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a b s t r a c t

Internal multiples are commonly present in seismic data due to variations in velocity or density of
subsurface media. They can reduce the signal-to-noise ratio of seismic data and degrade the quality of
the image. With the development of seismic exploration into deep and ultradeep events, especially those
from complex targets in the western region of China, the internal multiple eliminations become
increasingly challenging. Currently, three-dimensional (3D) seismic data are primarily used for oil and
gas target recognition and drilling. Effectively eliminating internal multiples in 3D seismic data of
complex structures and mitigating their adverse effects is crucial for enhancing the success rate of
drilling. In this study, we propose an internal multiple prediction algorithm for 3D seismic data in
complex structures using the Marchenko autofocusing theory. This method can predict the accurate
internal multiples of time difference without an accurate velocity model and the implementation process
mainly consists of several steps. Firstly, simulating direct waves with a 3D macroscopic velocity model.
Secondly, using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-
going Green's functions between the virtual source point and surface. Thirdly, constructing internal
multiples of the relevant layers by upgoing and downgoing Green's functions. Finally, utilizing the
adaptive matching subtraction method to remove predicted internal multiples from the original data to
obtain seismic records without multiples. Compared with the two-dimensional (2D) Marchenko algo-
rithm, the performance of the 3D Marchenko algorithm for internal multiple prediction has been
significantly enhanced, resulting in higher computational accuracy. Numerical simulation test results
indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,
thereby exhibiting important theoretical and industrial application value.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Until now, most seismic imaging techniques still require pri-
mary reflection energy for their applications. To meet this
requirement, multiples should be eliminated to avoid producing
artifacts and misleading subsequent seismic interpretation and
drilling (Weglein et al., 1997; Panos and Verschuur, 2000; Ikelle,
2006; Bao et al., 2021, 2022; Ijsseldijk et al., 2022). The western
region of China is rich in oil/gas resources, but its geological char-
acteristics are complex. The strong reflection interface (low coal
seam) in the subsurface can generate internal multiples with strong
).

y Elsevier B.V. on behalf of KeAi Co
energy (Gan et al., 2018). The internal multiples exacerbate the
blurring characteristics of deep geological wave groups, resulting in
unclear geological structures and contact relationships. They
restrict our understanding of internal geological structures and
seriously affect oil/gas exploration and development in the north-
west region. Additionally, the marine oil/gas resources are
extremely abundant. However, multiples and primaries often
overlap because of the rugged seabed structure, leading to poor
imaging effects that directly affect the exploration and develop-
ment deployment of offshore oil/gas fields. Compared with surface-
related multiples, internal multiples are generated by stronger
reflection sources and varied propagation types. Hence, the char-
acteristics of internal multiples are more intricate, and the peri-
odicity is poor. In deep seismic layers, the effective signal energy
generally is weak. The differences in energy and velocity between
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multiples and primaries are also small, rendering identification and
elimination challenging. It has remained difficult to find a
completely effective method to solve the problem of internal
multiples until now. Moreover, seismic data processing personnel
frequently employ 2D technology to eliminate internal multiples in
3D seismic data, processing it line by line. However, 2D technology
experiences difficulty in effectively matching the predicted multi-
ple amplitudes with actual multiples in complex media and large
travel time errors. Therefore, it is crucial to create a new 3D internal
multiple elimination algorithm for seismic exploration.

