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a b s t r a c t

In the mid-to-late stages of gas reservoir development, liquid loading in gas wells becomes a common
challenge. Plunger lift, as an intermittent production technique, is widely used for deliquification in gas
wells. With the advancement of big data and artificial intelligence, the future of oil and gas field
development is trending towards intelligent, unmanned, and automated operations. Currently, the
optimization of plunger lift working systems is primarily based on expert experience and manual control,
focusing mainly on the success of the plunger lift without adequately considering the impact of different
working systems on gas production. Additionally, liquid loading in gas wells is a dynamic process, and
the intermittent nature of plunger lift requires accurate modeling; using constant inflow dynamics to
describe reservoir flow introduces significant errors. To address these challenges, this study establishes a
coupled wellboreereservoir model for plunger lift wells and validates the computational wellhead
pressure results against field measurements. Building on this model, a novel optimization control al-
gorithm based on the deep deterministic policy gradient (DDPG) framework is proposed. The algorithm
aims to optimize plunger lift working systems to balance overall reservoir pressure, stabilize gasewater
ratios, and maximize gas production. Through simulation experiments in three different production
optimization scenarios, the effectiveness of reinforcement learning algorithms (including RL, PPO, DQN,
and the proposed DDPG) and traditional optimization algorithms (including GA, PSO, and Bayesian
optimization) in enhancing production efficiency is compared. The results demonstrate that the coupled
model provides highly accurate calculations and can precisely describe the transient production of
wellbore and gas reservoir systems. The proposed DDPG algorithm achieves the highest reward value
during training with minimal error, leading to a potential increase in cumulative gas production by up to
5% and cumulative liquid production by 252%. The DDPG algorithm exhibits robustness across different
optimization scenarios, showcasing excellent adaptability and generalization capabilities.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

As gas reservoir development enters its mid-to-late stages,
liquid loading becomes a primary challenge for most natural gas
wells (Tan B. et al., 2023; Zhu et al., 2019). Plunger lift is one of the
most effective techniques for deliquification, utilizing the well's
produced fluids to lift the plunger and the liquid above it to the
surface (Tan X. et al., 2023; Zhao et al., 2018). The plunger acts as a
barrier between gas and liquid, minimizing gas slippage and liquid
fallback. With the advancement of artificial intelligence and digital
.

y Elsevier B.V. on behalf of KeAi Co
plunger control systems, gas well production is increasingly mov-
ing towards intelligent operations and digital transformation (Chen
et al., 2024; Xie et al., 2023; Zhao and Bai, 2018). Unconventional
gas reservoirs, primarily consisting of shale gas and tight gas,
exhibit characteristics such as rapid energy depletion and signifi-
cant variations in gas and liquid production capacity (Gupta et al.,
2017; Sayman et al., 2022a). In most cases, liquid loading in gas
wells during the later stages of production is a dynamic process.
Therefore, deliquification techniques, represented by plunger lift,
must achieve self-optimization and self-regulation. Currently, the
optimization of plunger lift working systems is gradually evolving
towards intelligence and automation. Deep exploration of data
collected by digital plunger control systems can significantly
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Nomenclature

A Area, m2

a Acceleration, m/s2

C Drag coefficient
d Diameter, m
f Friction factor
g Gravitational acceleration, m/s2

H Height, m
M Molecular weight, kg/mol
m Mass, kg
P Pressure, Pa
q Production, m3/s
r Reward
R Gas constant, J/mol/K
T Temperature, K
v Velocity, m/s
Z Z factor
g Relative density

r Density, kg/m3

Subscripts and superscripts
c Casing
cb The bottom of casing
fric Friction
g Gas
gc Casing gas
gt Tubing gas
l Liquid
lc Casing liquid column
lt Tubing liquid column, tubing liquid
p Plunger
pb Lower part of the plunger
pt Upper part of the plunger
r Reservoir
t Tubing
tb The bottom of tubing
wf Bottomhole
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enhance lifting efficiency and reduce operational costs (Barros
et al., 2018; Zhao K. et al., 2021). The ability to automatically
adjust parameters and working systems in real-time reduces the
laboratory intensity of fieldmanagement personnel, aligns with the
development trends of modern digital oilfields, and significantly
improves the rationality of working systems and lifting efficiency
(Hashmi et al., 2018; Sayman et al., 2022b; Tong et al., 2017).

The effectiveness of plunger lift application largely depends on
the rationality of the working systems. A well-designed working
system ensures that more liquid is expelled during a short shut-in
period while maintaining high production rates during the after-
flow period. The optimization of plunger lift working systems pri-
marily focuses on adjusting the timing of well opening and closing
cycles. The most commonly used method for plunger lift optimiza-
tion is based on the empirical model proposed by Foss and Gaul
(1965), which was developed using field data from the Ventura
Avenue gas field in the United States. This model predicts key
operating parameters, such as maximum casing pressure, minimum
casing pressure, tubing pressure, lifted liquid volume, cycle fre-
quency, and required gas injection volume, based on high gaseliquid
ratio plunger lift well production data. However, since plunger lift is
an intermittent production technique, significant variations in
reservoir pressure occur during different production stages (after-
flow and shut-in periods). Using steady-state inflow performance
relationship (IPR) curves, which describes the relationship between
bottomhole flowing pressure and production rate, to describe gas
well production dynamics and reservoir inflow during these stages
introduces substantial calculation errors by neglecting the transient
gaseliquid flow near the wellbore. Consequently, many researchers
have developed coupled reservoirewellbore models to describe the
transient production behavior of gas wells. For instance, Ozkan et al.
(2003) proposed a coupled reservoirewellbore optimization algo-
rithm for plunger lift based on Laplace transforms and the Duhamel
principle, which established an analytical model of wellbore and
reservoir flow. Hu et al. (2007) developed an implicit couplingmodel
between wellbore flow and near-wellbore reservoir flow, which
simulates various transient flow characteristics under the mutual
influence of wellbore and reservoir dynamics. Parsa et al. (2013)
employed the optimization algorithm proposed by Ozkan et al.
(2003), which focuses on maximizing gas production and ensuring
that the pressure buildup during shut-in period is sufficient to lift
the plunger to the surface. Hashmi et al. (2018) established a
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minimum casing pressure calculation model based on energy bal-
ance during the plunger lift operation, ensuring continuous pro-
duction from the well. Xiang and Kabir (2019) addressed the errors
in conventional steady-state IPR models by solving the diffusion
equation under different production cycles and using Bessel func-
tions to reduce the discrepancies caused by low reservoir perme-
ability and sinusoidal oscillations in bottomhole flow pressure. They
developed a transient IPR inflow dynamic relationship model for
plunger lift wells. Peng et al. (2024) developed a highly coupled
wellboreereservoir simulator to determine liquid loading in vertical
and inclined gas wells. The model uses drift-flux analysis to predict
flow pattern transitions, with wellhead pressure or flow rate con-
straints as boundary conditions. It accurately describes the
gaseliquid dynamic flow within the wellbore and reservoir,
revealing significant changes in gas production, water production,
and flow pattern during liquid loading, including liquid film reversal.
In typical gas well reservoir descriptions, the reservoir is often
considered infinite. For intermittent production techniques, the
pressure drop funnel within the well's control area exhibits signifi-
cant inner and outer zone characteristics. These characteristics are
influenced by periodic liquid loading and deliquification operations.
The pressure distribution in the outer zone only changes signifi-
cantly when long-term equivalent bottomhole flowing pressure
changes, while the pressure distribution in the inner zone exhibits
cyclic changes between positive and reverse funnels.

