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ABSTRACT

To accurately investigate the evolution characteristics and generation mechanism of retained oil, the
study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Can-
gdong Sag, Bohai Bay Basin. This analysis involves Rock-Eval pyrolysis, pyrolysis simulation experiments,
Gas Chromatograph Mass Spectrometer (GC—MS), and reactive molecular dynamics simulations
(ReaxFF). The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers
ranging from Ci4 to C36. The generation of retained oil occurred through three stages. A slow growth
stage of production rate was observed before reaching the peak of oil production in Stage I. Stage II
involved a rapid increase in oil retention, with C;—Cq7 and C24—Csy serving as the primary components,
increasing continuously during the pyrolysis process. The generation process involved the cleavage of
weak bonds, including bridging bonds (hydroxyl, oxy, peroxy, imino, amino, and nitro), ether bonds, and
acid amides in the first stage (R, = 0.50%—0.75%). The carbon chains in aromatic ring structures with
heteroatomic functional groups breaks in the second stage (R, = 0.75%—1.20%). In the third stage
(Ro = 1.20%—2.50%), the ring structures underwent ring-opening reactions to synthesize iso-short-chain
olefins and radicals, while further breakdown of aliphatic chains occurred. By coupling pyrolysis simu-
lation experiments and molecular simulation technology, the evolution characteristics and bond
breaking mechanism of retained oil in three stages were revealed, providing a reference for the for-
mation and evolution mechanism of retained oil.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

et al, 2022; Hail et al,, 2023). Consequently, it is important to
note that the quantitative evaluation and understanding of the

Terrestrial shale oil plays a crucial role as an unconventional oil formation mechanism of retained oil are crucial factors that hinder

resource (Jin et al., 2021; Dunkel et al., 2022; Goodarzi, 2020; Hail
et al., 2023). In China, significant advancements have been made in
the exploration of terrestrial shale oil, particularly in the Junggar
Basin (Olariu et al., 2022), Ordos Basin (Fu et al., 2020;Xi et al.,
2020; Hou et al., 2022), Songliao Basin (Horsfield et al., 2022; Jin
et al, 2022), and Bohai Bay Basin (Li et al., 2019; Zhao et al,,
2022). However, the development of shale oil in these regions has
been impacted by various challenges, including non-homogeneity,
limited mobility, and poor fracturability (Jin et al., 2018; Amine
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the efficient development of shale oil.

The composition of retained oil is a critical internal factor
influencing the oil content and mobility of shale oil. The occurrence
states of retained oil can be classified into free oil, irreducible oil
and adsorbed oil. The free oil is mainly composed of light compo-
nents of hydrocarbon, while the heavy components of irreducible
oil and absorbed oil increase (Zhang et al., 2023; Li et al., 2024)
which is primarily controlled by the thermal evolution of hydro-
carbon generation within the reservoir (Arvelos et al., 2019; Li et al.,
2022). With advancements in experimental techniques, numerous
scholars have utilized a wide range of physical and simulation tools
to explore the components and evolutionary characteristics of
hysteretic oil (Liu et al., 2020; Li et al., 2022). In general, three main
types of methods are commonly adopted for evaluating hysteretic
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oil content in shale: direct observation, experimental analysis, and
molecular dynamics simulation (Salmon et al., 2009; Saif et al.,
2017; Al et al., 2022). Specifically, thermal simulation experi-
ments have emerged as a primary technical means of evaluating
retained oil content. In terms of confinement, there are three main
categories: open system, semi-open system, and confined system.
Among these, the semi-confined condition closely resembles the
formation condition and is particularly useful for studying retained
oil (Barnie et al., 2022; Omari et al., 2022; Wang et al., 2022). ReaxFF
MD is a significant method used for representing reactions in shale
oil systems. It is a valuable tool for calculating complex reactions in
large-scale systems and has been used in the pyrolysis of coal, oil
shale, and other processes, as well as in studying reaction mecha-
nisms (Al et al., 2022). However, it is important to note that mo-
lecular simulations cannot replace experimental data and should
be calibrated and analyzed against experimental results. The evo-
lution and formation mechanism of retained oil in terrestrial shale
has posed challenges for the efficient development of shale oil.
Additionally, the evolution process and formation mechanism of
retained oil under specific stratigraphic conditions have been rarely
explored. Therefore, this study aims to investigate the evolution
and formation mechanism of retained oil during shale caseous root
pyrolysis using thermal simulation experiments and the ReaxFF MD
simulation method.