Inspired by the Marchenko imaging method, Meles et al. (2015)
exploited Marchenko autofocusing theory (Rose, 2002; Wapenaar,
2004; Wapenaar et al., 2012) and seismic interferometry to elimi-
nate internal multiples. Singh et al. (2015) extended theMarchenko
equation to retrieve Green's function, which includes primaries,
internal multiples, and free-surface multiples. Therefore, we can
retrieve the Green's function in the presence of a free surface.
Furthermore, Meles et al. (2016) proposed a method for directly
estimating primaries, which is based on the Marchenko reference
plane reconstruction method and convolutional interferometry.
This method avoids adaptive subtraction but necessitates estima-
tion of the direct waves. Van der Neut and Wapenaar (2016)
developed a scheme for eliminating internal multiples from
measured acoustic fields by utilizing the modified Marchenko
equation and implemented it in a one-dimensional (1D) numerical
example. Da Costa Filho et al. (2017) applied the internal multiple
elimination method to general elastic media based on the Mar-
chenko method and convolutional interferometry. Thorbecke et al.
(2017) detailed the implementation of the Marchenko method.
Moreover, Zhang and Staring (2018) rewrote the Marchenko auto-
focusing internal multiple elimination scheme and proposed a new
Marchenko multiple elimination (MME) method without velocity
model information or adaptive subtraction. This method replaces
the estimation of the two-way travel time surface with a fixed
truncation for all traces. It only requires the input of seismic re-
cords, eliminating the need for macroscopic velocity models to
estimate direct waves, and predicts all internal multiples during the
iteration. Zhang et al. (2019) proposed transmission-compensated
Marchenko multiple elimination based on the MME method. The
approach can effectively eliminate internal multiples and
compensate for the transmission loss of primaries during propa-
gation. Based on Singh et al. (2015) and other preliminary research,
Zhang and Slob (2019) further derived the Marchenko equation to
retrieve the primaries from the acoustic surface-reflection response
by eliminating the surface-related and internal multiples in one
step. In another study, Zhang and Slob (2020) applied the MME
method to a deep-water field data set from the Norwegian North
Sea and achieved promising results. Elison et al. (2020) utilized the
MME method to incorporate multi-dimensional energy conserva-
tion and terms based on the minimum phase principle, in order to
accurately account for internal multiple scattering over both long
and short periods. The results demonstrate that the “augmented”
Marchenko method is superior, but the multidimensional mini-
mum phase condition incorporated into the medium remains un-
clear. Wapenaar et al. (2021) employed a general mathematical
framework to systematically investigate and discuss the recon-
struction of the Marchenko baseline, Marchenko imaging, MME,
and their interrelatedness. Additionally, He and Geng (2022)
developed a novel scheme for predicting surfaceerelated multi-
ples by integrating the revised Marchenko equation with free-
surface effects and convolutional seismic interferometry. Peng
et al. (2023) improved the Marchenko method, which performs
very well in settings with moderate lateral variations and effec-
tively eliminates short-period multiples.

For the 3D Marchenko theory, Wapenaar et al. (2004) derived
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the relationships between reflection and transmission responses in
3D nonhomogeneous media, which established the foundation for
addressing the 3D Green's function. Wapenaar et al. (2013)
employed the 3D Marchenko equation to retrieve the Green's
function. Wapenaar (2013) derived a 3D Marchenko equation
related to the single-sided reflection response of a 3D inhomoge-
neousmedium to the field within themedium. Staring et al. (2018a)
proposed an adaptive double-focusingmethod to removemultiples
in 2D and 3D field data of the Santos Basin in Brazil. Jia et al. (2019)
reformulated the Marchenko-type equations in a 3D cartesian co-
ordinate system, which can be directly implemented in our 3D
Marchenko algorithm. Brackenhoff et al. (2022) implemented the
3D Marchenko equations to retrieve accurate Green's functions
within the medium and used these reflection data for imaging
applications. The above studies are based on theMarchenko theory,
and MME has demonstrated remarkable outcomes in eliminating
multiples from field seismic data. However, only 2D internal mul-
tiple elimination methods have been developed based on the
literature mentioned above. To address the high sampling density
and large data volume encountered in seismic exploration, further
research on 3D internal multiple elimination is necessary (Hokstad
and Sollie, 2006). Based on the previous research, we utilize the
dynamic characteristics of seismic waves and extend the 2D
method to propose a 3D internal multiple elimination method that
relies on the Marchenko autofocusing theory. This method can
solve the problem of internal multiple elimination in 3D seismic
data.

This study is organized as follows. After the introduction, we
briefly review the 3D Marchenko autofocusing theory. Subse-
quently, we introduce 3D internal multiples construction and
elimination. Finally, we utilize several synthetic experiments to
validate the effectiveness of our approach and draw the corre-
sponding conclusions.
2. Method

2.1. Three-dimensional Marchenko autofocusing theory

We define Green's function GðX;XS; tÞ of the seismic source at
XS as the causal solution of the scalar wave equation in actual
inhomogeneous media, according to Wapenaar et al. (2014a,
2014b).