Currently, adjustments of plunger lift working systems are pri-
marily based on dynamic analysis by field experts, with manual
parameter adjustments made intermittently. Most methods are
predominantly experience-based, resulting in suboptimal optimi-
zation performance and high trial-and-error costs. With the
development of big data and artificial intelligence, traditional
manual optimization methods are gradually being replaced by
data-driven models. Machine learning (ML) techniques are
increasingly applied in various fields to address complex engi-
neering problems. Many researchers have used AI technologies to
process large datasets and predict dynamic production changes at
different stages of gas well production, which serves as a basis for
optimizing production. Kamari et al. (2016) utilized least squares
support vector machines (LSSVM) to predict the maximum liquid
lifting capacity of plunger lift systems. They proposed an optimal
parameter adjustment mechanism based on coupled simulation
annealing (CSA) and integrated CSA-LSSVM with outlier detection
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models like Hat matrix andWilliams plot. Singh (2017) developed a
fault diagnosis tool for plunger lift based on the classification and
regression tree (CART) algorithm, considering 8e10 parameters
influencing plunger lift operations. Nandola et al. (2018) introduced
a binary decision-making process for plunger lift cycles, converting
surface measurement time series data into cycle-wise outputs and
state variables into continuous thresholds, which were then used in
a reduced-order cycle-to-cycle model for time-domain optimiza-
tion. Aires et al. (2020) used a fuzzy controller and a linear model
predictive controller to simulate plunger operations. The fuzzy
controller adjusted plunger velocity by controlling the wellhead
secondary valve, maintaining optimal plunger velocity.
Akhiiartdinov et al. (2020) used machine learning to simulate the
plunger lift process, using field measurement parameters as inputs
and instantaneous gas production as outputs to train a feedforward
artificial neural network (ANN) model, which was developed as a
virtual flow meter. The model predicted optimal plunger lift tim-
ings, optimizing the plunger lift production regime. Romero et al.
(2020) introduced software that classifies plunger lift faults using
machine learning, specifically focusing on production loss detec-
tion through a neural network model. Xie et al. (2023) trained a
transformer-based encoder to identify cycle points in continuous
data and proposed an unsupervised clusteringmethod using a deep
neural network autoencoder for optimizing clustering loss and
reconstruction loss, applied to fault condition identification in
plunger lift operations. Zhong et al. (2024) analyzed production
data using long short-term memory (LSTM) models and convolu-
tional neural networks (CNNs) to identify time-series features in
plunger lift production data. They compared the regression accu-
racy and computational precision of different models and identified
the ABILSTM model as the best for high-precision minute-level
predictions. Wu et al. (2024) developed a wellboreereservoir
coupled intermittent production well model using a transient
simulator and optimized the intermittent production regime using
genetic algorithm (GA) and proximal policy optimization (PPO)
methods, which effectively enhanced gas production and liquid
unloading. Zhu et al. (2024) proposed a data-driven gas well clas-
sification method based on the linear discriminant analysis-
discriminant analysis (LDA-DA) model, evaluating gas wells from
liquid removal capacity (LDC) and liquid removal intensity (LPI)
perspectives. Chen et al. (2024) developed a semi-supervised
learning model for classifying the severity of liquid loading in gas
wells, combining the strengths of supervised and unsupervised
learning to fully utilize the entire dataset with minimal labeling.
They also introduced a dynamic time relation self-attention
(DTRSA) module, enhancing the model's resistance to interfer-
ence from other anomalies and improving the accuracy of liquid
loading severity classification.

Machine learning can predict gas and liquid production under
different plunger lift working systems and optimize operating pa-
rameters. Typical ML algorithms require millions of data points to
successfully identify and predict plunger lift optimization patterns.
However, if reservoir conditions or surface production parameters
change, the inability to adjust rapidly can cause reservoir damage.
For example, if produced water is not promptly removed, it can
accumulate at the well bottom, increasing bottomhole flowing
pressure and reducing gas production, potentially leading to well
shutdown due to water encroachment. Furthermore, due to the
changing and complex environmental conditions, the control model
may require frequent adjustments to adapt to new conditions, which
is not ideal for intelligent control. Plunger lift is an intermittent
production technique, where reservoir inflow characteristics differ
significantly between the production and shut-in stages. Using a
constant inflow performance relationship to describe reservoir flow
dynamics introduces significant errors. To achieve efficient and
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sustained gas well production, while ensuring accurate transient
production calculations under changing environmental conditions,
this study adopts an integrated wellboreereservoir coupling model,
combining reservoir simulation results with the DDPG reinforce-
ment learning model. The optimization algorithm for plunger lift
working systems is established with the goals of balancing overall
reservoir pressure, stabilizing gasewater ratios in individual wells,
and maximizing gas production. By intelligently controlling and
optimizing the plunger lift working systems, this method can
enhance deliquification efficiency, allowing gas wells to operate
continuously, efficiently, and in accordance with production rules,
thereby improving overall development effectiveness and economic
benefits.
2. Wellboreereservoir coupling model development

2.1. Wellbore model

2.1.1. Transient plunger motion
The plunger lift system, as a specialized intermittent production

process, operates by utilizing the produced fluids within the well to
lift the plunger and the overlying liquid to the surface. The pro-
duction process primarily involves four stages: plunger upstroke,
after-flow, plunger downstroke, and shut-in. The plunger upstroke
stage is further divided into the gas discharge stage from the
wellbore and the liquid discharge stage at the wellhead. Upon
opening the wellhead valve, the gas above the plunger is expelled,
leading to a rapid pressure drop above the plunger, initiating its
ascent. The significant pressure difference across the plunger at the
moment of well opening causes a sudden increase in plunger ve-
locity. As the plunger velocity increases, the friction between the
plunger, the liquid slug above it, and the tubing wall also rises. With
continued ascent, the pressure beneath the plunger decreases,
resulting in a gradual deceleration. The plunger velocity stabilizes
when the pressure below it balances the pressure above and the
frictional forces. Concurrently, the bottomhole flowing pressure
decreases, causing the annular gas to expand and the liquid in the
annulus to be displaced into the tubing. Once all the annular liquid
has been displaced, the gas begins to enter the tubing, with the
plunger ascent driven by both the reservoir gas flow and the
expanding annular gas. The liquid column above the plunger is
expelled at the wellhead, reducing the pressure above the plunger
and causing a brief increase in both tubing pressure and plunger
velocity. The plunger upstroke stage concludes when the plunger
reaches the catcher at the wellhead. The plunger acceleration
during ascent, especially when far from the wellhead, can be
calculated using momentum equations based on the force balance
acting on the plunger in the vertical direction.

ap ¼
�
Ppb � Ppt � Pfric

�
At

mp þmlt
� g (1)

The plunger downstroke stage consists of falling through gas
and then through liquid. Upon closing the wellhead valve, the
plunger descends under gravity. During the falling through gas
stage, the plunger is primarily influenced by gravity, the upward
thrust of reservoir gas, and frictional forces, with gravity being the
dominant factor, resulting in acceleratedmotion.When the plunger
contacts the liquid column in the tubing, it transitions to the falling
through liquid stage, where the forces of gravity, buoyancy, and
friction come into equilibrium, causing the plunger to descend at a
near-constant velocity. The plunger downstroke stage concludes
when the plunger impacts the bottomhole seating. The descent
velocity of a plunger can be calculated using the formula provided
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by Zhao Q. et al. (2021).

vp ¼ Cdffiffiffiffiffi
rq

p $
Ap

At

ffiffiffiffiffiffiffiffiffiffiffiffi
2gMp

At

s
(2)

2.1.2. Wellbore gaseliquid mass variation
Most plunger lift wells lack packers, leading to issues such as

gaseliquid separation and variations in liquid column height
within the tubing and annulus over time. The gas and liquid masses
within the tubing and casing at any given moment can be calcu-
lated using the following equations. During the plunger down-
stroke and shut-in stages, with the wellhead valve closed, no gas or
liquid can exit the wellbore, so both mgout and mlout are zero.

mgt
jþ1 ¼mgt

j þmgtin �mgtout (3)

mgc
jþ1 ¼mgc

j þmgcin (4)

mlt
jþ1 ¼mlt

j þmltin �mltout (5)

mlc
jþ1 ¼mlc

j þmlcin (6)

The total gas and liquid mass entering the tubing and casing
from the reservoir at any given time should equal the gas and liquid
mass entering the wellbore from the reservoir at that time step.

mgres¼mgtin þmgcin (7)

mlres¼mltin þmlcin (8)

The tubing pressure and bottomhole flowing pressure at the
tubing shoe can be calculated using the following equations.

