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a b s t r a c t

Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected
to conduct in-situ stress-loading micro-focus CT scanning experiments. The gray images of rock
microstructure at different stress loading stages are obtained. The U-Net fully convolutional neural
network is utilized to achieve fine semantic segmentation of rock skeleton, pore space, and micro-
fractures based on CT slice images of deep rocks. The three-dimensional digital rock models of
deformed multiscale fractured-porous media at different stress loading stages are thereafter recon-
structed, and the equivalent fracture-pore network models are finally extracted to explore the underlying
mechanisms of gasewater two-phase flow at the pore-scale. Results indicate that, in the process of in-
situ stress loading, both the deep rocks have experienced three stages: linear elastic deformation,
nonlinear plastic deformation, and shear failure. The micro-mechanical behavior greatly affects the
dynamic deformation of rock microstructure and gasewater two-phase flow. In the linear elastic
deformation stage, with the increase in in-situ stress, both the deep rocks are gradually compacted,
leading to decreases in average pore radius, pore throat ratio, tortuosity, and water-phase relative
permeability, while the coordination number nearly remains unchanged. In the plastic deformation
stage, the synergistic influence of rock compaction and existence of micro-fractures typically exert a
great effect on pore-throat topological properties and gasewater relative permeability. In the shear
failure stage, due to the generation and propagation of micro-fractures inside the deep rock, the topo-
logical connectivity becomes better, fluid flow paths increase, and flow conductivity is promoted, thus
leading to sharp increases in average pore radius and coordination number, rapid decreases in pore
throat ratio and tortuosity, as well as remarkable improvement in relative permeability of gas phase and
water phase.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In last decades, the China's demand for hydrocarbon has
continued to grow with external dependency on crude oil and
natural gas reaching 71.2% and 40.2% in 2022, respectively. The
development of shallow and medium-depth hydrocarbon
Wang), lfzhouu@163.com
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resources can no longer meet China's serious energy demand. The
field of hydrocarbon exploration and development has rapidly
extended to the deep and ultra-deep oil and gas reservoirs of a
depth of more than 4500 m, and great breakthroughs have been
made in the Tarim Basin, Junggar Basin, and Sichuan Basin of China
(Ma et al., 2024). Deep and ultra-deep oil and gas reservoirs have
become important replacement fields for onshore hydrocarbon
exploitation due to their abundant reserves, respectively 26.6
billion tons of oil and 50 trillion cubic meters of natural gas, ac-
counting for 21% and 55% of the total hydrocarbon resources in
China. However, the degrees of oil and gas exploration are relatively
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Fig. 1. Schematic of the in-situ stress-loading micro-focus CT scanning system.
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low, only 13% for oil and 10% for natural gas. Especially, there are
more than 10 billion tons of deep and ultra-deep hydrocarbon re-
sources distributed in the Tarim Basin and Junggar Basinwhile only
1.66 billion tons of reserves is proven, providing a strong energy
guarantee to stabilize China's oil and gas strategy (Hao, 2022).

The deep and ultra-deep hydrocarbon reservoirs are typically
characterized by high temperature and high pressure, strong geo-
stress, and severe heterogeneity. Compared to the shallow and
medium-depth hydrocarbon reservoirs, the temperature of deep
and ultra-deep hydrocarbon reservoirs is generally above 150 �C.
The reservoir matrix is ultra-low permeability or tight, and various
high-angle fractures are widely distributed. It is because of the
severe advance of active formation water along fractures that re-
sults in the average recovery factor usually less than 15%. Due to the
influence of strong geo-stress, the flowesolid coupling effect is also
significant (Sun et al., 2013; Yao et al., 2018). With continuous
exploitation of oil and gas in this type of reservoirs, formation
pressure gradually decreases and effective stress increases, typi-
cally leading to dynamic deformation of rock microstructure and
fracture morphology (Sun et al., 2020; Wang et al., 2024; Yao et al.,
2023). This phenomenon can greatly affect the fluid flow in porous
media (Galkin et al., 2022; Martyushev et al., 2023). It is of great
significance to study the fluid flow in in deformed multi-scale
fracture-pore media so as to understand the non-uniform water
invasion in fractures and provide insights to the efficient develop-
ment of this type of reservoirs.

