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ABSTRACT

Deblending is a data processing procedure used to separate the source interferences of blended seismic
data, which are obtained by simultaneous sources with random time delays to reduce the cost of seismic
acquisition. There are three types of deblending algorithms, i.e., filtering-type noise suppression algo-
rithm, inversion-based algorithm and deep-learning based algorithm. We review the merits of these
techniques, and propose to use a sparse inversion method for seismic data deblending. Filtering-based
deblending approach is applicable to blended data with a low blending fold and simple geometry.
Otherwise, it can suffer from signal distortion and noise leakage. At present, the deep learning based
deblending methods are still under development and field data applications are limited due to the lack of
high-quality training labels. In contrast, the inversion-based deblending approaches have gained in-
dustrial acceptance. Our used inversion approach transforms the pseudo-deblended data into the
frequency-wavenumber-wavenumher (FKK) domain, and a sparse constraint is imposed for the coherent
signal estimation. The estimated signal is used to predict the interference noise for subtraction from the
original pseudo-deblended data. Via minimizing the data misfit, the signal can be iteratively updated
with a shrinking threshold until the signal and interference are fully separated. The used FKK sparse
inversion algorithm is very accurate and efficient compared with other sparse inversion methods, and it
is widely applied in field cases. Synthetic example shows that the deblending error is less than 1% in
average amplitudes and less than —40 dB in amplitude spectra. We present three field data examples of
land, marine OBN (Ocean Bottom Nodes) and streamer acquisitions to demonstrate its successful ap-
plications in separating the source interferences efficiently and accurately.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

cost of seismic data acquisition yet without compromising the ac-
curacy and fidelity of seismic data. Indeed, wide-azimuth and high-

With the shift of hydrocarbon exploration to more complex
areas, such as deep-buried reservoirs in desert, mountainous re-
gions, or deep oceans, wide-azimuth and high-density 3D seismic
acquisition gradually emerged in the late 1990's (Lynn, 1996; Li,
1999) and early 2000's (Vermeer, 2002; Quigley, 2004), respec-
tively. It is because wide-azimuth and high-density seismic acqui-
sition can improve the signal to noise (S/N) ratio, resolution, and
imaging quality of seismic data, laying the foundation for better
subsequent subsurface characterization than conventional acqui-
sition. Consequently, it leads to an increasing need to reduce the

* Corresponding author.
E-mail address: zhangshhua@cnpc.com.cn (S.-H. Zhang).

https://doi.org/10.1016/j.petsci.2025.03.019

density seismic start to gain the acceptance of the industry due to
the advent of high-productivity seismic acquisition technology
until the early 2010's (Zhang and Zhan, 2021; Zhang and Song,
2025).

Traditionally, seismic sources are deployed with sufficient time
interval, or when a source completes its sweep at one shot location,
it then moves to the next shot location together with the receiver
spread. Obviously, the efficiency of this shot-by-shot fashion is low,
and cannot satisfy the needs of wide-azimuth and high-density
seismic acquisition. The bottle neck for improving efficiency here
is the source and receiver waiting time, and reducing waiting time
is a basic strategy to improve the efficiency. It intuitively requires
the deployment of multiple sources which sweep in different
modes with millions of receiver channels and without the need to
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relocate the spread.

In marine seismic data acquisition, Berkhout (2008) proposed
the concept of simultaneous shooting with random time delays,
signalling the onset of blended seismic acquisition (Hampson et al.,
2008). In land seismic data acquisition, Shell proposed alternative
sweep in 1991, and slip sweep in 1996 (Rozemond, 1996). It is fol-
lowed by distance-separated slip sweep and dynamic slip sweep,
which was widely applied in the Middle East and North African
(Bouska, 2008). BP developed Independent Simultaneous Sweeping
(ISS) technique in 2006 and applied it in Libya project in 2008
(Howe et al., 2009; Abma et al., 2015). On the above-mentioned
basis, BGP developed the UHP (ultra-high-productivity) sweep in
2018 which employs more source groups and large receiver
spreads, further optimizing the sweep timing and modes (Zhao
et al.,, 2018).

The use of these high-productivity acquisition methods sub-
stantially reduces the field operation time, making wide azimuth
and high-density surveys economically feasible. However, the
recorded wavefield is no longer clean compared with traditional
surveys, and the acquired data are contaminated with interferences
generated from adjacent source groups, referred to as being
blended. Therefore, accurate deblending is required before subse-
quent data processing, which is the extra price paid for high-
productivity acquisition.

Initially, deblending was treated as a noise suppression process
utilizing various filtering techniques (e.g., Mahdad et al., 2011; Zhou
et al., 2013). Then, deblending was treated as an inversion process
(Songetal., 20193, 2019b) with priors. Nowadays, deblending based
on deep-learning is also gradually emerged (e.g., Wang et al., 2022,
2023a; Chen, 2024). We review and discuss the merits of these
various deblending techniques in order to provide a good under-
standing of these techniques and facilitate a useful discussion on
how these deblending techniques can help high-productivity
seismic acquisition.