The study selected a sample of type I kerogen from the Bohai Bay
Basin and examined the evolution and formation mechanism of
retained oil through various techniques such as Pyrolysis simula-
tion experiments, pyrolysis-gas chromatography/mass spectrom-
etry (Py-GC/MS), X-ray Diffraction (XRD), total organic carbon
content (TOC), vitrinite reflectance (R,), Rock-Eval pyrolysis, and
ReaxFF. By analyzing the evolution characteristics of retained oil
and in-depth understanding of its generation mechanism, this
study combines ReaxFF-MD simulation with pyrolysis simulation
experiments to propose the thermal evolution stages and forma-
tion mechanism of retained oil enrichment in lacustrine shale oil,
and provides information on lacustrine shale retained oil and
favorable intervals and target areas for shale oil exploration. The
successful exploration of the Ek; in the Cangdong Sag shows that
lacustrine shale has huge potential for retained oil resources.
However, due to the strong heterogeneity of lacustrine shale lith-
ofacies and the existence of formation media, which may affect the
formation and enrichment of retained oil, these effects will
continue to be studied. These findings help to better understand
the evolution and formation mechanism of retained oil and provide
insights for the efficient development of lacustrine shale oil.

2. Geological setting

The Huanghua Sub-basin, located in the center of the Bohai Bay
Basin, is divided into two distinct secondary subsidence units: the
Cangdong Sag in the south and the Qikou Sag in the north, with the
Kongdian-Yangsanmu Uplift acting as the boundary. The Cangdong
Sag, in particular, has been identified as the second largest oil-rich
depression in the area. This narrow Cenozoic fault basin formed
due to regional tension from the southwest to the northeast and
spans an exploration area of approximately 1.8 x 10> km? (Fig. 1)
(Zhao et al., 2019, 2022). The Paleogene system within the Can-
gdong Sag consists of three main sets of strata: the Kongdian For-
mation, the Shahejie Formation, and the Dongying Formation.
Specifically, the Kongdian Formation can be further divided into the
Eky, Eky, and Eks submembers (Fig. 2). The Ek, subunit is charac-
terized by dominant sandstone sedimentation at the lake basin
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margin, while the middle of the lake basin features semi-deep
lacustrine and deep organic-rich shale sedimentation covering an
area of approximately 2.6 x 10> km? (Zhao et al., 2018). In terms of
organic matter content, the shale system in the Ek, subunit exhibits
a range of 0.3%—11.9% (average 3.6%). The average hydrocarbon
potential, represented by the sum of S; and S, is 18.9 mg/g, indi-
cating a high hydrocarbon-rich source rock with maturity levels
ranging from 0.66% to 0.96%. The dense shale system in this section
can serve as an effective reservoir and is considered a crucial target
for shale oil development in the Cangdong Sag (Pu et al., 2016; Zhou
et al.,, 2020).

3. Samples and methods
3.1. Samples

Shale samples from Well G9 (Fig. 2) were collected to conduct a
systematic analysis of retained oil evolution characteristics. Table 1
provides specific information about the samples. The sample
analysis took place at China University of Petroleum (Beijing),
where the samples underwent XRD, TOC, and R, analyses. The
pyrolysis simulation experiments were carried out at Wuxi
Research Institute of Petroleum Geology. It is worth noting that the
pyrolysis simulation experiments focused on shale samples char-
acterized by high TOC and low maturity levels.

3.2. Experiments

To gain a deeper understanding of the hydrocarbon generation,
expulsion and retention pattern of organic-rich lacustrine shale
under stratigraphic conditions, the hydrocarbon generation and
expulsion simulator developed by Wuxi Research Institute of Pe-
troleum Geology was utilized. The specific equipment employed in
this study is the DK-II formation pore thermal compression hy-
drocarbon generation and expulsion simulation experiment in-
strument. This multifunctional simulator consists of several
components, including a high-temperature and high-pressure hy-
drocarbon generation reaction system, a two-way hydraulic control
system, a hydrocarbon expulsion system, an automatic control and
data acquisition system, a product separation and collection sys-
tem, as well as peripheral auxiliary equipment and an instrument
shell (Liu et al., 2015).

