
lable at ScienceDirect

Petroleum Science 22 (2025) 163e177
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
A fast amplitude preserving three-parameter 3D parabolic Radon
transform and its application on multiple attenuation

Ji-Tao Ma a, b, c, *, Kai-Ge Zhao a, b, c, Zhen Liao a, b, c

a College of Geophysics, China University of Petroleum (Beijing), Beijing, 102249, China
b State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
c CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China
a r t i c l e i n f o

Article history:
Received 28 March 2024
Received in revised form
4 June 2024
Accepted 17 June 2024
Available online 18 June 2024

Edited by Meng-Jiao Zhou

Keywords:
Three-parameter
3D Radon
Orthogonal polynomial
Amplitude-preserving
Multiple attenuation
* Corresponding author.
E-mail address: majitao@cup.edu.cn (J.-T. Ma).

https://doi.org/10.1016/j.petsci.2024.06.011
1995-8226/© 2024 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Seismic wavefields propagate through three-dimensional (3D) space, and their precise characterization is
crucial for understanding subsurface structures. Traditional 2D algorithms, due to their limitations, are
insufficient to fully represent three-dimensional wavefields. The classic 3D Radon transform algorithm
assumes that the wavefield's propagation characteristics are consistent in all directions, which often does
not hold true in complex underground media. To address this issue, we present an improved 3D three-
parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more
accurate wavefield description. However, introducing new parameters to describe the azimuthal varia-
tion also poses computational challenges. The new Radon transform operator involves five variables and
cannot be simply decomposed into small matrices for efficient computation; instead, it requires large
matrix multiplication and inversion operations, significantly increasing the computational load. To
overcome this challenge, we have integrated the curvature and frequency parameters, simplifying all
frequency operators to the same, thereby significantly improving computation efficiency. Furthermore,
existing transform algorithms neglect the lateral variation of seismic amplitudes, leading to discrepancies
between the estimated multiples and those in the data. To enhance the amplitude preservation of the
algorithm, we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D
seismic data. Combining these improvements, we propose a fast, amplitude-preserving, 3D three-
parameter Radon transform algorithm. This algorithm not only enhances computational efficiency
while maintaining the original wavefield characteristics, but also improves the representation of seismic
data by increasing amplitude fidelity. We validated the algorithm in multiple attenuation using both
synthetic and real seismic data. The results demonstrate that the new algorithm significantly improves
both accuracy and computational efficiency, providing an effective tool for analyzing seismic wavefields
in complex subsurface structures.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The Radon transform is a widely used mathematical transform
in medical CT image reconstruction and seismic data processing. It
has proven to be effective in identifying seismic events, attenuating
multiples, reconstructing seismic data, analyzing velocities, and
separatingwavefields. In the field of seismic data processing, Radon
transform can be categorized into linear, parabolic, and hyperbolic
transforms.
y Elsevier B.V. on behalf of KeAi Co
Radon transform was originally proposed by the Austrian
mathematician Radon in 1917. In the 1970s, the geophysical group
at Stanford University began focusing the research on Radon
transform, leading to significant progress and important contri-
butions to its application in seismic data processing. Hampson
(1986) further improved the linear Radon to parabolic and
applied it to multiple attenuation. The parabolic Radon transform
utilizes the velocity differences between primaries andmultiples to
suppressmultiples. After normal moveout correction, the primaries
are flattened, while the multiples are partially corrected from hy-
perbolas to parabolas, which can be described by parabolic curves.
Bymapping these parabolas in the time space domain into points in
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Radon domain using parabolic Radon transform, the multiples and
primaries with different curvatures can be separated in the trans-
formed domain, and multiple attenuation can be achieved by
muting.

Beylkin (1987) discussed Radon transform based on the least-
squares (LS) theory. The resolution of LS algorithm result is rela-
tively low, and there are many methods available for improving the
Radon domain resolution. There are large-scale time domain
inversion algorithms (Thorson and Claerbout, 1985; Stoffa et al.,
1981; Yilmaz and Taner, 1994), iterative reweighting frequency
domain algorithms (Sacchi and Ulrych, 1995; Cary, 1998; Herrmann
et al., 2000; Chen and Lu, 2011), and hybrid time-frequency
methods (Lu, 2013; Wang et al., 2019; Li and Li, 2017), but they
are beyond the scopes discussed in our article. The proposed
method in the paper mainly focuses on the 3D extension and
amplitude preserving of the Radon algorithms.