Note that another approach is to process the blended data
directly without deblending. Dai et al. (2011) and Verschuur and
Berkhout (2011) applied reverse time migration (RTM) directly to
blended data. Zhang et al. (2018) carried out full wave inversion
(FWI) of blended data directly. However, both RTM and FWI require
an initial velocity model with sufficient accuracy to produce
meaningful results. Due to the limitation in computing capacity,
such models were often produced from the deblended data before
the application of RTM or FWI, which made this approach
impractical.

In this paper, after a review of the published deblending tech-
niques, we propose to use a sparse inversion method for seismic
data deblending with synthetic data to demonstrate its accuracy.
Three field data examples of land, marine OBN (Ocean-Bottom-
Nodes) and streamer geometries are further provided to illustrate
its role in high-productivity onshore and offshore seismic
acquisitions.

2. Deblending techniques

Deblending is a data processing procedure to separate the
source interferences of blended data from simultaneous sources
with random time delays. The separated data can then be processed
using the traditional seismic data processing procedures.
Deblending approach has attracted wide interests from the in-
dustry and academia in recent years. Generally speaking, there are
three categories of deblending algorithms: filtering-type deblend-
ing approaches, deterministic inversion based deblending ap-
proaches, and deep learning based deblending approaches. The
development of these techniques is reviewed below.
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2.1. Filtering-based deblending algorithm

If a blended dataset is acquired from simultaneous sources with
random time delays, the useable data (or the signals) from the main
shot are coherent and continuous, whilst the interferences (the
blending noise) from adjacent shots appear random and discon-
tinuous (Beasley, 2008) in CRP (common-receiver-point), or CMP
(common-mid-point), or COG (common-offset-gather) data do-
mains instead of the common-shot-point (CSP) domain. The
filtering approach exploits this feature to separate the signals from
the blending noise using conventional random noise removal
techniques, of which median filter and its various modifications
were first proposed (e.g., Liu et al., 2009; Huo et al., 2012; Gan et al.,
2016; Zhou and Li, 2018, amongst others).

Liu et al. (2009) was amongst the first to introduce the tradi-
tional scalar median filter to separate the interference noise in
pseudo-deblended data. Doulgeris et al. (2011) and Mahdad et al.
(2011) introduced a coherence filter in the f-k domain to remove
the interference noise. Meanwhile, Huo et al. (2012) extended the
traditional scalar media filter to a vector media filter for deblending
in CMP domain, and Wang et al. (2014) further improved this
approach with an additional trim-threshold to maximize the en-
ergy of the main shot.

However, the separated results by these filtering techniques
were often not very satisfactory due to the presence of residual
noise. In order to remove the residual noise, multi-domain and
iterative filtering techniques are developed. Han et al. (2013) sug-
gested to remove the interference noise by median filter in the COG
domain first, and then further filtering is applied in the curvelet
domain to remove the residual energy. Gan et al. (2016) proposed a
structure-oriented median filtering technique. The data was first
aligned along a selected horizon (or structure), and then a median
filter was applied for deblending. Zhou et al. (2016a) introduced an
iterative approach which adjusts the filtering time window self-
adaptively during each iteration, and the median filtering was
repeated with an updated time window until the residual energy
meets the pre-set threshold.

Apart from median filters, there are also other noise suppression
techniques, like tau-p transform (Zhang and Olofsson, 2012). In
recent years, Lin et al. (2022) developed a robust singular-value
spectra analysis (SSA) algorithm for deblending each frequency
segment of the pseudo-deblended data. Dong et al. (2021) devel-
oped a singular value decomposition method (SVD) for deblending
in CMP domain after normal moveout correction. Whilst Wilson
et al. (2023) shifted the focus from the random interfering noise
to the coherent signals, and developed a coherency filter to esti-
mate the signal for subtraction from the pseudo-deblended data.
The residual data was then input to the coherency filter for signal
estimation and subtraction. This process is repeated until no-more
coherent signal can be detected in the residual data.

However, due to limitations of these various noise-removing
techniques, such as filtering assumptions and the parameter se-
lection restrictions (like filtering type and window length), there is
often a lack of sufficient separation accuracy. In particular, when the
blending fold (i.e., number of simultaneous sources) is high, and the
signal-to-noise ratio (S/N) is low, the filtering-based deblending
approach may result in both signal distortion and noise leakage
(Song et al., 2019a). As a result, more advanced techniques were
actively implemented in commercial high-productivity seismic
data acquisitions, despite these filtering-based deblending tech-
niques are often computational efficient.

