists in the data after denoising and other pre-
processing. This background noise is related to factors such as the
survey and geological conditions of the study area, so it is different
for different real data. It is difficult to simulate this background
noise in synthetic data that can cover all cases. As a data-driven
method, the DC-Net trained with synthetic dataset may not be
able to effectively classify diffracted and scattered waves in real
dataset because of the difference between synthetic dataset and
real dataset. Training a new DC-Net from scratch is time-consuming
and tedious. Transfer learning is helpful to solve this problem and it
has been performed in diffraction separation (Kim et al., 2022),
fault detection (Cunha et al., 2020) and other seismic data pro-
cessing based on deep learning. Transfer learning can be achieved
in various ways, with the most common method being the use of
pre-trained models. We used the DC-Net trained on synthetic data
as the pre-trained model. The pre-trained model has learned the
general features of scattered and diffracted waves in azimuth-dip
angle image matrices from a large-scale synthetic dataset. The
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Fig. 20. (a) The 3D real post-stack data. (b) The reflection image. The information provided by the low resolution of reflection imaging is not enough to accurately locate the small-

scale geological body.
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Fig. 21. (a) The separated diffraction using the PWD method. (b) The diffraction image. The diffraction image provides more detailed information about small-scale geological

bodies, but faults and scatterers are still difficult to distinguish.

pre-trained model will be used as the initial model to fine tune
parameters on additional small-scale training dataset to avoid a
time-consuming retraining. We select 9 lines of data from the real
dataset to generate azimuth-dip angle image matrices and make
labels by manually marking the diffracted and scattered waves in
azimuth-dip angle image matrices. These azimuth-dip angle image
matrices will be used as the additional training dataset of DC-Net
for processing the field data. Note that the additional training
data does not include the subsequent field test data. To prevent
overfitting, the initial learning rate should be small in transfer
learning (KKim et al., 2022). We set the initial learning rate to 0.0001
and applied all of the strategies described previously.

DC-Net classification results of diffraction image are shown in
Fig. 22. Compared with the diffraction image, diffracted and scat-
tered wave probability images provide a more detailed description.
Scatterer and diffractor images can be obtained by multiplying
scattered and diffracted wave probability images with the diffrac-
tion image, as shown in Fig. 23. The scatterer image reveals the
existence of scatterers near well B, indicating that there is a high
possibility of karst fracture-cavern reservoirs near well B. These
findings align with the observation of industrial gas flow at well B.
The scatterer and diffractor images show that there are no scat-
terers and faults near well A, which indicates that there may be no
karst fracture-cavern reservoirs near well A. This may be the reason
for the low production of well A.

Seismic attribute analysis has proved to be a very effective
technique for interpreting subsurface geological features and it has
been widely used in industry (Ishak et al., 2018; Dell et al., 2020;
Yang et al., 2023; Li and Li, 2024). We introduce a comparison be-
tween the seismic coherency attribute and the proposed method to
demonstrate the effectiveness of the proposed method. The seismic
coherency attribute of the field data in Fig. 20(b) is shown in
Fig. 24(a). The seismic coherency attribute reveals many large-scale
faults. However, due to the influence of strong reflections, the
resolution of small-scale scatterers is not high in Fig. 24. Moreover,
the seismic coherency attribute mainly enhances the discontinuity
features in the image and does not differentiate between discon-
tinuities caused by faults and discontinuities caused by scatterers.
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In contrast to the seismic coherency attribute, the proposed
method achieves the automatic classification of scatterers and
faults in the diffraction image. It reveals effectively small-scale
geological features hidden in the background of strong reflections
and provides a more detailed portrayal of small-scale scatterers and
faults.