The propagation of seismic waves is three-dimensional, and
simple 2D Radon transforms cannot depict them accurately. Given
the complexity of subsurface media and the characteristics of
seismic wave propagation in 3D space, it is necessary to develop 3D
Radon algorithms. 3D Radon sums up seismic data along pre-
defined 3D paraboloids, and it can simultaneously consider seismic
data in the inline and crossline directions, resulting in more accu-
rate mapping of events in 3D space. In complex areas where 2D
algorithms may not fully capture the characteristics of seismic data,
3D algorithms are more adaptable. Based on 3D algorithms, the
propagation paths of multiples can be completely characterized,
leading to improved multiple suppression results. Moreover, 3D
algorithms offer higher data resolution by considering more spatial
information. A 3D seismic gather composed of bin gathers from
different azimuths can be constructed. And using bin gathers is
more intuitive to describe the three-dimensional wave propaga-
tion. Consequently, the 3D Radon algorithm can be applied to
seismic data in small bin gathers. A 3D common-cell gather can also
be assembled according to the value of scaler offsets. Due to the
time difference at different azimuths, the assembled data is jittered
along the offset direction.

The research of 3D Radon transform begins with linear Radon
transform and the scholars mainly study its application in inter-
polation and denoising. For example, Donati and Martin (1995)
firstly used 3D linear Radon transform in seismic data interpola-
tion and reconstruction. Zhang and Lu (2014) proposed an accel-
erated 3D sparse time-invariant linear Radon transform in the
mixed time-frequency domain based on iterative threshold
shrinkage algorithm, and applied it in the interpolation and
reconstruction of 3D pre-stack seismic data. Cao and Ross (2017)
proposed a high-resolution 3D linear Radon transform based on
matching pursuit, which effectively dealt with the spatial aliasing,
improved the resolution and achieved a good interpolation effect.
Sun et al. (2022) proposed a 3D conical linear Radon transform for
randomnoise, multiple and surface wave suppression in 3D seismic
gathers. There is hardly no research on 3D parabolic Radon trans-
forms before 2008.

Existing 3D Radon transform represents the 3D seismic wave-
field using two parameters, which are qx and qy, with qx the
parameter depicting the wavefield in inline direction, and qy the
parameter depicting the wavefield in crossline direction. The 3D
algorithm requires that the shape of seismic events in each bin
gather is consistent, in which case the time slice of seismic data is a
standard ellipse with the focal points located on the survey line.
However, when anisotropy exists underground, the shape of
seismic events will change, and the ellipse of the time slice will also
rotate, which makes the existing 3D Radon algorithm unable to
accurately describe 3D seismic data.

Hugonnet et al. (2008, 2009) considered the azimuthal effects
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by incorporating an elliptical model for the variations of the seismic
events with azimuth, and proposed a high-resolution 3D parabolic
Radon transform based on lower frequencies constraints. Ma
(2024) referred the description of ellipse in mathematics, intro-
duced an extra parameter qxy to describe the rotation ellipse of time
slice, and proposed a 3D parabolic Radon algorithm based on the
rotated ellipse model, which is also called three-parameter (qx, qy,
and qxy) 3D Radon transform in this paper. The algorithm accounts
for anisotropy and is capable of accurately characterizing seismic
data that varies with azimuth. Ma (2022) also proposed a high
resolution three-parameter 3D Radon transform based on lower
frequencies constraints, and achieved very good multiple attenua-
tion result on synthetic data. But the computation cost of the high-
resolution method is huge.

Unlike traditional algorithms, the three-parameter 3D Radon
transform cannot decompose the whole Radon operator into op-
erators in inline and crossline directions separately, and can only
multiply and invert very large matrices for each frequency, which
leads to low computation efficiency. Abbad et al. (2011) proposed a
modified fast algorithm for 2D parabolic Radon transform. In this
fast algorithm, the curvature and frequency are combined into a
new parameter, denoted as l. The transform operator is indepen-
dent of frequency, thus simplifying the algorithm to a single oper-
ator problem. This necessitates the transform operator inversion
only once, with the inverted result being subsequently called for all
frequency computations, significantly enhancing computational
efficiency. Li et al. (2013) and Sun et al. (2019) both studied the fast
Radon transform from the aspects of resolution enhancement and
amplitude preserving, respectively. Wang et al. (2017) studied the
amplitude preserved seismic data reconstruction by two-
parameter fast 3D parabolic Radon transform. They all introduced
new variables lx ¼ qxf and ly ¼ qyf, so that it only needs to calculate
the inverse of the transform operator once during the data recon-
struction, saving a large amount of computational time. Xie et al.
(2021) proposed a multiple-suppression method using the two-
parameter fast high-resolution parabolic Radon transform with
curvature magnification. This fast strategy can also be adapted by
the three-parameter 3D Radon transform algorithm. Here, the
frequency and curvature are combined to create three distinct new
parameters, lx, ly and lxy. A frequency-independent transform
operator can then be constructed. By inverting this operator just
once and iteratively reusing the inversion results across all fre-
quency calculations, the algorithm’s computational performance is
markedly improved. In the paper of Ma (2024) mentioned above,
the fast algorithm is also adapted, and the computational efficient
l-f domain three-parameter 3D Radon transform method is
proposed.