rV $

�
1
r
VG

�
� 1
v2

v2G
vt2

¼ � rdðX � XSÞ
vdðtÞ
vt

; (1)

where X ¼ ðx; y; zÞ denotes spatial coordinates. Compared to 2D
methods, there are more crossline variables. In 2D method, X ¼
ðx; zÞ, which is different from the 3D method. The boundary vD0 is
defined as z ¼ z0 ¼ 0. v ¼ vðxÞ and r ¼ rðxÞ represent the propa-
gation velocity and density of non-uniformmedia, respectively. T is
the time. XS ¼ XS;0 is selected just above vD0. vD0 represents the
acquisition surface where the observation system is located.
Therefore, XS ¼ ðx;y;z0 � εÞ, ε/0. For convenience, we denote it as
XH ¼ ðx; yÞ. The Green's function is decomposed into an upgoing
wave field and a downgoing wave field, and they are coupled by the
non-uniformity of the medium below the interface. The upgoing
and downgoing Green's function components at the observation
point X are represented by GþðX;XS; tÞ and G�ðX;XS; tÞ (Fig. 1),
respectively. Assuming that the one-way wavefields are pressure-
normalized, the bidirectional Green's function can be defined as
the superposition of the downgoing and upgoing fields, such as



Fig. 1. The upgoing and downgoing components of Green's function of the wave
equation in an actual inhomogeneous medium.
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GðX;XS; tÞ¼GþðX;XS; tÞ þ G�ðX;XS; tÞ; (2)

where þ and � represent downgoing and upgoing, respectively.
The vertical derivative of the downgoing Green's function at the

interface vD0 (below the source point) is

vzGþðX;XS; tÞjz¼z0 ¼ � 1
2
rðXSÞd

�
XH � XS;H

� vdðtÞ
vt

: (3)

The vertical derivative of the upgoing Green's function at the
interface vD0 is related to the pressure-normalized reflection
response of the nonuniform medium beneath interface vD0,

vzG�ðX;XS; tÞjz¼z0 ¼
1
2
rðX0Þ

vRðXS;X0; tÞ
vt

; (4)

where R represents the reflection response of downgoing waves
below the depth level z ¼ 0 in the medium.

We define the focusing function f 1ðX;XV; tÞ and f 2ðX;XS; tÞ in
the reference medium, as shown in Fig. 2 (Slob et al., 2014;
Wapenaar et al., 2014a). The reference medium is the same as the
actual medium above the depth vDi, and no reflection is observed
below the depth vDi. Here, XV ¼ �

XV;H; zi
�
is the focusing point,

XV;H represents a point positioned horizontally on the interface vDi,
and X represents any observation point in the medium. Similar to
Eq. (2), the focusing function can bewritten as the sum of pressure-
normalized downgoing focusing function fþ1 ðX;XV; tÞ and upgoing
focusing function f�1 ðX;XV; tÞ components at the observation point
(coupled with each other),

f 1ðX;XV; tÞ¼ fþ1 ðX;XV; tÞ þ f�1 ðX;XV; tÞ: (5)

The focusing function f 1ðX;XV; tÞ focuses at XH ¼ XV;H at depth
level vDi and continues into the nonreflective reference half-space
as a divergent downgoing field fþ1 ðX;XV;tÞ. Referring to Eq. (3), the
focusing function can be written as

vzf
þ
1 ðX;XV; tÞjz¼zi ¼ � 1

2
rðXVÞd

�
XH � XV;H

� vdðtÞ
vt

: (6)

Similarly, the focusing function f 2ðX;XS; tÞ can be written as the
sum of pressure-normalized downgoing and upgoing focusing
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function components,

f 2ðX;XS; tÞ¼ fþ2 ðX;XS; tÞ þ f�2 ðX;XS; tÞ: (7)

The focusing function f 2ðX;XS; tÞ focuses at XH ¼ XV;H at depth
level vD0 and continues into the homogeneous half-space z � zi as a
divergent downgoing field. Similar to Eq. (3), the focusing function
can be written as

vzf
�
2 ðX;XV; tÞjz¼z0 ¼

1
2
rðXVÞd

�
XH � XS;H

� vdðtÞ
vt

: (8)

At depths vD0 and vDi, the unidirectional focusing function is
interrelated,

fþ1 ðXS;XV; tÞ¼ f�2 ðXV;XS; tÞ; (9)

and

�f�1 ðXS;XV;�tÞ¼ fþ2 ðXV;XS; tÞ: (10)

The one-way focusing function at depth vDi (Fig. 2), the focusing
function at depth vD0, and the reflection response at depth vD0 are
interrelated. Therefore, we can obtain