Carbonate karst fracture-cavern reservoirs account for a
considerable proportion of the reservoirs discovered worldwide
and harbor enormous exploration and development potential
(Decker et al., 2015; Li et al., 2016). The carbonate karst fracture-
cavern reservoirs contain various types of reservoir space,
including caves and fractures (Li et al., 2016). Due to large differ-
ences in reservoir space, diverse development strategies are
required for various types of carbonate fracture-cavity reservoirs.
Therefore, it is necessary to distinguish geological structures
related to reservoirs, such as caves and fractures. In seismic imag-
ing, the caves correspond to scattered waves, while the fractures
correspond to diffracted waves (Smirnov et al., 2021). The proposed
method combines diffraction imaging and deep learning tech-
niques to achieve the automatic classification imaging of scattered
and diffracted waves, which alleviates the dependence of small-
scale structures interpretation on manual experience to a certain
extent. It has the potential to distinguish between caves and frac-
tures in carbonate karst fracture-cavern reservoirs, which is
conducive to enhancing the development and utilization of car-
bonate karst fracture-cavern reservoirs. The method can be inte-
grated into current workflows. The proposed classification imaging
workflow (Fig. 4) is based on diffraction imaging and acts on
seismic data that can be directly used for migration. Thus, the
classification imaging workflow (Fig. 4) can be inserted between
data preprocessing and reflection imaging in the current work-
flows. The method can be naturally combined with conventional
seismic attribute techniques to enhance the efficiency of reservoir
development, i.e., the seismic attribute technique is used to portray
large-scale structures and the proposed method is used to sup-
plement the detailed information of small-scale structures.

The field data application illustrates that the proposed diffrac-
tion classification imaging method can further provide more
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Fig. 22. The probability images. (a) The diffracted wave probability image; (b) the scattered wave probability image.
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Fig. 23. The product images of the diffraction image and the probability images of real data. (a) The diffractor image. (b) The scatterer image. The scatterers near well B reveal the
existence of reservoirs. The absence of faults and scatterers near well A suggests that it may be a low production well.

accurate and detailed characterization of scatterers and faults on
the basis of the diffraction image, which improves the resolution of
the diffraction image and is helpful for the exploration of karst
fracture-cavern reservoirs.

4. Discussion

The DC-Net classifies diffracted and scattered waves according
to their dynamic and kinematic characteristics in azimuth-dip
angle image matrices. Errors in migration velocity can result in
defocusing and distortion of scatterers and diffractors in migration
images (Liu et al., 2024; Li et al., 2025b). These errors also affect the
dynamic and kinematic characteristics of diffracted and scattered
waves in azimuth-dip angle image matrices, so it may affect the
classification results of the network. We test the impact of
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migration velocity errors on the performance of the DC-Net trained
by synthetic training dataset. The diffraction images with 2% and 5%
errors in migration velocity are shown in Fig. 25. When the
migration velocity is higher or lower than accurate migration ve-
locity, distinct arcuate features can be observed in the diffraction
images of faults and scatterers, while the energy of scattered and
diffracted waves cannot be accurately focused at the true positions
of scatterers and faults. This implies that migration velocity errors
can affect both dynamic and kinematic characteristics of the
azimuth-dip angle image matrices. The diffracted wave and scat-
tered wave probability images at x = 500 m with inaccurate
migration velocity are shown in Fig. 26. For 2% errors in migration
velocity, the DC-Net can accurately classify the diffracted waves in
Fig. 26(a) and (c), but the classification results of scattered waves
are obviously affected in Fig. 26(b) and (d). When the errors are
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Fig. 24. (a) The seismic coherency attribute of field data. (b) The scatterer image using the proposed method. (c) The fault image using the proposed method.

equal to 5% in migration velocity, diffracted and scattered waves are
almost completely unfocused. The DC-Net is difficult to correctly
classify diffracted and scattered waves, as shown in Fig. 26(c), (d),
(g), and (h). We use evaluation metrics such as accuracy, precision,
recall, and F1-score to quantitatively evaluate the performance of
the DC-Net when migration velocity is inaccurate. Table 2 presents
the prediction performance of the DC-Net when migration velocity
is inaccurate. When velocity errors are 2%, precision, recall, and F1-
score exhibit minor degradation. With 5% velocity errors, these
metrics demonstrate significant deterioration. This indicates that
DC-Net struggles to accurately classify diffracted and scattered
waves in the presence of substantial velocity errors. It is worth
noting that all training dataset is generated using the correct
migration velocity, which proves to some extent that the robust-
ness of the proposed method when errors are small in migration
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velocity.