The simulator offers the advantage of preserving the original
mineral composition structure and organic matter characteristics of
the hydrocarbon source rock, while considering the pyrolysis of
organic matter and hydrocarbon generation reactions under higher
rock pressure, stratigraphic fluid pressure, and surrounding pres-
sure, mimicking geological conditions.

For this study, temperatures were set at 573.15, 598.15, 623.15,
648.15, 673.15, 773.15 K to analyze the different stages of retained
oil formation. The samples were in the low-mature stage before
reaching 598.15 K, transitioning to the mature stage between
temperatures of 598.15 K and 648.15 K. The high-mature stage, also
known as the wet gas phase, occurred between 648.15 K and
673.15 K, while the over-mature stage was associated with tem-
peratures between 673.15 K and 773.15 K (Dong et al.,, 2013; Liu
et al., 2022; Ma et al.,, 2022). The formation and lithostatic pres-
sures were set to replicate the actual pressure conditions of the Ek;
shale. Additionally, experimental hydrostatic pressures were
established using fictitious burial depths (Liu et al., 2022).

In general, the process of simulating hydrocarbon generation
and expulsion from limited space of hydrocarbon source rock
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Fig. 1. Location and tectonic units of the study area. (a) Location of Bohai Bay Basin; (b) division of basic structural units of Bohai Bay Basin; (c) geological sketch map and the

sedimentary facies of the Cangdong Sag showing the location of the sampling well.

involves several steps including sample preparation, loading,
temperature and pressure simulation, sampling, product
geochemical analysis, and other procedures.

Firstly, for sample preparation and loading, core columns
(35 mm length) were obtained from the core according to the
experimental equipment size. Next, temperature and pressure
simulation were carried out. The process involved testing for leaks
by sealing the sample in a reaction vessel, injecting inert gas, and
then vacuum pumping. Water injection was also performed using a
high-pressure pump to ensure the reaction space was filled
adequately. Following that, compaction and warming procedures
were conducted. The sample was compacted for heating and the
simulation experiment was performed at a constant temperature
for 48 h.

Product collection and analysis were then carried out. Gas and
discharge oil were collected after the reaction process. Gas analysis
was performed using a gas chromatograph to determine the mass
of various gas substances. Additionally, remaining solids and
lingering oil samples were extracted using asphalt “A” and chlo-
roform. Total oil was calculated by combining the residual and
discharge oil, while total hydrocarbon was determined by adding
hydrocarbon gas to the total oil. The discharged oil was separated
from the residual oil using column chromatography with four racial
components. The quantitatively separated results were then
analyzed using GC-MS.

In routine pyrolysis experiments, approximately 70 mg of the
powdered sample was used with a Rock-Eval 6 device to determine
various pyrolysis parameters such as free hydrocarbon (Sy), thermal
cracking hydrocarbon (S;), peak temperature (Tmax), and hydrogen
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index (HI). Lastly, in the GC-MS experiments, asphaltenes were
precipitated from the extracts and expelled oil using n-hexane. The
aliphatic, aromatic, and resin fractions were then separated using a
chromatographic column and different irrigating agents. The
aliphatic components were analyzed using an Agilent 7890 gas
chromatograph.

3.3. ReaxFF-MD methods

3.3.1. Molecular models

The molecular dynamics (MD) of kerogen pyrolysis was inves-
tigated using ReaxFF in the LAMMPS software. The kerogen model
employed in this study was based on the description by Ungerer
et al. The chemical formula of the model is C251H385013N7S3 (Fig. 3)
(Ungerer et al., 2015). At present, the structure of kerogen is com-
plex and diverse, but the kerogen in this study and the kerogen
model of the Green River Formation are similar in depositional
environment, organic matter source, functional group composition,
and thermal evolution stage. Therefore, the kerogen model of the
Green River Formation was chosen as a molecular model.

To simulate pyrolysis using ReaxFF, a kerogen model was con-
structed by optimizing the geometry of different configurations
generated through simulated annealing with the Forcite calculation
module in MS software. The structure with the minimum energy
was then used for ReaxFF reactive molecular dynamics simulations
(Castro-Marcano et al., 2014; Wang et al.,, 2020). ReaxFF is an
empirical bond-order-based reactive force field that effectively
describes bond cleavage and formation during chemical reactions.
It allows for clear characterization of chemical processes within
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Fig. 2. Stratigraphic column and tectonic evolution of the Paleogene in Cangdong Sag (left). Lithologic column and sample distribution in the study interval (right).