The amplitude of seismic events varies laterally. Existing 3D
Radon transform algorithm only sums the data along a specific
path, without considering the events’ lateral amplitude variations.
This leads to a certain amplitude difference between the multiples
separated by the algorithm and the multiples in the original data,
affecting the suppression effect. Many scholars have also done
related research on improving the amplitude preservation of Radon
transform. Nowak and Imhof (2006) and Zhao et al. (2012) analyzed
the amplitude preservation of Radon transform and its denoising
applications separately. Xue et al. (2012, 2014) and Vyas et al. (2016)
proposed the high-order Radon transform algorithms based on
different orthogonal polynomials respectively, which added the
gradient and curvature information describing the amplitude
changes in different directions. They expanded the traditional
Radon transform, and made it more accurate in real data process-
ing. Wang et al. (2011) proposed a Radon transform that can
simulate the amplitude changes in the seismic data, which also
achieved good amplitude preservation results. Tang and Mao
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(2014) gave a high-order high-resolution parabolic amplitude-
preserving Radon transform, and applied it to 3D seismic data
reconstruction. Ma et al. (2020) proposed a method of multiple
attenuation using high-order high-resolution 3D Radon transform,
which considered the amplitude variation using orthogonal poly-
nomials, and improved the resolution using lower frequencies
constraint. Geng et al. (2022) proposed a high-order sparse 3D
Radon transform in the mixed timeefrequency domain with L1e2
minimization. Here, orthogonal polynomial operator and the fast
three-parameter 3D Radon algorithm are combined, and an
amplitude preserving algorithm is developed to improve the ac-
curacy of multiple estimation and further enhance multiple sup-
pression effect.

In this paper, we integrate the three-parameter 3D parabolic
Radon transform algorithm with an amplitude preservation oper-
ator, combining curvature and frequency parameters to propose an
amplitude-preserving, anisotropy-considering, fast 3D parabolic
Radon transform algorithm. This algorithm can handle lateral
amplitude variations in seismic data and only requires the inver-
sion of a single Radon operator, making it computationally efficient.
The effectiveness of the algorithm is verified using both synthetic
and real seismic data.

It should be noted that the 3D parabolic Radon transform al-
gorithm is studied in the paper and applied to the CDP gathers after
NMO correction. A comparative analysis of related algorithms for
parabolic Radon transform is also provided. Although hyperbolic
Radon transform algorithm can also suppress multiples, as its
mechanism differs from the method in this paper, hence it is not
included in the analysis and comparisons.
2. Theory

2.1. Regular two-parameter 3D Radon transform (2P 3D Radon)

The two-parameter 3D parabolic Radon transform involves the
summation of seismic data along prescribed standard parabolic
surfaces, resulting in the 3D Radon domain data. Consider a seismic
data represented by d(t, x, y), where t denotes time, and x and y
represent spatial coordinates. The application of 3D parabolic
Radon transform yields data in the Radon domain, denoted as m(t,
qx, qy). Here, qx and qy are the curvature parameters in the inline and
crossline directions, separately, while t represents the transformed
time coordinate in the Radon domain. By summing data in the
Fig. 1. Time slices of the synthetic data. (a) Upper data slice w
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Radon domain along different paraboloids, seismic data in the
time-offset domain can be reconstructed, which is

dðt; x; yÞ ¼
ð ð

m
�
t ¼ t � qxx2 � qyy2; qx; qy

�
dqxdqy (1)

Eq. (1) can be discretized as follows:

dðt; x; yÞ¼
Xnqx
j¼1

Xnqy
k¼1

m
�
t¼ t � qxjx

2 � qyky
2; qxj; qyk

�
(2)

where, nqx and nqy denote the number of qx and qy. By trans-
forming both sides of Eq. (2) to frequency domain, we can get

Dðu; x; yÞ¼
Xnqx
j¼1

Xnqy
k¼1

M
�
u; qxj; qyk

�
e�iuðqxjx2þqyky2Þ

¼
Xnqx
j¼1

Xnqy
k¼1

e�iuqxjx2M
�
u; qxj; qyk

�
e�iuqyky2

(3)

where D and M are the seismic and Radon domain data in the
frequency domain separately.

Eq. (3) can be expressed in two distinct operator notations as
follows:

Dvec ¼ LxyMvec (4)

D¼ LxMLy (5)

where, Lx denotes the matrix associated with the exponential term
e�iuqxjx2 , and Ly represents the matrix corresponding to the expo-
nential term e�iuqyky2 in Eq. (3). Furthermore, Lxy is a matrix that
corresponds to the exponential term of e�iuðqxjx2þqyky2Þ in Eq. (3).
Additionally, Dvec andMvec are the vectorized forms of the matrixes
D and M, respectively.

For the purpose of balancing computational accuracy and effi-
ciency, the general 3D Radon transform is often resolved utilizing a
least-squares algorithm that is related with Eq. (5), which may be
expressed as

~M¼ LHx
�
LxLHx þ mI

��1
D
�
LHy Ly þ mI

��1
LHy (6)

where, I represents the unit diagonal matrix, m denotes a damping
ithout anisotropy; (b) lower data slice with anisotropy.