2.2. Inversion-based deblending algorithm

Following Berkout (2008), the blended data in common-
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receiver-point (CRP) domain can be written as

d=Im (1)
where d represents the blended data, m represents the desired un-
blended data in CRP domain, i.e., the signal model, and I' is the
blending operator which contains the shooting times and positions
of all sources. Eq. (1) implies that we can consider a blended seismic
acquisition as a forward modelling process. Therefore, deblending
may be considered as the inverse of the blended acquisition, that is,

m=TI"'d, (2)
where I'"! is the inverse of I, if it exists.

As we know, in conventional unblended acquisition, a receiver
records each source separately. Whilst in a blended acquisition, the
receiver records multiple sources simultaneously. Therefore, there
are more variables in the signal model m than those in the blended
data d, and I is not a square matrix. Thus, the inverse of I does not
exist. Note that a square matrix is a necessary condition for the
matrix inversion, and another condition is non-singular. Further-
more, the inversion problem of Eq. (2) is underdetermined and ill-
posed. To solve such a problem, it requires some prior knowledges
or assumptions of the signal. Commonly, the first step in solving
such problems is to compute the conjugate transpose of I', denoting
as ', which can be considered as an approximation of I''. Thus,
pseudo-deblended data mp can be achieved:

mp :=Id{d.

(3)

Apart from introducing the concept of pseudo-deblended data,
the other common assumption is the sparsity of the signal in a
particular transform domain to constrain the inversion problem
(e.g., Zhou et al.,, 2016b; Li et al., 2019). Various sparse transforms
have been used for blended data separation, including Fourier
transforms (Abma et al., 2010), Radon transform (Ibrahim and
Sacchi, 2014), seislet transform (Chen et al., 2014), curvelet trans-
form (Qu et al., 2016; Cao et al., 2019), and dictionary learning (Zu
et al.,, 2018), etc.

The main differences amongst different inversion algorithms are
the choices of sparse transforms and regularization constrains (i.e.,
Lo, Li-or Ly-norm), which leads to some hybrid approaches. For
example, Chen et al. (2014) and Chen (2015) introduced an iterative
scheme with multiple constrains via seislet domain shaping regu-
larization. Qu et al. (2016) combined curvelet transform with
different regularization constrains, and Cao et al. (2019) combined
curvelet transform with focal transform for blended data
deblending. Meanwhile, Zu et al. (2018) proposed an iterative
deblending scheme based on a combination of hybrid sparse
transforms with dictionary learning. Besides, low rank assumption
is also used during deblending (Cheng and Sacchi, 2015).

Compared with the filtering-based deblending methods, the
above inversion methods have improved the deblending accuracy.
However, their computational cost is too high to be adopted in
commercial seismic acquisition activity. Particularly, they are not
applicable during UHP (ultra-high-productivity) and USS (un-
restricted simultaneous shooting) seismic acquisition. In this case,
the blending fold and data volume are both very high, and the S/N
ratio may be very low (Song et al., 2019a). Furthermore, for both
filtering- and inversion-based deblending approaches, the choices
of super-parameters such as window length, type of transforms and
signal or noise threshold are very subjective and empirical. These
parameters often need to be determined by trial and error, and are
not transferable between different datasets.

To tackle these issues and to improve the accuracy and
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Pseudo-deblending
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Calculate iterative
threshold
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Separated signal

Predict noise from signal

v

Update signal

!

Thresholding process
in FKK domain

Fig. 1. The workflow of the FKK sparse inversion method for deblending.

generality of deblending algorithms, Song et al. (2019a, 2019b)
developed a sparse inversion method in the frequency-
wavenumber-wavenumber (FKK) domain for accurate, robust and
efficient deblending. It has been verified in subsequently com-
mercial operations (Li et al., 2019; Song et al., 2020) and it works in
common-receiver gathers. The method processes the FKK spectra
with a hard exponential shrinking threshold function to accelerate
the convergence. Moreover, the computation efficiency is further
enhanced by Fast Fourier Transform (FFT) and parallel computing
as receivers are mutual independent.

2.3. Deep-learning based deblending algorithm

As artificial intelligence (AI) gains momentum, deep-learning
based deblending started to appear in the literature (e.g.,
Baardman and Hegge, 2020; Sun et al., 2020; Zu et al., 2020; Wang
et al.,, 2021).

Initially, the focus was on the use of supervised learning for
deblending. For example, Baardman and Hegge (2020) was amongst
the first to introduce supervised learning to detect and attenuate
blending noise. Sun et al. (2020) introduced the convolutional
neuron network (CNN) and Zu et al. (2020) constructed a deep
neuron network (DNN) to supress the blending noise. However,
supervised learning requires large quantities of unblended data as
training datasets, and such data are often not available in reality,
which restricts the applications of supervised deblending techniques
(Wang et al., 2021). Therefore, there is a need to reduce the depen-
dence of deep learning-based technique on labelled training datasets
in order to improve their capacity for practical application.