In order to visually study the effect of effective stress, flow, and
chemistry on rock structure, different types of stress-loading CT
scanning devices are developed, such as uniaxial loading and
triaxial loading (Rassouli and Lisabeth, 2021; Van Stappen et al.,
2018). Among them, the triaxial stress loading CT is often used to
simulate ultra-high-pressure conditions for real-timemonitoring of
rock microstructure deformation and fracture propagation caused
by in-situ stress loading. Ju et al. (2018) and Mao et al. (2023) have
conducted extensive works on the deformation of rock micro-
structure. They combined an in-situ triaxial stress-loading device
with efficient digital volume correlation (DVC) methods to char-
acterize the fracture morphology and rock microstructure defor-
mation of coal, concrete, and other specimens under dynamic
stressestrain loading. Lenoir et al. (2007) utilized in-situ stress-
loading micro-focus CT with DVC method to observe the stress
changes inside mudstone and analyze the characteristics of shear
strain generation and evolution. Great efforts have been made by
Huang et al. (2019), Renard et al. (2019), andMcBeck et al. (2022) to
reveal the stress changes within sandstone and limestone using in-
situ triaxial loading CT, and analyze the generation, evolution, and
interaction of localized regions under expansion, compression, and
shear strain. In addition, Rassouli and Lisabeth (2021) and Shi et al.
(2021) also conducted in-situ scanning of shale and hard clay rocks
under uniaxial compression to observe the evolution of localized
strain regions with load and creep time, as well as the influence of
rockmicrostructure on their growth. It can be concluded that, using
an in-situ stress-loading micro-focus CT, the gray images of micro-
fractures and pore structure inside rocks under different dynamic
loading stages can be obtained to characterize the deformation of
fracture morphology and rock microstructure. The reconstructed
three-dimensional digital rock models of deformed porous media
will also provide an efficient basis for studying multi-phase fluid
flow at the pore scale under different stress loading stages.

The pore-scale simulation methods widely used for fluid flow
include pore network simulation, lattice Boltzmann method (LBM),
volume of fluid (VOF) method, level set, and phase field, etc. (Zhao
et al., 2019). Except for pore network simulation, the other methods
are classified as “direct numerical simulation (DNS)”. The pore
network model has the advantages of being repeatable and
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quantifiable (Guo et al., 2024; Liu et al., 2024). By performing
geometric topological equivalent of the real pore structure of rocks
and using the intrusion percolation theory, the semi-analytical
solutions to complex physical and chemical processes are
involved in micro/nano-scale fluid flow with high computational
efficiency. LBM is a mesoscopic method that directly starts from a
discrete model and constructs a bridge between macro and micro,
continuous and discrete based on the molecular kinetics and sta-
tistical mechanics (Su et al., 2022; Wang et al., 2018). The superior
advantages of LBM include simple description of fluid interaction,
easy boundary definition, and straightforward programming. The
other DNS methods are based on the discrete scheme of
NaviereStokes equations for multiphase flow. The more fluid
components, the more complex the calculation. As the simulation
domain become larger, it is more difficult to track fluid interface
when using the DNS methods described above (Wang et al., 2023).

The above analysis indicates that challenges remain in accu-
rately simulating gasewater two-phase flow in cores under varying
stress conditions. These limitations hinder a complete under-
standing of gasewater two-phase flow behavior in ultra-deep
reservoirs. To address these challenges, this study takes two
actual rocks drilled from a typical ultra-deep hydrocarbon reservoir
in the Tarim Basin as examples. In-situ stress-loading micro-focus
CT scanning experiments are conducted to obtain CT gray images
of rock microstructure under different dynamic loading stages. The
U-Net fully convolutional neural network is utilized to achieve
accurate semantic segmentation of rock skeleton, pore space, and
fractures with the in-situ stress loading. The 3-D digital rock
models of deformable multi-scale fracture-porous media are
thereafter reconstructed to analyze the deformation of deep rock
microstructure during in-situ stress loading. Based on the
deformed multi-scale fracture-pore network models, underlying
mechanisms of gasewater two-phase flow under different stress
stages are investigated.
2. In-situ stress-loading micro-focus CT scanning experiment