Fig. 2. The small bin gathers of the synthetic data. (a) All bin gathers with multiples; (b) all bin gathers with the true primaries; (c) five small bin gathers with multiples; (d) five
small bin gathers with the true primaries.

Fig. 3. Sythetic data sorted by scalar offset. (a) Data with multiples; (b) true primaries.
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Fig. 4. Multiples estimated by different algorithms. (a) 2P 3D Radon algorithm; (b) HO2P 3D Radon algorithm; (c) 3P 3D Radon algorithm; (d) HO3P 3D Radon algorithm.
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factor applied to enhance the stability of the matrix inversion. The
damping factor is chosen to lie within the interval (0.01, 1),
depending on the specific requirements of the computation. The
notation H signifies the conjugate transpose of matrixes under
consideration. An alternative solution exists that is related to Eq.
(4). However, due to the significantly larger size of the matrix Lxy
compared to Lx and Ly, the computational expense associated with
this method is substantially higher. Consequently, Eqs. (5) and (6)
are generally preferred for the implementation of 3D Radon
transform.
2.2. Three parameter-3D Radon transform (3P 3D Radon)

Current theoretical approaches posit that in 3D seismic data
after normal moveout correction, the time-slice of the multiples
conforms to an elliptical shape, with its focal points located on the
survey line. This assumption presupposes uniformity in the char-
acteristics of multiples across different azimuths, and a consistent
travel-time curve morphology irrespective of direction. The con-
ventional 3D Radon transform employs two curvature parameters
along orthogonal survey lines to parameterize the seismic wave-
field. In instances where the subsurface geology is simple, this
method may suffice; however, in the presence of anisotropy within
the earth's strata, the normal moveout corrected multiples' time-
slice deviates from the standard elliptical form, with its focal
167
points displaced from the survey lines. Under such conditions,
conventional 3D Radon transform fails to represent the seismic
data accurately, potentially leading to incomplete multiple atten-
uation or primary damage. Therefore, conventional algorithm ex-
hibits inherent limitations when addressing multiple attenuation
in seismic data acquired in complex geological structures.

In real data acquisition, the superposition of factors such as
cable drifting can significantly enhance the distortion of the time-
slice ellipse. To adequately represent the spatially varying seismic
wavefield, it becomes necessary to introduce an elliptical rotation
parameter. This parameter accounts for the directional variability in
seismic data and an adaptive, spatially varied rotated ellipse model
is built. Consequently, building on the characteristics of the mul-
tiples in 3D seismic data under complex conditions, an additional
rotated ellipse parameter qxy is integrated into the 3D Radon
transform. This extension leads to a three-parameter (3P) 3D Radon
transform, which is employed for the precise representation of
seismic data.

In the 3P 3D Radon transform, the elliptical representation of
the seismic wave-field is parameterized by the coefficients associ-
ated with x2, y2, and xy, which are denoted as qx, qy and qxy,
respectively. The introduction of qxy accounts for the rotational
aspect of the ellipse, thereby allowing for a more accurate charac-
terization of the seismic data in the presence of complex geological
structures and anisotropic media.



Fig. 5. Multiple suppression results by different algorithms. (a) 2P 3D Radon algorithm; (b) HO2P 3D Radon algorithm; (c) 3P 3D Radon algorithm; (d) HO3P 3D Radon algorithm.
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It is well known that the value of q generally represents the
residual time of seismic events after normal moveout correction.
Specifically, in the case of 3D Radon transform, qx represents the
residual time of parabolic events within small bin gathers after
normal moveout correction, while qy represents the time differ-
ences between various small bin gathers across the entire dataset.
On the other hand, qxy represents the time difference at both ends
of the seismic events within each small bin gather. If a time dif-
ference dt exists between the two ends of the small bin gather, then
qxy ¼ dt/2. Additionally, qxy also signifies the rotation of the data's
time slices, where qxy < 0 indicates a clockwise rotation of the el-
lipse in the time slice, and qxy > 0 indicates a counterclockwise
rotation.

The mathematical formulation of the 3P 3D Radon transform
can be written as

dðt; x; yÞ¼
ð ð ð

m
�
t¼ t � qxx2 � qyy2

� qxyxy; qx; qy; qxy
�
dqxdqydqxy (7)

The corresponding discrete form in the frequency domain is
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Dðu; x; yÞ¼
Xnqx
j¼1

Xnqy
k¼1

Xnqxy
l¼1

M
�
u; qxj; qyk; qxyl

�
e�iuðqxjx2þqyky2þqxylxyÞ

(8)

The exponential term in Eq. (8) can be denoted as Lqxy. This term
comprises five variables, and does not lend itself to be decomposed
into small matrixmultiplications similar with Eq. (5). Consequently,
Eq. (8) can only be expressed in its operator form as follows:

Dvec ¼ LqxyMvec (9)

The corresponding least squares solution is

~Mvec ¼ LHqxy
�
LqxyLHqxy þ mI

��1
Dvec (10)

In this formulation, the length of ~Mvec is nqx$nqy$nqxy, while the
length of Dvec is nx$ny. The dimension of the matrix Lqxy is
(nx$ny)� (nqx$nqy$nqxy). Thematrix Lqxy is considerably large, and
thematrix specific to each frequency varies. The computation of the
3P 3D Radon transform necessitates the calculation of matrix
inversion for each individual frequency, rendering the algorithm
computationally intensive.