Thus, deblending based on self-supervised or un-supervised
learning provides a possible solution (Chen, 2024). One approach
is to use the pseudo-deblended data (mp) in the CSP domain as
training data to achieve self-supervised learning for CRG deblend-
ing. For example, Xu et al. (2022) used the mp in CSP domain to train
a convolutional auto-encoder for deblending. Whilst Chen and
Wang (2023) proposed first to use the mp in the CSP domain as
training datasets, then performed a multi-step training and verifi-
cation, and finally applied the optimized network to pseudo-
deblended data in CRP domain.

Another approach is to use synthetic data for training, such as in
the case of Birnie and Alkhalifah (2022). They first used the syn-
thetic data to train a supervised blind-spot network, and its weights
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Fig. 2. Synthetic data example: (a) An unblended CSP gather; (b) mathematic model of the blending process; (c) the pseudo-deblended CSP gather.
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Fig. 3. Synthetic data example: (a) A pseudo-deblended CRP gather; (b) the deblended CRP gather.

were then used to initialize a self-supervised blind-spot network.
Moreover, transfer learning is used to improve the network's ability
for noise suppression and signal protection. The blind-spot
network originates from image processing (Laine et al., 2019) and
Wang et al. (2023b) named this blind-spot network as blind-trace
network, and developed a similar self-supervised learning
scheme. It opens a new approach for self- or un-supervised deep
learning (e.g., Luiken et al., 2023; Wang et al., 2024).

Despite the above efforts, there is still a considerable gap for
deep learning techniques to achieve practical commercial
applications.

3. The FKK sparse inversion method

Sparse inversion is a commonly used approach to solve under-
determined geophysical inversion problems, such as pre-stack or
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post-stack seismic sparse inversion. In this approach, the sparsity of
the desired results is assumed, and an objective function is intro-
duced based on different sparse norm regularizations (Lo, L1 or Ly).
Then, the desired result can be obtained via minimizing the
objective function. In this way, the inverse problem is converted to
an optimization problem. Here, the same strategy is used for
seismic deblending.

3.1. Methodology and workflow

To solve Eq. (1), we assume the 3D signal m is sparse in the
model space, and it is applicable in either space-time domain or
frequency-wavenumber-wavenumber (FKK) domain. We impose
the Lo-norm constraint on the FKK spectrum of the signal m, and
the objective function J(m) for optimization can be written as
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Fig. 4. Synthetic data example: (a) the deblended CSP gather; (b) the deblending residual between the deblended results in (a) and the original unblended signal in Fig. 2(a); (c)
amplitude spectra comparison of the unblended signal (blue), deblended data (green), and the pseudo-deblended data (red).

2
J(m)=||d — I'm||3 + A||[Fm]|, (4)
where F denotes the 3D forward Fourier transform operator and 1 is
the regularization parameter that controls the weights of the
constraint. For Fourier coefficients sparse constraints, Eq. (4) can be
rewritten as

Jx) = ||d — Lx||3 + A1l
X =Fm )
L=TF1

(5)

where F~1 is the 3D inverse Fourier transform operator. Note that
Eq. (5) is a standard optimization problem with objective function

1552

J(x), and the desired solution x can be solved by a standard iterative

shrinking threshold algorithm (Daubechies et al, 2004;
Blumensath and Davies, 2008):
Xigr =Ty [xi+ 1(d — Lxp ] (6)

where T; is the thresholding operator in the transform domain

(FKK), and LH is the conjugate transpose of L. Substituting the ex-
pressions of x and L in Eq. (5) into Eq. (6) gives

M, =F1T,F [er - (r“r - 1) mi] , (7)

where I is the identity matrix. The term I''d is the pseudo-

deblended CRP gather as defined in Eq. (3), and (FHF—I)m,-
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(a) Alland vibroseis acquisition
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(b) Blended CRP gather (c) Separated signal (d) Separated noise

Fig. 5. (a) A land vibroseis acquisition, (b) pseudo-deblended data, (c) extracted signal and (d) separated noise. The deblended results are obtained by the FKK sparse inversion
(Song et al., 2019a) in CRP gathers.

represents the interference noise predicted by the estimated signal.
Note that the initial signal my is typically set to zero. Here, in order fm),Ifm)| > 1

to reduce uncertainties during iterative deblending, we adopt a T;[f(m)] = { 0 ,lf(m) |<T_ ) (8)
hard thresholding function to set the coefficients to zero when their ’

amplitudes are less than the given threshold: where f(m) denotes the spectrum coefficients in the FKK domain,

and 7 is the given threshold. To further speed up the convergence
rate, the shrinking threshold function is given as
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Fig. 6. The deblended results in CSP gathers by the FKK sparse inversion (Song et al., 2019a): (a) pseudo-deblended data, (b) separated main shot, and (c) separated adjacent shots.

k=70 *a" k=1,2,...N, 9)
where 7, is the threshold at the k-th iteration, and 7o is the
maximum FKK coefficient of the pseudo-deblended data mp. The
symbol N is the total number of iterations, and a denotes the
threshold attenuation coefficient.