2.1. Experimental apparatus

The in-situ stress loading CT scanning experiment is conducted
using an Xradia 520 Versa 3D X-ray micro-focus CT system, as
shown in Fig. 1. This equipment has superior flexibility and can
achieve 3-D non-destructive X-ray imaging with a micron resolu-
tion. The X-ray micro-focus CT utilizes a two-stage magnification in
the process of experiment: the first stage is geometric magnifica-
tion (similar to the traditional CT), and the second stage is optical
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magnification (similar to the synchrotron radiation CT). The two-
stage magnification significantly reduces the dependence on geo-
metric position. High-resolution CT images can be obtained even if
the rock is away from the light source. The maximum allowable
pressure of this device is 5000 N, which corresponds to a maximum
stress of 398 MPa for cylindrical specimens with a diameter of
4 mm. The loading mode can be controlled by a constant
displacement rate ranging from 0.03 to 3.0 mm/min. The
compression distance varies from 15 to 5 mm between the top and
bottom plate, and the test temperature range is �20 to 160 �C.

In this study, the experimental rocks are drilled from a typical
ultra-deep hydrocarbon reservoir in the Tarim Basin of China. Two
deep rocks with different physical properties are selected for in-situ
stress-loading micro-focus CT scanning to analyze the deformation
of rock microstructure under different dynamic stress loading
stages. The tested rock porosity is 16.1% and 16.8%, and the
permeability is 10.07 � 10�3 and 57.75 � 10�3 mm2, respectively.
Two experimental samples with a diameter of 4 mm and a length of
8 mm are further prepared from each rock. One is used for pre-
experiment to determine mechanical behavior and reasonable CT
scanning stages, which facilitates a systematic observation of rock
microstructure and fracture morphology during in-situ stress
loading. The other rock sample is used for in-situ stress-loading
micro-focus CT scanning with a resolution of 5.0 mm.
2.2. Experimental procedure

In this experiment, the stress loading device is used in
conjunction with X-ray CT scanning equipment to achieve dynamic
observation of deformation of rock microstructure and fracture
morphology under different dynamic loading stages. The specific
procedures for in-situ stress loading micro-focus CT scanning are
described as follows:

(1) Wrap the experimental rock sample to prevent it from
scattering during in-situ stress loading, ensuring the acqui-
sition of CT gray images even it is fractured.

(2) Place the wrapped rock sample in the holder, seal it strictly,
select nano-focus X-ray source, open the data acquisition
software, and adjust scanning parameters such as voltage,
current, and exposure time. The image resolution for this
study is 5.0 mm.

(3) Start the stress loading device, load in-situ stress at a con-
stant displacement rate of 0.03 mm/min, observe the
stressestrain change, and pause the loading when a certain
stress condition is achieved, and conduct micro-focus CT
scan.
Fig. 2. The stressestrain curves of deep rocks during in-sit
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(4) Perform micro-focus CT scanning using a cone beam X-ray
source with a cone angle of 5.11�. In each scanning step, a
vertical projection is recorded after the X-ray passes through
the deep rock sample, and a 360� rotation at the same in-
terval angle of 0.2� is conducted to obtain 1800 projections of
the rock sample, indicating a completion of CT scan at this
stress loading stage.

(5) Continue the stress loading process at the same displace-
ment rate and repeat steps (3) and (4) until the rock sample
breaks. The Volume Graphics (VG) Studio MAX software is
used to denoise and perform 3-D visualization of the CT gray
image data obtained at different stress loading stages.