Fig. 6. Difference between suppression results from different algorithms and the true primaries. (a) 2P 3D Radon algorithm; (b) HO2P 3D Radon algorithm; (c) 3P 3D Radon
algorithm; (d) HO3P 3D Radon algorithm.
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2.3. Fast Radon transforms

In comparison to the 2P 3D Radon transform, the 3P version of
the algorithm incorporates an additional parameter, which results
in an extra dimension for the transformed data. The 2P algorithm
operator can be decomposed into separate operators in the inline
and crossline directions, allowing for individual matrix multipli-
cation and inversion operations that reduce computational costs.
Conversely, the 3P algorithm's operator accounts for the curvature
parameters in both the inline and crossline directions as well as the
spatial variations of the elliptical model, which precludes decom-
position into distinct operators. The extra dimension leads to
significantly more time-consuming multiplication and inversion
processes. While the algorithm enables a more precise description
of the seismic wavefield, its computational demands are substan-
tial, impeding its widespread industrial application.

To enhance computational efficiency, a new variable l ¼ qf is
introduced, which effectively removes the operator’s frequency
dependency. This modification ensures that all frequencies corre-
spond to a single transform operator, necessitating the calculation
of the operator and its inversion only once, with the results being
applicable to the processes of all frequencies. By integrating fre-
quency and curvature into one parameter, the algorithm can be
169
reformulated as a single-operator linear problem, significantly
boosting computational efficiency. Generally speaking, the value of
l is calculated by multiplying q with the maximum frequency
presented in the data. The Nyquist frequency is not suggested to use
here, as it will bring huge computation cost.

With the introduction of the new variable l, such that lx ¼ qxf,
ly ¼ qyf and lxy ¼ qxyf, the 3P 3D Radon inverse transform can be
reformulated accordingly:

Dðf ; x; yÞ¼
Xnqx
j¼1

Xnqy
k¼1

Xnqxy
l¼1

M
�
f ; lxj; lyk; lxyl

�
e�2piðlxjx2þlyky2þlxylxyÞ

(11)

The exponential term in Eq. (11) is designated as the transform
operator Llqxy, which exhibits independence from frequency.
Consequently, the transform operator remains invariant across all
frequencies. The operator and its inversion are calculated only once,
and then they are called throughout the iteration process. This
approach substantially enhances the computational efficiency of
the 3P 3D Radon transform.



Fig. 7. Multiple suppression results by different algorithms sorted by scalar offset. (a) 2P 3D Radon algorithm; (b) HO2P 3D Radon algorithm; (c) 3P 3D Radon algorithm; (d) HO3P
3D Radon algorithm.

Fig. 8. Residual energy comparison of the four algorithms. (a) Total residual energy; (b) residual energy of the lower part.

Table 1
Comparison of computation time used by different algorithms.

Method 2P 3D HO2P 3D 3P 3D HO3P 3D

Time, s 0.034 0.328 16.946 160.119
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2.4. Amplitude preserving high-order three-parameter 3D Radon
transform (HO3P 3D Fast Radon)

The Radon transform algorithm only sums seismic data along a
specific path, assuming a constant amplitude in the horizontal di-
rection. However, seismic data amplitude changes with wave-field
170
propagation, which will reduce transform resolution and cause
amplitude losses. Improved methods are needed to address these
challenges.

Since the amplitude of seismic data in CDP gathers varies gently,
Johansen et al. (1995) used orthogonal polynomials to fit the AVO
effect of the data. Xue et al. (2014) combined Radon transformwith
orthogonal polynomial fitting to propose an amplitude-preserving
high-order Radon transform algorithm. In this paper, two orthog-
onal polynomial coefficients p(x) and p(y) are used to fit the
amplitude changes of the seismic data in the x and y directions,
respectively, and they are fused into the 3P 3D Radon transform
operator.



Fig. 9. The small bin gathers of real data.
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Take the orthogonal polynomial p(x) in the x direction for
example. Let the order of orthogonal polynomial coefficients be 3,
then the amplitude preserving operator can be obtained from the
following formulas:

piðxÞ¼
(
xi �

Xi�1

k¼0

aikpkðxÞ
),

aii (12)

aii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼0

x2ik �
Xi�1

k¼0

a2ik

vuut (13)
Fig. 10. Real data of selected small bin gathers. (a) Original data, (b) demul result of
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aik ¼
XN
j¼0

xijpk
�
xj
�
; a00 ¼

ffiffiffiffi
N

p
; p0 ¼ 1

,
a00 (14)

where x is the offset, pi(x) is the polynomial coefficient. p1(x) rep-
resents the summation information, p2(x) the gradient information,
and p3(x) the curvature information of the amplitude. Similarly, the
amplitude preserving operator p(y) corresponding to qy can be
calculated by offset y.

