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ABSTRACT

Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the
cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing
shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise
attenuation and missing shots reconstruction are essential for providing high-quality seismic data for
further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help
obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes
seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship
between incomplete pseudo-deblended data and complete unblended data. However, the dependence
on complete unblended labels limits their practicality in field applications. Consequently, a self-
supervised algorithm is presented for simultaneous deblending and interpolation of incomplete
blended data, which minimizes the difference between simulated and observed incomplete pseudo-
deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete
unblended data estimation. Furthermore, a multistep process with blending noise simulation-
subtraction and missing traces reconstruction-insertion is used in each step to improve the deblend-
ing and interpolation performance. Experiments with synthetic and field incomplete blended data
demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

midpoint, receiver domains (Mahdad et al., 2011). Most filtering
based methods use a median filter (MF) or its improved variations,

Blended acquisition fires multiple sources with overlapping
firing time, enhancing efficiency compared to conventional acqui-
sition (Beasley et al., 1998; Berkhout, 2008). Besides, irregularly
missing shots in certain acquisition cases result in blended data
with missing information, which is referred to incomplete blended
data. Blending noise and missing traces pose great challenges for
subsequent seismic inversion and migration. Consequently, the
process of deblending and interpolation is necessary to provide
high-quality complete unblended data for seismic procedures.

Seismic deblending can be categorized into two types: filtering
based and inversion based algorithms. Filtering based methods use
different denoising algorithms to attenuate the blending noise. The
blending noise often appears as spatially randomized and spike-
like noise compared to coherent signals in common offset,
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such as multidirectional vector variation (Huo et al., 2012), space-
varying variation (Chen, 2015), structure-oriented variation (Gan
et al., 2016b), and the combination of structure-oriented and
space-varying MF (Chen et al., 2020). Although filtering based
methods are efficient, the deblending performance remains open to
improvement. Inversion based deblending methods achieve more
accurate results (Abma et al., 2010) by solving an ill-posed problem
with specific constraints such as the low-rank constraint (Cheng
and Sacchi, 2015) and the sparsity constraint. The sparsity
constraint is always employed via different sparse transforms, such
as the Fourier transform (Abma et al., 2015), the Radon transform
(Akerberg et al., 2008; Ibrahim and Sacchi, 2013), the curvelet
transform (Zu et al., 2016) and the seislet transform (Chen et al.,
2014; Gan et al., 2016a). For incomplete deblended data, Zhou
and Li (2018) simultaneously attenuated spike-like blending noise
and reconstructed missing traces by applying iterative structure-
oriented median and mean filtering. The curvelet (Zu et al., 2016)
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and the double focal (Cao et al., 2019) transforms were also
explored for joint deblending and interpolation. Wang et al.
(2022a) implemented iterative thresholding based on the sparse
Fourier and curvelet transforms for simultaneous deblending and
interpolation in 3D cases. However, hyperparameter selection in
traditional methods typically requires greater expertise or experi-
ence, which limits flexibility and makes it more challenging to
achieve optimal parameter settings. Additionally, traditional
methods tend to struggle with the efficient processing of large-
scale blended data. The large data volume poses significant
computational challenges, leading to slower processing speeds and
increased computational costs. Despite the wide applications, its
accuracy still leaves opportunities for enhancement.

