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Gas hydrate (GH) is an unconventional resource estimated at 1000—120,000 trillion m> worldwide.

Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-
tion. After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin, the
mineral composition of 488 sediment samples was analyzed using X-ray diffraction (XRD). Because the
analysis is costly and dependent on experts, a machine learning model was developed to predict the
mineral composition using XRD intensity profiles as input data. However, the model’s performance was
limited because of improper preprocessing of the intensity profile. Because preprocessing was applied to
each feature, the intensity trend was not preserved even though this factor is the most important when
analyzing mineral composition. In this study, the profile was preprocessed for each sample using min-
max scaling because relative intensity is critical for mineral analysis. For 49 test data among the 488
data, the convolutional neural network (CNN) model improved the average absolute error and coefficient
of determination by 41% and 46%, respectively, than those of CNN model with feature-based pre-
processing. This study confirms that combining preprocessing for each sample with CNN is the most
efficient approach for analyzing XRD data. The developed model can be used for the compositional
analysis of sediment samples from the Ulleung Basin and the Korea Plateau. In addition, the overall
procedure can be applied to any XRD data of sediments worldwide.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

relatively shallow (100—1100 m) sedimentary layers (Li et al., 2021).
Research on GH as a next-generation alternative energy source has

Gas hydrate (GH) is an ice-like solid compound formed by been conducted worldwide because its estimated reserves are

combining natural gas with water under a low temperature
(<300 K) and high pressure (> 0.6 MPa) (Shahnazar and Hasan,
2014). Unlike conventional oil or natural gas, GH exists in
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approximately 1000—120,000 trillion m?, and the amount of car-
bon dioxide emitted during combustion is 0.7 times that of gasoline
(Kvenvolden et al., 1993; Ji et al., 2022).

GH is widely found in seafloor sediments. These sediments are
composed of several minerals, which not only determine the
characteristics of the sediments but also provide information on the
local environment and origin of the sediments (McLennan et al.,
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1993; Zhang et al., 2019; Wang et al., 2020). For example, deter-
mining the presence or absence of GH in reservoirs is possible by
using sediment analysis like total organic carbon, X-ray fluores-
cence and X-ray diffraction (XRD).

When the particle size of a mineral is relatively large (e.g., 5 mm
or more), its composition can be determined by modal analysis
with the naked eye or a microscope. However, the composition and
content of fine-grained particle sediments can only be determined
using XRD analysis. XRD measures the intensity of diffracted X-rays
by injecting them into powdered samples of 10 um or less. Because
each mineral has a unique intensity according to its crystal struc-
ture, it is easy to figure out the composition which composed of few
minerals. In the case of natural sediment samples, the intensity
profile is complicated because of various minerals. This difference
increases the time required for analysis and the reliance on experts
for interpretation when analyzing hundreds of samples.

Due to such complexity and the long analysis time, the devel-
opment of an XRD composition analysis model incorporating ma-
chine learning has progressed. The machine learning model
reduces analysis time by providing an initial solution for compo-
sition analysis to experts or allows non-experts to roughly under-
stand the mineral composition of the sediment.

Dominguez-Olmedo et al. (2020) grouped minerals with the
same properties to reduce ambiguity in the optical identification of
opaque minerals based on a decision tree. Zeng et al. (2021) pro-
posed a mineral identification method using the Mohs hardness
scale and mineral images as input data to improve the traditional
mineral identification method that relies on the analyst’s experi-
ence. A deep convolutional neural network (CNN) has been used for
image feature extraction. Okada et al. (2020) proposed an auto-
matic mineral identification system to identify the type of mineral
before processing it from the ore by combining high-resolution
spectral data and a CNN. This nondestructive approach de-
termines the type and crystal structure of the minerals contained in
the rock. Kim et al. (2020) proposed a deep neural network model
that predicts the weight ratio of minerals from logging data (i.e.,
neutron porosity, bulk density, sonic, and gamma ray logs) and core
data (XRD analysis results) in the Canning Basin. Preprocessing was
performed using principal component analysis to augment insuf-
ficient logging and mineral composition data. Dong et al. (2022)
proposed DeepXRD, a deep learning algorithm that predicts XRD
spectra by considering only the mineral composition. A study was
conducted to build a machine learning model that predicts the
mineral composition of a mixture by generating approximately 1.78
million theoretical intensity profiles of that mixture (Lee et al.,
2020). In addition, research was conducted to generate XRD in-
tensity profiles with various crystallographic characteristics for
machine learning (Schuetzke et al., 2021). Lee et al. (2020) devel-
oped a compositional analysis model for a relatively simple mixture
of 3—4 minerals using theoretically generated experimental data
rather than natural rock samples.