The amplitude-preserving operation can be completed by
combining the amplitude-preserving operator with the Radon
transform operator, which is

Dðf ; x; yÞ ¼ Pnqx
j¼1

Pnqy
k¼1

Pnqxy
l¼1

M
�
f ; lxj; lyk; lxyl

�
pðxÞe�i2plxjx2pðyÞe�i2plyky2e�i2plxylxy

(15)

3. Examples

To demonstrate the effectiveness of themethod proposed in this
paper, both simulated and real data are used to test the method.

3.1. Synthetic data examples

We first demonstrate the application of the algorithm on syn-
thetic data. This data consists of 1250 traces, with 50 traces in the x-
direction at an interval of 195 m, and 25 traces in the y-direction at
an interval of 400 m. The upper portion of this synthetic data is
isotropic, whichmeans that the event shapes across each bin gather
are identical, with the maximum multiple residuals in the upper
section being up to 60 ms. The lower section of the data is aniso-
tropic, with varying event shapes across the bin gathers, yet the
3P 3D Radon; (c) demul result of HO3P 3D Radon; (d) difference of (b) and (c).



Fig. 11. Partial zoomed section of the demul results in bin gathers. (a) Demul result of 3P 3D Radon; (b) demul result of HO3P 3D Radon.

Fig. 12. Radon spectrum of the small bin gather. (a) Original data; (b) demul result of 3P 3D Radon; (c) demul Result of HO3P 3D Radon.
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maximum multiple residuals remain at 60 ms. The data exhibits
AVO effects horizontally, showing a gradual decrease in amplitude
from the center towards both ends. Since the fast Radon transform
algorithm outperforms the conventional Radon algorithm (as
referenced in Ma (2024)), all results presented in this paper are
derived from the computations using the fast algorithms.

Fig. 1 shows the time slices of the data's upper section without
anisotropy and the lower section with anisotropy, respectively. It is
evident that the upper section, which lacks anisotropy, has a time
slice that forms a standard ellipse, whereas the lower section, due
to the presence of anisotropy, has a time slice that appears as a
rotated ellipse. Within the elliptical trajectory, there are variations
in amplitude, with some being stronger and others weaker.

Figs. 2 and 3 illustrate the synthetic data used for testing in this
paper. Fig. 2 gives all the bin gathers that include multiples (a) as
well as the true primaries (b). To facilitate a better comparison of
the suppression results, five small bin gathers are also presented (c,
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d). Fig. 3 shows the data containingmultiples sorted by scalar offset
(a), along with the common cell gathers of the true primaries (b).

In the processing of synthetic data examples, for the sake of
fairness, all algorithms adopted the same damping parameters and
cut-off parameters. The values of nqx and nqy are set slightly larger
than the number of seismic traces in the x and y directions (nxr and
nyr), which are 52 and 30 separately, while the value of nqxy is set
to 9.

Figs. 4e6 show the results of small bin gathers processed using
2P, high-order two-parameter (HO2P), 3P, and HO3P 3D Radon al-
gorithms, respectively. All algorithms are implemented by the fast
single operator method. Fig. 4 displays the multiples estimated by
each algorithm, Fig. 5 shows the results after multiple suppression,
and Fig. 6 illustrates the difference between the suppression results
and the true primaries. From the results, it can be observed that the
effectiveness of multiple suppression gradually improves.

The 2P algorithm does not account for the data’s azimuthal



Fig. 13. FK spectrum of the small bin gather. (a) Original data; (b) demul result of 3P 3D Radon; (c) demul result of HO3P 3D Radon.
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variation nor does it consider the amplitude’s lateral variation. As a
result, in Fig. 4(a), the estimated multiples have upper parts whose
amplitudes do not match those of the real data multiples, and the
lower parts, except for the very center of the small bin gather, show
significant differences from the true multiples. This leads to mul-
tiple residuals in both the upper and lower parts of the suppression
results shown in Fig. 5(a), with severe residuals in the lower part.
Fig. 6(a) also reflects the algorithm's shortcomings in amplitude
preservation and its failure to consider the azimuthal variation of
data.

The HO2P algorithm enhances the 2P algorithm by adding an
amplitude preservation operator, which greatly improves the effect
of multiple suppression. The amplitude preservation operator can
deal with the azimuthal variation of data to a certain extent.
Therefore, in Fig. 4(b), the lower part of the estimated multiples
essentially matches the original data's morphology. However, due
to inherent theoretical limitations of the algorithm, it is not fully
capable of addressing the azimuthal variation of data. Conse-
quently, there are still multiple residuals in the suppression results
shown in Fig. 5(b). The residuals can also be observed in Fig. 6(b).