Pt ¼ mgt
ZtRTt

AtðH � HltÞMg
(9)

Ptb ¼ Ptexp
�0:03415ggðH � HltÞ

ZtTt

�
(10)

Pwft ¼ Ptb þ rlgHlt (11)

The casing pressure and bottomhole flowing pressure at the
casing shoe can also be calculated similarly.

Pc ¼ mgc
ZcRTc

AcðH � HlcÞMg
(12)

Pcb ¼ Pcexp
�0:03415ggðH � HlcÞ

ZcTc

�
(13)

Pwfc ¼ Pcb þ rlgHlc (14)

It should be noted that the bottomhole flowing pressures at the
tubing shoe and casing shoe must be equal at any given moment.
Therefore, Eq. (11) should equal Eq. (14), and an iterative method is
employed to calculate the dynamic changes in tubing pressure,
casing pressure, and wellbore parameters at different time steps.

2.2. Reservoir model

In intermittent production systems, the pressure drawdown
funnel within the gas well control area exhibits distinct inner and
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outer zone characteristics. During the shut-in stage of the plunger
lift well, the shut-in process disturbs the reservoir near thewellbore,
while the outer zone pressure remains at the formation pressure.
The pressure distribution in the inner zone exhibits cyclic changes
between positive and negative funnels, with the boundary between
the inner and outer zones maintaining a long-term equivalent high
pressure. Therefore, it is crucial to determine the range of the reverse
pressure funnel near the wellbore during the shut-in phase and
incorporate it as a factor in the calculation process. To simulate the
inner and outer zone characteristics of the pressure drawdown
funnel during intermittent production, a numerical reservoir model
was developed using CMG simulation software, as shown in Fig. 1.
The optimization area is located in a tight sandstone gas reservoir
within the Ordos Basin, characterized by a gentle westward-dipping
monocline with simple structural features and a formation dip angle
generally not exceeding 1�. The effective porosity of the reservoir
ranges from 0.08% to 20.92%, with permeability ranging from
0.003� 10�3 to 20.33� 10�3 mm2, indicating awide distribution but
relatively low average porosity and permeability, at 4.57% and
0.1 � 10�3 mm2, respectively. The natural gas is of high quality,
containing no hydrogen sulfide, with methane comprising 95% of
the gas composition and an average specific gravity of 0.585. The
reservoir lacks edge and bottom water, and its development energy
primarily relies on the gas's own expansion. The Upper Paleozoic
Formation is mainly an elastic-driven tight lithologic gas reservoir.
Relative permeability curves for gas and water were normalized
using experimental data from three core samples in the target area.
The irreducible water saturation of this reservoir is 47.5%, with an
average residual oil saturation of 10.5%, and the saturation at the
isopoint is approximately 69.5%.

The block contains 15 producing gas wells, labeled T001eT015,
with test results indicating low water production despite multiple
wells producing water. Water production is high initially but sta-
bilizes over time, with gas production either increasing or stabi-
lizing, and the wateregas ratio (WGR) generally remains below
0.5 m3/104 m3. This study focuses primarily onwell T001. Given the
short duration of the intermittent production cycle in plunger lift
systems, with shut-in times typically ranging from 1 to 6 h, it is
important to consider the grid block size in numerical simulation. If
the grid is too large, the pressure wave may not propagate to the
next grid block within a short time step, resulting in significant
simulation errors. Therefore, local grid refinement was applied near
well T001 to capture the inner and outer zone characteristics of the
pressure drawdown funnel.

2.3. Coupling model

For the wellboreereservoir coupling model, the wellbore cal-
culations were performed using a custom model that provides
easier control during the coupling process. Thewellboremodel was
integrated as the main function in the simulation, with the reser-
voir model serving as the boundary condition for pressure and flow
rates. The numerical coupling between the two models was
implemented using an implicit scheme. The plunger upstroke and
after-flow stages correspond to the reservoir model's well pro-
duction mode, while the plunger downstroke and shut-in stages
correspond to the reservoir shut-in mode. As shown in Fig. 2, the
wellbore model controls the plunger lift operation based on the
specified production schedule (after-flow and shut-in times). The
wellbore model calculates the plunger state, gaseliquid distribu-
tion, and pressure distribution at each time step, transmitting the
bottomhole flowing pressure to the reservoir model. The reservoir
model returns the gas and liquid production rates for the wellbore
calculations. To ensure consistency in fluid PVT properties under
varying temperature and pressure conditions, a PVT TABLE was



Fig. 1. Reservoir model established using CMG.

Fig. 2. Coupling model workflow diagram.
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used to store fluid properties in advance, allowing the required
fluid properties to be retrieved during the coupling calculations.
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3. Optimization of plunger lift working systems using
reinforcement learning

3.1. Reinforcement learning model for optimizing plunger lift
working systems

3.1.1. Methodology
Machine learning can be categorized into three main types

based on feedback mechanisms: supervised learning, unsupervised
learning, and reinforcement learning (RL). In recent years, deep
learning (DL) has significantly advanced, largely due to the superior
feature representation capabilities of deep neural networks. These
developments have resolved many challenges in both academia
and industry, leading to notable research outcomes. Among these,
RL stands out as a crucial approach for sequential decision-making,
endowing agents with self-supervised learning abilities, enabling
them to interact with their environment and continuously refine
strategies based on received rewards. In a discrete action space,
neural networks are employed to approximate a discrete distribu-
tion, which represents the probability of selecting each action. In
contrast, in a continuous action space, neural networks approxi-
mate the parameters of a probability density function, allowing
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policy gradient algorithms to efficiently handle tasks in high-
dimensional or continuous action spaces. By optimizing these pa-
rameters, policies are directly updated to maximize the expected
cumulative reward. Compared to value function-based algorithms,
policy gradient methods are simpler and exhibit better conver-
gence properties, although they are often characterized by higher
variance, slower convergence rates, and challenges in determining
appropriate learning rates. To accelerate the learning rate of policy
gradient methods, deterministic policy gradient (DPG) algorithms
have been proposed. Unlike stochastic policy gradient methods,
DPG associates a single action with each state, which significantly
speeds up the computation during gradient updates, reduces data
requirements, and diminishes reliance on sampling. This algorithm,
while efficient, does not require extensive data sampling in the
action space. The earliest DPG algorithms, however, employed
linear function approximators, resulting in suboptimal perfor-
mance. The deep deterministic policy gradient (DDPG) algorithm is
an enhancement of the deep Q-network (DQN) algorithm, effec-
tively extending DQN to multidimensional continuous action
spaces by integrating the DPG algorithm. The DDPG algorithm is
based on the actor-critic (AC) framework, combining deep neural
networks with the actor-critic structure. It enhances the stability of
the training process by introducing noise to the agent's actions and
employing an experience replay mechanism. The actor network
observes the state of the environment through artificial neural
networks, which are used to determine the selection probabilities
of the agent's actions, thereby facilitating interaction with the
environment. The network's parameters are then updated based on
the received rewards to maintain and refine the agent's action-
selection strategy. The critic network evaluates the value of each
state-action pair by observing the state of the environment and the
agent's actions, updating the neural network based on the
discrepancy between the actual and predicted values.

One of the core tasks of the DDPG algorithm in deep rein-
forcement learning is the design of the actor-critic network struc-
ture. The DDPG algorithm consists of two networks: the actor
network and the critic network, with parameters denoted as qm and
qQ, respectively. Each network is further divided into a training
network and a target network. The critic network updates its pa-
rameters, qQ, by minimizing a loss function, which evaluates the
value of actions, while the actor network updates qm based on the
value function, outputting the expected action for the current state.

L
�
qQ

�
¼ 1

N

X
t

h
yt � Q

�
st ; at

���qQ� i2
(15)

To reduce the Markovian nature of data sampling in the state
space, the method inherits DQN's approach of fitting value func-
tions with neural networks and updating policies with DPG,
incorporating DQN's experience replay mechanism. This mecha-
nism stores the training trajectory as (st, at, rt, stþ1) and replays
samples according to a specific rule to eliminate correlations be-
tween data, thus accelerating convergence. Independent target
networks are set to correct biases, further reducing correlations and
increasing accuracy. Here, st, at, and rt denote the system's state,
action, and reward at time t, respectively, while stþ1 represents the
new state acquired at time t þ 1 after performing action at in state
st.

yt ¼ rt þ gQ
0�
stþ1; m

0 ðstþ1jqm
0
Þ
���qQ 0 �

(16)

The actor network updates independently, with the current
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actor and critic networks responsible for iterative updates of the
policy network parameter qQ and the value network parameter qm.
The deterministic policy gradient is used to maximize the reward
generated by actions, and the parameter qm is updated accordingly.