In the Ulleung Basin (UB), two large-scale drilling expeditions
were conducted: in September 2007 (UBGH-1) to determine the
GH potential and in July 2010 (UBGH-2) to evaluate the GH resource
volume (Ryu et al., 2013). The application of machine learning to
approximately 500 actual sediment samples obtained from the UB
was conducted by Park et al. (2022). Although the sample was
composed of 12 minerals, including amorphous minerals with
complex intensity profiles, confirming the possibility of automating
composition analysis using machine learning was meaningful.

However, the model developed by Park et al. (2022) has limited
accuracy for samples with abnormal mineral compositions. This
limitation is caused by the general preprocessing method in ma-
chine learning and the normalization of each feature. Moreover, it
does not consider the characteristics of the XRD experimental data.
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Owing to the nature of the XRD experimental data, even if the
mineral composition is similar, there is a slight difference in the
incident angle at which the intensity peak appears. Moreover, the
scale differs depending on the experiment’s conditions. In inter-
preting mineral composition, the relative ratio of the intensity
profile to the overall trend is much more crucial than the exact
angle and absolute size of the intensity peak. Because of these
characteristics, if a preprocessing method is applied to each feature,
the pattern of the intensity profile is damaged, making it difficult to
interpret its mineral composition.

The purpose of this study was to improve the precision of a
composition analysis model by applying a reasonable preprocess-
ing method to XRD experimental data using domain knowledge. In
the proposed method, min-max normalization is applied to each
sample, not each feature. Therefore, the absolute scale was cali-
brated between 0 and 1, and the XRD profile shape was preserved.
In addition, a suitable machine learning algorithm with newly
preprocessed data was proposed by comparing several machine
learning algorithms.

Section 2 presents the available XRD experimental data for the
UB and the proposed preprocessing method. Section 3 conducts a
prediction performance analysis based on a machine learning al-
gorithm and a data preprocessing method.

2. Methodology
2.1. XRD experiment data

In total, 488 core samples were obtained from three boreholes
(1-4,1-9, and 1-10B) of UBGH-1 and five boreholes (2-1-1, 2-2-2, 2-
5, 2-6, and 2-10) of UBGH-2 (Fig. 1). Table 1 lists the number and
depths of the samples.

The 26 values of the XRD intensity profile of the five boreholes
(1-4,1-9,1-10B, 2-1-1, and 2-6) ranged from 3.01° to 64.99° in 0.02°
increments (3100 in total) during the experiment (Park et al., 2022).
The range of 20 values of the XRD intensity profiles of the three
boreholes (2-2-2, 2-5, and 2-10) ranged from 3.005° to 64.995°
with an interval of 0.01° (6200 in total). Therefore, 6200 intensities
were matched to 3100 intensities using linear interpolation.

XRD was performed using a PHILPS X’Pert MPD XRD instrument
at the Korea Institute of Geoscience and Mineral Resources. The
intensity profile was measured in counts per second (cps). The
detailed XRD process is described by Park et al. (2022). The in-
tensity profiles obtained from each sample were analyzed using the
Rietveld method in SIROQUANT™ software (Rietveld, 1969; Taylor,
1991; Taylor and Matulis, 1994; Sietronics, 1996; Park et al., 2022).

In the SIROQANT™ software, the agreement between the
experimental (original) and the software-calculated profiles is
represented by the chi-square (x?). A x? value is used to determine
whether a significant relationship exists between the experimental
and calculated profiles (Ainane et al., 2021). A x* value close to 1
indicates reasonable match, but values below 3 are considered to
have acceptable reliability (Sietronics, 1996). The mineral compo-
sition analysis data used in this study were obtained when the x?
value was below 3.