(6) Record the change of stress and axial displacement of rock
sample during the in-situ stress loading experiment, plot the
stressestrain relationship curve, and analyze the underlying
mechanical effect on the deformation of rock microstructure.
2.3. Experimental results

The stressestrain relationship curves from in-situ stress loading
CT scanning experiments of two deep rocks are shown in Fig. 2,
where the red dots represent the CT scanning time. Both deep rock
samples experienced six stress loading stages, including four stages
before the rock broke, one stage at peak stress, and one stage after
the rock broke. In the initial state, there are a few large pores and
micro-fractures in the upper part of the low-permeability core.
Stress loading causes the core to rupture, ultimately forming a
complex fracture network. In the initial state, the high-
permeability core contains uniformly distributed small pores with
good connectivity between pores and fractures. During the stress
loading process, both fractures develop and pore structures deform
in a wide range. CT images reveal that deep rock samples primarily
consist of uniformly distributed small pores and micro-pores. Un-
der high stress, these pores undergo complete fragmentation,
resulting in the formation of through-going fractures, with a more
significant fractured region observed in the central part of the core.
In addition, for the high-permeability core, micro-fractures are first
generated in some areas during stress loading, and the micro-
fractures continue to expand to form the main fractures. It can be
observed that the rock with permeability of 10.07 � 10�3 mm2 has a
peak stress of 49.53 MPa and a peak strain of 1.11%, while the peak
stress and peak strain of the rock with permeability of
57.75 � 10�3 mm2 are 46.21 MPa and 1.37%, respectively. The
stressestrain curve of deep rock is consistent with that obtained for
other types of specimens, mainly consisting of the linear elastic
stage, plastic deformation stage, and shear failure stage. Shortly
u stress-loading micro-focus CT scanning experiments.
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after one CT scan is completed, a slight drop in stress can be often
monitored. This is attributed to the yield strain experienced by the
rock sample under the influence of stress loading, causing the stress
received by a stress sensor to be slightly lower than that before the
CT scan.
3. Digital rock modeling of deformed multi-scale media

First, non-local means filtering technique (Zhang et al., 2017,
2019) is used to preprocess the CT scan slice images at different
stress loading stages so as to improve the signal-to-noise ratio and
clarity of the raw images. To eliminate the boundary effect as much
as possible, a representative element volume (REV) with a
reasonable size should be determined (Sun et al., 2019). For this
study, in order to balance the accurate representation of rock
microstructure and computer storage capacity, a typical cubic re-
gion of 500� 500� 900 voxels is selected from the CT gray slice
images as the REV domain, and the spatial resolution of single voxel
is 5.0 mm.

Image segmentation is critical for digital rock analysis, and the
accuracy of image segmentation directly determines the reliability
of rock microstructure description (Wang H.T. et al., 2020). The
traditional image segmentation methods mainly include threshold
segmentation, cluster analysis, and edge detection algorithms.
Among them, the threshold segmentation algorithm has superior
advantages of high operational efficiency and strong applicability
(Cui et al., 2020). The principle of this method is to divide the image
information into several classes based on the gray values and
binarize the slice images with a gray threshold. The gray values
below the threshold (a ¼ 0) and above the threshold (a ¼ 1)
represent different classes, one of which is the valid data. The high-
light areas of CT gray images represent the rock skeleton and low-
light areas indicate pore space. The effective segmentation of pore
space and rock skeleton can be achieved by selecting a reasonable
threshold (Chen and Xu, 2020; Saxena et al., 2017; Tan et al., 2021),
as shown in Fig. 3. It can be seen that the threshold segmentation
Fig. 3. Threshold segmentation of a typical
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method has a poor segmentation effect for images with similar gray
values but different semantics (e.g., pore and fracture). Due to the
influence of strong geo-stress, micro-pores and micro-fractures are
widely distributed inside the deep rock. The gray values of these
two types of reservoir space are similar, but the fluid conductivity of
them differs greatly. The traditional threshold segmentation algo-
rithm cannot effectively separate the rock skeleton, fracture, and
pore space inside the deep rock at different stress-loading stages.
To tackle this issue, the U-Net deep learning semantic segmentation
algorithm based on a fully convolutional neural network (Dhamija
et al., 2023; Du et al., 2020; Khanna et al., 2020; Zhang et al., 2023)
is introduced to identify and predict the CT image data so as to
accurately extract the rock skeleton, fracture, and pore information
from the images during different dynamic loading stages.