Table 1
Basic geochemical parameters of shale in the thermal simulation experiment.
Lithology TOC, % Ro, % Kerogen S, mg-g! S;, mg-g ~ Clay, % Quartz + feldspar, % Calcite + dolomite, % Other, %
Grey shale 7.87 0.55 I 1.28 60.94 27.0 22.0 17.0 34.0
Esystem =Epond + Eover + Eunder + Eval + Epen + Etors + Econj
+ EvdWaals + ECoulomb
(1)
3.3.2. Simulation methods
The study showed the molecular dynamic simulations utilizing
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) software (Liu et al., 2022). Firstly, the simulation system
! ran a low temperature molecular dynamic with minimal energy for

Fig. 3. The molecular model unit of kerogen I-A at the immature stage.
Color code: C (black), H (grey), O (red), N (blue), S (yellow).

complex systems (Van Duin et al., 2001). The overall energy of the
system is composed of various components:

20 ps. After that, The ReaxFF force field parameters used in the
simulations were obtained from the Reax package within the
LAMMPS software (Zheng et al., 2017). The NVT ensemble with a
time step of 0.25 fs was employed during the simulations, indi-
cating no mass or heat transfer resistance between the simulation
box and the external environment. The heat-up simulations were
performed with a heating rate of 1 K/ps, spanning the temperature
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range of 300—8000 K. For the isothermal pyrolysis simulations, a
longer simulation time of 2 ns was employed at various tempera-
tures ranging from 300 to 8000 K to investigate the effects in more
detail. During the pyrolysis simulations, the volatiles (oil and gas)
produced interacted with unreacted kerogen molecules within the
simulation box and underwent additional reactions. In the
isothermal simulations, an elevated temperature approach was
implemented to observe thermolysis reactions over a realistic
duration. To ensure the reliability of the pyrolysis process
description, three parallel simulations were conducted for each set
of simulation conditions. Periodic boundary conditions were
applied in all directions to the cubic simulation box in all ReaxFF
MD simulations.

4. Results
4.1. Main products distribution characteristics from experiments

Table 2 displays the results obtained from the thermal simula-
tion experiment on the samples. The experiment revealed a gradual
decrease in total organic carbon (TOC) content as the pyrolysis
temperature increased, with TOC decreasing from 7.87% to 3.30%.
The TOC that appears at a higher temperature point (>673.15 K)
increases slightly. This increase is due to the reduction in shale
quality caused by drainage and hydrocarbon expulsion, resulting in
a relative increase in TOC content (Deng et al., 2021; Liu et al,,
2022). The concentration of free hydrocarbon (S;) showed an
initial increase from 300 to 648.15 K, followed by a decline after
648.15 K. Similarly, the pyrolysis monster (S;) displayed a declining
trend with temperature, although the rate of decrease slowed
down after 648.15 K (Fig. 4(a)).

In general, the gas products obtained from the simulation
experiment involving hydrocarbon source rock production and
emission comprised both hydrocarbon gases and inorganic gases
such as COy, Hy, CO, and NHs. The gas production rate increased
with the simulation temperature, with a particularly high rate
observed in the oil production window. This suggests a strong
correlation between gas production and oil production. The gas
production rate continued to increase throughout the high-over
maturity stage (Fig. 4(b)).

The hydrocarbon production rates for total oil and retained oil
exhibited three distinct stages with increasing simulated temper-
ature. Firstly, a slow growth stage of production rate (0.50%—0.75%)
was observed as an early stage before reaching the peak of oil
production. The second stage was characterized by a rapid increase
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in the production rate (0.75%—1.20%), corresponding to the thermal
evolution reaching its peak and the maximum hydrocarbon pro-
duction rate at 0.80%. The retained oil reached its peak at R, = 1.0%
with the highest experimental yield, whereas the yields of total oil,
total hydrocarbon, and retained oil showed the highest increase
rate at R, = 1.0% and subsequently reached a maximum at R, = 1.2%.
In the third stage, a rapid decrease in yield (1.20%—2.50%) was
observed, with the yield of retained oil declining after R, = 1.00%.
The yields of total hydrocarbon, total oil, and discharged oil peaked
at R, = 1.20%, indicating an earlier peak in retained oil generation
compared to discharged oil, total contained oil, and total hydro-
carbon (Fig. 4(c)).