Fig. 2 shows the mineral compositions of the 488 samples. The
top and bottom boundaries of the box indicate the 3rd and 1st
quartiles of the total data, respectively, and the orange line in-
dicates the median. The open circles signs indicate what is outside
the 1.5 x interquartile range from the quartile boundaries.

Table 2 lists the basic statistical values of the 488 datasets. Opal-
A was identified as the main mineral, with an average composition
of 30.1% and a wide distribution from 0% to 73.7%. Quartz had the
second highest average composition at 18.8%, and some data
showed high compositions from 30% to 55.9% (Fig. 2). Although
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Fig. 1. Location of UBGH-1 (1-4, 1-9, and 1-10B) and UBGH-2 (2-1-1, 2-2-2, 2-5, 2-6, and 2-10) wellbores (modified from Park et al. (2022)).

Table 1

Number of samples for the 8 boreholes of UBGH-1 and UBGH-2 (modified from Park et al. (2022)).

UBGH-1 (94) UBGH-2 (394)
Boreholes name 1-4 1-9 1-10B 2-1-1 2-2-2 2-5 2-6 2-10
Number of samples 17 40 37 91 55 87 87 74
Depth of the topmost sample, mbsf 0.0 0.1 0.5 2.6 0.5 1.7 0.3 1.0
Depth of bottommost sample, mbsf 186.5 174.5 204.8 2194 178.9 2174 227.0 204.9
Water depth, m 18414 2099.1 2077.0 15344 2097.9 1973.8 2156.9 2148.0
* mbsf: meter below sea floor.
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Fig. 2. Mineral composition of sample

albite, K-feldspar, and calcite had average compositions of less than
10%, few data points showed extreme outlier values greater than
30%. Albite and K-feldspar had several outliers with distributions of
15—33.7% and 10—32.5%, respectively. In the case of calcite,
although 165 data points had 0% composition, few data points were
high (58.9 %). The dolomite content was 0% in most samples except
for 19 data points. The halite was also observed in all samples,
originating from seawater. This is because halite precipitated as the
seawater in the core evaporated during the process of drying the
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s from XRD experiment analysis.

core samples for XRD experiment.

2.2. Data preprocessing

When analyzing the XRD results, the absolute value and exact
angles of the intensity peak are not essential. Instead, the ratio and
shape of the intensities are important for estimating mineral
composition. Table 3 indicates that samples #85 and #269 have
similar mineral compositions and that the quartz composition is
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Table 2
Maximum, minimum, average, and standard deviation values of mineral composi-
tion for total data and test dataset (Park et al., 2022).
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Table 4
Maximum intensity peak values and their angles of samples #85 and #269.

Sample Intensity peak angle
(Unit: %) 26.57° 26.59°
Mineral Total data Test data #85 799.0 771.0
Max. Min. Ave. Std. Max. Min. Ave.  Std. #269 208.6 234.1
Quartz 5590 000 1877 896 5410 810 19.06 9.65
Albite 3370 290 896 319 3370 330 994 539
Opal-A 7370 000 3011 1257 5750 000 2921 12.15 the same (16.6%). However, Fig. 3 indicates that the intensity pro-
Calcite 5890 000 470 720 4500 000 448 720

Muscovite 17.60 0.00 10.64 2.96 17.60 440 1081 249
Dolomite 810 0.00 0.11 0.62 150 0.00 0.03 0.21
Chlorite 6.00 010 3.57 1.06  6.00 1.10 3.57 1.07
Kaolinite 3.10 0.00 169 0.63 310 000 167 0.63

Illite 1990 190 1096 3.01 15.80 220 1056 2.80
Pyrite 720 0.00 249 1.11 570 0.00 2.68 1.26
Halite 700 000 142 095 3.00 000 139 087

K-feldspar 3250 120 656 292 1140 3.10 6.60 1.89

Table 3
Mineral composition of samples #85 and #269.

files of the two samples differ. Specifically, the intensity peak for
sample #85 is 799.0 cps at 26.57° and 234.1 cps for sample #269 at
26.59° (Table 4). This is because the intensity profiles can be
affected by various factors like particle arrangement and size,
atomic scattering factor, and multiplicity factor (Park et al., 2022).
Applying these intensity profiles to machine learning model
without normalization negatively affects the model’s performance.
Therefore, process of data preprocessing using normalization is
necessary before training the model.