Vq
m JðqÞ ¼ 1

N

X
t

h
VaQ

�
st ; mðst jqmÞ

���qQ �
Vq

mmðst jqmÞ
i

(17)

The TD-error is employed to train the critic network parameters
by minimizing the loss function:

TD-error¼rewardðst ; atÞþgy
0�
stþ1; atþ1; q

Q
0�
�v

�
st ; at ; q

Q
�
(18)

Loss ¼ ðTD-errorÞ2 (19)

In the training process, the neural network in the actor module
is trained by maximizing the value corresponding to the state-
action pair <st, at>, using the average value of state and action
evaluations as the loss function:

Loss ¼ �mean
h
v
�
st ; at ; q

Q
� i

(20)

In the DDPG algorithm, simply relying on the behavior selection
strategy output by the algorithm may lead to insufficient explora-
tion of the task environment. To enhance exploration,
OrnsteineUhlenbeck (OU) random noise is added to the DDPG
policy. The OU process, defined as

dxt ¼ qðm� xtÞdt þ sdWt (21)

OU random noise is time-correlated, making it suitable for
generating exploration noise in the optimization process of plunger
lift operations over successive cycles. To prevent oscillations and
divergence in network gradient calculations, and to avoid large
fluctuations in network parameters, a "soft update" method is used
to update the parameters of the two target networks, with t being
the update coefficient:

qQ
0
)tqQ þ ð1� tÞqQ

0
(22)

qm
0
)tqm þ ð1� tÞqm

0
(23)

3.1.2. Action space
The optimization of the plunger lift working systems primarily

involves controlling the after-flow and shut-in times of the well.
These two variables are crucial for efficiently removing liquid
accumulation from the bottom of the well and ensuring high pro-
ductivity. Based on the coupled wellboreereservoir model estab-
lished for a production well T001, it is assumed that the control
period spans n days. The intermittent production of plunger lift is
divided into four stages, including both opening and closing ac-
tions. The adjustment of the after-flow and shut-in times is regar-
ded as one cycle, which needs to be adjustedm times within n days.
The action space is defined as

at ¼ ½t1; t2; t3; /; tm� (24)

According to the control mode of the intelligent system, the
action feature of the wellhead electromagnetic valve is as follows:



vi ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 Increase the after-flow time Dt1 and increase the shut-in time Dt2

1 Increase the after-flow time Dt1 and decrease the shut-in time Dt2

2 Decrease the after-flow time Dt1 and increase the shut-in time Dt2

3 Decrease the after-flow time Dt1 and decrease the shut-in time Dt2

4 Increase the after-flow time Dt1 and maintain the current shut-in time

5 Decrease the after-flow time Dt1 and maintain the current shut-in time

6 Increase the shut-in time Dt2 and maintain the current after-flow time

7 Decrease the shut-in time Dt2 and maintain the current after-flow time

8 Maintain the current after-flow and shut-in time

(25)
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Whenever the agent gives feedback (ranging from 0 to 8) to the
plunger controller, the controller adjusts the wellhead valve to in-
crease, decrease, or maintain the current after-flow or shut-in time
by Dt, where Dt should be determined based on actual operating
conditions. The after-flow time should not be too short or too long,
as a short after-flow time results in insufficient production, while
an excessively long after-flow time can lead to severe liquid
loading, reducing gas production and wasting time. Similarly, the
shut-in time should be carefully managed, as a short shut-in time
may not provide enough energy to lift the plunger to the wellhead,
while an overly long shut-in time could cause the plunger to rise
too quickly, damaging wellhead equipment and reducing daily gas
production. Therefore, a rational working system ensures
maximum liquid unloading in the shortest shut-in time, while also
maintaining high productivity during the after-flow stage. In
regulating the working systems, upper and lower limits for the
after-flow and shut-in times must be set to ensure that the plunger
operates normally within the wellbore.
3.1.3. State space
Currently, the optimization of plunger lift working systems only

considers whether the plunger can be successfully lifted, with the
primary goal of maximizing gas production. However, the impact of
different working systems on gas production, the dynamic changes
in the near-wellbore reservoir during intermittent production, and
the effects of long-term intermittent production on reservoir
pressure and water saturation are not fully considered. To achieve
efficient and sustainable gas production, this study employs a
coupled wellboreereservoir model, integrating reservoir simula-
tion results. The optimization aims to balance reservoir pressure
changes and stabilize the gasewater ratio across wells, optimizing
the entire reservoir pressure level through intelligent control of the
plunger lift operation. Therefore, attributes directly related to gas
production, reservoir pressure, and gasewater ratio are selected as
the state space, including wellhead production rate (q), gasewater
ratio (GWR), and reservoir pressure (Pr). The wellhead production
rate and gasewater ratio are obtained from the wellbore model,
while reservoir pressure is derived from the reservoir model. To
make comprehensive optimization decisions, both current and
future factors are considered, similar to human reasoning. The
current wellhead production rate (qi), gasewater ratio (GWRi),
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which is the ratio of wellhead gas production rate to water pro-
duction rate, and reservoir pressure (Pir) under the current working
system are selected to describe the current system state, while the
future wellhead production rate (qiþ1), gasewater ratio (GWRiþ1),
and reservoir pressure (Piþ1

r ) under the adjusted working system
are selected to describe the future system state. Hence, the system
state is described by a six-dimensional state space.

st ¼
h
qi; GWRi; Pri; qiþ1; GWRiþ1; Priþ1

i
(26)

3.1.4. Reward
Before deploying the controller based on the DDPG algorithm in

an online environment, extensive offline pre-training is required.
During this pre-training, the agent optimizes its strategy by maxi-
mizing the reward function value through a trial-and-error explo-
ration mechanism. Consequently, the reward function ultimately
determines the control performance of the trained controller. The
plunger lift system, under certain operational conditions, provides
feedback on different actions, which is reflected in the system's
rewards or penalties. The ultimate goal of the system is to optimize
action decisions to maximize the reward, achieving optimal con-
trol. The reward rules should be designed so that their maximum
value is equivalent to the optimization of the primary objective. To
achieve efficient and long-term stable production in gas wells, this
study minimizes DGWR and DPr while maximizing Dq as the
optimization objectives. To ensure that the three rewards are of the
same order of magnitude, the reward values are formulated as the
relative changes, specifically the ratio of the incremental or
decremental change to the value at the previous time step. The
reward function designed accordingly.

rq ¼ Dq
qi�1

¼ qiþ1 � qi

qi
(27)

rGWR ¼
DGWR

GWRi�1
¼ GWRiþ1 � GWRi

GWRi
(28)

rPr ¼
DPr
Pri�1 ¼ Priþ1 � Pri

Pri
(29)



Z.-S. Xing, G.-Q. Han, Y.-L. Jia et al. Petroleum Science 22 (2025) 2154e2168
To ensure that the adjustment of the working systems does not
cause reservoir damage or wellhead equipment failure, a cumula-
tive reward approach is adopted, considering all rewards from the
current time to the final state. This ensures a smooth adjustment to
the target working systems during the optimization process.

r ¼ r1 þ r2 þ r3 þ/þ rm (30)

The reward function at different time points is designed as fol-
lows. During actual optimization, different weight coefficients can
be set according to various production needs to meet the re-
quirements for high and stable production. To further enhance
learning speed and eliminate unreasonable training outcomes, the
reward function includes not only basic items describing the main
optimization objectives but also a penalty for premature termina-
tion of the simulation and a positive reward for meeting control
requirements. To ensure safe and stable operation of the gas well,
the opening and closing times must remain within a reasonable
range. Thus, the adjustment constraints on these times serve as a
condition for premature simulation termination. If the opening or
closing times exceed the limits, the simulation terminates early,
and a large negative value is assigned to the reward function. At this
point, it is necessary to consider whether a different production
process is needed to maintain normal production under the current
reservoir and production conditions. On the other hand, if DGWR
and DPr remain within a small range, a positive reward is given.

ri ¼m1
��rq��2 �m2jrGWRj2 �m3jrPrj2 þ F þM (31)

Because the environment is random, or the environmental
changes are uncertain, the occurrence of the next state is also
random. The action taken in the current state may not necessarily
be repeated in the next state, and the same reward may not be
guaranteed. The future state is uncertain, and during the accumu-
lation of rewards, the impact of future reward changes on the
reward value must be considered. Therefore, the future reward
state must be adjusted using discounted future rewards Gt to
replace cumulative rewards.