Analysis of the yields of retained oil, discharged oil, and total oil
revealed a significant proximity between the temperature point
where the yield of discharged oil exhibited the fastest increase and
the temperature point where the yield of retained oil started to
decline. Moreover, the trends in the yield of total oil and retained oil
were found to be closely aligned, suggesting a correlation between
the yield of retained oil and total oil.

4.2. Molecular biomarkers characteristics of retained oil

4.2.1. Chromatographic characteristics of saturated hydrocarbons

The carbon distribution of saturated hydrocarbons in the orig-
inal sample ranged from nCy4 to nCsg. Specifically, C;3 was the
predominant carbon peak with an OEP (odd-even predominance)
value of 1.54, demonstrating a strong odd-even dominance. The
OEP value is a parameter used to determine the maturity. The
experimental results are summarized in Table 3, and the chro-
matograms showed variations in each temperature stage during
the thermal simulation experiment (Fig. 5). The retained oil in the
thermal simulation experiment contained n-alkanes ranging from
Cy4 to C36. The > nCy1_> nCyy+ parameter indicated a dominance
of high carbon number alkanes in the thermal simulation experi-
ment, suggesting that heavier hydrocarbon components were more
easily retained.

When the temperature in the thermal simulation experiment
did not exceed 623.15 K, the chromatogram of the retained oil
displayed a single-peak pattern, and the main peak carbon
increased as the experimental temperature rose. However, after
673.15 K, a double-peak characteristic was observed, and the main
peak carbon shifted backward. The OEP value of the retained oil
obviously changes. The larger the value, the lower the maturity. The
OEP value of 1.00—1.20 is mature organic matter, 1.20—1.40 is low-
mature organic matter, and >1.40 is immature organic matter.

Table 2

Organic geochemical characteristics and hydrocarbon products from the pyrolysis experiments of the shale samples.
Sample Temperature, K Formation pressure, MPa Lithostatic pressure, MPa Ro, % TOC, % Sy, mg-g~! S,, mg-g !
G9-1 - 35 71 0.55 7.87 1.28 60.94
G9-2 573.15 35 71 0.60 7.89 1.61 59.52
G9-3 598.15 40 79 0.75 7.74 3.46 56.89
G9-4 623.15 47 94 1.00 6.39 5.04 18.36
G9-5 648.15 53 106 1.21 3.73 7.78 10.27
G9-6 673.15 58 116 1.42 241 1.34 1.11
G9-7 773.15 70 141 2.50 3.30 0.83 0.40
Sample Total gas, CO,, Ho, Total hydrocarbon gas, m3-t ~! Expelled liquid hydrocarbon, kg-t ~! Retained liquid hydrocarbon, kg-t ~' Total hydrocarbon, kg-t~!

m>t' mPt ! mit!

G9-1  0.00 000 0.00 0.00 0.00 0.00 0.00
G9-2  79.04 63.17 149 1.09 5.41 65.79 35.49
G9-3 103.00 85.10 1.69 4.8 14.02 153.07 171.97
G9-4 11635 6924 724 3150 38.17 500.46 568.04
G9-5 211.09 13591 2.09 41.01 449.49 281.58 783.44
G9-6 24398 126.79 2.76 9147 382.15 54.08 558.03
G9-7 708.11 22432 11.65 43851 189.46 6.26 590.66
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Table 3
Aliphatic hydrocarbon molecular composition characteristics of the retained
hydrocarbons.

Temperature, K Maximum peak 3 nCy;_/> nCy;+ OEP Pr/nCy7; Ph/nCig
573.15 c23 047 143 1.10 1.66
598.15 c23 0.51 1.29 0.95 0.87
623.15 c23 0.51 1.20 0.27 0.29
648.15 Cc21 0.61 1.02 0.11 0.08
673.15 C20 1.13 1.00 0.04 0.03
773.15 C22 0.74 1.01 0.08 0.14

Note: OEP= (nC31+6 x nCy3+nCy5)/(4 x nCya+4 x nCyy).

Moreover, the OEP value of retained oil was lower at higher tem-
peratures of the thermal simulation experiment, but it did not
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show significant variations after 648.15 K.