However, the data preprocessing of Park et al. (2022) ignored
the characteristics of the XRD data. Fig. 4 illustrates an example of
preprocessing applied to the intensity profile. The original intensity

Unit: % . . . .
(Unit: %) profile in Fig. 4(a) was preprocessed for each feature (Fig. 4(b)) in
Sample  Quartz  Albite Opal-A  Calcite Muscovite  Dolomite the previous method and for each sample (Fig. 4(c)) in the proposed
#85 16.6 8.2 326 0 133 0 method. In general, normalization is applied to each feature (i.e.,
#269 16.6 7.8 31.8 0 13.5 0 each 26 angle) to overcome the scaling issue in machine learning.
Sample  Chlorite  Kaolinite Illite  Pyrite  Halite  K-feldspar Park et al. (2022) used this approach. However, owing to variations
#85 36 22 126 28 12 6.9 in the peak position and. scalt_e for egch XRD intensity profile (Fig. 3),
#269 44 21 145 2 14 58 the shape of the normalized intensity failed to preserve the trend of
the original data, as shown in Fig. 4b, which is the most important
factor in interpreting mineral composition.
Sample 85
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Fig. 3. Intensity profile of samples #85 and #269.
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Fig. 4. Intensity profile of sample #15: (a) raw profile and normalized profiles (b) by each feature and (c) by each sample.

To preserve the relative scale and shape of the intensity peaks, a
min-max scaler was applied to each sample (Eq. (1)). This pre-
processing approach helps alleviate the effects of scale and pre-
serve the characteristics of the XRD experimental data. Fig. 4(c)
shows an example of the application of the min-max scaler to the
samples. The shape of the raw data is retained, and the scale is
corrected to a range of 0—1. This result indicates that all 488 sam-
ples have the same range.

Intenszty’ — Intensity!

Intensity_scaledj i = minimum (1)
In tenSl ty’maxunum In tenSltylmll'llmUm
i=1,..,3100,j=1,...,488

where subscripts i, maximum, and minimum represent the i-th,
maximum, and minimum intensities of the j-th data, respectively.
Superscript j represents the j-th data point among the 488 data
points.

When preprocessing for machine learning, test data are not used
to calculate the normalization factor because they are unseen data.
Thus, the mean and standard deviation parameters from the
training data are applied to the test data. However, sharing these
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parameters is unnecessary because normalization is performed
within each sample.

Data splitting is a crucial step in machine learning that involves
dividing the data into training data for model learning, validation
data to prevent overfitting, and test data for verification. Fig. 2
shows that the mineral composition in the 488 data points was
not evenly distributed but concentrated within a narrow range.
Park et al. (2022) randomly split the total of data (488) into a 9:1
ratio for a train dataset (439) and test dataset (49). Then, the train
dataset was split into an 8:2 ratio for train (307) and validation
(132). If data split is not performed properly, accurately assessing
the performance of the developed machine learning model can be
difficult. In the literature, the statistical values of the training and
test mineral data were compared to ensure unbiased data split
(Table 2). In this study, the same data were used to determine the
effects of the preprocessing method.

2.3. Machine learning process

The workflow of machine learning is shown in Fig. 5. Data
preprocessing is shown in the blue box, and model training is
shown in the green box. The procedure is the same as that in Park
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Fig. 5. Workflow for predicting mineral composition using machine learning
algorithms.

et al. (2022), except for the normalization. Because feature-based
preprocessing is not suitable for XRD data owing to the unique
characteristics discussed in Subsection 2.2, sample-based pre-
processing was used (Fig. 4).

After preprocessing, the data were divided into training, vali-
dation, and test sets. The training dataset was then applied to long
short-term memory (LSTM), multilayer perceptron (MLP), random
forest (RF), and CNN. The learning mechanism and structure of the
models were the same as those in Park et al. (2022). Details are
presented in Tables A1, A2, and A3 in Appendix A.