Gt ¼ g1r1 þ g2r2 þ g3r3 þ/þ gmrm (32)
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3.2. Reinforcement learning framework for optimizing plunger lift
working systems

Determining reasonable after-flow and shut-in times is one of
the critical factors in controlling plunger lift operations. A well-
designed working system can ensure maximum liquid removal
within a short shut-in while maintaining high production after the
well is opened. Different working systems result in varying well-
head gas production rates, gasewater ratios, and reservoir pressure
distributions. By setting different opening and closing cycles
through the wellhead electromagnetic valve, the plunger is
controlled to upstroke and downstroke within the wellbore, dis-
charging accumulated liquid, reducing bottomhole flowing pres-
sure, and thus increasing gas production. The optimization control
principle of plunger lift operations is illustrated in Fig. 3, which
mainly includes environment, state, reward, action, and agent. The
plunger controller executes the plunger lift working systems con-
trol algorithm while receiving remote open-close commands. It
manages the movement and operation of the plunger. A digital
pressure gauge is used to monitor the tubing and casing pressures
in real-time, providing critical downhole and wellhead data to
ensure the stable operation of the plunger lift process. The tubing
and casing pressures are important parameters for judging the
plunger lift operation and evaluating the effectiveness of the
working systems. The state refers to the production parameters of
the plunger lift system, including wellhead gas production rate,
gasewater ratio, and reservoir pressure distribution. The agent can
be understood as the "neural center," capable of sensing the current
state, evaluating the effects of actions chosen in previous states, and
interacting with the environment. The agent is responsible for
making decisions, such as increasing the after-flow time, main-
taining the current working systems, or decreasing the shut-in
time, which corresponds to the action in the model. After
receiving the agent's action signal, the plunger controller adjusts
the working systems, reflected in the plunger lift operation by
increasing, decreasing, or maintaining the well after-flow and shut-
in times. After the action is executed, feedback from the environ-
mentdencompassing the entire production system including the
wellbore and reservoirdis obtained. The environment's function is
to output the system's state and the effects of the action after it is
executed. For example, extending the after-flow time might in-
crease daily gas production, while reducing the after-flow time
might slow the decline in reservoir energy. These feedback values,
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Fig. 4. Framework of the plunger lift optimization algorithm based on the DDPG algorithm.
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once quantified, form the rewards in the model. These four ele-
mentsdenvironment, state, reward, and actiondconstitute the
basic framework of the plunger lift system.

The specific optimization process is as follows: the optimization
time interval is manually set, and calculations are performed using
a coupled wellboreereservoir model. The wellbore model provides
the wellhead gas production rate, and the reservoir model provides
the gasewater ratio and reservoir pressure distribution. The
working system optimization algorithm is establishedwith the goal
of balancing overall reservoir pressure, stabilizing the gasewater
ratio for each well, and maximizing gas production. The opti-
mized working systems is then transmitted to the plunger
controller, which executes the control algorithm while the digital
pressure gauge records various data during the operation. At the
next optimization time point, the reservoir model is updated based
on the monitoring data, and the optimization algorithm is re-
executed to optimize the working systems for the subsequent
time step. This process is repeated to achieve the plunger lift
working system optimization.

The reinforcement learning model architecture for plunger lift
working system optimization based on the coupled
wellboreereservoir model is shown in Fig. 4. This architecture is
based on the DDPG algorithm and establishes an actor-critic
network. The actor-critic network consists of a training network
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and a target network, resulting in a total of four networks. The
training network is used to update the network parameters, while
the target network follows a periodic soft update strategy to assist
in training the neural network.

Each set of data is normalized within the neural network, and
random noise is added to the output of the actor network to achieve
signal input. An exploration strategy is constructed by adding noise
to the original actor policy using an OU random process with pa-
rameters q ¼ 0.2 and s ¼ 0.2. This process generates time-
correlated values centered around zero, allowing for effective
exploration in the physical environment. The actor network im-
plements the current deterministic action policy, enabling the
plunger controller to execute the current working systems. The
actor network receives state variables collected from the wellbore
and reservoir models as input and has two hidden layers with 300
and 600 nodes, respectively. In these hidden layers, each neuron
uses a rectified linear unit (ReLu) activation function to convert
input signals into output signals, which represent the probability
distribution of actions. This is used to approximate the policymodel
p(atj st) and output the corresponding action. The critic network
estimates the Q value of the current state-action pair using a set of
parameters qQ, which is crucial for network convergence. The critic
network uses state variables st and action variables at as input, with
three hidden layers of 600 nodes each to approximate the Q
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function value. Each neuron in the hidden layers uses a softmax
activation function to convert input signals into output signals,
resulting in the current network Q value. The final output layer of
the actor network uses a tanh(x) activation function, mapping real
numbers to the [0, 1] range, after which the actor network output is
scaled to the range of well opening and closing adjustment times,
mapping network outputs to the control actions of the plunger
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controller. The critic's final output layer directly outputs Q without
using the ReLu activation function.

During training, the actor network is responsible for selecting
actions under different environmental states, while the critic
network evaluates the value of these actions. They learn from each
other in a mutually supervised relationship. The training neural
network is used to evaluate the value of the current state and
behavior, while the target neural network receives the state at the
next time step and the corresponding behavior output by the target
actor network, and makes a value judgment. The DQN experience
replay mechanism is introduced to store interaction data between
the agent and the environment (st, at, rt, stþ1). The DDPG algorithm
enhances training stability and effectiveness by randomly sampling
batches from the experience replay buffer. A soft update mecha-
nism for the target network is applied to gradually update the
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parameters of the target actor and critic networks, thereby
enhancing the stability and convergence of the training process.

The algorithm designed in this study based on the above
framework is shown in Algorithm 1.

Algorithm 1. Plunger lift optimization algorithm based on the
DDPG algorithm
Fig. 5. Comparison of calculated wellhead tubing and casing pressures with field data.



Table 1
Hyperparameter settings.

Parameter Value

Episode 500
Actor network learning rate 0.0003
Critic network learning rate 0.001
Discount factor 0.99
Update coefficient 0.001
Mini batch 64
Max step 120

Table 2
Weight coefficients for different scenarios.

Scenario m1 m2 m3

Scenario 1 0.8 0.1 0.1
Scenario 2 0.5 0.4 0.1
Scenario 3 0.5 0.1 0.4

Fig. 6. Trainin
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4. Simulation experiment

4.1. Experimental setup

To validate the operability of the optimization algorithm for
plunger lift working systems, this study established a reservoir and
wellbore model based on field data to conduct simulation experi-
ments and optimization analyses. The reservoir model was con-
structed using the commercial numerical simulation software CMG
(Fig. 1), with the model establishment process detailed in Section
2.2, so it will not be elaborated upon here. The production well
T001 in the development block was selected for this study. This
well is a vertical well with a depth of 3020 m, a bottomhole seating
set at 3009 m, and uses a conventional rod-type plunger with an
outer diameter of 48 mm. The tubing and casing have outer di-
ameters of 64 and 177.8 mm, respectively. The wellhead receives
remote control signals from a plunger controller to remotely
g results.
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control the solenoid valve and, thus, the plunger's up-and-down
movement. The current working systems involve a cycle of 3 h of
shut-in followed by 3 h of production. Real-time data on wellhead
tubing pressure, casing pressure, and gas production rate are
measured, with data acquisition intervals set to 1 min. The calcu-
lated wellhead tubing and casing pressures from the established
wellboreereservoir coupling model were compared with field
measurements (as shown in Fig. 5), indicating a good fit. This
suggests that the model is highly accurate and can precisely
describe the transient production conditions in the gas reservoir
and wellbore, providing a solid foundation for subsequent intelli-
gent optimization and control.