In the field of image analysis, convolution is a mathematical
operation. The main idea is to perform a weighted summation on
local domain of input data using a convolution kernel (essentially a
filter) to obtain output data. By moving this convolution kernel
across the whole input data, the model can capture different se-
mantic features within input data. The mathematical expression of
convolution between function f and function g is described as:

ðf *gÞðtÞ¼
ð
f ðtÞgðt� tÞdt (1)

For CT scan images, each pixel is discrete, so the discrete form of
convolution used in image deep learning segmentation is as
follows:

ðf *gÞðtÞ¼
X∞

a¼�∞
f ðaÞgðt� aÞ (2)

where f is the input data which represents the pixel values in im-
age; g is the convolution kernel which is the eigenmatrix of image.

Image deep learning semantic segmentation essentially takes
the pixel values of sample images as the input function. By
continuous learning and optimization, the eigenmatrix of sample
CT scan slice image inside deep rock.



Fig. 5. Loss function curve of the U-Net neural network training.
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images is obtained, which is the convolution kernel. Through pre-
dicting input image data with the convolution kernel, the semantic
segmentation of images will be achieved. A typical neural network
model is composed of an input layer, hidden layers, and an output
layer with each layer having specific functions. The hidden layers of
a convolutional neural network primarily include the convolutional
layer, pooling layer, and fully connected layer. In the convolutional
layer, the convolution operation is carried out on image pixel values
to obtain convolution kernel of the input image. The pooling layer is
mainly used to reduce spatial resolution of the eigenmatrix, thus
reducing the complexity of calculation. The fully connected layer
operates on the entire eigenmatrix to map high-resolution features
to output classes. Compared with traditional convolutional neural
networks, the fully convolutional neural network also has a
deconvolution layer, which is used to revert the low-resolution
eigenmatrix to the same resolution as input image. Due to the
structure of the fully convolutional neural network like the letter
"U", it is also called the U-Net fully convolutional neural network.
To accurately achieve multi-value segmentation of fracture, pore
space and the rock skeleton, it is first necessary to use the U-Net
fully convolutional neural network to learn the semantic informa-
tion from CT slice images and divide the CT gray images into
different classes. In order to learn the semantic information of
images, it requires to establish an accurate sample space, including
rock CT gray image data and the label data set. The U-Net fully
convolutional neural networks mainly learn the CT gray image data
and label to extract image feature information (down-sampling).
Therefore, the accuracy of the sample space largely determines
whether the U-Net deep learning semantic segmentation result is
reliable or not. Since the information for fracture and pore structure
in rock CT gray images are relatively simple, only a few CT slice
images with clear fracture morphology and containing a certain
number of pores are selected as the original samples. Using the
Avizo digital image processing software to manually segment
fracture, pore space, and rock skeleton, the sample space will be
established. For this study, a typical CT slice image for deep learning
and the corresponding data label are shown in Fig. 4.

An image segmentation predictionmodel is defined by using the
deep learning TensorFlow framework, mainly including two key
components: the encoder and the decoder, which are responsible
for image feature extraction and segmentation (up-sampling), and
a fully convolutional neural network model is ultimately estab-
lished. The encoder reduces the image resolution through con-
volutional layer and pooling layer to capture the image feature
information in the deep network while the decoder maps the low-
Fig. 4. Data label of a typical CT s
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resolution features extracted by the encoder back to the input
image. Additionally, the loss function and optimizer are two
important components for constructing and training the neural
network. The loss function serves as the objective function for
training the neural networkmodel. The smaller the value of the loss
function, the higher the accuracy of image information. The opti-
mizer is used to update the model parameters to gradually reduce
the loss function. By training from CT slice images of the deep rock
with a permeability of 10.07 � 10�3 mm2 in the shear failure stage
and the label data manually segmented, the loss function curve of
the U-Net fully convolutional neural network model is shown in
Fig. 5. It can be seen that during the training process, the value of
the loss function value gradually decreases, and after 300 times of
training, the loss function tends to be stable, indicating the end of
the U-Net neural network training.

To verify the accuracy of the U-Net deep learning semantic
segmentation, we compared the measured and predicted porosity
of two experimental deep rocks before in-situ stress loading, as
listed in Table 1. Both the relative errors of two deep rocks are
below 1%, verifying the reliability of the U-Net deep learning seg-
mentation algorithm introduced in this study. Using the marching
cube method (Verri et al., 2017), the three-dimensional digital rock
models of deformed multi-scale fracture-porous media under
different dynamic loading stages can be constructed, which are
shown in Fig. 6.
lice image by deep learning.