3. Results
3.1. Prediction results for the 49 test data using machine learning

The preprocessed data were utilized to train various machine
learning algorithms, namely, LSTM, MLP, RF, and CNN. Table 5

Table 5

Average and standard deviation of error between original and predicted mineral
compositions of the 49 test data by the two preprocessing methods and four
algorithms.

(Unit: %)

Preprocess method Algorithm Ave. MAE Std. MAE
For each sample LSTM 211 1.14
MLP 0.87 0.80
RF 1.31 143
CNN 0.68 0.45
For each feature LSTM 2.53 1.13
MLP 1.03 0.72
RF 1.35 1.72
CNN 1.16 0.88
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displays the average and standard deviation of the mean absolute
error (MAE) between the predicted and labeled mineral composi-
tions for the 49 test data points, as given by Eq. (2).

‘l ‘l Nie  Niineral

Ave. MAE [ =g >

Y- )

=1
i=1,...,49,j=1,...,12

where Nge and Npjnerqr are the number of test data points (49) and

minerals (12), respectively. y{ and 371 represent the true and pre-
dicted compositions (%) of the j-th mineral of i-th test data,
respectively.

Table 5 illustrates that when sample-based preprocessing is
applied to the CNN, both the MAE and its standard deviation are the
lowest among all cases. A CNN with the sample-based pre-
processing resulted in a 41% improvement in MAE compared with
that of a CNN with the feature-based preprocessing. A detailed
analysis was conducted to examine the impact of the preprocessing
method on CNN performance. The results for LSTM, MLP, and RF are
detailed in Appendices B and C.

The scatter plot and coefficient of determination (R?) of the
predicted mineral compositions for the 49 test datasets using the
CNN are presented in Fig. 6. The scatter plot and the calculation of
R? were conducted after normalizing each mineral because the
mineral composition distribution varied with each mineral. Mineral
normalization was calculated using Eq. (3), and R? was calculated
using Eq. (4).

Mineral Composition{ —

Mineral,scaledi,. = (3)
j
1 Nir+Nyar nl
= mineral compostion,,i=1,...,49
:u] Ntr +Nyal Z p H H bl bl

k=1

j=1,..,12,k=1,...,439

0j= \/ var (mineral compositionf)

where the subscripts i, k, tr, and val represent the i-th test data, k-th
training and validation data, and training and validation data,
respectively. Superscript j denotes mineral. The parameters from
the training and validation datasets were used to scale the test data.

Nte Niineral P _i\2
s ()
RP=1-"— (4)
Nee Nineral /- :
yi-y
x & (n-v)
. N .
v =Ne Z mineral compostiorr,

i=1
i=1,..,49,j=1,....12

where Nie and Nyyjinerqr are the numbers of test data points (49) and

minerals (12), respectively. yi and ﬂ represent the normalized true
and predicted compositions of the j-th mineral of i-th test data,
respectively. 7 is the average normalized j-th mineral composition.
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(b) CNN (feature)

R?=0.518
6_
L o
= Q
c
= LA
© )
5 2 ° % )
c o
= ( @ o
25
? ® / 7...
© o o i
B °7 ok l/? Wy
hed [ e
a .1’}&. o
e ©
=2 J g
. o e ¢ °
e
T . T T .
-2 0 2 4 6

Original mineral (unitless)

» Chlorite
® Kaolinite

lllite Halite

@ Pyrite K-feldspar

Fig. 6. Scatter plot and coefficient of determination of 49 the test data using CNN preprocessed by each (a) sample and (b) feature.

The R? of the CNN (sample) and CNN (feature) were 0.757 and
0.518, respectively (Fig. 6(a) and (b)). The R? improved by approx-
imately 46% through the preprocessing of each sample. Fig. 6(a)
shows that the predicted values agreed well with the original
values. However, the prediction result for dolomite was under-
estimated because most of the dolomite had zero composition
(Fig. 2 and Table 2). If additional data is obtained from additional
experiments or augmentation approaches with a high dolomite
composition, the machine learning model may be retrained to
predict the outlier values for dolomite.