G�ðXV;XS; tÞ¼
ð
vD0

dX0

ðt
�∞

RðXS;X0; t � t0Þfþ1 ðX0;XV; t
0Þdt0

� f�1 ðXS;XV; tÞ;
(11)

GþðXV;XS; tÞ¼ �
ð
vD0

dX0

ðt
�∞

RðXS;X0; t � t0Þf�1 ðX0;XV;�t0Þdt0

þ fþ1 ðXS;XV;�tÞ;
(12)

where the upper limit of time integration t0 ¼ t is obtained from the
causal relationship of reflection response. The integral over the
acquisition surface vD0 enables us to parallelize over pairs of focal
points. This is a significant advantage when applying the method to
massive 3D data (Staring et al., 2018b).

Based on the causality of Green's function, the expressions on
the left side of Eqs. (11) and (12) are equal to zero before the first
arrival. Hence,

f�1 ðXS;XV; tÞ¼
ð
vD0

dX0

ðt
�∞

RðXS;X0; t � t0Þfþ1 ðX0;XV; t
0Þdt0

(13)

fþ1 ðXS;XV;�tÞ¼
ð
vD0

dX0

ðt
�∞

RðXS;X0; t � t0Þf�1 ðX0;XV;�t0Þdt0;

(14)

where the complex conjugate of the direct wavefield GdðXS;XV;�tÞ
between the virtual source point and the surface receiver point is
used as the initial value of the focusing function fþ1 ðXS;XV; tÞ for the
traveling wave, so

fþ1，0ðXS;XV; tÞ¼GdðXS;XV;�tÞ: (15)

2.2. Three-dimensional internal multiples construction and
elimination

We insert Eq. (15) into Eq. (13) to update the upgoing focusing



Fig. 2. The upgoing and downgoing components of focus function of the three-dimensional wave equation in reference medium. (a) The upgoing and downgoing components of
focus function f 1; (b) the upgoing and downgoing components of focus function f 2.
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function value. Subsequently, we insert the updated upgoing
focusing function value into Eq. (14) to update the downgoing
focusing function value. We repeat this process until the energy
converges to obtain the final upgoing and downgoing focusing
function. We substitute the focused upgoing and downgoing
focusing functions into Eqs. (11) and (12) to obtain the upgoing and
downgoing Green's functions between the virtual source point and
the surface. Internal multiples can be constructed that are related to
the layer where the virtual source point is located by using the
obtained upgoing and downgoing Green's functions and combining
them through convolution operations. Fig. 3(b) illustrates how to
use convolutional interferometry to reconstruct primaries and in-
ternal multiples in 3D space. From Fig. 3(a), one of the components
for constructing primary reflections must use direct waves. On the
contrary, if the downgoing Green's function with the first arrival
part or upgoing Green's function with the first primaries are
removed, the constructed new reflections are internal multiples of
this relevant layer. For operational convenience, we use the
downgoing Green's function excluding arrival parts and complete
the upgoing Green's function wave field to construct internal
multiples. The construction formula is shown in Eq. (16).
Fig. 3. Principle to construct primaries and internal multiples. (a) Using downgoing Green's function and the direct component of upgoing Green's function to construct primaries;
(b) using downgoing and upgoing Green's function for cutting off the direct part to construct internal multiples.

Fig. 4. 3D Marchenko internal multiple elimination flowchart.
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Fig. 5. Three-dimensional horizontal velocity model (a) and density model (b).

Fig. 6. 3D seismic records.

Fig. 7. Input seismic data for the internal multiple elimination method using the
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MVðXS;X0; tÞ¼
ð
vD0

dX
ð∞
t
G�ðXV;XS; t

0ÞGþ
d ðXV;XS; t

0Þdt0;

(16)

where MVðXS;X0; tÞ is the predicted internal multiples for the
virtual source point V.

The 3D Marchenko algorithm method contains four key points.
The first key point is using a macroscopic underground velocity
model to estimate direct waves. The second key point is combing
direct waves and autofocusing theory to generate upgoing and
downgoing Green's functions of relevant discrete virtual source
points along the selected subsurface. The third key point is
employing the calculated upgoing and downgoing Green's func-
tions to predict internal multiples through convolution. The fourth
key point is using adaptive subtraction to eliminate the predicted
internal multiples from the original data. Because the phase and
amplitude of 3D internal multiples predicted by the Marchenko
method are incorrect. Therefore, an adaptive matching subtraction
algorithm is necessary to remove internal multiples from the
observed data. The process is shown in Fig. 4. We use a multi-
channel adaptive matching method for subtraction (Wang, 2003).
Marchenko autofocusing method. (a) Shot record; (b) transmission response.