Table 1
Validation of U-Net deep learning semantic segmentation.

Rock permeability K, 10�3 mm2 Rock porosity before stress loading, % Relative error, %

Measured value U-Net predicted value

10.07 0.161 0.162 0.73
57.75 0.168 0.169 0.84

Fig. 6. 3D digital rock models of deformable multi-scale media (red: pore; green: fracture).
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4. Deformation of rock microstructure induced by stress
loading

In order to quantitatively evaluate the deformation evolution of
deep rocks’ microstructure induced by in-situ stress loading, it is
necessary to determine the pore geometric properties, fracture
morphology, and pore-fracture topological connectivity based on
the extracted topologically equivalent 3D fracture-pore network
models of the deformed multi-scale media at different dynamic
loading stages. For this study, the open-source program PoreSpy is
firstly used to label geometric structures of the deformed multi-
scale digital rocks obtained by the in-situ stress loading CT scan-
ning experiments. The watershed algorithm (Kornilov and Safonov,
2018) is then applied to extract the topological network models of
rock matrix. For the labeled micro-fractures, the central surfaces of
the fractures are determined using the central axis method and the
equivalent radius theory, then converting them into a virtual cen-
tral axis map to extract the corresponding fracture topological
networks. By satisfying the geometric properties and pore-throat
connectivity, the fracture topological network is embedded into
the matrix topological network under a certain stress loading stage,
resulting in a hybrid 3D topological networkmodel of the deformed
multi-scale fracture-pore media, as shown in Fig. 7. The topological
properties such as pore-throat ratio, coordination number and
tortuosity are statistically analyzed to explore the dynamic defor-
mation of deep rock microstructure caused by in-situ stress
2101
loading.
Fig. 8 reflects the dynamic change in slice porosity of deep rocks

during the in-situ stress-loading micro-focus CT scanning experi-
ments. It can be observed that in the initial stage of in-situ stress
loading, the slice porosity of two deep rocks decreases rapidly with
the increase in in-situ stress and then gradually stabilizes at a low
level until the deep rocks are fractured. This demonstrates that as
the in-situ stress is loaded, the deep rocks are gradually compacted
and some micro-pores are closed. The higher the in-situ stress
loaded, the greater the deformation degree of deep rock micro-
structures. After the deep rocks are fractured in the shear failure
stage, numerous micro-fractures will be generated, significantly
improving the topological connectivity, thus resulting in a signifi-
cant increase in the slice porosity of two deep rocks. Compared
with the deep rock with a permeability of 10.07 � 10�3 mm2, the
other deep rock with a permeability of 57.75 � 10�3 mm2 shows a
larger decrease in slice porosity during the early stage of stress
loading. This indicates that the better the rock properties, the more
severe the deformation of rock microstructure under the same
stress loading condition. When the stress exceeds 30.86 MPa, a
slight increase in slice porosity can be observed, indicating the
formation of a few micro-fractures inside the rock.

Fig. 9 reflects the dynamic change in pore-throat topological
properties of both deep rocks under different dynamic loading
stages. It indicates that the dynamic evolution of mechanical
behavior of deep rock during in-situ stress loading experiments



Fig. 7. Deformed multi-scale network models (blue: pore network; red: fracture network).

Fig. 8. Dynamic change in slice porosity of deep rocks at different stress loading stages.
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significantly affects dynamic changes in the pore-throat geometric
properties such as the average pore radius, pore-throat ratio, co-
ordination number, and tortuosity. In the linear elastic deformation
stage, due to rock compaction, the average pore radius, pore-throat
ratio, and tortuosity of deep rocks gradually decrease, while the
coordination number remains unchanged. The deep rock with a
permeability of 10.07 � 10�3 mm2 experiences a relatively long
linear elastic deformation stage after the initial rock compaction,
and the pore-throat topological properties fluctuate slightly. The
other deep rock with a permeability of 57.75 � 10�3 mm2 typically
has a shorter linear elastic deformation stage and a few micro-
fractures are generated in the plastic deformation stage,
increasing the fluid flow paths inside the deep rocks. The pore-
2102
throat ratio, coordination number, and tortuosity gradually in-
creasewith the loading of in-situ stress. After the rock is fractured, a
large number of micro-fractures are generated within the deep
rock, greatly improving the topological connectivity, leading to
sharp increases in average pore radius and coordination number
and rapid decreases in pore-throat ratio and tortuosity.