3.2. Further analysis of each test data

The results of the mineral prediction, such as the average and
variance of MAE and the R? for the 49 test data, indicate that the
CNN algorithm with sample-based preprocessing was the best
model. For a detailed analysis, one sample with a general compo-
sition (#76) and three samples with outlier compositional distri-
butions (#1, #408, and #483) were selected from the 49 test data.
Sample #1 has an unusually high albite composition of 37.7%,
which is the highest value among all 488 samples (Table 2). Sample
#408 has a high quartz composition of 45% and opal-A does not
even exist. Also, Sample #483 has an outlier mineral composition
for calcite about 45%.

Fig. 7 shows the results of the mineral compositions predicted
using the two CNN models depending on the preprocessing
methods for the four examples (#1, #76, #408, and #483). The red
bar indicates the mineral composition estimated by an expert (label
data); the blue and green bars represent the mineral compositions
predicted by the CNN with the sample and feature, respectively.

Sample #1 is an outlier compositional distribution with the
highest albite composition (33.7%) among all 488 samples, as
shown in Fig. 2 and Table 2. Notably, opal-A is approximately 10%
composition. The CNN (sample) model predicted an albite content
close to 30% and other minerals, such as quartz and opal-A, within
acceptable difference with the label data. However, the CNN
(feature) model showed poor prediction accuracy, with higher
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predictions for quartz and opal-A than for albite (Fig. 7(a)).

Sample #76 in Fig. 7(b) shows the general mineral composition
of the 488 samples: approximately 35% opal-A; 17% quartz; and 10%
albite, muscovite, and illite. Both CNN models successfully assessed
mineral composition trends. The CNN (sample) model provides a
more precise prediction than the CNN (feature) model (Fig. 7(b)).

Sample #408 in Fig. 7(c) is an outlier in which the composition
of quartz is high at approximately 45%, and opal-A is not present.
Both CNN models reliably predicted the overall trend of high quartz
and extremely low opal-A compositions. However, the CNN
(feature) model had a problem: overestimating quartz and under-
estimating albite. By contrast, the CNN (sample) model exhibited
satisfactory performance for all minerals (Fig. 7(c)).

Sample #483 in Fig. 7(d) has an outlier composition: a high
calcite composition, 45%; quartz and opal-A, approximately 10%;
and muscovite, approximately 15%. The CNN (feature) model pre-
dicted the calcite composition to be approximately 40%, similar to
the label data, but overpredicted quartz, albite, opal-A, and illite
and underpredicted muscovite and K-feldspar. The CNN (sample)
model predicted a composition similar to that of the CNN (features)
for calcite. The predictions for quartz, albite, and muscovite using
the CNN (sample) were improved compared with those of the CNN
(feature) model (Fig. 7(d)). However, the prediction accuracy for
other minerals remains poor, which might be solved using addi-
tional outlier samples for calcite.

Table 6 lists the MAE values for the four samples shown in Fig. 7.
For all samples, the prediction performance of the CNN (sample)
model was better than that of the CNN (feature) model. The MAE of
sample #76, which was a general composition, was the lowest at
0.72 and 1.19, respectively. The MAE of sample #408, which has
high quartz composition, showed the second-lowest error with
0.77 and 2.51, respectively. It showed a lower error than for samples
#1 and #483 because the intensity of quartz was more distinct than
that of the other minerals at approximately 26.5° (Fig. 3). Addi-
tionally, the training data had a higher quartz composition than the
samples with other outlier compositions did (Fig. 2).

The results for sample #1 showed a high error of 1.61 and 4.20.
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Fig. 7. Results for the CNN models for the four samples among the 49 test data: (a) #1, (b) #76, (c) #408, and (d) #483.
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:Z-?:)(:res(ihe four test data between original and predicted mineral composition.
(Unit: %)
MAE : ﬁ # 408 # 483
CNN (sample) 1.61 0.72 0.77 2.61
CNN (feature) 4.20 1.19 2.51 4.61

Because machine learning is a data-driven technique, solving the
extrapolation problem can be difficult. However, the proposed
model accurately replicated the compositions of albite, quartz, and
opal-A, although the MAE was double that of samples #76 and
#408.

