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ABSTRACT

Seismic finite-difference (FD) modeling suffers from numerical dispersion including both the temporal
and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the
accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling
method by combining the FD scheme with the numerical dispersion suppression neural network
(NDSNN). This method involves the following steps. First, a training data set composed of a small number
of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and
the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the
obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is
trained until the network converges to simultaneously suppress the temporal and spatial dispersion.
Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the
large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy
wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.
Numerical modeling examples verify the effectiveness of my proposed method in improving the
computational accuracy and efficiency.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Finite-difference (FD) methods have been widely used to
perform seismic modeling for their easy implementation and small
computational costs (Kelly et al., 1976; Virieux, 1984; Robertsson
et al.,, 1994; Moczo et al., 2000; Yang et al., 2012; Yao et al., 2016;
Liu, 2020). However, seismic FD modeling suffers from numerical
dispersion including both the temporal and spatial dispersion,
which can decrease the accuracy of the numerical modeling. To
obtain accurate seismic waveforms, small time steps, fine grids and
high-order FD approximations are often adopted to suppress the
numerical dispersion. However, these approaches significantly in-
crease the computational cost and memory usage (Li et al., 2016).
The seismic FD modeling has always been confronted with the
challenges of the temporal and spatial dispersion suppression (Liu,
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2020).

Methods to suppress numerical dispersion have been widely
studied. There are two major kinds of methods to suppress tem-
poral dispersion. The first is the time-space domain dispersion-
based FD method, which determines the spatial FD coefficients by
using the Taylor series expansion of time-space domain dispersion
relation (Finkelstein and Kastner, 2007; Liu and Sen, 2009a; Ren
and Liu, 2015; Ren and Li, 2017). The second is the filtering-based
method, which proposes that the temporal dispersion can be
filtered after propagation (Stork, 2013; Dai et al., 2014; Wang and
Xu, 2015; Li et al., 2016). To suppress spatial dispersion, two main
kinds of methods have been developed. The first is the implicit
spatial FD method. This method calculates the spatial derivative
value by combining the spatial derivatives of each point with the
spatial derivatives of adjacent points (Lele, 1992; Liu and Sen,
2009b; Kosloff et al., 2010; Chu and Stoffa, 2012). The second is
the optimal spatial FD method. This method computes the spatial
FD coefficients by using optimal algorithms (Liu, 2013; Zhang and
Yao, 2013; Yan et al., 2016; Yang et al., 2017).

In recent years, artificial intelligence technologies have emerged
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for geophysical applications. Using machine learning, especially
deep learning, to suppress numerical dispersion for seismic FD
modeling has also attracted attention from the academic circle.
Siahkoohi et al. (2018, 2019a, 2019b) applied the deep convolu-
tional neural networks and the transfer learning to mitigating the
numerical dispersion from wave simulations. Kaur et al. (2019)
suggested using generative adversarial networks to overcome the
spatial dispersion of FD extrapolation. Zhang et al. (2022) proposed
using deep convolutional neural networks to extract wavefield
features for the spatial dispersion correction. Han et al. (2022)
employed convolutional and recurrent neural networks with
semi-supervised learning to eliminate time dispersion caused by
seismic modeling. Gadylshin et al. (2022, 2023) adopted deep
neural networks in the time domain and the frequency domain
successively to mitigate the spatial dispersion of seismic data. Xu
et al. (2023) put forward a pix2pix network to remove the tem-
poral dispersion from elastic FD modeling. However, in the training
data set of this neural network, the low accuracy of the raw data
and the high accuracy of the target data are only related to whether
there is obvious temporal dispersion, so the neural network can
only remove the temporal dispersion. Yan and Xu (2024) proposed
an improved pix2pix algorithm to stably and efficiently suppress
the spatial dispersion of seismic FD modeling. These methods can
suppress the temporal dispersion or the spatial dispersion, but
none of them is used to simultaneously suppress the temporal and
spatial dispersion.

In this paper, I propose a new seismic modeling method by
combining the FD scheme with the numerical dispersion sup-
pression neural network (NDSNN). The NDSNN is constructed
based on the idea of the stable image-to-image translation, and it
can be used to suppress the numerical dispersion including both
the temporal and spatial dispersion from seismic FD modeling.
Numerical experiments for a homogeneous model and a hetero-
geneous model verify the effectiveness of my proposed method in
suppressing the numerical dispersion and saving computing costs.