Fig. 8. Upgoing and downgoing Green's functions. (a) Upgoing Green's function when virtual source point is placed at 600 m; (b) downgoing Green's function when virtual source
point is placed at 600 m; (c) upgoing Green's function when virtual source point is placed at 900 m; (d) downgoing Green's function when virtual source point is placed at 900 m.

Fig. 9. Predicted internal multiples. (a) Predicted internal multiples when the virtual source point is placed at 600 m; (b) predicted internal multiples when the virtual source point
is placed at 900 m.
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Fig. 10. Shot gather without internal multiples. (a) Raw shot record; (b) results with all internal multiples eliminated; (c) the difference between Fig. 10(a) and 10(b).
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3. Examples

3.1. Horizontal layer model example

To test the effectiveness of the 3D Marchenko internal multiple
elimination method, firstly, we use a 3D simple horizontal layered
model for testing, as depicted in Fig. 5(a). Fig. 5(b) is density model.
The model size is 600 � 600 � 1400 m3. We use a fixed-spread
acquisition with a grid of 961 sources and receivers of 20 m
spacing in a square shape. The seismic data is modeled using a
15 Hz Ricker wavelet. The reflection time of seismic records is
4.902 s, and the time sampling interval is 4 ms. The modeled
reflection responses are presented in Fig. 6, and all direct waves are
cut off. When solving the Green's function, we input seismic re-
cords and transmission response for multiple convolution opera-
tions, which results in wavelet effects. In order to avoid wavelet
effects, the reflection data must be deconvolved for the wavelet
(Mildner et al., 2017). The result of this deconvolution is the
reflection response of a zero-phase wavelet with a flat spectrum
between the frequencies fmin and fmax. A wavelet similar to the sinc
wave that has a flat frequency spectrum of amplitude. Hence, in
numerical simulation examples, to prevent wavelet deconvolution,
the sinc wave is employed as the source during the forward
modeling. The source wavelet with a flat frequency spectrum be-
tween fmin ¼ 5 Hz and fmax ¼ 30 Hz is described in Fig. 7(a). Fig. 7(b)
shows the transmission response, recorded at the surface for a
Fig. 11. 3D faulted basins velocity model. (a) Vel

228
source at a 900 m depth, as input seismic data.
Fig. 8(a)e(d) show the upgoing and downgoing Green's func-

tions, which are constructed by placing the virtual source point at
depths of 600 and 900 m, as indicated by the five-pointed star in
Fig. 5(a), respectively. To construct the related layer of internal
multiples, we insert downgoing Gþ without first arrival events and
upgoing G� components of the Green's functions into the internal
multiples reconstruction, as expressed in Eq. (16) (Fig. 9).
Compared with internal multiples in actual seismic records, the
reconstructed internal multiples have consistent phase and time
differences; however, differences in amplitude are observable.
Adaptive matching subtraction is required to match the internal
multiples present in the original seismic records. The results of
internal multiple elimination achieved through adaptive matching
are depicted in Fig. 10. Fig. 10(a) displays the original shot record of
the 481th shot, while Fig. 10(b) illustrates the shot record following
the elimination of internal multiples associated with interfaces A
and B. It means the internal multiples are constructed when the
virtual source points are placed at 600 and 900 m depth, all of
which have been eliminated. Fig. 10(c) displays the differences
between shot record with multiples and the result of multiple
elimination. All the internal multiples in the seismic records are
effectively eliminated.
ocity model; (b) inaccurate velocity model.



Fig. 12. Input seismic data for 3D Marchenko autofocusing internal multiple elimination method. (a) Modeled shot record; (b) transmission response.

Fig. 13. Upgoing and downgoing Green's functions. (a) Upgoing Green's function when virtual source point is placed at 1500 m; (b) downgoing Green's function when virtual source
point is placed at 1500 m; (c) downgoing Green's function without first arrival wave.