The errors for sample #483 were 2.61 and 4.61, respectively,
which were the largest MAE. As shown in Fig. 2 and Table 2, calcite
typically has a composition of less than 10% in most of the 488
samples. However, the maximum calcite content was 58.9%, and
sample #483 contained approximately 45% calcite. Therefore,
interpreting the intensity profile of this sample is difficult owing to
insufficient data on calcite compositions between 10% and 58.9%.

4. Conclusion

We developed a highly reliable deep learning model to predict
the composition of 12 minerals using XRD experimental data from
the UB. A novel preprocessing approach was implemented using a
CNN algorithm, considering the unique characteristics of the XRD
experimental data.

(1) The XRD intensity data showed clear differences in the peak
angles and absolute scales, although the samples had similar
mineral compositions. However, for the analysis of the XRD
intensity profiles, these differences were not critical for
interpreting the mineral composition. The relative scale to
the peaks and the intensity trend were more important than
absolute intensity value and exact peak angle. Therefore, the
data were preprocessed by applying the min-max scaler to
each sample and not to each feature. This method not only
adjusts the range of each sample from O to 1 but also pre-
serves its intensity trend, including the ratio and the shape of
peaks.

(2) In this study, the LSTM, MLP, RF, and CNN models were
compared to determine a suitable algorithm for the newly
proposed preprocessing method. The CNN with the proposed
preprocessing showed an improvement of 41% (1.16—0.68)
and 46% (0.518—0.757) in MAE and R? for the 49 test data
compared with those of the CNN with feature-based pre-
processing (Park et al., 2022). Additionally, the CNN with the
proposed preprocessing significantly improved the predic-
tion performance for samples with outlier compositions,
such as high albite, quartz, and calcite, which could not be
assessed by Park et al. (2022).

(3) In this study, we confirmed that the CNN model with sample-
based preprocessing is an appropriate approach for predict-
ing mineral composition using XRD intensity data. Unlike
other algorithms, such as LSTM, MLP, and RF, CNN can easily
learn the spatial trends of the intensity profile using the
concept of a receptive field. The developed CNN model can be
applied to new XRD data near the UB, and the workflow of
this study can be applied to XRD data from other regions.
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(4) CNN (sample) exhibits larger prediction errors for few min-
erals compared to CNN (feature). For example, in case of K-
feldspar, CNN (sample) showed smaller error in samples #
480 and #483 than CNN (feature) but the opposite result was
shown in sample #1. This issue may be caused by the
insufficiency of training data, especially for the imbalanced
distribution of mineral composition. In future research, the
proposed method can be improved by securing additional
training data with diverse mineral compositions.

CRediT authorship contribution statement

Hongkeun Jin: Writing — original draft, Visualization, Meth-
odology, Investigation, Formal analysis, Conceptualization. Ju
Young Park: Writing — review & editing, Visualization, Investiga-
tion, Formal analysis, Conceptualization. Sun Young Park: Soft-
ware, Resources, Investigation, Formal analysis, Data curation,
Conceptualization. Byeong-Kook Son: Software, Resources, Data
curation, Conceptualization. Baehyun Min: Methodology, Formal
analysis, Conceptualization. Kyungbook Lee: Writing — review &
editing, Writing — original draft, Visualization, Supervision, Project
administration, Investigation, Funding acquisition, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

This study was supported by the Gas Hydrate R&D Organization
and the Korea Institute of Geoscience and Mineral Resources
(KIGAM) (GP2021-010). This work was also supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No. 2021R1C1C1004460) and Korea
Institute of Energy Technology Evaluation and Planning (KETEP)
grant funded by the Korean government (MOTIE)
(20214000000500, Training Program of CCUS for Green Growth).

Abbreviations

3D, three-dimensional; CNN, convolutional neural network; GH,
gas hydrate; IQR, interquartile range; LSTM, long short-term
memory; MAE, mean absolute error; MLP, multi-layer perceptron;
RF, random forest; RNN, recurrent neural network; UB, Ulleung
Basin; UBGH, Ulleung Basin gas hydrate drilling expedition; XRD, X-
ray diffraction.