4.2.2. Chromatographic mass spectrometric characterization of
saturated hydrocarbons

Tricyclic terpene, gamma waxane, and patchouli were analyzed
in the mass spectra of m/z 191 terpene chromatograms in the
retained oil. The distribution of terpene series compounds in the
retained oil showed similar trends, with patchouli having the
highest content at 573.15 K, followed by gamma waxane. The
content of gamma waxane decreased with increasing temperature
in the thermal simulation experiment, and the same trend was
observed for patchouli (Fig. 6).

In the m/z 217 sterane chromatogram, mass spectra revealed the
presence of rule sterane, rearranged sterane, and other compounds.
Fig. 7 illustrates that the relative contents of regular steranes Cy7,
Cyg, and Cyg reached their lowest point at 648.15 K and then
increased with temperature. Overall, Cy9 regular steranes domi-
nated at all temperature points in the retained oil.

4.3. Main products distribution characteristics from molecular
simulation

During the pyrolysis simulations, the volatiles (oil and gas)
produced remained in the simulation box with the unreacted
kerogen molecules and underwent additional reactions. Realistic
simulation periods were observed using an elevated temperature
technique to induce thermolysis reactions. In all ReaxFF MD sim-
ulations, periodic boundary conditions were applied to the cubic
box in all directions.

In the first stage, the reactant (C40,) undergoes a preliminary
reaction before 2000 K, and the reaction proceeds slowly. The
second stage, known as the fast pyrolysis stage and the primary
stage of pyrolysis reaction, was identified to occur between 2000 K
and 5000 K. During this stage, the reactant (C40. ) rapidly depleted,
and stage III, the late stage of pyrolysis, appeared after 5000 K. The
amount of C49 was extremely low at this point, but it began to
slightly increase, signifying the start of coking (Fig. 8).

The first stage was characterized by a thermal breakdown re-
action with a slow reaction rate. Slow growth in the heavy oil
components (C;6—C40) was observed. As the kerogen decreased,
Ci16—C49 reached its maximum while the amount of C5—Cis
dramatically increased. Stage IIl represented the final stage, where
secondary cracking reactions predominated. This was indicated by
the extremely low caseagen content, increased levels of gaseous
chemicals (C;—C4), and inorganic compounds. The product distri-
bution pattern revealed that the end of stage Il could be the optimal
time for oil production through pyrolysis, as the content of oil
(C5—Cy5 and C16—Cyqp) reached its maximum (Fig. 9).

For analysis, the retained oil content was analyzed at 4000 K,
which represented the peak oil content. The evolution of organic
gas indicated that the first molecule produced was C,—Cs, followed
by CHy4 (Fig. 10(a)). The amounts of C,—Cs and CHy4 rapidly increased
and became the main components of the gas. Additionally, the
amount of CoH continuously increased during the final stage of
pyrolysis, suggesting a severe dehydrogenation reaction occurred,
resulting in an increase in Hp.

Fig. 10(b) illustrates the trends in the yields of the three types of
retained oil with temperature. These three types are categorized as
C12—Cq7, Cig—Ca3, and Cy4—Csy. All three types of retained oil
showed an initial increase at the beginning of the reaction,
although the rate of increase was relatively slow. The growth rate of
C12—Cq7 and Cy4—C3y exceeded that of Cig3—Cy3 since the decom-
position reaction of organic matter produced oil and gas as the
temperature increased. This allowed for the adsorption of its own
kerogen first, followed by transport. The main reason for this result
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is the further fracture reactions of macromolecules during later
pyrolysis, which produce C1—Cy7 and Co4—Cs». The organic matter
in the oil shale was directly converted into free oil and adsorbed oil
after the thermal decomposition reaction without going through an
intermediate stage, or the adsorbed oil at this temperature cannot
stabilize.

The change in the mass percentage of pyrolysis products
quantitatively indicates the degree of reaction. When considering
C33—C40 as heavy oil, all the products increased as the reaction
proceeded, and there was still kerogen fragments present.
Furthermore, the cracking reaction was not fully complete,
although the content of C33—Cyp was relatively small (Fig. 10(c)).

A significant number of gaseous byproducts and hydrocarbons
were generated. Fig. 3 depicts the temporal history of these prod-
ucts. As shown in Fig. 10(d), the main inorganic gases produced
included H, H,S, and CO». Specifically, the amounts of H,S and CO,
increased with temperature, although the concentration of CO;
remained relatively low and was primarily regulated by the quan-
tity of carboxyl groups. The amount of hydrogen significantly
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decreased after hydrogen synthesis, particularly at the third step. It
can serve as a source of hydrogen energy. The low concentration of
H,S was primarily due to the absence of thiol groups and favorable
interactions with other radicals at high temperatures. The high
temperature and low CO concentration were identified due to the
amount of CO; and the simulation parameters.