2. Theory and method

The acoustic wave equation is often used to approximate the
propagation of seismic waves. The 2D acoustic wave equation is

19%p o°p  o%p (1)

v2 otz ox2 - 0z2’

where v is the velocity and p = p (x, z, t) is the scalar wavefield.
The FD methods are often applied to solve the acoustic wave

equation. A 2nd-order FD is usually used for approximating tem-

poral derivatives:
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where 7 is the time step, p, j

grid size.
Generally, a (2M)th-order FD is used for spatial derivatives:
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where a,, are FD coefficients.
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However, as the FD methods replace derivatives with difference
approximations in solving wave equation, it's inevitable that
seismic FD modeling suffers from the numerical dispersion
including the temporal and spatial dispersion. Especially when the
large time step and the coarse grid are used, the numerical
dispersion can be very severe. Small time steps and fine grids may
improve the seismic FD modeling accuracy but will significantly
increase the memory usage and computational cost. Fig. 1 shows
the snapshots of acoustic FD modeling for different time steps and
grid sizes. From Fig. 1, it can be seen that the severe numerical
dispersion is diminished at small time step and grid size.

To realize the high-accuracy and high-efficiency seismic FD
modeling, a stable approach that combines the pix2pix algorithm
(Isola et al., 2017) with the Sobel operator (Sobel and Feldman,
1968) is proposed to construct the NDSNN. The pix2pix algorithm
(Isola et al., 2017) is a generative adversarial network (GAN)
framework for the image-to-image translation, which draws on the
idea of introducing additional conditional information of the con-
ditional generative adversarial nets. The pix2pix algorithm requires
the input of one-to-one matched paired data: The raw data and the
target data. The raw data is used as the input of the generator.
Besides, the raw data is also used as the input of the discriminator
along with the target data or the data generated by the generator,
and then trained to ultimately achieve the function of converting
one type of data to the other. The algorithm not only learns the
mapping from the input image to the output image, but also learns
the loss function to train the mapping, making it highly versatile
(Isola et al., 2017).

The loss function of the pix2pix algorithm is defined as (Isola
et al,, 2017)

Zpixapix(G, D) = argmgnmgx{JcGAN(G, D)+, 21,(G)}, (4)

where

Z«aN(G, D) = Ey, y, [log(D(yr, yt))] + Ey, [log(1 — D(yr, G(yr))],
(5a)

Z1,(G) = Eyy [[lye = Go)ll1 ], (5b)

G is the generator, D is the discriminator, Ay, is the certainty coef-
ficient of the Li-norm loss term, E is the mean operator, y; is the raw
data, and y; is the target data.

This algorithm undergoes continuous iterative training, and
when the entire network converges, the generator can achieve the
function of mapping from the raw data to the target data. In this
process, the pix2pix algorithm uses L; norm to restrict the gener-
ator, but the training result of the algorithm is unstable and the
quality of generated images is unsatisfactory (Wang et al., 2018). To
improve the stability of the conventional pix2pix algorithm (Isola
et al., 2017), the Sobel operator (Sobel and Feldman, 1968) is
applied in seismic wavefield data processing (Yan and Xu, 2024).

The Sobel operator (Sobel and Feldman, 1968) is an important
processing method in the field of computer vision, mainly used to
obtain the first-order gradient value of a digital image, and is
usually used for edge detection. The Sobel operator uses two 3 x 3
matrix operators to convolution with the original image to obtain
horizontal and vertical gradient values, respectively. Then, the
gradient values in these two directions are combined to obtain the
total gradient value. If the total gradient value is greater than a
certain threshold, the point is considered an edge point. The hori-
zontal and vertical operators of the Sobel operator are as follows
(Sobel and Feldman, 1968):
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Fig. 1. Snapshots at t = 1.0 s of acoustic FD modeling for the homogeneous model. The model size is 5000 m x 5000 m. The source is located in the model center. The P-wave
velocity is 2000 m/s. A Ricker wavelet with a main frequency of 25 Hz is used to generate vibrations. The 2nd-order temporal FD and the 2nd-order spatial FD are used to solve the
acoustic wave equation for seismic modeling. (a) Low-accuracy snapshot generated with 7 = 0.002 s and h = 20 m. (b) High-accuracy snapshot generated with 7 = 0.0005 s and

h=5m.
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The Sobel operator is use to process image, and the calculation

formula is as follow (Sobel and Feldman, 1968):

S=1/(Sx*A)% + (§,*A)?,

(7)

where A is the input data, S is the total gradient value, and * is the

convolution operation.