Fig. 14. Predicted internal multiples. (a) Predicted internal multiples when virtual source point is placed at 1500 m; (b) predicted internal multiples when virtual source point is
placed at 2000 m; (c) predicted internal multiples when virtual source point is placed at 3000 m.
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3.2. Complex model example

To further test the effectiveness of the 3D Marchenko internal
multiple elimination method, we have chosen a complex 3D fault
basin geological model for measurement, as depicted in Fig. 11(a).
229
Fig. 11(b) represents a smoothed velocity model based on Fig. 11(a),
with an error margin of up to 50%. This model serves as a macro-
scopic (inaccurate) velocity model for forwarding initial arrival
events of transmission response. The model size is
4000 � 4000 � 4000 m3. It is modeled using a zero-phase Ricker



Fig. 15. Shot gather without internal multiples. (a) Results when virtual source point is placed at 1500 m; (b) results when virtual source point is placed at 2000 m; (c) results when
virtual source point is placed at 3000 m; (d) the difference between Figs. 12(a) and 15(c).

Fig. 16. Velocity spectrum. (a) Velocity spectrum of shot gather; (b) velocity spectrum without internal multiples when virtual source point is placed at 1500 m; (c) velocity
spectrum without all internal multiples.
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source wavelet with a peak frequency of 25 Hz. We simulate 16
survey lines, with 200 shots per survey line and 3200 receivers per
shot, taking into account data quantity and computational
complexity. The spacing between sources and receivers is 20m. The
230
reflection time of seismic records is 4.1 s, and the time sampling
interval is 4 ms. All direct waves have been eliminated. In the
simulated data, Fig. 12(a) displays one of the shot records, which
Fig. 12(b) exhibits the transmission response recorded at the



Fig. 17. Zero-offset of predicted internal multiples. (a) Zero-offset of predicted internal multiples using 2D Marchenko autofocusing method; (b) zero-offset of predicted internal
multiples using 3D Marchenko autofocusing method.

Fig. 18. Zero-offset data with internal multiple elimination. (a) Zero-offset data with internal multiples; (b) zero-offset data without internal multiples using 2D Marchenko
autofocusing method; (c) zero-offset data without internal multiples using 3D Marchenko autofocusing method.
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surface for a source positioned at a depth of 1000 m with in the
macroscopic velocity model. We used the modeled transmission
response and wavelet processed seismic records to derive Green's
function field and construct internal multiples for relevant layers.
In field seismic data processing, a macroscopic velocity model can
be obtained by analyzing the velocity of seismic records. Subse-
quently, we simulate the transmission response between virtual
source points and surface receiving points, utilizing the obtained
macroscopic velocity model.

Fig. 13 illustrates the upgoing and downgoing Green's functions
derived from positioning the virtual source point at 1500 mwithin
231
the smoothed velocity model, along with the downgoing Green's
functions subsequent to the elimination of the first arrival wave,
respectively. Fig. 14 demonstrates the predicted internal multiples
when the virtual source point is placed at 1500, 2000, and 3000 m,
respectively, as indicated in Fig. 11(b). Fig. 15 shows the results of
the internal multiple eliminations. Most of the internal multiples
have been removed and effectively protect the primary. Fig. 16
exhibits the velocity spectrum. Fig. 16(a) depicts the velocity
spectrum of the original data, while Fig. 16(b) represents the ve-
locity spectrum after eliminating internal multiples through the
placement of a placing the virtual source at 1500m. Fig.16(c) shows
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the velocity spectrum after the removal of all internal multiples,
providing a more intuitive visualization of the effectiveness of
multiple elimination.

To observe the effectiveness of 2D and 3Dmethods in predicting
multiples, we superimpose the predicted internal multiples of each
horizon using both methods, as depicted in Fig. 17. Fig. 17(a) dis-
plays the predicted multiples using a 2D method, while Fig. 17(b)
shows the predicted multiples using a 3D method. Fig. 18 demon-
strates zero-offset data with internal multiples and zero-offset data
without internal multiples, utilizing both 2D and 3D Marchenko
autofocusing methods. The result using 3D Marchenko method is
more accurate than 2DMarchenkomethod. Especially the positions
indicated by the black arrows and within the black box.