5. Discussions

5.1. The comparation between pyrolysis simulation experiment
with molecular simulation

In this study, molecular dynamics simulation and thermal
simulation experiments were used to study the evolution charac-
teristics of retained oil. The molecular simulation and experimental
results will be analyzed and explained below.

Through the comparison of the results, it can be seen that the
molecular simulation results of the reactants are generally consis-
tent with the variation trends of the simulation experiment results,
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but there are also differences.

The consistency is manifested in two aspects: first, the experi-
mental results of the two methods can be divided into three stages,
and the three stages are slow reduction, rapid reduction and
gradual stabilization, indicating that the overall evolution trend of
the reactants is consistent; secondly, the change characteristics of
the reactants of the two analytical methods and experimental
methods are similar, and the reactions of the reactants in the two
methods are all carried out thoroughly (Fig. 11).

The difference is mainly reflected in the difference at the critical
moment of reactant change, which is mainly due to the different
experimental conditions of the two pyrolysis simulation experi-
ments capture reactions occurring over short time scales. However,
molecular simulations can capture reactions at an even finer time
resolution, providing detailed insights into retention evaluation.

Through the comparison of the results, it can be seen that there
is a certain deviation between the molecular simulation and the
physical experiment data, but the difference is small. The main
reason is that the difference in test methods has affected the results
to a certain extent. Comparing the molecular simulation and
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experimental test results shows that the overall evolution trend is
consistent, and the difference is small. Therefore, the data is still
very credible overall.

5.2. The contents of retained oil evolution characteristics

The results from the thermal simulation experiments demon-
strated a consistent trend with the molecular simulation results.
Initially, the hysteretic oil content increased during the early stages
of the pyrolysis reaction and then gradually decreased. This simi-
larity between the two sets of results indicates that the molecular
simulation findings largely represented the outcomes of the
experimental analysis.

During the first stage of lag oil production, there was a signifi-
cant increase in the yield of lag oil. The samples underwent rapid oil
generation while excluding hydrocarbons, reaching the peak of
hydrocarbon generation. The second stage saw a decline in the
yield, suggesting a decrease in the efficiency of lag oil production. In
the third stage, lag oil production showed low efficiency, with an
emphasis on cracked gas generation (Fig. 12(a)).

The molecular simulation results revealed that both C5—Cy5 and
C16—C40 compounds exhibited a similar trend of initially increasing
and then decreasing. The rate of product change also varied
considerably (Fig. 12(b)). The continuous increase of C5—Cy5 and
C16—Cyp indicated that higher temperatures facilitated the gener-
ation of short-chain compounds, thereby increasing the production
of these components. However, their content decreased as the
temperature increased, indicating that higher temperatures pro-
moted the cleavage of C40,. compounds. Some of these C40, com-
pounds were not completely formed through direct pyrolysis
reactions but instead experienced repeated decomposition and
polymerization. This suggests that when the temperature sur-
passed a certain threshold, pure kerogen underwent a polymeri-
zation reaction at high temperatures to produce Cyqp;.

The characteristics of the three types of retained oil, namely
C12—Cy7, C1g—Ca3, and Cy4—C3p, exhibited significant variations. The
content of both Ci—Cy7 and Cig3—Cy3 continuously increased
(Fig. 12(c)), with a much greater increase observed for movable oil
and its rate of product change. In contrast, the content of C1g—Cy3
exhibited a slower increase. Throughout the pyrolysis process, the
content of C1—Cy7 continued to rise, albeit with changes in the rate
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of product change. Specifically, the early stage of production was
directly generated from the pyrolysis of kerogen, while the later
stage was primarily a result of secondary cleavage. The stability of
long-chain macromolecules decreased, leading to the generation of
smaller chain hydrocarbon molecules and so on. On the other hand,
the content of C;g—C,3 remained unchanged during the late stage of
pyrolysis. These results indicate that a dynamic equilibrium was
reached at the late stage, with the peak being reached at 5000 K.
Subsequently, the content of components no longer changed as the
reaction progressed. This suggests that the bound shale oil reached
a steady state when the upper limit of binding was reached. The
amount of C4—Cs; retained oil tended to increase (Fig. 12(d)), with
its growth occurring in two stages. The initial increase was due to
the oil produced from the pyrolysis of kerogen, which was subse-
quently adsorbed by the reservoir. Its content no longer increased
once the upper limit of adsorption was reached. The second in-
crease was attributed to the significant amount of adsorbed oil
generated as the pyrolysis reaction progressed, leading to an
elevated yield of adsorbed oil.