By combining the pix2pix algorithm (Isola et al., 2017) with the
Sobel operator (Sobel and Feldman, 1968), the loss function of the

NDSNN is defined as

3159
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Fig. 4. Snapshots at t = 1.2 s and their differences of acoustic FD modeling for the homogeneous model. The source is located at (2500 m, 2500 m). (a) High-accuracy snapshot
generated with 7 = 0.0005 s and h = 5 m. (b) Low-accuracy snapshot generated with 7 = 0.002 s and h = 10 m. (c) Snapshot (b) after dispersion correction by the conventional
pix2pix algorithm without the Sobel operator. (d) Snapshot (b) after dispersion correction by the NDSNN. (e) Some traces from (a), (b), (d), and the differences between (d) and (a).

3160



H.-Y. Yan Petroleum Science 21 (2024) 3157—3165

(a) Distance, m (b) Distance, m
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

w [}
5} %)
£ £
F F
(c) Distance, m
0 1000 2000 3000 4000 5000
1.0
(d) Distance, m
300 2500 300 2500 300 2500 300 2500
1.2 1.0
. r = r
73 12
. g 14
g 14 =
= =
16 =
(a) (a) (b) (b) (c) ()] (or@)] (cr@)
18
1.6
1.8

Fig. 5. Shot records and their differences of acoustic FD modeling for the homogeneous model. The source is located at (2500 m, 2500 m). The depth of the receivers is 200 m. (a)
High-accuracy shot record generated with 7 = 0.0005 s and h = 5 m. (b) Low-accuracy shot record generated with 7 = 0.002 s and h = 10 m. (c) Corrected shot record by the NDSNN.
(d) Some traces from (a), (b), (c) and the differences between (c) and (a).

the initialization module, the encoding module, the residual

Z(G,D) = argmGinmgx{JcGAN(G, D) + AL, 71, (G) + AsZs(G) }, module, the decoding module and the recovery module. The
(8)
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and /g is the certainty coefficient of the Sobel operator loss term. g '™ 4600 €
The NDSNN based on the stable pix2pix algorithm (Yan and Xu, g_ 2000 =
2024) consists of a generator and a discriminator. It adopts an . 3000 S
encoder-decoder network (Hinton and Salakhutdinov, 2006) as the 3000 2

2000

generator and a patch-based fully convolutional network (Long
et al, 2017) as the discriminator. The generator based on the
encoder-decoder network involves five types of modules, namely Fig. 6. The velocity model for the modified SEG/EAGE salt model.
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Fig. 7. Training losses of epochs for the modified SEG/EAGE salt model.

discriminator based on the patch-based fully convolutional
network is to first split the input data into several small blocks, then
make cognitive judgments on each small block, and finally consider
the judgment results of all small blocks comprehensively to provide
a selection of data sources. The layer number of the discriminator is
an important parameter that affects the variation of the loss func-
tion value. The basis for selecting this parameter is to make the loss
function value change and the network training stable. In addition,
in the subsequent numerical experiments, the batch size and the
optimizer recommended by Isola et al. (2017) are used.

The basic steps for suppressing the numerical dispersion of
seismic FD modeling are as follows: First, a training data set
composed of a small number of wavefield snapshots is generated.
The wavefield snapshots included the low-accuracy wavefield data
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(with the obvious numerical dispersion) and the high-accuracy
wavefield data (with almost no numerical dispersion) are paired,
which matched according to the corresponding time. Here, the
low-accuracy wavefield snapshots are seriously polluted by both
the temporal and spatial dispersion. The low-accuracy wavefield
snapshots and the high-accuracy wavefield snapshots are used as
the raw data and the target data respectively. Second, the NDSNN is
trained until the network converges to simultaneously suppress the
temporal and spatial dispersion. The training procedure of the
NDSNN is shown in Fig. 2. The converged generator is used as an
operator to suppress numerical dispersion, and the entire set of
low-accuracy wavefield data is processed, thus converting the low-
accuracy wavefield into the high-accuracy wavefield.