We also conducted experiments on synthetic data contaminated
by Gaussian random noise. We add different levels of random noise
to the synthetic data and obtain the synthetic data with SNR of 10,
20, 25, and 30. We classify diffracted and scattered waves on these
synthetic data with different SNR. The separated diffraction and
diffraction image are shown in Fig. 27. Random noise masks deep
diffracted and scattered waves to some extent, especially below
800 ms. The corresponding diffracted and scattered wave proba-
bility images are shown in Fig. 28. Table 3 presents the prediction
performance of the DC-Net when synthetic data is contaminated by
random noise. When the synthetic data has an SNR of 10, the DC-
Net fails to function effectively. Due to the influence of random
noise, the DC-Net cannot recognize all faults on the synthetic data
with SNR of 20. For synthetic data with a signal-to-noise ratio of 25,


mailto:Image of Fig. 24|tif

T-J. Sheng, ].-T. Zhao, S.-P. Peng et al.

the DC-Net only identifies a small portion of deep faults. Noise also
affects the classification of scattered waves, and the amplitude of
scattered waves in deeper areas is weaker compared to shallow
areas. In deeper areas, noise tends to mask the characteristics of
scattered waves more strongly. In Fig. 28(d) and (f), it can be
observed that as the depth increases, the classification result of
scattered waves deteriorates, and the scatterer located at the
deepest position is not displayed on the scattered wave probability
image of the synthetic data with SNR of 20. Only a small fraction of
the deepest scatterer is identified on the scattered wave probability
image of the synthetic data with SNR of 25. With the increase of
SNR, the classification effect of the network is gradually improved,
and an acceptable classification result is obtained on the synthetic
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data with SNR of 30. The above experiments demonstrate that the
proposed diffracted and scattered waves classification imaging
method has certain requirements for the SNR of input data, and an
acceptable classification result can be achieved for data with SNR
higher than 25. In order to obtain better classification effect, the
input data should be denoised first.

It is worth noting that the DC-Net used in the above tests was
trained using azimuth-dip angle image matrices generated from
noise free diffraction data and correct migration velocity. When
constructing a training dataset, considering noise and velocity er-
rors may result in a better performing DC-Net model, but more data
also requires the longer training time, and the introduction of noise
may also increase the difficulty of training.
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Fig. 25. The diffraction image profile at x = 500 m with inaccurate migration velocity: (a) 2% lower than the accurate migration velocity. (b) 5% lower than the accurate migration
velocity. (c) 2% higher than the accurate migration velocity. (d) 5% higher than the accurate migration velocity.
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Fig. 26. The diffracted wave probability image profile at x = 500 m with inaccurate migration velocity: (a) 2% lower than the accurate migration velocity; (c) 5% lower than the
accurate migration velocity; (e) 2% higher than the accurate migration velocity; (g) 5% higher than the accurate migration velocity. The scattered wave probability image profile at
x = 500 m with inaccurate migration velocity: (b) 2% lower than the accurate migration velocity; (d) 5% lower than the accurate migration velocity; (f) 2% higher than the accurate
migration velocity; (h) 5% higher than the accurate migration velocity. The influence of errors in the migration velocity on the classification of scattered waves is greater than that of
diffracted waves. The scattered waves can hardly be located on the scattered wave probability image when the errors are equal to 5%.