The hyperparameters used in the DDPG algorithm for the
experiment are shown in Table 1, while the hyperparameter set-
tings for other optimization algorithms are provided in Appendix A.

To validate the performance and robustness of the proposed
control strategy for optimizing the plunger lift working systems,
different weight coefficients were set in the reward function ac-
cording to various production requirements. Specifically, m1 repre-
sents the weight of gas production rate, m2 represents the weight of
formation pressure distribution, and m3 represents the weight of
gasewater ratio. Scenario 1 aims for maximum gas production
while considering stable production and water control; Scenario 2
aims for long-term stable production, balancing gas production and
water control; and Scenario 3 focuses primarily on water control.
The specific weight parameter settings for each scenario are
detailed in Table 2.

4.2. Experimental results and discussion

The variations in training reward values for the plunger lift
optimization control model based on the DDPG algorithm, under
different scenarios, are compared with the reward value variations
from other reinforcement learning models. These comparisons are
depicted in Fig. 6(a). The horizontal axis represents the total
number of training episodes, with a total of 500 episodes in the
experiment. The vertical axis shows the cumulative reward value
for each episode. From the figures, it is evident that in all three
scenarios, the RL and PPO algorithms exhibit relatively low reward
values and poor stability. Although the DQN algorithm is more
stable, it requires a higher number of episodes to reach optimal
performance, resulting in a slower convergence speed. In contrast,
the DDPG algorithm demonstrates stable performance once it
Fig. 7. Coupled model c

2165
converges to the optimal solution, outperforming the DQN algo-
rithm. Around the 100th episode, the DDPG algorithm's agent has
already learned a series of control actions that maximize the target
value. This finding confirms that the DDPG-based reinforcement
learning model can converge effectively, even in a relatively small
state space. The oscillations in the reward value curves are attrib-
uted to the sustained exploration/exploitation probability, which
prevents themodel from becoming trapped in a local optimum. The
DDPG algorithm tends to overestimate Q values, leading to signif-
icant reward fluctuations during convergence. However, in solving
complex high-dimensional problems, this instability in DDPG
convergence often helps avoid premature convergence to subop-
timal reward values. The comparison with other reinforcement
learning models shows that traditional RL, PPO, and DQN algo-
rithms start with lower initial rewards, have lower exploration ef-
ficiency, and slower or even nonexistent convergence rates. In
contrast, the DDPG algorithm in this study selects more reasonable
actions early in training, leading to higher initial rewards, greater
exploration efficiency, faster reward convergence, and significantly
higher rewards than other models. To verify the effectiveness of the
optimization control, the actual performance was evaluated by
observing the errors during training. The errors for different rein-
forcement learning models are shown in Fig. 6(b). During optimi-
zation, the RL model exhibits the largest errors and the poorest
control stability. Similarly, the PPO and DQN models show large
errors and perform poorly during the optimization process. How-
ever, the DDPG algorithm's error oscillations gradually decrease,
significantly enhancing the stability of the optimization control.
The error variations during the DDPG algorithm's controller
training process in different scenarios are depicted in Fig. 6(c). It
can be seen that the actor network's error oscillates between �4
and 3 across different scenarios, gradually converging to near-zero
as training progressed. The critic network's error exhibits an overall
downward trend, with significant initial oscillations, indicating
high instability in the controller's strategy at the beginning of
training. As training continues, the control strategy stabilizes, with
error oscillations decreasing and ultimately converging to near-
zero.

In the optimization simulation process, upper and lower limits
were set for the after-flow and shut-in times. To ensure production
efficiency, the lower limit for the after-flow time was set at 1 h, and
for the shut-in time, it was set at 6 h. The upper limit for the after-
flow timewas determined by considering the liquid loading issue in
alculation results.



Fig. 8. After-flow and shut-in time adjustments for different optimization models.
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the gas well. If the wellbore is in a liquid loading state, continued
production would be uneconomical. Therefore, by calculating the
critical liquid loading gas flowrate for the block, the after-flow time
was capped at 6 h. The lower limit for the shut-in timewas set at 1 h
to ensure that sufficient energy could be accumulated in the well-
bore during the shut-in period, allowing the plunger to be lifted to
the wellhead. To prevent plunger lift failure, the lower limit was set
to 1 h. These upper and lower limits for after-flowand shut-in times
can be adjusted at different production stages.

Taking Scenario 1 as an example, the fixed after-flowand shut-in
time mode used the existing working systemwith 3 h opening and
3 h closing periods. The cumulative gas and liquid production
simulated results using different optimization algorithms
compared with the fixed time system are shown in Fig. 7. From
Fig. 7, it can be observed that the cumulative gas production using
the DDPG algorithm increased by approximately 5%, and cumula-
tive liquid production increased by 252% compared to the fixed
time system. Compared to traditional optimization algorithms,
such as genetic algorithm (GA), particle swarm optimization (PSO),
and Bayesian optimization, reinforcement learning algorithms
demonstrate superior performance in terms of cumulative gas and
liquid production. This advantage arises because traditional sto-
chastic gradient methods typically optimize objectives at the cur-
rent moment (single-step optimal), making them less effective for
problems involving long-term rewards. In the plunger lift produc-
tion process studied, short-term production increases may lead to
long-term damage, such as water breakthrough in the wellbore.
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DDPG, leveraging the cumulative reward mechanism of reinforce-
ment learning (discounted cumulative returns), can balance short-
term gains with long-term objectives. By optimizing long-term
rewards, it identifies globally optimal production strategies.
Furthermore, DDPG efficiently handles high-dimensional state
parameters, maintaining performance and robustness under
multivariate conditions. With the representational power of deep
neural networks, it effectively processes high-dimensional states
and approximates complex nonlinear relationships.

The adjustment results for after-flow and shut-in times under
different optimization models are shown in Fig. 8. The RL optimi-
zation algorithm, as shown in Fig. 6, indicates that the agent is still
in the learning phase, with many action-state values yet to be
explored or updated, leading to increasing reward values. There-
fore, the RL model performs worse than other models. During the
early production stage, when reservoir energy is abundant, the
after-flow time should be longer and the shut-in time shorter. As
production continues, with decreasing reservoir pressure and
gasewater ratio, the optimizationmodels begin adjusting the after-
flow and shut-in times. The three models show similar adjustment
trends, with a continuous decrease in after-flow time and an in-
crease in shut-in time. However, the PPO and DQN algorithms have
large optimization errors, with frequent fluctuations in after-flow
and shut-in times during the optimization process, which is unfa-
vorable for production. The DDPG algorithm's optimization process
is smoother and better suited to this scenario, providing the most
optimal optimization path. In summary, compared to other
(b) Pressure drop funnel during the shut-in stage
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algorithms, the DDPG algorithm demonstrates robustness across
different optimization scenarios, with good adaptability and
generalization capabilities, enabling the system to achieve efficient
production and long-term stable output under various optimiza-
tion objectives.