5. Microscopic gasewater flow in deformed multi-scale
media

The deformable multi-scale network model can be considered
as a quasi-static model (Zhang et al., 2015; Wang D.G. et al., 2020),
where fluid flow is entirely dominated by capillary pressure, and



Fig. 9. Dynamic changes in pore-throat topological properties of deep rock at different stress loading stages.
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the influence of viscous force on pressure drop will be ignored.
Based on the extracted deformed multi-scale fracture-pore
network models, the quasi-static network simulations are per-
formed to quantify and characterize the microscopic gasewater
two-phase flow in the deformed multi-scale fracture-porous me-
dia under different dynamic stress loading stages. Based on the
invasion-percolation theory (Berg and Sahimi, 2023), fluid flow
from one pore to another is assumed to be instantaneous, and flow
within the pore-throats is typically neglected. The model is initially
saturated with one fluid, and a driving pressure (P1�P0) is imposed.
The fluid flow rate is measured to calculate absolute permeability
using the Darcy equation, which is expressed as follows:

K ¼ mQL
AðP1 � P0Þ

(3)

where K is the absolute permeability, mm2; m is the fluid viscosity,
mPa$s; Q is the volumetric flow rate of the network model fully
saturated with fluid phase i under a driving pressure difference
(P1�P0), cm3/s; A is the cross-sectional area in the direction of flow,
cm2.

For any pore in the deformed multi-scale network model, the
2103
law of mass conservation must be satisfied, which implies that the
volumetric flow rate that flows into the pore from the inlet throat
should equal the volumetric flow rate flowing out from the outlet
throat. The expression is

Xzi
j¼1

qij ¼0 (4)

qij ¼
gij
Lij

�
Pi � Pj

�
(5)

where zi is the coordination number of pore i; Lij is the distance
between pore i and pore j, m; gij is the fluid conductivity between
neighboring pores, cm4/(MPa$s).

Applying the above equation to all pores and solving for the
pressure of each pore under the given inlet and outlet pressures P1
and P0, the volumetric flow rate qij between neighboring pores can
be calculated. Finally, the total volumetric flow rate Q under the
driving pressure difference (P1�P0) is determined. When gas and
water phases coexist, the solution of pore pressure field is similar to
that of single-phase flow, requiring only the conductivity coeffi-
cient of the respective fluid phase. After determining the



Fig. 10. Microscopic gasewater distribution (K ¼ 10:07� 10�3 mm2).
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Fig. 11. Microscopic gasewater distribution (K ¼ 57:75� 10�3 mm2).
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Fig. 12. Gasewater relative permeability curves estimated at different stress loading stages.
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volumetric flow rate for each phase, the relative permeability Krp of
fluid phase p can be calculated:

Krp¼Qtmp

Qtsp
(6)

where Qtmp is the volumetric flow rate of phase p under multiphase
flow, cm3/s; Qtsp is the total volumetric flow rate under single-
phase flow, cm3/s.

After obtaining gas and water flow rates for each flow path,
water saturation of the entire multi-scale model will be calculated
using the following formula:

Sw ¼

Pn
i¼1

Viw

Pn
i¼1

Vi

(7)

where n is the total number of pores and throats; Vi is the volume of
pore or throat, cm3; Viw is the volume of water in the pore or throat,
cm3.

The quasi-static network simulations of gasewater two-phase
flow is carried out for the pore network models under different
dynamic load conditions. The microscopic distribution of
gasewater at different effective stresses and simulation times is
shown in Figs. 10 and 11.

The microscopic distribution of gasewater in low-permeability
core (K ¼ 10:07� 10�3 mm2) under different dynamic loading
stages is shown in Fig. 10. In the early stage of stress loading, the
water phase mainly flows along the well-connected pores in the
middle of the model, with uneven water intrusion. The remaining
gas is mainly distributed in the blind micro-pores. After the core
ruptures, the fractures provide more flow channels for the gas, and
the water phase quickly migrates to all types of pores.