The 3P algorithm is a further development of the 2P algorithm,
taking into account the azimuthal variation of data. Therefore, the
estimated multiples in Fig. 4(c) are completely consistent with the
multiples in the data. However, this algorithm does not consider
the lateral variation in amplitude, leading to certain differences
between the estimated and the true multiples. This results in
multiple residuals in the suppression results shown in Fig. 5(c). Yet,
as seen from the difference profile in Fig. 6(c), the difference be-
tween the suppression results and the true primaries has signifi-
cantly decreased compared to the previous two algorithms.

The HO3P algorithm comprehensively considers the data’s
azimuthal variation and the amplitude lateral variation, resulting in
the most accurate estimation of multiples (Fig. 4(d)) and the most
thorough suppression results (Figs. 5(d) and 6(d)).

Fig. 7 also presents the common cell gathers sorted by scalar
offset. It is clear from the gathers that there is progressive
improvement in the suppression effects. It should be noted that due
to the larger multiple residuals mostly located at near offsets
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(Fig. 6(c)), the 3P algorithm has more residuals in the common cell
gather at near offsets in Fig. 7(c). However, in terms of overall re-
sidual energy, this algorithm has significantly small energy
compared to the 2P and HO2P algorithms.

Fig. 8 presents the residual energy curves of different small bin
gathers in the multiple suppression results obtained by various
algorithms. In Fig. 8(a), the curve values represent the total residual
energy of a small bin gather, while the values in Fig. 8(b) are the
residual energies of the lower anisotropy data within a small bin
gather. Since the residual energy mainly comes from the aniso-
tropic parts at the lower part of the data, the trends of the two
curves are consistent. From the figures, it can be seen that the HO3P
algorithm has the lowest residual energy, demonstrating its reli-
ability and effectiveness. The 2P algorithm generally has the highest
residual energy, but since there is no anisotropy in the middle bin
gather, the precision described by this method is the same as that of
the 3P algorithm. As anisotropy becomes more severe towards the
sides of the data, the 2P algorithm becomes less reliable in
describing the data, leading to a sharp increase in residual energy.
The HO2P algorithm considers the changes in seismic data ampli-
tude and can cope with data anisotropy to some extent, thus
significantly reducing its residual energy compared to the 2P al-
gorithm. The 3P algorithm inherently accounts for the anisotropy of
seismic data, so its residual energy is further reduced compared to
the HO2P algorithm. However, due to its lack of consideration for
lateral variations in amplitude, it still has some residuals. On the
other hand, the HO3P algorithm takes into account both the
anisotropy of seismic data and the lateral variation of amplitude,
resulting in the lowest residual energy.

Table 1 also presents the computation time of the fast algo-
rithms used in this paper. Generally speaking, the calculation time
of fast algorithms is only about 5% of that of conventional algo-
rithms. In this case, we will not make a comparison with the
calculation time of conventional algorithms. It can be observed
from Table 1 that the computation time of the amplitude-
preserving algorithm is almost 10 times that of the conventional
algorithm. Since all algorithms only perform one matrix multipli-
cation and inversion on the operator matrix, the difference in



Fig. 14. Real data sorted by scalar offset. (a) Original data, (b) demul result of 3P 3D Radon; (c) demul result of HO3P 3D Radon; (d) difference of (b) and (c).
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computational efficiency is mainly due to the operator matrix. In
the fast algorithm, the number of variables l is the same as the
number of variables q in the conventional algorithm. For example,
the 2P 3D algorithm operates on two small matrices Lx and Ly ob-
tained from the decomposition of a large matrix, with sizes [nxr,
nqx] and [nqy, nyr], respectively; the HO2P 3D algorithm also
operates on two small matrices obtained from the decomposition
of a large matrix, but since it includes an amplitude-preserving
operator, the matrix sizes increase, with sizes now being [nxr,
3$nqx] and [3$nqy, nyr], respectively. The 3P 3D algorithm cannot
decompose the large matrix and must operate on it directly, with
the matrix size being [nxr$nyr, nqx$nqy$nqxy], while the HO3P 3D,
as an amplitude-preserving algorithm, has a matrix size of [nxr$nyr,
3$nqx$3$nqy$nqxy]. The two 3P algorithms have the same inverse
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matrix size, both being [nxr$nyr, nxr$nyr], but the HO3P algorithm
has a larger amount of matrix multiplication operations, leading to
its longer computation time.

Consideration could be given to utilizing the advantages of GPUs
in large matrix operations to accelerate the algorithms. Our tests
indicate that if 3P algorithms are computed using a GPU, the
computation time can be reduced from about 17 s to less than 3 s,
significantly improving computational efficiency.

3.2. Real data examples

We further validated the algorithm using real data. Ma et al.
(2020) and Ma (2024) also tested the data using a HO2P 3D high-
resolution Radon transform and a 3P 3D Radon transform,



Fig. 15. Radon spectrum of the common cell gather sorted by scalar offset. (a) Original data; (b) demul result of 3P 3D Radon; (c) demul Result of HO3P 3D Radon.