In the plunger lift gas production process, the liquid accumu-
lated at the bottom of the well is continuously discharged, resulting
in a continuous reduction in bottomhole flowing pressure. As
production continues, the pressure decline varies from the near-
wellbore region to the far-well end, forming a pressure drop fun-
nel centered around the wellbore. For the intermittent production
process of plunger lift, during the after-flow stage, fluids are
continuously produced from the reservoir and flow out of the
wellhead. During the shut-in stage, since a production pressure
differential still exists, fluids continue to flow into the wellbore,
storing energy. Therefore, whether during the after-flow or shut-in
stages, as shown in Fig. 9, the reservoir continuously produces
fluids, and the reservoir pressure distribution, i.e., the pressure
drop funnel, is constantly changing. Fig. 9(a) illustrates the pressure
drop funnel during the plunger lift upstroke and after-flow pro-
duction stages simulated using the coupled model. At the begin-
ning of after-flow, the elastic release of compressed gas in the gas
wellbore causes a rapid drop in wellhead pressure, resulting in a
high instantaneous flow rate at the wellhead for a short period,
followed by a slower and more stable pressure decline. During
after-flow production, as the wellbore pressure decreases, the
bottomhole flowing pressure drops, increasing the production
pressure differential and reservoir productivity. As the pressure
release in the near-well region concludes, reservoir productivity
gradually declines. Fig. 9(b) illustrates the pressure drop funnel
during the shut-in stage simulated using the coupledmodel. Due to
the short shut-in time in intermittent plunger lift production and
the slow reservoir seepage rate, the pressure propagation speed is
slow, leading to a pressure drop funnel with distinct inner and
outer zones within the control range of the gas well. The pressure
distribution in the outer zone is similar to the pressure drop funnel
during the after-flow stage, unaffected by the intermittent pro-
duction system. The pressure distribution in the inner zone exhibits
a cyclical variation between a positive and negative funnel, with its
shape and range influenced by the periodic liquid accumulation
and discharge system. As the production time increases, the inner
zone gradually expands.
Table A.1
Hyperparameter settings for RL algorithms

Parameter Value

Episode 500
Discount factor 0.99
Max step 120
5. Conclusions

The optimization of the plunger lift working systems is influ-
enced by numerous factors, making it a multifactor optimization
challenge. Traditional optimizationmethods often yield only locally
optimal solutions and cannot guarantee global optimality, nor can
they quickly and comprehensively address parameter optimization
issues. In this study, a coupled wellboreereservoir model for
plunger lift wells was developed, enabling transient production
simulation of the wellbore and reservoir. An optimization control
algorithm for plunger lift operation based on the DDPG framework
was proposed, targeting overall pressure equilibrium in the gas
reservoir, stable gasewater ratio across wells, and maximizing gas
production. The following conclusions were drawn.

(1) A coupled wellboreereservoir model for plunger lift wells
was established using self-developed software and the
commercial numerical simulation software CMG. The
model's results were compared with field-measured data,
showing high accuracy. The established coupled model can
accurately describe transient production within the gas
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reservoir and wellbore, providing a foundation for subse-
quent intelligent control.

(2) Based on the coupled model, an optimization control algo-
rithm for plunger lift operation was developed using the
DDPG framework, aiming for overall pressure equilibrium in
the gas reservoir, stable gasewater ratio across wells, and
maximizing gas production.

(3) Comparative results of different optimization algorithms
indicate that the DDPG algorithm achieves the highest
reward values and smallest errors during training, with a
maximum increase in cumulative gas production of 5% and a
252% increase in cumulative liquid production. The results
demonstrate that the DDPG algorithm exhibits robustness,
adaptability, and generalization capabilities across different
optimization scenarios.

(4) The pressure drop funnel within the control range of an
intermittent gas well exhibits distinct inner and outer zone
characteristics compared to conventional gas wells. The
coupled model developed in this study simulated the pro-
duction of an intermittent gas well, revealing that the pres-
sure distribution in the outer zone remains consistent with
the after-flow stage pressure drop funnel, unaffected by the
intermittent production regime. The pressure distribution in
the inner zone shows a cyclical variation between a positive
and negative funnel, with its shape and range influenced by
the periodic liquid accumulation and discharge regime. The
inner zone expands as the production time increases.
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Appendix. A Hyperparameter settings for different
optimization algorithms

RL algorithms:
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PPO algorithms:
Table A.2
Hyperparameter settings for PPO algorithms

Parameter Value

Episode 500
Actor network learning rate 0.0003
Critic network learning rate 0.001
Discount factor 0.99
Mini batch 64
Max step 120
DQN algorithms:
Table A.3
Hyperparameter settings for DQN algorithms

Parameter Value

Episode 500
Learning rate 0.001
Discount factor 0.99
Target update frequency 2
Experience replay buffer length 100
Mini batch 64
Max step 120
DDPG algorithms:
Table A.4
Hyperparameter settings for DDPG algorithms

Parameter Value

Episode 500
Actor network learning rate 0.0003
Critic network learning rate 0.001
Discount factor 0.99
Update coefficient 0.001
Experience replay buffer length 100
Mini batch 64
Max step 120
References

Aires, J.D.M., Gadelha, J.R.T., de A Dantas, A.F.O., Bolonhini, �E.H., D�orea, C.E.T.,
Maitelli, A.L., 2020. Plunger lift optimization: a comparison of fuzzy and pre-
dictive controllers with manipulation of a secondary gas valve. J. Petrol. Sci. Eng.
192, 107261. https://doi.org/10.1016/j.petrol.2020.107261.

Akhiiartdinov, A., Pereyra, E., Sarica, C., Severino, J., 2020. Data analytics application
for conventional plunger lift modeling and optimization. In: SPE Artificial Lift
Conference and Exhibition. https://doi.org/10.2118/201144-MS.

Barros, J.L., Claramunt, J.I., Ferrigno, E., 2018. Novel approach in digital diagnostic for
plunger lift in unconventional wells. In: SPE Artificial Lift Conference and
Exhibition. https://doi.org/10.2118/190930-MS.

Chen, P., Chen, Y., Yang, C., Xu, Y., Feng, G., 2024. Gas well production optimization:
classifying liquid loading severity in shale gas wells using semi-supervised
learning. Gas Science and Engineering 128, 205394. https://doi.org/10.1016/
j.jgsce.2024.205394.

Foss, D.L., Gaul, R.B., 1965. Plunger-life performance criteria with operating
experience-Ventura Avenue Field. Drill. Drilling and Production Practices. API-
65-124.

Gupta, A., Kaisare, N.S., Nandola, N.N., 2017. Dynamic plunger lift model for deli-
quification of shale gas wells. Comput. Chem. Eng. 103, 81e90. https://doi.org/
10.1016/j.compchemeng.2017.03.005.

Hashmi, G.M., Hasan, A.R., Kabir, C.S., 2018. Simplified modeling of plunger-lift
2168
assisted production in gas wells. J. Nat. Gas Sci. Eng. 52, 454e460. https://
doi.org/10.1016/j.jngse.2018.02.009.

Hu, B., Sagen, J., Chupin, G., Haugset, T., Ek, A., Sommersel, T., Xu, Z.G.,
Mantecon, J.C., 2007. Integrated wellbore/reservoir dynamic simulation. In: Asia
Pacific Oil and Gas Conference and Exhibition. https://doi.org/10.2118/109162-
MS.

Kamari, A., Bahadori, A., Mohammadi, A.H., 2016. Prediction of maximum possible
liquid rates produced from plunger lift by use of a rigorous modeling approach.
SPE Prod. Oper. 32, 7e11. https://doi.org/10.2118/180912-PA.

Nandola, N.N., Kaisare, N.S., Gupta, A., 2018. Online optimization for a plunger lift
process in shale gas wells. Comput. Chem. Eng. 108, 89e97. https://doi.org/
10.1016/j.compchemeng.2017.09.001.

Ozkan, E., Keefer, B., Miller, M.G., 2003. Optimization of plunger-lift performance in
liquid loading gas wells. In: SPE Annual Technical Conference and Exhibition.
https://doi.org/10.2118/84135-MS.

Parsa, E., Ozkan, E., Lowery, B., Cathcart, D., Lohmann, M., 2013. Enhanced plunger
lift performance utilizing reservoir modeling. In: SPE Production and Opera-
tions Symposium. https://doi.org/10.2118/164473-MS.

Peng, L., Pagou, A.L., Tian, L., Chai, X., Han, G., Yin, D., Zhang, K., 2024. A fully coupled
compositional wellbore/reservoir model for predicting liquid loading in vertical
and inclined gas wells. Geoenergy Science and Engineering 239, 212874.
https://doi.org/10.1016/j.geoen.2024.212874.

Romero, A., Feldmann, C., Alonso, K.S., Martinez, G., Barros, J., Montero, M.,
Martinez, G., Claramunt, J.I.A., Martinez, G., Ferrigno, E., 2020. Prescriptive
model for automatic online plunger lift unconventional wells optimization. In:
Latin America Unconventional Resources Technology Conference, Unconven-
tional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-
1427.