The microscopic distribution of gasewater in high-permeability
core (K ¼ 57:75� 10�3 mm2) under different dynamic loading
stages is shown in Fig. 11. In the early stage of stress loading, due to
the obvious variation of pore size in the core, the non-uniform
intrusion phenomenon is serious, forming a large amount of
closed gas. When the stress is loaded to 39.68 MPa, the pore con-
nectivity is enhanced, the sealing gas is reduced, and the migration
speed of the water invasion front is accelerated. As the stress in-
creases, the pore size heterogeneity becomes stronger, the gap
between large and small pores becomes larger, and serious jam-
ming and fingering phenomena occur, causing a decrease in water
2106
invasion rate. During the core rupture stage, the water phase
mainly flows along the pore throat with good connectivity in the
middle of the model, forming a dominant flow channel, resulting in
serious non-uniform water invasion.

Fig. 12 reflects the dynamic change in gasewater relative
permeability curves of the deformed multi-scale fracture-porous
media in both deep rocks under different dynamic loading stages. It
can be seen that, in the linear elastic deformation stage, as the
effective stress increases, the rock are gradually compacted,
reducing the topological connectivity of deep rocks, decreasing the
fluid flow paths, and lowering the relative permeability of water
phase. After the rock is fractured, the generation of numerous
micro-fractures significantly improves the topological connectivity
inside the deep rocks, enhancing fluid conductivity and increasing
relative permeability of gas phase and water phase. Compared with
the deep rock with a permeability of 10:07� 10�3 mm2, the other
deep rock with a permeability of 57:75� 10�3 mm2 has a shorter
linear elastic deformation stage. When the in-situ stress reaches
39.68 MPa, numerous micro-fractures are formed within the rock,
improving fluid conductivity and significantly increasing the rela-
tive permeability of water phase.

6. Conclusions

In this study, two actual deep rocks drilled from a typical ultra-
deep hydrocarbon reservoir in the Tarim Basin are used to conduct
in-situ stress loading CT scanning experiments. Pore-scale network
modeling is performed to reveal the microscopic gasewater two-
phase flow behavior based on the accurate extraction of topologi-
cally equivalent deformed multi-scale fracture-pore network
model under different dynamic loading stages. The main conclu-
sions are as follows:

(1) Through in-situ stress loading CT scanning experiments, slice
images of deep rock microstructure at different dynamic
loading stages are obtained. The U-Net deep learning se-
mantic segmentation of rock skeleton, pore space, and frac-
ture inside deep rock is then achieved, and 3D digital rock
models of the deformable multi-scale media in deep rocks
during different dynamic loading conditions are established.

(2) Influenced by in-situ stress loading, both deep rocks mainly
experience three stages: linear elastic deformation, plastic
deformation, and shear failure. The evolution of mechanical
behavior significantly affects the dynamic change of pore-
throat topological properties and gasewater two-phase
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flow behavior in the deformed multi-scale fracture-porous
media of deep rock.

(3) In the linear elastic deformation stage, as the in-situ stress
increases, both the deep rocks are gradually compacted and
some micro-pores are closed, causing gradual decreases in
average pore radius, pore-throat ratio, tortuosity and water-
phase relative permeability, while the coordination number
nearly remains unchanged. After the rocks are fractured,
numerous micro-fractures and secondary pores are gener-
ated, greatly improving the topological connectivity and fluid
conductivity, represented as sharp increases in average pore
radius and coordination number, rapid decreases in pore-
throat ratio and tortuosity, and remarkable enhancement in
relative permeability of gas phase and water phase.

(4) Compared with the deep rock with a permeability of 10:07�
10�3 mm2, the other deep rock with a permeability of 57:75�
10�3 mm2 typically has a shorter linear elastic deformation
stage. When the in-situ stress reaches 39.68 MPa, micro-
fractures begin to form within the rock, greatly increasing
the fluid flow paths. The pore-throat ratio, coordination
number, tortuosity, and water-phase relative permeability
are gradually increased. Under the same stress loading stage,
the better the rock properties, the higher the relative
permeability of gas phase and water phase.
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