Other than traditional deblending and interpolation methods,
deep learning based deblending methods can nonlinearly map the
input to the desired output (Sun et al., 2019; Zu et al., 2020). Once
well-trained or fine-tuned, the optimized model can be applied to
test data that have similar characteristics as the training data
(Richardson, 2019; Wang et al., 2021). Zu et al. (2022) introduced a
supervised deblending model based on a Transformer to extract
vertical, horizontal, and local features. Sun et al. (2022) constructed
the training dataset based on practical acquisition situations to
decrease the cost of simulating training datasets. To further reduce
the dependence on unblended labels, unsupervised and self-
supervised deblending strategies are employed. Deep Image Prior
(DIP) was introduced to avoid the need for constructing a huge
training dataset and to achieve adaptive deblending performance at
the cost of sizeable computational time and resources (Xu et al.,
2021). Xue et al. (2022) designed a loss function to measure the
difference between the observed pseudo-deblended data and the
corresponding simulated result using the estimated signal. Wang
et al. (2023a) combined the Res-Net and U-Net to construct a
unified loss function for unsupervised deblending. After pseudo-
deblending, common receiver gathers (CRGs) and common shot
gathers (CSGs) are of significant coherence similarities. It is feasible
to utilize the pseudo-deblended CSG and its blending-pseudo-
deblending result as a training pair for DNNs, with subsequent
deblending for the pseudo-deblended CRGs (Wang and Hu, 2022;
Xu et al., 2022). Based on the supervised multistep approach (Wang
et al., 2023) which can quantitatively evaluate the remaining
blending noise, Chen and Wang (2024) designed a self-supervised
multistep deblending method utilizing a CSG constructed adap-
tive training dataset. The key to the above self-supervised strategy
lies in the construction of an adaptive training dataset, which as-
sumes consistent spatial sampling in the training CSGs and the test
CRGs. The assumption, however, is seldom available in field cases,
especially when considering irregularity effects. The blind-trace
network (Laine et al., 2019), which modifies the convolution and
max-pooling operations, enables the applicability of self-
supervised seismic data processing. Treating pseudo-deblended
seismic data as images, a self-supervised blind-trace U-Net (BTU-
Net) deblending framework was designed (Wang et al., 2023b).
Luiken et al. (2023) embedded a blind-trace denoiser in the plug-
and-play algorithm for deblending.

This paper suggests a multistep algorithm to attenuate blending
noise and reconstruct missing shots in a self-supervised manner.
We design a self-supervised loss function that operates without
clean labels requirement, and a BTU-Net is adopted to prevent
learning from identity. Numerical tests on synthetic artificially
incomplete blended data indicate that our proposed algorithm
outperforms the conventional curvelet based iterative shrinkage
thresholding algorithm (ISTA). Field incomplete blended data
example further shows its effectiveness in providing complete
deblended data estimation for subsequent seismic processing.
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2. Method
2.1. Incomplete blended acquisition

Blended acquisition has been widely used in field surveys as an
alternative to conventional one to improve acquisition efficiency.
Fig. 1 compares conventional seismic acquisition (Fig. 1(a)) and
incomplete blended acquisition with irregularity considerations
(Fig. 1(b)).

In conventional acquisition (Fig. 1(a)), shots are fired with suf-
ficient firing time intervals to obtain unblended seismic record d
without blending interference. The acquired data can assist seismic
processing and migration algorithms to characterize subsurface
structures. Blended acquisition fires multiple seismic sources in
different regions almost simultaneously, significantly enhancing
acquisition efficiency through overlapping firing times. Besides, the
acquired blended data is sometimes contaminated by missing shots
caused by various factors, like surface obstacles. Fig. 1(b) illustrates
blended acquisition with a blending fold of 2 and irregularly
missing shots considerations. For a given receiver rj,i = 1,2,...,Nr
among Nr receivers, the observed incomplete blended data is
expressed in Eq. (1),
dops(t,17)=> _d(t+75,5;,17),i=1,2,..,Nr, (1)
jes

where, the symbol 7; represents the dithering time of the available
shot s;, j€S, as marked by the stars. The unavailable shots are
marked by the crosses in Fig. 1(b). Eq. (1) can be reformulated in a
matrix form,
dobs = FRd’ (2)
where d,,; represents the recorded incomplete blended data, T’
represents the blending operator, and R is a sampling operator
determined by whether the shot is available or not during blended
acquisition. The shooting time and location are known during
blended acquisition, allowing the precise construction of the
blending operator I'" and the sampling operator R. They can link
incomplete blended data d,;,; with complete unblended data d as
shown in Eq. (2). The incomplete pseudo-deblended data dqy, is

obtained using the adjoint blending operator ',

dya, = IMdyps = Rd + (r“r ~1)Rd, 3)

where Rd represents incomplete unblended data and (I"HF —I)Rd
represents the blending noise. According to Eq. (3), the signal is
affected by both blending noise and irregularities. For better illus-
trations, Fig. 2(a) presents a complete unblended CRG, while
Fig. 2(b) shows the corresponding incomplete pseudo-deblended
CRG with 50 percent irregularly missing traces and a blending
fold of 3. Incomplete pseudo-deblended data poses challenges for
subsequent seismic processing algorithms in accurately depicting