5.3. Generation mechanism of retained oil

Cheesecake roots are complex polymers composed of carbon,
hydrogen, oxygen, nitrogen, and sulfur, cross-linked with aliphatic,
aromatic, and heterogeneous atoms. During the pyrolysis process,
the covalent bonds of kerogen gradually break, forming free radi-
cals that generate oil, gas, and residual coke through cleavage,
cross-linking, and condensation processes (Amer et al., 2022; Loron
et al.,, 2022).

Based on comprehensive analysis (Fig. 13), the sequence of bond
breaking in different stages is elucidated as follows. In the first
stage, as the temperature gradually increases, the macromolecule
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begins to break, and hot pitch is generated. The amount of hot pitch
increases with pyrolysis temperature, as bridging bonds break to
form free radicals or unsaturated bonds, resulting in the generation
of shale oil and dry distillation gas. Also, ether bonds break to form
hydroxyl groups, which de-functionalize to generate H,O. The
carboxyl group yields CO,, and the C-N bond of acid amide cleaves
to synthesize NHs at this stage. These bonds have relatively small
bond energy.

In the second stage, the yield of retained oil increases rapidly
until reaching a maximum. As the temperature further rises, the
yield of retained oil begins to decline. The side chains of aromatic
rings break, generating alkanes and olefins with different carbon
numbers. Notably, the breaking effect is significant at the -position
connected to an aromatic carbon atom, as the conjugated double
bond affects the strength of adjacent chemical bonds. Thus, the
bond level at the a-position increases, while the bond level at the -
position decreases. The bond orders of these broken bonds have
higher values, between 0.7 and 0.9, with relatively lower bond
energy. In stage II, the bond orders of these broken bonds range
between 0.9 and 1.0, in line with previous research (Borrego et al.,
2000; You et al., 2019; Liu et al., 2023), and the corresponding bond
dissociation energies (BDEs) of representative bonds are shown in
Fig. 14.

In the third stage, the hot asphalt is almost completely
decomposed. The side chains of cycloalkanes break to form cyclo-
alkane structures. Subsequently, ring structures undergo ring-
opening reactions to synthesize paraffins and free radicals. The
further cleavage of aliphatic chains leads to the production of small
gases. Additionally, cyclic alkenes undergo partial secondary poly-
condensation and dehydrogenation, forming more stable aromatic
rings.
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6. Conclusions

The retained oil yield of the lake phase shale exhibited an
increasing and then decreasing trend with increasing thermal
simulation temperature, peaking at T = 623.15 K (R, = 1.00%). The
trend of retained oil yield observed in the thermal simulation ex-
periments was consistent with the results obtained from ReaxFF
MD, although there was a difference in the peak of retained oil
yield. The production of retained oil during the pyrolysis process
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can be divided into three stages. Stage 1 (300—2000 K) corresponds
to the initial pyrolysis stage, characterized by a slow reaction rate
and thermal decomposition of the reactants (Cgo.). Stage II
(2000—5000 K) represents the fast pyrolysis stage and the main
reaction stage, where the yield of retained oil increases rapidly.
Stage III corresponds to the late stage of pyrolysis, with Cyo,
initially being very low and then increasing, indicating a transition
in product evolution from decomposition to cross-linking reactions.
The formation of retained oil involves three stages. In the first stage,
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weak bonds such as bridging bonds (hydroxyl, oxy, peroxy, imino,
amino, and nitro), ether bonds, and acid amides begin to break,
forming macromolecular intermediates and a minor amount of gas.
The second stage involves the breaking of aromatic ring structures
and the carbon chains of heteroatomic functional groups. Lastly, in
the third stage, ring-opening reactions occur, resulting in the gen-
eration of short-chain olefins and radicals from the ring structures,
as well as further breaking of aliphatic chains.
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