Sayman, O., Jones, K., Hale, R., Pereyra, E., Sarica, C., 2022a. A field case study of
plunger lift related tubing deformation. J. Nat. Gas Sci. Eng. 97, 104342. https://
doi.org/10.1016/j.jngse.2021.104342.

Sayman, O., Tang, Y., Chow, J., Farrell, K., Pereyra, E., Sarica, C., 2022b. Experimental
and field investigations of bypass plunger lift. In: SPE Annual Technical Con-
ference and Exhibition. https://doi.org/10.2118/210463-MS.

Singh, A., 2017. Application of data mining for quick root-cause identification and
automated production diagnostic of gas wells with plunger lift. SPE Prod. Oper.
32, 279e293. https://doi.org/10.2118/175564-PA.

Tan, B., Liu, X., Liu, Y., Chang, Y., Tian, W., Jia, Y., Han, G., Liang, X., 2023. Mechanism
of liquid unloading by single flowing plunger lift in gas wells. Int. J. Hydrogen
Energy 48 (7), 2571e2582. https://doi.org/10.1016/j.ijhydene.2022.10.118.

Tan, X., Deng, Y., Luo, A., Li, Xiaoping, Tian, W., Li, Xuri, Liu, Y., Zhou, C., 2023.
Experimental and numerical simulation research on sealing performance and
drainage efficiency of different types of plungers. Geoenergy Science and En-
gineering 224, 211517. https://doi.org/10.1016/j.geoen.2023.211517.

Tong, Z., Zhao, G., Wei, S., 2017. A novel intermittent gas lifting and monitoring
system toward liquid unloading for deviated wells in mature gas field. J. Energy
Resour. Technol. 140 (5), 052906. https://doi.org/10.1115/1.4038623.

Wu, Q., Han, G., Yang, D., Zhu, Z., Peng, L., Ma, H., Liang, X., 2024. Reliable and
efficient algorithms to optimize gas well intermittent production through
automatically intelligent control. In: SPE Gas & Oil Technology Showcase and
Conference. https://doi.org/10.2118/219130-MS.

Xiang, Z., Kabir, C.S., 2019. Simplified transient-IPR modeling in intermittent gas-lift
and plunger-lift systems. J. Petrol. Sci. Eng. 179, 31e43. https://doi.org/10.1016/
j.petrol.2019.04.040.

Xie, Y., Ma, S., Wang, H., Li, N., Zhu, J., Wang, J., 2023. Unsupervised clustering for the
anomaly diagnosis of plunger lift operations. Geoenergy Science and Engi-
neering 231, 212305. https://doi.org/10.1016/j.geoen.2023.212305.

Zhao, K., Bai, B., 2018. Transient liquid leakage during plunger lifting process in gas
wells. J. Nat. Gas Sci. Eng. 59, 250e261. https://doi.org/10.1016/
j.jngse.2018.09.009.

Zhao, K., Tian, W., Li, X., Bai, B., 2018. A physical model for liquid leakage flow rate
during plunger lifting process in gas wells. J. Nat. Gas Sci. Eng. 49, 32e40.
https://doi.org/10.1016/j.jngse.2017.10.008.

Zhao, K., Mu, L., Tian, W., Bai, B., 2021. Gas-liquid flow seal in the smooth annulus
during plunger lifting process in gas wells. J. Nat. Gas Sci. Eng. 95, 104195.
https://doi.org/10.1016/j.jngse.2021.104195.

Zhao, Q., Zhu, J., Cao, G., Zhu, H., Zhang, H.-Q., 2021. Transient modeling of plunger
lift for gas well deliquification. SPE J. 26, 2928e2947. https://doi.org/10.2118/
205386-PA.

Zhong, Z., Wang, H., Li, N., Zhu, H., Zhu, J., Wang, J., 2024. Prediction of plunger lift
dynamics using a bidirectional long short-term memory neural network with
an innovative forecasting strategy. In: 2024 IEEE 3rd International Conference
on Electrical Engineering, Big Data and Algorithms (EEBDA). https://doi.org/
10.1109/EEBDA60612.2024.10485764.

Zhu, J., Cao, G., Tian, W., Zhao, Q., Zhu, H., Song, J., Peng, J., Lin, Z., Zhang, H.-Q., 2019.
Improved data mining for production diagnosis of gas wells with plunger lift
through dynamic simulations. In: SPE Annual Technical Conference and Exhi-
bition. https://doi.org/10.2118/196201-MS.

Zhu, Z., Han, G., Liang, X., Chang, S., Yang, B., Yang, D., 2024. Rapid classification and
diagnosis of gas wells driven by production data. Processes 12, 1254. https://
doi.org/10.3390/pr12061254.

https://doi.org/10.1016/j.petrol.2020.107261
https://doi.org/10.2118/201144-MS
https://doi.org/10.2118/190930-MS
https://doi.org/10.1016/j.jgsce.2024.205394
https://doi.org/10.1016/j.jgsce.2024.205394
http://refhub.elsevier.com/S1995-8226(25)00068-8/sref5
http://refhub.elsevier.com/S1995-8226(25)00068-8/sref5
http://refhub.elsevier.com/S1995-8226(25)00068-8/sref5
https://doi.org/10.1016/j.compchemeng.2017.03.005
https://doi.org/10.1016/j.compchemeng.2017.03.005
https://doi.org/10.1016/j.jngse.2018.02.009
https://doi.org/10.1016/j.jngse.2018.02.009
https://doi.org/10.2118/109162-MS
https://doi.org/10.2118/109162-MS
https://doi.org/10.2118/180912-PA
https://doi.org/10.1016/j.compchemeng.2017.09.001
https://doi.org/10.1016/j.compchemeng.2017.09.001
https://doi.org/10.2118/84135-MS
https://doi.org/10.2118/164473-MS
https://doi.org/10.1016/j.geoen.2024.212874
https://doi.org/10.15530/urtec-2020-1427
https://doi.org/10.15530/urtec-2020-1427
https://doi.org/10.1016/j.jngse.2021.104342
https://doi.org/10.1016/j.jngse.2021.104342
https://doi.org/10.2118/210463-MS
https://doi.org/10.2118/175564-PA
https://doi.org/10.1016/j.ijhydene.2022.10.118
https://doi.org/10.1016/j.geoen.2023.211517
https://doi.org/10.1115/1.4038623
https://doi.org/10.2118/219130-MS
https://doi.org/10.1016/j.petrol.2019.04.040
https://doi.org/10.1016/j.petrol.2019.04.040
https://doi.org/10.1016/j.geoen.2023.212305
https://doi.org/10.1016/j.jngse.2018.09.009
https://doi.org/10.1016/j.jngse.2018.09.009
https://doi.org/10.1016/j.jngse.2017.10.008
https://doi.org/10.1016/j.jngse.2021.104195
https://doi.org/10.2118/205386-PA
https://doi.org/10.2118/205386-PA
https://doi.org/10.1109/EEBDA60612.2024.10485764
https://doi.org/10.1109/EEBDA60612.2024.10485764
https://doi.org/10.2118/196201-MS
https://doi.org/10.3390/pr12061254
https://doi.org/10.3390/pr12061254

	Optimization of plunger lift working systems using reinforcement learning for coupled wellbore/reservoir
	1. Introduction
	2. Wellbore–reservoir coupling model development
	2.1. Wellbore model
	2.1.1. Transient plunger motion
	2.1.2. Wellbore gas–liquid mass variation

	2.2. Reservoir model
	2.3. Coupling model

	3. Optimization of plunger lift working systems using reinforcement learning
	3.1. Reinforcement learning model for optimizing plunger lift working systems
	3.1.1. Methodology
	3.1.2. Action space
	3.1.3. State space
	3.1.4. Reward

	3.2. Reinforcement learning framework for optimizing plunger lift working systems

	4. Simulation experiment
	4.1. Experimental setup
	4.2. Experimental results and discussion

	5. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix. A Hyperparameter settings for different optimization algorithms
	RL algorithms:
	PPO algorithms:
	DQN algorithms:
	DDPG algorithms:

	References