Fig. 1 shows the workflow of the above-mentioned deblending
method. As shown in Fig. 1, there are six steps in the workflow.

1) Calculate the pseudo-deblended data mp using formula I'd;

2) Calculate the maximum FKK coefficient of the pseudo-
deblended data, and determine the shrinking threshold func-
tion 7;

3) Calculate and predict the interference noise from the initial (or
updated) signal using expression (FHT — Im;;

4) Subtract the predict noise from the pseudo-deblended data to
update the signal using expression I''d — ('l — nmy;

5) Apply the thresholding criteria to the FKK spectra of the signal
using formula followed by inverse Fourier transform
FIT.F[Itd — (rr — nmy);

6) Repeat step 3 to step 5 until the maximum number of iterations
N is reached to obtain the finally separated signal.

3.2. Synthetic blended data tests

We first use synthetic blended data to test the accuracy of the
above-mentioned inversion method. The synthetic blended data is
generated with a blending fold of 4, that is, the receiver recorded
data from 4 blended sources shooting simultaneously with random
time delays. The procedure to generate the blended data is shown
in Fig. 2. Firstly, we select an unblended shot gather with an OBN
geometry (Fig. 2(a)). Secondly, based on the positions of the 4 shots,
we arrange the shot gather into 4 groups, and design the timing of
the shots using the trace recording length as interval plus some
random delay times. Finally, we shift the traces according to the
excitation time of the corresponding shot, and sum the shifted 4
groups together to obtain the blended data and the corresponding
pseudo-deblended data is shown in Fig. 2(c). As shown in Fig. 2(c),
there are many interferences from the adjacent shots, which are
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continuous and coherent either from the main shot, or from the
adjacent shots in the CSP domain.

To apply the FKK sparse inversion method, we first transform
the pseudo-deblended data from the CSP domain to the CRP
domain (Fig. 3(a)). As shown in Fig. 3(a), due to random delay times
of the shots, only the data from the main shot show coherent and
continuous events. The interferences from the adjacent shots
appear random and discontinuous, agreed with Beasley (2008).
Fig. 3(b) shows the separated signal in CRP domain: the interfer-
ence noise is completely removed, and the weak deep events below
5000 ms are all recovered.

To further evaluate the accuracy of the deblended data, we then
transform the total deblended results from the CRP domain back to
the CSP domain. We calculate the deblending residual between the
deblended shot gather (Fig. 4(a)) and the original unblended shot
gather (Fig. 2(a)), as shown in Fig. 4(b). There is no observable
signals leakage in Fig. 4(b), and the deblending error in average
amplitudes is calculated as less than 1%.

As shown in Fig. 4(c), we further calculate the amplitude spectra
of the original unblended signal in Fig. 2(a) (blue curve), the
deblended results in Fig. 4(a) (green curve), as well as the pseudo-
deblended data in Fig. 2(c) (red curve) for better comparisons. We
can see that the blue and green curves completely overlap each
other, and the deblending error in amplitude spectra is calculated
as less than —40 dB.

Accurate deblending is the foundation for high-productivity
seismic acquisition, and Figs. 3 and 4 confirm that the FKK sparse
inversion can suppress the interference noise without degrading
the signal, which paves the way for field data applications. Note
that an exponential shrinking threshold is used and its initial value
is set at the maximum amplitude of the dataset and the iteration
terminates at about a thousandth of the initial threshold value. It
often takes about 50—150 iterations to reach the target threshold
value. This remains the same for all examples used in this paper.

3.3. Field data testing

A land dataset from Oman is used, and the dataset was specially
acquired for feasibility testing of blended acquisition. Twelve vi-
brators were deployed with the same sweeping frequency from
1.5 to 96 Hz, as shown in Fig. 5(a), and vibrated simultaneously with
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Fig. 7. Land vibroseis example: (a) shot point distribution, (b) pseudo-deblended data in CRP domain, (c) extracted signal and (d) separated noise by the FKK sparse inversion

method (Song et al., 2019a).

random time delays. A fixed spread was used which consisted of 18
receiver lines and 798 receivers per line with a total of 14364
channels to continuously record of the vibrating signals. Receiver
interval is 25 m and receiver line interval 250 m. There are 81 shot
lines and 398 shots per line with a total of 32238 shots. The shot
point interval and the shot line interval are both 25 m. The
recording length is 9 s with 4 ms sampling rate.