3. Numerical experiments

I apply my method to perform seismic modeling in two exam-
ples. The NDSNN is used to suppress the numerical dispersion of
the 2D acoustic FD modeling. Here, the 2nd-order temporal FD and
the 4th-order spatial FD are used to solve the acoustic wave
equation for seismic modeling. In addition, the perfectly matched
layer absorbing boundary condition (Bérenger, 1994) is adopted to
reduce boundary reflections of the model. The training data sets
consist of a small number of the high-accuracy wavefield and the
low-accuracy wavefield. The high-accuracy wavefield sets are
generated using the small time step and the fine gird, thus almost
free from the numerical dispersion. The low-accuracy wavefield
sets are generated using the large time step and the coarse gird. In
the numerical experiments, every training data set is selected from
the simulated wavefield data at the three different seismic sources
positions, at each of which randomly involves 100 pairs of high-
accuracy and low-accuracy wavefield snapshots. The training data
sets are used to train the NDSNN. The entire raw low-accuracy
wavefield data sets with dispersion artifacts computed by FD
method are applied to test the NDSNN. These two examples are
performed to illustrate the effectiveness of the proposed method to
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Fig. 8. Snapshots at t = 1.4 s and their difference of acoustic FD modeling for the modified SEG/EAGE salt model. The source is located at (6000 m, 220 m). (a) High-accuracy
snapshot generated with 7 = 0.0005 s and h = 5 m. (b) Low-accuracy snapshot generated with 7 = 0.002 s and h = 20 m. (c) Snapshot (b) after dispersion correction by the

NDSNN. (d) Some traces from (a), (b) and (c), and the difference between (c) and (a).
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Fig. 9. Shot records and their difference of acoustic FD modeling for the modified SEG/EAGE salt model. The source is located at (6000 m, 220 m). The depth of the receivers is
200 m. (a) High-accuracy shot record generated with 7 = 0.0005 s and h = 5 m. (b) Low-accuracy shot record generated with 7 = 0.002 s and h = 20 m. (c) Corrected shot record by
the NDSNN. (d) Some traces from (a), (b) and (c), and the difference between (c) and (a).
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Fig. 10. Globally normalized time-frequency envelope misfits. Here, the formula used for computing misfit comes from Kristekova et al. (2009). (a) The misfits between the low-
accuracy waveform shown in Fig. 9(b) and high-accuracy waveform shown in Fig. 9(a). (b) The misfits between the corrected waveform shown in Fig. 9(c) and high-accuracy

waveform shown in Fig. 9(a).
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improve the accuracy and efficiency of seismic FD modeling.

The first example is for a homogeneous model. The size of the
model is 5000 m x 5000 m, and the P-wave velocity is 2000 m/s. A
Ricker wavelet with a main frequency of 25 Hz is used to generate
vibrations. The entire original low-accuracy wavefield data set with
dispersion artifacts is computed by FD method with 7 = 0.002 s and
h = 10 m. The generator neural network adopts a nineteen-layer
encoder-decoder structure. It involves an initialization module,
three encoding modules, eleven residual modules, three decoding
modules and a recovery module, in which the encoding modules
and decoding modules are connected by the residual modules. The
discriminator neural network adopts a five-layer convolutional
structure. The certainty coefficients of the Li-norm loss term and
the Sobel operator loss term are 30 and 10 respectively. The batch
size is set to 1. The learning rate is set as 0.001. Fig. 3 shows the
training losses of epochs for the homogeneous model. As the epoch
increases, the loss value gradually stabilizes. The network training
is very stable when the epoch reaches 400. The training iteration is
taken as 400.

Figs. 4 and 5 display snapshots, shot records and their differ-
ences for the homogeneous model. The snapshot and the shot re-
cord generated with 7 = 0.0005 s and h = 5 m have little dispersion
and high accuracy. However, the numerical dispersion including
both the temporal and spatial dispersion is very obvious in the
snapshot and the shot record generated with 7 = 0.002 s and
h = 10 m. From these figures, it can be found that the wavefield
after dispersion correction by the NDSNN is very clear and close to
the high-accuracy wavefield generated using the small time step
and the fine gird. However, from the corrected snapshot by the
conventional pix2pix algorithm without the Sobel operator, it can
be seen that the numerical dispersion is suppressed but the
wavefield is fuzzy. These figures show that the proposed method
can steadily and effectively suppress the numerical dispersion
including both the temporal and spatial dispersion from seismic FD
modeling.