Appendix A. Machine learning model structure

Tables A1-A3 present the structures of the LSTM, MLP, RF, and
CNN models used in the study. The hyperparameters of the neural
network algorithms and RF were determined through a sensitivity
analysis. For the neural network algorithms, the number of layers,
the activation function, and the optimizer were set as hyper-
parameter. For RF, the depth and number of trees were used as
hyperparameter (Park et al., 2022).
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Table A1
Design of mineral composition prediction model using LSTM and MLP.
LSTM MLP
Input 3100 intensity profile
Output 12 minerals composition
Number of total input datasets Training (3,100,307)
Validation (3,100, 132)
Test (3,100, 49)
Number of hidden layers 1 4
Number of nodes 20 1000, 300, 100, 30
Activation functions tanh sigmoid
Loss function Categorical crossentropy
Optimizer Adam
Learning rate 0.001
Maximum number of epochs 200
Early stopping Yes
Performance indicators MAE, R?

Table A2
Design of mineral composition prediction model using CNN.

CNN

Input 3100 intensity profile
Output 12 minerals composition
Number of total input datasets Training (3,100,307)

Validation (3,100, 132)

Test (3,100, 49)
Convolution layers 3(50,32—50,64-50,128)
Maxpooling layers 3 (4-4-4)
Fully connected layer 100
Activation functions ReLU
Loss function Categorical crossentropy
Optimizer Adam
Learning rate 0.001
Maximum number of epochs 200
Early stopping Yes
Performance indicators MAE, R?

Table A3
Design of mineral composition prediction model using RF.
RF
Input 3100 intensity profile
Output 12 minerals composition
Number of total input datasets Training (3,100, 439)
Test (3,100, 49)

Max_depth 10
Number of decision trees 200
Learning rate 0.001
Performance indicators MAE, R?

Appendix B. Prediction results using LSTM, MLP, and RF

Fig. B1 shows the scatter plot and R? of the prediction results
obtained using the LSTM, MLP, and RF models. The R? of LSTM
(sample) and LSTM (feature) were unreliably low at 0.133 and
0.225, respectively (Fig. Bla and B1b). LSTM also predicted each
mineral composition as an average value regardless of the actual
mineral values, as shown by the horizontal trend of the predicted
mineral in Fig. B1. The reason for this phenomenon is that the 3100
intensity data points are too long for LSTM to learn the intensity
peaks (Gers et al., 1999). In addition, LSTM is efficient for sequential
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data and assumes that the final data are the most important.
However, the importance of intensity data does not increase as the
incident angle increases because each mineral has a certain peak
region based on Bragg's law.

The MAE of MLP and RF improved when the preprocessed data
for each sample were used (Table 5); however, the R? was similar
(Fig. B1c to B1f). Although CNN can capture the overall trend in
intensity profile using the concept of a receptive field, MLP and RF
consider 3100 intensities as an individual feature. Therefore, MLP
and RF could not understand the continuous changes in the XRD
pattern. A critical limitation is that the positions of the intensity
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Fig. B1. Scatter plot and coefficient of determination of the 49 test data: LSTM with (a) sample, (b) feature, MLP with (c) sample, (d) feature, RF with (e) sample, and (f) feature.
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peaks can differ slightly (Fig. 3 and Table 4).
Appendix C. Results for 5-fold cross-validation

The mineral composition data used in this study exhibits an
uneven distribution as shown in Fig. 2. Therefore, we conducted 5-
fold cross-validation to assess the impact of data split on each al-
gorithm's performance. Table C1 presents MAE across the 5-folds
and their average and standard deviation. The proposed method,
Sample_CNN, showed the lowest MAE for each case. Also, standard
deviation of CNN's MAEs presented the lowest value indicating a
stable performance regarding the data split issue. Because the re-
sults by the 5-fold is similar with the results in Table 5, we can state
that CNN is the superior algorithm in this study among the four

Table C1

MAE of 5-fold cross-validation for each algorithm including LSTM, MLP, RF, and CNN.
(Unit: %)
Fold number 1 2 3 4 5 Ave. Std.
Sample_LSTM 243 2.20 2.23 1.86 222 2.19 0.20
Sample_MLP 0.89 0.87 0.82 0.78 0.82 0.86 0.06
Sample_RF 1.29 1.08 1.15 1.24 1.23 1.20 0.08
Sample_CNN 0.66 0.73 0.64 0.73 0.66 0.68 0.04

algorithms.
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