Fig. 5(b) shows a pseudo-deblended CRP gather after cross-
correlation between the recorded and sweep signals. We can see
that the signals are coherent and continuous, including primary
reflections and their multiples, as well as refractions and ground
rolls. However, the interferences from adjacent shots are inco-
herent because of random shooting times. Almost all types of
deblending methods exploit this distribution differences to
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separate the signal from the blending noise. Fig. 5(c) shows the
separated signals using the FKK sparse inversion method. We can
see that all signals are well recovered, including the weak signal in
the blue box. More importantly, Fig. 5(d) shows the separated noise,
which shows no coherent signals and implies that there is no signal
leakage, and the fidelity of the coherent events in Fig. 5(b) is well
preserved.

To further examine the deblended results, we transform the
total separated results from CRP domain to the CSP domain. As
shown in Fig. 6(a), there are a total of seven interfering sources in
the pseudo-deblended data. Note that the apices of these sources
are close to each other, indicating that the spatial interval between
the sources is small, which increases the deblending difficulty. The
signals from the main source (shot 4) are completely recovered
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Fig. 8. Land vibroseis example: (a) pseudo-deblended data in CSP domain, (b) separated main shot, and (c) separated adjacent shots.

without any observable interferences from the other sources, as
shown in Fig. 6(b). The adjacent shots are also completely recov-
ered as shown in Fig. 6(c). In particular, except for the missing main
shot, Fig. 6(c) looks exact the same as Fig. 6(a). It confirms that the
FKK sparse inversion can successfully separating the signal from
the blending noise without compromise the fidelity and accuracy of
the signal.

4. Application examples

High-productivity blended acquisition has now become a
standard practice for hydrocarbon exploration in both onshore and
offshore activities. The above introduced FKK sparse inversion
method has been widely applied for deblending in subsequent data
processing. Here, we select three representative examples with
varying deblending difficulties to illustrate its applications,
including land vibroseis, marine Ocean-bottom-node (OBN), and
marine streamer.

4.1. Land vibroseis case

The data are acquired by unrestricted simultaneous shooting
(USS) in Egypt, and at least 30 vibrators are deployed during
blended acquisition with independent simultaneous shooting (ISS)
with no time-distance separation. Moreover, variable shot intervals
were adopted to further improve acquisition efficiency. Fig. 7(a)
shows the shot-point distribution, and the shot interval is 12.5 m in
the central area measured 8.8 km wide, and gradually increases to
50 m in the two ends of the operation area. The pseudo-deblended
data in the CRP domain are shown in Fig. 7(b). There is serious
blending noise in Fig. 7(b) due to both the high blending fold and
the USS acquisition. We can also observe the effects of changing
shot interval, as marked by the blue arrows in Fig. 7(c). All these
issues can degrade the performance of a majority of deblending
methods. However, the FKK sparse inversion method can account
for these issues and recover the signal very accurately as shown in
Fig. 7(c). There is no residual noise in Fig. 7(c) and no coherent
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signal leakage in Fig. 7(d).

The corresponding pseudo-deblended shots, the separated main
shot and adjacent shots are shown in Fig. 8(a), (b) and (c), respec-
tively. We can see that there is no signal distortion and no leakage
from the adjacent shots. Both the main shot and the adjacent shots
are completely recovered (Fig. 8(b) and (c)).

Note that it is often very difficult to preserve the low and high
frequency components during deblending, particularly for USS
acquisition with high blending fold. Therefore, the operator
specially required that all vendors should test their deblending
ability for recovering the low and high frequency components. Our
results are shown in Fig. 9. The low frequency content between 2
and 4 Hz is completely recovered without distortion (Fig. 9(b)). The
high frequency contents between 64 and 125 Hz are shown in
Fig. 9(c) and (d) before and after deblending. Comparisons between
Fig. 9(a) and (b), as well as between Fig. 9(c) and (d), reveal that
there is no noise leakage and no signal distortion after deblending.

USS acquisition presents the most serious challenges for data
deblending in land vibroseis acquisition due to high blending fold,
no time-distance separation, and variable shot intervals. Figs. 7—9
show that the FKK sparse inversion method can still separate
such data with sufficient high accuracy.

4.2. Marine OBN case

Unlike blended acquisition on land, the randomness of source
excitation is not ideal in a marine environment, as seismic vessels
often travel at fixed routes with a constant speed. As we know, shot
time variations are crucial for separating the blended data. There-
fore, the source dithering time within a certain range (e.g. +300 ms)
is usually imposed on the shot time to reduce the risk of source
synchronization, and improve the randomness of the shot times.
Some additional restrictions on the number of sources and distance
between them may also be imposed to ensure accurate deblending.
In this example, six sources from two dual-source vessels and two
single source vessels were deployed in the acquisition. The dith-
ering time is randomly perturbed within a range of +300ms. The
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minimum separation between the boats is 6 km, but the separation
of the two sources on the dual-source boats is only 50 m and does
not meet this condition. It induces serious interferences between
each other. Interferences from other vessels are also severe despite
the requirement of minimum separation distance. Consequently,
most of the deblending methods failed in the accuracy tests and the
FKK sparse inversion method is one of a few methods passed the
tests set up by the operator. Here, we present the performance of
the FKK sparse inversion method in Figs. 10—12.