* Source A 3//\( Source B
X Missingshot X/ Receiver

U AVAA S e AV A R A& VA AN B 2
U+ AvE AvE, EVELRVEIAVA EvEIRYI

Fig. 1. Comparison of (a) conventional seismic acquisition and (b) incomplete blended
acquisition with irregularity considerations.
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Fig. 2. (a) A complete unblended CRG; (b) the incomplete pseudo-deblended CRG.

subsurface structures. Consequently, it is essential to provide high-
quality data through blending noise attenuation and missing traces
reconstruction.
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Fig. 3. The BTU-Net architecture for self-supervised simultaneous deblending and
interpolation.
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2.2. Simultaneous deblending and interpolation by sparsity-
promotion

Blending noise can affect the reconstruction accuracy of
incomplete data, while the missing traces also hinder the
deblending performance of blended data (Wang et al., 2022a). Thus,
simultaneous deblending and interpolation is beneficial for pro-
cessing incomplete blended data.

Complete unblended data can be sparsely characterized through
sparse transforms, and the sparsity promotion algorithm can be
iteratively used for simultaneous deblending and interpolation
based on compressive sensing. For incomplete blended data d,,; =
I'Rd, the iterative estimation of complete unblended data can be
shown as follows using the ISTA,

) = CTC(IMdops — (T'0 - R+ (=R, ).

where d’abl is the jth iterative unknown estimation, with a defined

maximum iteration number J. The operators C and C represent the
forward and inverse curvelet transforms, respectively. The symbol
T, represents a hard thresholding operator with the threshold 2
selected via a cooling strategy by trial and error according to
incomplete pseudo-deblended data. During deblending, the simu-

lated blending noise ("I’ —I)Rd’(‘ibl is subtracted from I'''d,, and

the reconstructed traces (I —R) tl’('jhl are inserted to update the input
for further sparsity characterization. When the iteration number
reaches the user defined maximum J, the recovery result can be
obtained for subsequent seismic processing procedures. Even so,
the accuracy of sparse transforms is limited because they linearly
characterize seismic data. Conversely, deep learning strategies
serve as a more effective tool for accurate nonlinear seismic data
characterization, holding the potential to enhance recovery
accuracy.

2.3. Self-supervised simultaneous deblending and interpolation

A supervised strategy can extract the nonlinear relationship
between the incomplete pseudo-deblended data (dpq,) and the

complete unblended one (d), using labeled pairs. Once the network
is well-trained with optimized parameters 0", it can be inferred for
simultaneous deblending and interpolation of test data d,q;, ; via
f(dpap_t; 0"). However, one of the challenges is the large number of

labels requirement to train the designed network, as complete
unblended data is rarely accessible in field cases. Since the blending

NN EE
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=== BT-Conv3x3
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Fig. 4. The convolution operation of (a) the standard U-Net and (b) the BTU-Net.
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Fig. 5. (a) The single step of self-supervised simultaneous interpolation and deblending using BTU-Net; (b) the process of BNSS and MTRI.
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Fig. 6. The input comparisons of each training step. (a) The reference complete unblended data. (b, ¢, d) The training input of different training steps. (e, f, g) The corresponding
difference between (b, ¢, d) and (a).
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Fig. 7. (a) The loss curve and (b) the recovered SNR curve on training and validation datasets using the three-step self-supervised algorithm for simultaneous deblending and

interpolation.