4. Discussion

Multiples are a common type of coherent noise. When the en-
ergy of multiples is strong, the amplitude, frequency, and phase of
primaries will be distorted, leading to degradation in the quality of
the image. Therefore, they should be removed. The research on
multiple eliminations based on wave theory and dynamic charac-
teristics mostly employs 2D seismic data (Kelamis and Verschuur,
2000). The multiple eliminations in 2D seismic data have devel-
oped into a series of relatively mature technologies. In practical
applications, seismic data processors often directly apply 2D algo-
rithms to 3D seismic data (Staring et al., 2021). This 2D assumption
method for predicting and eliminating multiples in 3D data fails to
take into the characteristics of underground interface dip angle,
amplitude, and phase difference of seismic wave propagation in
both 3D and 2D data, especially in complex geological structures.
Therefore, conventional 2D internal multiple elimination methods
are often unable to effectively predict complex 3D geological
structures. Hence, ensuring the accuracy of multiple elimination
results is challenging. The 3D algorithm for surface-relatedmultiple
eliminations has matured and been applied to industrial produc-
tion, significantly enhancing the accuracy of 3D marine seismic
data imaging (Baumstein and Hadidi, 2006; Dragoset et al., 2010).
Moreover, similar to the surface-related multiples, the propagation
of internal multiples is a 3D spatial function in practical situations.
However, the depth and breadth of research on internal multiples
are substantially lower compared to studies focusing on surface-
related multiples. The main reason is that the generation mecha-
nism of internal multiples is unclear; thus, predicting and elimi-
nating them is challenging.

Based on the 2D Marchenko internal multiple elimination
method (Thorbecke et al., 2021), we propose a fully 3D internal
multiple elimination approach. This method conforms to the field
seismic data and the real characteristics of underground media,
thereby enhancing the accuracy and effectiveness of internal mul-
tiple eliminations. Furthermore, the data volume of 3D seismic data
is usually large. Taking into account computational efficiency, we
have only established 16 receivers in the crossline direction within
the complex model. In the inline direction, the internal multiples
are eliminated, effectively preserving primaries in the original
seismic data. However, in the crossline direction, most multiples
are eliminated, albeit the presence of residual multiples. The main
reason for this issue is the scarcity of shots in the crossline direction
(Fig. 15). When the crossline direction has the same or similar
number of sources and receivers as the inline direction, the mul-
tiple elimination effect will be equivalent to that in the inline di-
rection (Fig. 10(b)).

The Marchenko method for eliminating multiples is mainly
divided into three parts: (1) simulating transmission response; (2)
solving the upgoing and downgoing Green's function; (3) internal
multiple prediction and elimination. Thus, for one shot in
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horizontal layer model, the time of transmission wave forward
modeling is approximately 61.87 s; the time for iterating 8 times to
solve the upgoing and downgoing Green's functions is 7.713 s; and
the time of multiple prediction and subtraction is 141 s. It takes a
total of 210.6 s to calculate a shot. To save the computational source
and the cumulative error of adaptive matching, Firstly, we super-
imposed all the predicted internal multiples and only use one
adaptive subtraction to remove internal multiples from the original
seismic data (Gu et al., 2023). However, some of the multiples in-
formation may be drowned out during normalization and addition.
The accuracy of one-time multiple eliminations is not as high as
that of layer-by-layer elimination. Therefore, in this study, we adopt
the second method, but when dealing with other large amounts of
seismic data, we can still use the first approach.

5. Conclusion

The elimination of internal multiples is a difficult problem in the
field of seismic exploration data processing, particularly when
dealing with field data from the northwest region of China. Most of
the seismic data in this region are acquired using 3D geometry. In
this study, we present the theory and application of the autofo-
cusing Marchenko method on 3D seismic data. The Marchenko
schemes can obtain Green's functions by creating virtual sources
and receivers at any desired depth level. Therefore, this method can
be employed to construct internal multiples at any interface. A
multichannel adaptive filter is utilized to guarantee the thorough
and accurate elimination of these predicted multiples. The
approach fully considers the actual subsurface conditions and can
effectively eliminate internal multiples in 3D seismic data. Addi-
tionally, the integration of Green's functions enables parallelization
through pairs of focal points, rendering it particularly suitable for
the application of large volumes of 3D seismic data. The application
of both examples was successful and demonstrated the effective-
ness of the 3DMarchenko method. Therefore, we conclude that the
3D Marchenko autofocusing method serves as an effective tool for
predicting and removing of internal multiples from 3D seismic
data.
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