Fig. 10(a) shows the operation area of the four source vessels.
The two dual-source vessels operate in areas 1 and 3, and the two
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single-source vessels in areas 2 and 4. Fig. 10(b) shows the pseudo-
deblended data in CRP domain, and serious interference can be
seen below 5000ms. Nevertheless, the FKK method correctly
recover the signal as shown in Fig. 10(c). In contrast, there is
obvious remaining noise by a traditional filtering method (Wang
et al., 2014) in Fig. 10(d).

Fig. 11 shows a comparison of the CSP domain data before and
after deblending. The data from the main shot are marked by the
blue arrow, and interferences from the same vessel are marked by
red arrows, and those from the other vessels are marked by pink
arrows. As shown in Fig. 11(a), all interferences show coherent
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energy, and those interferences from the same vessel show similar
trajectory and strong energy as the signal from the main shot which
makes deblending more difficult than those interferences from the
other vessels. Despite this, the FKK method still recovers the data
from the main shot correctly (Fig. 11(b)).

Fig. 12 shows a comparison of the post-stack data before and
after deblending in order to further demonstrate the effectiveness
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of the FKK sparse inversion method. We can see serious in-
terferences from sources of the same vessels (Fig. 12(a)) which are
all removed after deblending and coherent and continuous events
can be seen in Fig. 12(b), although the energy appears a little weak.

Marine OBN acquisition presents new challenges for seismic
deblending due to lack of randomness in source excitation
compared with land vibroseis. Figs. 10—12 confirm that the used
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FKK sparse inversion method can still handle such case without
compromising the deblending accuracy and fidelity.

4.3. Marine towed streamer

In the previous OBN case, a combination of multiple sources in
single and multiple vessels are deployed during blended seismic
data acquisition. It is similar to blended towed streamer acquisition.
The main difference is that there are often more sources in a
streamer source vessel than an OBN source vessel. Therefore,
seismic deblending is often more challenging for the streamer case
than the OBN case. Here we present two cases. One uses three
sources in a single vessel, referred to as the 3-source 1-vessel case
(Figs. 13 and 14), and the other using six sources in three vessels,
i.e., the 6-source 3-vessel case (Fig. 15), to illustrate the streamer
case applications of the FKK sparse inversion method. In both cases,
the distance between sources in the same vessel is 50 m, and the
minimum distance between the vessels is 6 km. The source dith-
ering time is randomly perturbed within a range of +250 ms in this
case. The receiver interval is 12.5 m, and recording length 10 s with
4 ms as sampling interval.

Fig. 13(a) shows the configuration of the three sources in a
streamer vessel, and the data from all three sources can be seen in
the pseudo-deblended CSP gather in Fig. 13(b). The red arrows
mark the interferences from the previous and next shots, and blue
arrows mark the signal from the main shot. As we can see that the
main shot and those adjacent shots are all properly separated using
the FKK sparse inversion method (Fig. 13(c) and (d)).

Fig. 14 shows a comparison of the data in a CRP domain before
and after deblending. The interference noises appear random and
discontinuous in Fig. 14(a) and are removed completely after
deblending as shown in Fig. 14(b). Note that in land or OBN
acquisition, the position of a receiver is fixed, and the source-
receiver distance changes as a source moves away or towards the
receiver. However, in a tow-steamer acquisition, a receiver moves
with the sources, and the source-receiver distance is fixed. There-
fore, common-receiver gather from a towed-streamer acquisition is
similar to a common-offset gather in a land or OBN acquisition.

Fig. 15 shows a comparison of the CSP domain data before and
after deblending for the 6-source 3-vessel case. The red arrows
mark the interferences of the adjacent shots from the two adjacent
vessels, and these interferences are coherent and continuous with
strong energy (Fig. 15(a)). The deblending of such data is not a
simple task due to small distance between the sources on the same
vessel. After several tests on the shrinking thresholds, some
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gradient weights are used (Song et al., 2020) to properly separate
the shots with sufficient deblending accuracy as shown in Fig. 15(b).
Fig. 16 shows a comparison of a stack section before and after
deblending, and it can be seen that deblending is critical for accu-
rately imaging the subsurface. Fig. 16(a) before deblending is seri-
ously contaminated by the noise from adjacent shots which are
removed in Fig. 16(b) after deblending.