and sampling information is contained in incomplete blended data,
we can construct a self-supervised loss function without the need
of complete unblended labels,

L(0) = || T TRS (dpay:0) — dpas [+ 21813, (5)

where f represents a self-supervised learning network, ® denotes
the convolution kernel with smoothness constrained, and 21 is a
balance scalar between the smoothness and the L, norm measured
data misfit. The self-supervised loss function measures the misfit
between the simulated incomplete pseudo-deblended result
Ir'rrf (dpap; 0) and the observed one d,qp,. For unblended data, the
task simplifies to a pure interpolation issue. Similarly, it changes to
a pure deblending issue when there are no missing traces.
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Common convolutional networks may encounter the identity
mapping problem when being trained with a self-supervised loss
function. Blind spot (or blind trace) networks address this issue by
incorporating padding and cropping operations before and after
the convolutional and max-pooling layers (Laine et al., 2019; Wang
et al., 2023b). The BTU-Net, as a modified version of a U-Net, is used
to design the network f. The architecture of BTU-Net is depicted in
Fig. 3 with red and green arrows highlighting the modifications to
the operators. These modifications aim to shift the receptive field
leftward, transforming it into a causal filter that relies on left-side
traces to predict the target trace.

Specifically, Fig. 4 illustrates the differences in the receptive
fields between a standard U-Net convolution (Fig. 4(a)) and the
modified version (Fig. 4(b)). The red pixel in each figure represents
the same feature location for a clear comparison. The receptive field

(b)
<] 1sTA

25 -
% 20 « 4
z <« <K

< <«
« <
<
15
10 : : : : T T
5 10 15 20 25 30

CRG

Fig. 8. The calculated SNRs of all validation CRGs by using (a) the multistep BTU-Net algorithm and (b) the ISTA based on curvelet transform.
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Fig. 9. The recovered results of the 10th validation CRG by using (a) the first step, (b) the sequential first, second, third steps of the multistep BTU-Net algorithm, (c) the ISTA and (d,

e, f) the corresponding residuals of (a, b, c).

is marked by the blue pixel, and the shading color indicates the
influence of receptive field on the red pixel after convolution op-
erations with a kernel size of 3 x 3 and a stride of 1. In the standard
convolution, the receptive field is symmetrical. The modified con-
volutional layer of BTU-Net involves padding a null column on the

leftmost side of the input before convolution, and then the right-
most column of the output is cropped, as shown in the red dotted
box. To compensate for shifts in the receptive field caused by max-
pooling, we also modify the max-pooling with padding and crop-
ping implementations. As a result, the receptive field of the BTU-

The iterative thresholding algorithm The proposed algorithm — — — - The reference trace
(a) 02
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e
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= 0 o
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(e) 03
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e
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Q
[S
<
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(d)
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e
2
g
0
<
T
0 0.5 1.0

Time, s

Fig. 10. The single trace comparison of the multistep BTU-Net algorithm and the ISTA. (a) Deblended results and (b) the corresponding residuals of the available 42nd trace; (c)
reconstructed results and (d) the corresponding residuals of the unavailable 72nd trace.
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Fig. 11. The 42nd CSG of synthetic dataset. (a) Pseudo-deblended CSG; (b) unblended
CSG; (c) deblended CSG of the multistep BTU-Net algorithm; (d) the difference be-
tween (c) and (b).

Net shifts leftward compared to that of a standard U-Net. Critically,
to prevent learning from identity and to facilitate blind prediction,
the leftmost trace is padded and the rightmost trace is cropped in
the final output, as shown in the gray dotted box in Fig. 4(b).
BTU-Net predicts the target trace from its left-side traces,
functioning as a causal filter. By utilizing the original data (0°) and
its spatially flipped version (180°) as inputs, the final predictions
can incorporate information from both sides of the target trace,
effectively combining causal and anti-causal filtering results
(Fig. 5(a)). It should be mentioned that the anti-causal prediction
from the spatially 180° flipped data should be flipped back and then
arithmetically averaged with the causal prediction from the orig-
inal data to obtain the current estimation. When the training is

convergent, we can obtain the optimized parameters 0’1‘ of BTU-Net.
While training with both original and spatially 180° flipped data
augments the training dataset to ultimately benefit the network
training, it also increases the computational load to some extent.
Different from pure random noise, blending noise can be iteratively

Offset, km

Offset, km
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simulated and subtracted based on the estimated signal. Iterative
reconstruction also improves seismic interpolation performance.
These strategies can further improve self-supervised deblending
and reconstruction performance.