The DC-Net uses the azimuth-dip angle image matrix generated
by the separated diffraction using the PWD method as the input, so
the residual reflections contained in the separated diffraction may
also affect the classification result. We adjusted the parameters of
the PWD method to make more reflections remain in the separated
diffractions. The imaging results of these separated diffractions
containing residual reflections of different intensities are shown in
Fig. 29. The red box indicates area with more residual reflections,
which is stronger in Fig. 29(b) than in Fig. 29(a), and to some extent
mask nearby scatterers. The scattered and diffracted wave proba-
bility images are shown in Fig. 30. Residual reflections have an

Table 2

adverse effect on the classification results, and the stronger the
residual reflections, the greater the impact in the classification re-
sults (area indicated by white boxes in Fig. 30(b) and (d)). However,
even in the presence of strong residual reflections, the DC-Net can
still correctly classify a small part of the scatterer, which shows that
the proposed method has a certain robustness to residual
reflections.

Further, we design an experiment to quantitatively analyze how
varying residual reflection intensities affect the classification ac-
curacy of the DC-Net. In order to quantitatively control the intensity
of the reflected waves, we perform this experiment using a simple

Evaluation statistics of classification results of the DC-Net when migration velocity is inaccurate.

Evaluation, % Accurate velocity 2% lower velocity

2% higher velocity 5% lower velocity 5% higher velocity

Accuracy 96.03 95.78
Precision 88.16 86.65
Recall 54.76 51.08
F1-score 62.71 57.70

95.37 94.94 94.54
83.12 60.32 55.21
47.70 40.58 36.94
53.49 43.87 38.58
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Fig. 27. The separated diffractions at x = 500 m with noise: (a) the SNR of synthetic data is 10; (c) the SNR of synthetic data is 20; (e) the SNR of synthetic data is 25; (g) the SNR of
synthetic data is 30. The diffraction images at x = 500 m with noise: (b) the SNR of synthetic data is 10; (d) the SNR of synthetic data is 20; (f) the SNR of synthetic data is 25; (h) the

SNR of synthetic data is 30.

model containing 4 scatterers, 5 faults, and a horizontal reflector
(as shown in Fig. 31). The model contains only the horizontal
reflector, we can easily obtain the accurate dip angle (since the dip
angle of the horizontal reflector is 0). We use the PWD method to
extract diffractions based on the accurate dip angle. Since the dip
angle is accurate, we treat diffraction extracted by the PWD method
as pure diffraction data that does not contain reflections. The
reflection data is obtained by subtracting the pure diffraction data
using the full wavefield data. To test the effect of residual re-
flections, we apply different amplitude weights to the reflection
data to construct the reflection data with different intensities, with
amplitude weights of 0%, 20%, 40%, 60% 80% and 100%,
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respectively. These 6 weighted reflection data are summed with the
pure diffraction data to obtain the test data containing 0%, 20%, 40%,
60%, 80%, and 100% intensity residual reflections. The construction
process of test data can be described by the following equation:

test = diffr + v x refl, (23)
where test is test data. The diffr is pure diffraction data and refl is
reflection data. The v is amplitude weight (0%, 20%, 40%, 60%, 80%,
and 100%).

We test the DC-Net on these 6 test data containing residual
reflections with different intensities. Table 4 presents the
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Fig. 28. The diffracted wave probability image profiles: (a) the SNR of synthetic data is 10; (c) the SNR of synthetic data is 20; (e) the SNR of synthetic data is 25; (g) the SNR of
synthetic data is 30. The scattered wave probability image profiles: (b) the SNR of synthetic data is 10; (d) the SNR of synthetic data is 20; (f) the SNR of synthetic data is 25; (h) the

SNR of synthetic data is 30.

Table 3
Evaluation statistics of classification results of the DC-Net when test data is
contaminated by random noise.