To make a quantitative analysis on the accuracy of the corrected
wavefield data sets by the NDSNN, I compute the correlation be-
tween the corrected and high-accuracy wavefield data for the ho-
mogeneous model. I calculate the Pearson correlation coefficient
between two sets of corresponding wavefield data and repeat this
procedure over the entire data sets. The average correlation coef-
ficient between the corrected and high-accuracy seismic traces is
approximately 0.9988. This further indicates that the wavefield
after dispersion correction by the NDSNN is quite close to the high-
accuracy wavefield generated using the small time step and the fine
gird.

3164
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The second example is for a heterogeneous model. Fig. 6 shows
the velocity model for the modified Society of Exploration Geo-
physicists/European Association of Geoscientists and Engineers
(SEG/EAGE) salt model. The source is a Ricker wavelet with a main
frequency of 16 Hz. The entire original low-accuracy wavefield data
set with dispersion artifacts is computed by FD method with
7 =0.002 s and h = 20 m. The corresponding training losses are
shown in Fig. 7. When the epoch reaches 600, the network training
can be extremely stable. The other training parameters and the
architecture of the generator and discriminator in the neural
network are the same as in the first example.

Figs. 8 and 9 show snapshots, records and their differences for
the modified SEG/EAGE salt model. Figs. 8(b) and 9(b) display that
there are visible dispersion artifacts in the low-accuracy snapshot
and record. Fig. 8(c) and (a) suggest that the corrected snapshot by
the NDSNN is quite close to the high-accuracy snapshot, and their
difference shown in Fig. 8(d) is very small. Fig. 9 displays the similar
results. From Figs. 8 and 9, we can see that the proposed method
has great accuracy and it effectively suppresses the numerical
dispersion of seismic FD modeling.

To quantify the accuracy of the corrected wavefield by the
NDSNN, I use the globally normalized time-frequency envelope
misfit criteria (Kristekova et al., 2009) to characterize the difference
between two waveforms for the modified SEG/EAGE salt model.
Fig. 10 shows the globally normalized time-frequency envelope
misfits between the low-accuracy and high-accuracy waveforms
and the corrected and high-accuracy waveforms. It is evident that
the corrected waveform exhibits much smaller misfit than the raw
low-accuracy waveform. The quantitative analysis demonstrates
that the NDSNN decreases significantly the misfits between the
seismic waveforms by suppressing the numerical dispersion.

Finally, I discuss the computational efficiency of the proposed
method. The total computing cost of the proposed method involves
the generating time of the training data set, the NDSNN training
time, the computing time for simulating the entire low-accuracy
wavefield data set using the large time step and the coarse grid,
and the time for using the NDSNN to process the entire low-
accuracy wavefield data set. Fig. 11 shows the computing costs of
the proposed method and the conventional method for the modi-
fied SEG/EAGE salt model. The computations of the different
methods are performed on the same computer (ThinkPad with
Intel Core i7-9850H CPU and 16 GB memory). For these two
methods, the computing time increases with the increase of the
shot number, especially the soaring computing cost of the con-
ventional method, as the modeling uses the fine temporal and
spatial discretization. For my proposed method, even with a small
number of shots that need to be corrected, it also costs time in
generating training set, training neural network, and correcting
wavefield. Therefore, when the proposed method is used to simu-
late a small number of shots, it may not have advantage in
computational efficiency compared to the conventional FD method
with the small time step and the fine grid. However, as is shown in
Fig. 11, when the shot number of seismic modeling exceeds 3, my
proposed method starts to show obvious advantages in saving
computing costs without compromising accuracy.

4. Conclusions

I have presented a new method to improve seismic modeling
performance by combining the FD scheme with the NDSNN. The
NDSNN is used to simultaneously suppress the temporal and spatial
dispersion of seismic FD modeling. Numerical modeling examples
indicate that the proposed method can effectively improve the
accuracy of seismic FD modeling. For large geologic models or
large-scale seismic numerical modeling, the proposed method can
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greatly reduce the computational cost with necessary accuracy.
Moreover, the larger the model or the scale is, the more obvious the
advantage of the proposed method can be found. Because the nu-
merical dispersion is independent of the particular mathematical
model, the proposed method can be extended directly to 3D
seismic wave equation modeling, inversion and migration. How-
ever, in 3D, the amount of data and the application time may in-
crease significantly. In addition, the retraining of the NDSNN is
required each time the geologic model is changed, which restricts
the applicability of the proposed method because training is time
consuming. Thus, the future development trends of this method
could be the generalization of the network and the application of
the deep learning approaches that require less training.
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