2.4. Multistep self-supervised implementation

The recovered result using BTU-Net with optimized parameters
0] can be shown as,

iy :f(dpdbv 91) (6)

However, the obtained results from a single network trained
with low-quality input often still contain weak signal leakage and
blending noise. The quality of the recovered result is open to
improvement. To enhance the recovery performance, a multistep
algorithm (Wang et al., 2023) is employed, unfolding as follows.

1) Eq. (6) is regarded as the first processing step of simultaneous
deblending and interpolation. With the recovered result d}ibl, we
can reconstruct missing traces (I—R)dy, and simulate blending
noise (I‘HF —I)Rdébl based on blending and sampling operators.

Then, we subtract the simulated blending noise from incom-
plete pseudo-deblended data and insert the reconstructed
traces to update the input dp,qp, — rir fI)Rd,ljbl + fR)débl for
the next step, as depicted in Fig. 5(b).

2) In the second step, the network is initialized by the optimized

parameters 0] of the first network via transfer learning rather
than starting from a randomized initialization. When the
network training converges with the loss function L,(0)

2
|TMTRf (dpay — (T — DRdg + (1 - R)dgy; 0) — dpa | +
AH<I>||§, the  recovered result is  obtained as
3y = f(dpap —(THT —DRdjy, +(1-R)d,;05) with the opti-
mized parameters 0;. The blending noise simulation-
subtraction (BNSS) and missing traces reconstruction-insertion
(MTRI) operations are further used to update the input for the

next step.
3) A similar procedure is adopted for subsequent processing steps.

For the jM step, the training input are updated to
dyap — (TUT DR}, + (1-R)d,, .j=2,3,....] and the corre-
sponding loss function is updated as Lj4(0)=

| THTRS (e — (TMT — DRty + (1 Ry 0) — [ +

A||®||3. The network of the jt step uses the optimized param-
eters 9;,1 as initialization for training, and we can obtain the

Offset, km
0 1 2

3

Time, s

SNR: 23.63dB| | (c)

Fig. 12. The 72nd CSG of synthetic dataset. (a) Complete CSG; (b) reconstructed CSG of the multistep BTU-Net algorithm; (c) the residual between (b) and (a).
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Fig. 13. (a) The reference CRG data; (b) the incomplete pseudo-deblended CRG with a
blending fold of 2 and 40% of traces irregularly missing. (c, d) the FK spectra of (a, b).

optimized parameters 9; for subsequent deblending and inter-

polation to obtain the recovered result d’;jbl.

The multistep algorithm updates the input of the successive
network to achieve better prediction at the cost of increased
computational burden. The selection of steps and epochs per step
should be fine-tuned based on the specific dataset and the
convergence status. As the number of steps increases, we tend to

(a) 5000

Training Validation

4000 4 1 11
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Loss

2000 -

1000

200 400

Epoch

550
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gradually reduce the maximum learning rate, which often results in
a corresponding decrease in the epochs per step. We implement
three-step deblending after carefully balancing the recovery per-
formance and computational cost. In the future, more efficient
training strategy can be researched. The workflow of the multistep
BTU-Net based simultaneous deblending and interpolation is
depicted in Fig. 5, providing a comprehensive visual representation.
The signal-to-noise ratio (SNR) is used to quantitatively evaluate
the deblending and reconstruction performance:

|d|?