Evaluation, % SNR = 10 SNR = 20 SNR = 25 SNR = 30
Accuracy 94.64 95.07 95.49 95.82
Precision 48.21 91.19 91.99 91.14
Recall 33.35 39.33 4513 50.31
F1-score 32.45 43.40 52.16 58.53

prediction performance of the DC-Net on these 6 test data. The
classification results of 4 test data are shown in Fig. 32. As the in-
tensity of the residual reflections increases, the probability that the
residual reflections are determined to be diffracted waves or scat-
tered waves also increases. Until the intensity of the residual re-
flections increases to 60%, diffracted wave and scattered wave
probability images can still outline faults and scatterers relatively
effectively. It demonstrates the robustness of the DC-Net to residual
reflections. When dealing with real data, pure diffraction data are
difficult to obtain. The robustness to residual reflections favors the
extension of the proposed method to practical applications.
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In previous experiments, the azimuth-dip angle image matrices
used for DC-Net training and processing were 2-dimensional
181 x 181 matrices. Here, we first test the effect of test data reso-
lution on the classification results of DC-Net. For the convenience of
the subsequent description, we name the training dataset used in
the numerical examples (training data are 2-dimensional 181 x 181
matrices) as DO and the test dataset used in the numerical exam-
ples as TO. The DC-Net trained using the training dataset DO is
named as DC-Net0. We perform dip and azimuth angle direction's
equidistant downsampling with a spacing of 2, 4 and 8 on the test
dataset TOto generate test dataset T2, T4, and T8, which are shown
in Fig. 33. We use DC-NetO0 to process the test dataset T2, T4, and T8,
respectively. The prediction results are shown in Fig. 34. Due to the
fact that the sampling interval of all azimuth-dip angle image
matrices in the training dataset DO is 1°, the performance of DC-
NetO on the test dataset T2, T4, T8 is quite poor. There is no valid
information in the predicted diffracted and scattered probability
images. This indicates that DC-NetO is highly sensitive to the res-
olution of the input azimuth-dip angle image matrix. Adding the
azimuth-dip angle image matrix with other sampling intervals to
the training dataset may help improve the robustness of DC-Net to
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Fig. 29. (a) The diffraction image contains weak residual reflections (at x = 500 m); (b) The diffraction image contains strong residual reflections (at x = 500 m). The red box

indicates the area with residual reflections.

resolution of the input azimuth-dip angle image matrix. The
number of sampling points of the azimuth-dip angle image matrix
has a significant impact on the time spent on training DC-Net.
Fewer sampling points means fewer operations, but the resolu-
tion of the azimuth-dip angle image matrix in the training dataset
is also lower, which is likely to affect the performance of the DC-
Net. This seems to lead to a trade-off between training efficiency
and network performance. Therefore, we discuss the effect of the
number of sampling points of the azimuth-dip angle image matrix
in the training dataset on the performance of the DC-Net. We
perform dip and azimuth angle direction's equidistant down-
sampling with a spacing of 2, 4 and 8 on the training dataset DOto
construct the training datasets D2, D4, and D8. Then, we train the
DC-Net using D2, D4, and D8 to obtain DC-Net2, DC-Net4, and DC-
Net8, respectively. It can be seen that the resolution of the azimuth-
dip angle image matrix gradually decreases with the increase of the
downsampling spacing, and kinematic and dynamic characteristics
of scattered and diffracted waves become less and less obvious. We
use DC-Net2, DC-Net4, and DC-Net8 to process the test dataset T2,
T4, and T8, respectively. The prediction results are shown in Fig. 35.
The diffracted wave probability image predicted by the DC-Net2
clearly reveal the positions of faults, while the scattered wave
probability image predicted by the DC-Net2 cannot reveal all
scatterers. As the downsampling interval gradually increases, the
prediction results deteriorate. The results predicted by the DC-Net4
can only reveal a few faults, but cannot reveal the location of
scatterers. The prediction results of the DC-Net8 are the worst, and
effective information about faults and scatterers cannot be ob-
tained from the diffracted and scattered wave probability images
predicted by the DC-Net8. It indicates that when the resolution of
the azimuth-dip angle image matrix in the training dataset is too
low, the DC-Net cannot learn the effective characteristics of scat-
tered and diffracted waves from the training dataset. Considering
the training efficiency and network performance, we believe that
the sampling interval between the dip and azimuth angle di-
rections of the azimuth-dip angle image matrix in the training
dataset should be less than 2°.