In terms of deblending, the issues in marine towed-streamer
acquisition are slightly more complicated to those in the OBN
case. Firstly, in both cases, there is a lack of source excitation
randomness compared with land vibroseis. Secondly, the in-
terferences from sources of the same boat are more serious in the
towed-streamer case than the OBN case, since there are often more
sources in a marine streamer vessel than an OBN source vessel.
Regardless of a multi-source single-vessel case or a multi-source
multi-vessel case, the FKK sparse inversion method can still
handle these cases accurately and efficiently to provide separated
results for subsequent seismic data processing and inversion.

5. Discussions

In this paper, we have reviewed the development of three types
of deblending techniques, including filtering, inversion, and deep
learning-based deblending algorithms. We also propose to use the
FKK sparse inversion method for seismic data deblending together
with its applications in high-productivity seismic acquisitions. Us-
ing synthetic blended data, we have evaluated the accuracy of the
FKK deblending technique, and then present its applications in
three case blended acquisitions with different acquisition
geometries.

The first case is the land vibroseis, where high degree of
randomness for the firing time can be achieved with high blending
fold and highest productivity efficiency amongst the three cases.
The second case is the marine OBN acquisition, and the degree of
randomness is lower than land vibroseis due to the fixed source
vessel parameters. The randomness of the blending noise mainly
depends on the dithering time of the shots, which increases the
deblending difficulties. Thus, in OBN acquisitions, additional re-
strictions such as minimum distance between source vessels need
to be imposed, which reduces the acquisition efficiency to some
extents. The third case is the marine steamer acquisition and
further deblending difficulties arise due to close configuration of
multiple sources in the same vessel. Despite these various diffi-
culties, our deblended results have shown that the proposed FKK
method can handle these situations accurately and efficiently. How
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Fig. 15. The 6-source 3-vessel case: comparison of data in CSP domain (a) before and (b) after deblending. The red arrows mark the interferences of adjacent shots from the other

two boats.

does the used FKK technique compare with other deblending
techniques, such as, the traditional filtering-based deblending
techniques? Here we give a brief discussion below.

Song et al. (2019a, 2019b) compared the deblended results using
the FKK sparse inversion and the filtering-based deblending
method on synthetic and field data. They conclude that the
filtering-based method can only handle cases with low blending
fold and simple geometries, and there is a lack of deblending ac-
curacy in most practical cases. For a convenient comparison, Fig. 17
shows a field data example modified from Song et al. (2019a),
where there are more than six blended sources present in the
pseudo-deblended common source gathers (Fig. 17(a)). Harmonic
noise appearance in each source before first arrivals is critical
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benchmark signal for the deblending process in terms of whether
these harmonic noises are accounted for properly. As shown in
Fig. 17(b), the blending noise produced by harmonics have been
appropriately removed. In contrast, Fig. 17(c) shows that the
filtering-based deblending method fails to suppress such noise.
More comparisons can be found in Song et al. (20193, 2019b, 2020).

Currently, the deep learning methods can only be applied to
artificially blended data and field blended data application is
limited due to lack of training labels despite an enormous effort in
pursuing un- or self-supervised deep learning techniques (Chen,
2024). In comparison, as shown in the various examples, the FKK
sparse inversion method has gained industrial acceptance, and
widely applied in commercial high-productivity activities both
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onshore and offshore cases.

At present, for hydrocarbon exploration in areas with complex
surface conditions unsuitable for vibroseis, simultaneous shooting
is only applied with sufficient time-distance separation that the
wavefield is not blended. To further improve acquisition efficiency,
it is necessary to reduce the time-distance separation to allow
wavefield blended, and subsequently deblending techniques are
required. To address this challenge, there is a need to develop
deblending algorithms accounting for the characteristics of the
deblending procedure due to complex near surface conditions.
Note that multicomponent seismic is another effective tool for
hydrocarbon exploration in complex areas (Li, 1997; Li and Zhang,
2011, 2021) and can also be benefit from blended acquisition to
improve its cost-effectiveness.
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6. Conclusions

In summary, we have reviewed the filtering, inversion and deep
learning-based deblending techniques, and propose to use the FKK
sparse inversion technique for deblending. Synthetic blended data
deblending shows that its deblending error is less than 0.1% in
average amplitudes, and less than —40db in amplitude spectra. The
FKK sparse inversion technique has been widely applied in land,
marine OBN and streamer data acquisition. In comparison, the
filtering-based deblending techniques often fail in high-fold
blended cases, and deep learning-based techniques require large
training labels which are often unavailable in reality. Un- or self-
supervised deep learning-based techniques appear to be a way
forward in the near future. In a longer term, FWI imaging of
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method of Wang et al. (2014) for comparisons.

blended data without deblending may be a potential solution.
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