SNR(dB) = 10 log;q—SE
d — dap1F

(7)

where d represents the complete unblended label and dg;, repre-
sents the recovered result, with || - ||z denoting the Frobenius norm.
Different examples are presented to demonstrate the effectiveness
of the newly proposed algorithm in simultaneous deblending and
interpolation.

3. Numerical examples

In order to show the validity of the newly proposed method for
simultaneous interpolation and deblending, artificially incomplete
blended synthetic and field data are used. For detailed compari-
sons, we present the recovered results of synthetic data using the
curvelet-based ISTA.

3.1. Synthetic data example

The data is generated through simulations based on a layered
velocity model with a salt body filled with high-velocity. Complete
unblended data contains 256 shots, with each shot having 256
uniformly located receivers and 256 sampling points per trace. The
spatial interval is 12 m, and the sampling time interval is 4 ms. We
artificially sample 50% of the traces in each CRG to emulate missing
shots, and then blend them to simulate incomplete blended data
with a blending fold of 3. A specific complete unblended CRG is
exhibited in Fig. 6(a). After pseudo-deblending, the corresponding
incomplete pseudo-deblended result, contaminated by blending
noise and irregularities, is exhibited in Fig. 6(b). Using the observed
incomplete pseudo-deblended data and its blending and sampling
operators, we employ a three-step self-supervised deblending with
the details in Fig. 5. The initial input of the network training con-
tains 256 incomplete pseudo-deblended CRGs, which are further

(b)
<] The 1= step <] The 2 step <] The 3" step
15 4 <
q < N 4
< <
< <
a 9 < <
g < AT <
o <
z |9 agq4q9afd <
n 4 <
10 4 <
<
< <
< 4 < q <
q < < <
4 49 q
5 T T T
5 10 15
CRG

Fig. 14. (a) The loss curves of the training and validation CRGs and (b) the calculated SNRs of all validation CRGs by the multistep BTU-Net algorithm.
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Fig. 15. (a) The reference CRG; (b)the incomplete pseudo-deblended CRG; (c) the recovered result after the first step and (d) the difference between (c) and (a); (e) the sequential
first, second, third steps of the multistep BTU-Net algorithm and (f) the difference between (e) and (a).

divided into 224 CRGs for training and 32 CRGs for validation.

After training the current step, we obtain the recovered result,
which helps the simulation of blending noise for subtraction from
incomplete pseudo-deblended data. Simultaneously, the recon-
structed missing traces are inserted to gradually update the input
for the subsequent step. To illustrate the decreasing level of
blending noise and the increasing interpolation performance of
missing traces in the updated input, Fig. 6(c, d) exhibits a specific
training input CRG of the second and third steps. The residuals
between each input and the reference complete unblended data are
also shown in Fig. 6(e, f, g). The comparisons illustrate that the
input gradually approaches complete unblended data, with
increasing accuracy as the steps progress.

The whole training procedure consists of three steps, with each
step containing 100 training epochs. The gradually decreasing loss
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of the three-step self-supervised algorithm is illustrated in Fig. 7(a).
To quantitatively evaluate the deblending and interpolation per-
formance during the network training, we use the complete un-
blended data as a reference to calculate the recovered SNR, as
depicted in Fig. 7(b). It is clear that the optimized multistep self-
supervised network is effective, as indicated by the gradual
decline and eventual stabilization of the loss in each step, along
with the corresponding increase of the recovered SNR.

The 32 validation CRGs are processed by the three-step self-
supervised algorithm for simultaneous deblending and interpola-
tion. Fig. 8(a) shows the recovered SNR of all validation CRGs after
the first, second, third processing steps. The average SNR after the
first step is 12.76 dB, increasing by 5.34 dB in the second step. The
final recovered SNR after three sequential deblending steps is
23.52 dB, with an increase of 5.42 dB from the second step.
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Fig. 16. The comparison of FK spectra of (a) the reference and the recovered results after (b) the first step and (c) the third step. (d, e) The difference between (b, c) and (a).