Learning rate and batch size are key hyperparameters, and
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certain network structures may be sensitive to learning rate and
batch size, to the extent that they not only affect the training pro-
cess of the network but also its performance on test data. Here, we
conduct two sets of experiments to analyze the effect of learning
rate and batch size on the DC-Net. In the first set of experiments, we
test the effect of learning rate on the DC-Net. We set the initial
learning rates to 0.1, 0.01, and 0.001 to train the DC-Net and use the
trained DC-Net to process the test data. In this set of experiments,
other hyper-parameters, training dataset remain unchanged (same
as the numerical examples section). The training and validation loss
curves with different learning rates are shown in Fig. 36. Larger
learning rates cause the DC-Net to converge at a lower rate during
training, and the model at an initial learning rate of 0.1 significantly
requires more epochs to bring the training loss down to the level of
learning rates of 0.01 and 0.001. In addition, Fig. 36(b) demon-
strates that a large learning rate causes a larger oscillation in the
validation loss of the DC-Net. Table 5 presents the prediction per-
formance of these DC-Nets on test data. The recall rate and F1 score
are relatively greatly affected by changes in the learning rate. This
implies that the prediction performance of the DC-Net is sensitive
to the learning rate. The second set of experiments we test the
effect of the batch size on the DC-Net, we set the batch sizes to 8, 16,
32 to train DC-Net and use the trained DC-Net to process the test
data. Similarly, in this set of experiments, other hyperparameters,
and training dataset remain the same (as in the numerical exam-
ples section). The training and validation loss curves with different
batch sizes are shown in Fig. 37. In Fig. 37(a), the three training loss
curves almost overlap. While the validation loss curve shown in
Fig. 37(b) reveals that smaller batch size may cause instability in
validation loss. Table 6 presents the prediction performance of
these DC-Nets on test data. These 4 scores are similar for training
the DC-Net using initial learning rates 0.1, 0.01, and 0.001. This
implies that the prediction performance of the DC-Net is less sen-
sitive to the batch size. This parameter analysis experiment sug-
gests that the learning rate and batch size should be set carefully
when training the DC-Net, and that finding a suitable set of
hyperparameter combinations (e.g., grid-search methods) can help
to train a DC-Net with stronger generalization capabilities.
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Fig. 30. (a) The diffracted wave probability image of data containing weak residual reflections (at x = 500 m); (b) The scattered wave probability image of data containing weak
residual reflections (at x = 500 m). (¢) The diffracted wave probability image of data containing strong residual reflections (at x = 500 m); (d) The scattered wave probability image
of data containing strong residual reflections (at x = 500 m).
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Fig. 31. The simple model with 4 scatterers, 5 faults, and a horizontal reflector. (a) The 3D simple geological model. (b) The YZ reflectivity section at x = 1500 m. Black lines
represent reflectors whose reflectivity is 1.0. Red dots represent scatterers with a radius of 5 m, and their reflectivity is set to 2. The size of faults is set to 10 m.
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Table 4
Evaluation statistics of classification results of the DC-Net on the test data containing different intensity residual reflections.
Evaluation, % 0% intensity 20% intensity 40% intensity 60% intensity 80% intensity 100% intensity
Accuracy 90.76 87.27 83.54 79.83 77.83 76.40
Precision 86.79 77.19 70.50 63.27 59.04 56.08
Recall 79.87 76.02 67.90 61.48 57.75 54.97
F1-score 82.80 76.57 69.06 62.31 58.37 55.47
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Fig. 32. The classification results of 6 test data at x = 1500 m. The (a), (d), (g), (j), (m), and (p) are diffraction images with 0%, 20%, 40%, 60%, 80%, and 100% intensity of residual
reflections, respectively. The (b), (e), (h), (k), (n), and (q) are diffracted wave probability images of test data with 0%, 20%, 40%, 60%, 80%, and 100% intensity of residual reflections,
respectively. The (c), (f), (i), (1), (0), and (r) are scattered wave probability images of test data with 0%, 20%, 40%, 60%, 80%, and 100% intensity of residual reflections, respectively.
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Fig. 33. The azimuth-dip angle image matrices of TO, T2, T4, and T8. The (a), (d), (g), and (j) are the diffracted wave of TO, T2, T4, and T8, respectively. The (b), (e), (h), and (k) are the
scattered wave of TO, T2, T4, and T8, respectively. The (c), (f), (i), and (1) are the residual reflection of TO, T2, T4, and T8, respectively.