Fig. 16. FK spectrum of the common cell gather sorted by scalar offset. (a) Original data; (b) demul result of 3P 3D Radon; (c) demul result of HO3P 3D Radon.
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respectively. Their corresponding processing results can be referred
to in the relevant articles. In this test, we only used the 3P 3D fast
Radon and the HO3P 3D Fast Radon algorithms for processing and
comparative analysis. In the processing of real data, for the sake of
fairness, all algorithms adopted the same damping and cut-off
parameters.

Fig. 9 shows the small bin gathers of real data. We selected five
small bin gathers at equal intervals for a more effective demon-
stration. Fig. 10 presents the five selected small bin gathers, where
Fig. 10(a) shows the original data, Fig. 10(b) displays the results
processed by the 3P 3D Radon transform, Fig. 10(c) illustrates the
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results after processing with our proposed HO3P algorithm, and
Fig. 10(d) shows the difference between the results of Fig. 10(b) and
(c). The arrows in all four figures are at the same location,
demonstrating that the HO3P algorithm, due to its better amplitude
preservation, further suppresses the multiples with horizontal
amplitude variations that the 3P algorithm could not suppress.
Fig. 11 is a local enlargement from 3 to 5.8 s in Fig. 10(b) and (c),
fromwhich it can be seen that the lower part of Fig. 11(b) is cleaner,
while Fig. 11(a) has obvious multiple residuals. Figs. 12 and 13
further provide the Radon and FK spectrums of the first small bin
gather. The multiple energy in the rectangular of Fig. 12(a) is
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attenuated evidently. Compared with Fig. 12(b)'s 3P 3D Radon al-
gorithm, the Radon spectrum of the HO3P algorithm in Fig. 12(c)
further suppresses the multiple energy indicated by the arrow. The
FK spectrum of Fig. 13(c) is also significantly better focused than
that of Fig. 13(b), indicating more thorough suppression of multi-
ples. All these demonstrate the advantages of the HO3P algorithm.

Fig. 14 also compares the common cell gather sorted by scalar
offset from the two algorithms, with Fig. 14(c) showing the results
of the HO3P algorithm. Compared to the results of the 3P 3D Radon
algorithm in Fig. 14(b), the jitter noise below 3 s is reduced, and the
data is cleaner. More thorough multiple suppression in the gathers
is beneficial for subsequent inversion and reservoir prediction.
Figs. 15 and 16 present the Radon and FK spectrums of the common
cell gathers, with the arrows again indicating the same positions. It
can also be seen from these results that the HO3P 3D Radon algo-
rithm further suppresses the residual multiples, leading to a more
focused Radon and FK spectrums after processing.
4. Conclusions and suggestions

We present an improved three-parameter amplitude-preser-
ving 3D fast Radon transform tailored for multiple suppression in
complex geological areas. The fast algorithm integrates curvature
and frequency into a single parameter, simplifying the algorithm to
a single-operator problem, which significantly improves the
effectiveness and efficiency of multiple suppression. Building upon
the 3P Radon transform, HO3P algorithm enhances the amplitude
preservation by incorporating additional operators that describe
lateral amplitude variations within the dataset. The efficacy of this
new algorithm has been confirmed through both synthetic and real
dataset testing, highlighting its superior performance especially
when dealing with complex seismic data. Consequently, we can
give the following conclusions and suggestions:

(1) The novel three-parameter amplitude-preserving 3D Radon
transform surpasses conventional methods in maintaining
data fidelity, playing an important role in the enhancement
of seismic data quality.

(2) Due to the inclusion of more complex mathematical opera-
tions, the algorithm now requires significantly more
computing power compared to traditional methods. To
reduce this increased demand, it is recommended that the
operators be further optimized to eliminate unnecessary
computations. Matrix blocking, matrix decomposition, and
other techniques can also be used to accelerate the compu-
tation of large matrices. At the same time, efficient memory
storage strategies should be adopted. When dealing with
data with uniform geometries, intermediate results can be
cached in memory to avoid repetitive calculations, thus
speeding up the processing. Moreover, parallel computing
resources should be fully utilized. Additionally, GPUs have
obvious advantages over CPUs in large-scale matrix opera-
tions. It is considered to implement the above algorithm
based on GPU.

(3) The computational cost of the 3P algorithm is already very
large, and if we consider its corresponding high-resolution
algorithm, iterating to improve resolution for each fre-
quency is not feasible. In the fast algorithm proposed in this
paper, referring to the idea of Chen and Lu (2011), we can
consider a non-iterative high-resolution strategy using the
results calculated from dominant-frequency to constrain the
computations at other frequencies. Since this approach in-
volves the inversion processing of only one frequency, the
computational cost does not increase significantly. Moreover,
176
we can consider combining the above idea with GPU
computing to further improve computational efficiency.

(4) With proper adjustment, this method can also be used in
seismic data reconstruction and denoising.
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