Comparing the average SNRs across the three steps confirms that
the multistep algorithm contributes to a better deblending and
interpolation performance. For detailed comparisons, we process
all validation CRGs using the curvelet based ISTA with 80 iterations
(Wang et al., 2022a) for simultaneous deblending and interpola-
tion, and the recovered SNRs are presented in Fig. 8(b). The
multistep BTU-Net algorithm demonstrates superior effectiveness
by achieving a higher recovery performance than the ISTA
(18.04 dB).

For further analysis, the recovery performance of a specific
validation CRG is depicted in Fig. 9. The recovered data from the
first processing step is shown in Fig. 9(a) with a recovered SNR of
12.75 dB. A more accurate recovered result via the sequential first,
second, and third steps is depicted in Fig. 9(b). Compared to the
result in Fig. 9(a), the multistep BTU-Net algorithm significantly
enhances recovery performance, achieving a recovered SNR of
24.41 dB. We also depict the recovered result of the ISTA in Fig. 9(c)
with a recovered SNR of 19.13 dB for comparisons. The residual
between the recovered result and the complete unblended one is
depicted in Fig. 9(d, e, f). More residuals exist in Fig. 9(f) compared
with Fig. 9(e), which validates the effectiveness of the multistep
self-supervised method for high-quality simultaneous deblending
and interpolation.

For a specific trace from this validation CRG, the blending noise
of an available trace is attenuated and the missing information of an
unavailable trace is reconstructed. We extract two traces from Fig. 9
for a detailed single-trace performance analysis. Fig. 10(a) presents
the available 42nd trace, demonstrating effective attenuation of the
blending noise. Fig. 10(b) illustrates the difference between the
deblended result and the reference one. Fig. 10(c) presents the
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unavailable 72nd trace, showing that the missing information is
reconstructed reasonably. Fig. 10(d) illustrates the difference be-
tween the reconstructed result and the reference result. Compari-
sons in Fig. 10 show that the multistep BTU-Net algorithm
outperforms the ISTA in simultaneous deblending and interpola-
tion with significantly less signal leakage.

After processing all incomplete pseudo-deblended CRGs, we can
extract all CSGs for performance analysis. Before deblending and
interpolation, the unavailable CSGs contain no information, which
need to be reconstructed. The available CSGs are contaminated by
coherent interference, which need to be attenuated. Fig. 11(a)
shows the 42nd CSG, one of the available CSGs, with the unblended
data displayed as a reference in Fig. 11(b). Fig. 11(c) and (d) depict
the deblended CSG and the residual, respectively, achieving a
separation SNR of 23.91 dB. Fig. 12(a) shows the complete version of
the 72nd CSG, which, in reality, is unavailable before processing.
Fig. 12(b) and (c) depict the reconstructed CSG and the recon-
struction residual, respectively, with a reconstruction SNR of
23.63 dB. The effective simultaneous deblending of available CSGs
and reconstruction of unavailable CSGs demonstrate the effective-
ness of our proposed multistep self-supervised algorithm.

3.2. Field data example

The validity of the multistep self-supervised algorithm is further
demonstrated using field data acquired in the Gulf of Suez. The pre-
processed field data has 128 shots, each with 128 receivers spaced
at every 12.5 m. Per trace has 512 samples with a sampling time
interval of 4 ms. Fig. 13(a) illustrates a specific CRG, and incomplete
blended field data with a blending fold of 2 and 40% of traces
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Fig. 17. The 10th CSG of field dataset. (a) Pseudo-deblended CSG; (b) unblended CSG;
(c) deblended CSG of the multistep BTU-Net algorithm; (d) the difference between (c)
and (b).

irregularly missing is simulated. The corresponding incomplete
pseudo-deblended data is displayed in Fig. 13(b). The frequency
wavenumber (FK) spectra are depicted in Fig. 13(c) and (d). It shows
that the irregularly missing traces and the randomized blending
noise manifest as randomized weak-amplitude noise in the FK
domain.