Traditional seismic attribute and diffraction imaging techniques
are designed to enhance discontinuities in seismic images and do
not distinguish whether these discontinuities are scattered or dif-
fracted waves. The identification of faults and scatterers based on
seismic attribute techniques and diffraction imaging techniques
often relies on manual interpretation. The proposed method re-
alizes automatic classification and identification of faults and
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scatterers based in diffraction images using deep learning tech-
niques. It improves the resolution of faults and scatterers compared
to traditional methods, as well as reduces the dependence on
manual interpretation. Although DC-Net classifies scattered and
diffracted waves on the basis of diffraction images, it is robust to
residual reflected waves. When dealing with real data, pure
diffraction images are difficult to obtain and residual reflections are
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Fig. 34. The prediction results of DC-Net0 on test dataset TO, T2, T4, and T8. The (a) and (b) are the diffracted and scattered wave probability images of test dataset TO, respectively.
The (c) and (d) are the diffracted and scattered wave probability images of test dataset T2, respectively. The (e) and (f) are the diffracted and scattered wave probability images of
test dataset T4, respectively. The (g) and (h) are the diffracted and scattered wave probability images of test dataset T8, respectively.

often present in diffraction images. This robustness is beneficial for
practical applications of the DC-Net.

However, the DC-Net still has some shortcomings. As a deep
learning model, the performance of the DC-Net depends on the
training dataset. If noise, velocity errors, and resolution of azimuth-
dip angle image matrices are not considered when constructing a
training dataset, the trained DC-Net will be sensitive to these three
factors. The impact of resolution is the largest among these three
factors. The DC-Net trained only with high-resolution azimuth-dip
angle image matrices cannot effectively distinguish between scat-
tered waves and diffracted waves in low resolution azimuth-dip
angle image matrices. This will result in classification failure.
Considering these three factors when building the training dataset
means increasing the number of samples. It results that more effort
will be required in training network.

The classification of faults and scatterers is achieved based on
each imaging point. DC-Net classifies azimuth-dip angle image
matrices of one imaging point at a time. The forward modeling may
cause a dispersion effect in synthetic data. This dispersion effect
can lead to corresponding noise in azimuth-dip angle image
matrices. However, the field data is virtually devoid of this noise
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introduced by the forward modeling algorithm. It means that there
is an inherent error between synthetic training dataset and field
data. Despite inherent errors, the knowledge related to character-
istics of diffracted and scattered waves learned from the synthetic
data can still be transferred to field data. The introduction of
transfer learning has to some extent alleviated the problems caused
by this forward modeling algorithm. Of course, the smaller the
inherent error, the better the network's performance on field data
should be. Therefore, using high-precision forward modeling
methods to construct training datasets is beneficial for improving
the performance of network on field data. Our future efforts are to
eliminate this noise through higher precision forward algorithms,
denoising algorithms, or new migration methods.