Based on the multistep BTU-Net algorithm, 128 incomplete
pseudo-deblended CRGs, together with the blending and sampling
operators, are fed into the network. During which, 112 CRGs are
used for training, and the corresponding rest are used for valida-
tion. The training epoch is set to 200, 200, and 150 for the first,
second, and third steps. The loss function is provided in Fig. 14(a),
and the recovered SNR of the validation CRGs after different
training steps is shown in Fig. 14(b).

To visualize the recovery performance of the proposed algo-
rithm, a specific CRG is extracted for a detailed analysis. Fig. 15(a)
and (b) illustrate the complete unblended data and the

Offset, km
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Offset, km
05
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corresponding incomplete pseudo-deblended data, respectively.
Using the proposed self-supervised algorithm, the initial recovered
result after the first step is shown in Fig. 15(c). Most of the missing
traces are effectively interpolated, and much of the blending noise
is attenuated, achieving a recovered SNR of 8.77 dB. However, the
signal quality is open to improvement with the recovery residual
shown in Fig. 15(d). In order to get high-quality seismic data, the
multistep algorithm is applied. Fig. 15(e) depicts the recovered re-
sults after the sequential first, second, and third steps and the
corresponding residual is depicted in Fig. 15(f) with a recovered
SNR of 14.37 dB. To facilitate detailed comparisons, local areas
severely affected by missing traces and blending noise, as marked
by the dashed box, are enlarged to the corresponding right side. The
global and local comparisons show that the proposed multistep
self-supervised method effectively improves the recovery accuracy.

For further illustrations, we compare the recovered results in
the FK domain, as depicted in Fig. 16. Fig. 16(a) is the FK spectrum of
the reference result. Fig. 16(b) and (c) show the deblended and
reconstructed results after the first and the third steps of the
multistep BTU-Net algorithm, and the residuals are depicted in
Fig.16(d) and (e). Both of the comparisons in the FK domain and the
time-space domain verify that the multistep BTU-Net algorithm
effectively attenuates the blending noise and reconstructs missing
traces as the step progresses.

We also display the recovery performance of CSGs after pro-
cessing all CRGs. Fig. 17(a) shows a CSG contaminated by coherent
blending interference, with the expected unblended CSG displayed
in Fig. 17(b) as a reference. Fig. 17(c) shows the deblended result
with the coherent blending interference being effectively attenu-
ated, and the separation SNR is of 15.48 dB. The separation residual
is shown in Fig. 17 (d). Fig. 18(a) displays another expected com-
plete CSG (unavailable in reality before processing) as a reference.
The unavailable CSG is effectively reconstructed using the proposed
multistep self-supervised algorithm, as depicted in Fig. 18(b), with a
reconstruction SNR of 15.79 dB, and its reconstruction residual is
depicted in Fig. 18(c). It shows that the multistep BTU-
Net algorithm performs successfully in simultaneous deblending
and interpolation.

4. Conclusion

Deep learning algorithms have great potential to nonlinearly
characterize seismic data by extracting high-level features for
simultaneous seismic deblending and interpolation. Considering
the unavailability of complete unblended seismic data, we fully
utilize the shooting information during blended acquisition and
propose a self-supervised deblending and interpolation algorithm
using the BTU-Net. To improve the recovery accuracy, we adopt a
multistep strategy with BNSS and MTRI, which improves the input

Offset, km

1.0 15 0.5 1.0

(b)

2 4 — 4

R: 15.79 dB (c)

Fig. 18. The 70th CSG of field dataset. (a) Complete CSG; (b) reconstructed CSG of the multistep BTU-Net algorithm; (c) the difference between (b) and (a).
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of subsequent steps to achieve high-quality recovered results. The
parameters in the current training step are initialized by the opti-
mized parameters in the previous step via transfer learning to
improve the training stability and efficiency. The newly proposed
algorithm integrates the advantages of the BTU-Net-based self-
supervised algorithm and the multistep strategy. Different syn-
thetic and field incomplete blended examples illustrate the effec-
tiveness of the proposed multistep self-supervised BTU-
Net algorithm in providing high-quality deblended and interpo-
lated data for subsequent seismic processing.
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