In fact, diffractors (faults, fractures, etc.) have better geometric
extension compared to scatterers. This is another valid feature for
distinguishing scatterers and diffractors (including fault planes)
along layers or time slices. In order to utilize this valid feature,
time-space coherence between the imaging points should be
considered. From a geometrically constrained point of view,
considering the time-space coherence between imaging points
should result in a better characterization of fault planes. However,
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Fig. 35. The prediction results of DC-NetO, DC-Net2, DC-Net4, DC-Net8. The (a) and (b) are the diffracted and scattered wave probability images predicted by the DC-NetO,
respectively. The (c) and (d) are the diffracted and scattered wave probability images predicted by the DC-Net2, respectively. The (e) and (f) are the diffracted and scattered
wave probability images predicted by the DC-Net4, respectively. The (g) and (h) are the diffracted and scattered wave probability images predicted by the DC-Net8, respectively.
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Fig. 36. The training and validation loss curves in learning rate analysis experiment.
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Table 5
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Evaluation statistics of classification results of the DC-Net trained with different learning rate on test data.

Evaluation, % Learning rate is 0.1

Learning rate is 0.01 Learning rate is 0.001

Accuracy 95.69 95.53 96.03
Precision 84.07 87.78 88.16
Recall 52.95 49.12 54.76
F1-score 60.43 55.53 62.71
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—e— Batch size=8 —e— Batch size=8
012 | —e— Batch size = 16 064 —— Batch size = 16
) —e— Batch size = 32 —e— Batch size = 32
0.10 A 0.5
w» 008 4 w» 04 1
%) 1%}
o Ke]
8 0.06 EJ) 0.3 -
0.04 0.2
. " W
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of epochs Number of epochs
Fig. 37. The training and validation loss curves in batch size analysis experiment.
Table 6 5. Conclusion

Evaluation statistics of classification results of DC-Net trained with different batch
size on test data.

Evaluation, % Batch size is 8 Batch size is 16 Batch size is 32

Accuracy 95.77 95.68 96.03
Precision 84.21 86.21 88.16
Recall 56.58 54.94 54.76
F1-score 63.39 61.15 62.71

considering time-space coherence is unfavorable for training the
DC-Net and using the DC-Net for prediction. If time-space coher-
ence between imaging points is considered, the input data of the
DC-Net will be a function of position (x, y, 7), dip angle ¢ and azi-
muth angle ¢. The input data is a 5D matrix. This puts a huge
computational burden on the training network, and therefore
training can be very time-consuming. In addition, for the 5D matrix,
the whole training data must be split with small window in both
temporal and spatial directions. A small part of training data in
small window is used for training. The criteria for splitting training
data are also difficult to determine. This computational pressure is
also reflected in network prediction. When using DC-Net for pre-
diction, it is not possible to predict the whole test data directly on a
GPU device because the test data is a 5D matrix. Therefore, it is
inevitable to split the test data, splitting the whole test data into
multiple small data cubes and predicting one small data cube at a
time. Different split methods may also affect the classification re-
sults of the DC-Net and increase the instability of the classification
results. Neglecting time-space coherence has an impact on the
classification and identification of fault planes, which is a limitation
of our method. Our future efforts are to find a way to address this
limitation and enhance the recognition of fault planes by consid-
ering time-space coherence between imaging points.
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In this paper, in order to accurately locate tiny faults or scat-
terers, a diffraction classification imaging method using a DC-Net in
the azimuth-dip angle image matrix is proposed. The azimuth-dip
angle image matrix preserves the dynamic and azimuth charac-
teristics of the wavefield, making it easier to classify diffracted and
scattered waves. We construct a DC-Net to classify diffracted and
scattered waves in the azimuth-dip angle image matrix. The DC-Net
uses dense connections to improve flow of feature information and
apply coordinate attention to obtain direction aware and position
sensitive information about diffracted and scattered waves. Thus,
DC-Net can effectively utilize azimuth angle and polarity differ-
ences to classify diffracted and scattered waves. The proposed
method achieves high-accuracy automatic classification of cavities
and faults based on diffraction imaging. The numerical experiment
of 3D geologic model validates the fine performance of the pro-
posed diffraction classification imaging method in the diffraction
image in the presence of complex geologic structures. The field data
application demonstrates DC-Net is ability to accurately classify
scatterers and faults in the diffraction image, further enhances the
resolution of diffraction image, and is beneficial for the develop-
ment of karst fracture-cavern reservoirs.
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