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ABSTRACT

Seismic wave propagation in fluid-solid coupled media is currently a popular topic. However, traditional
wave equation-based simulation methods have to consider complex boundary conditions at the fluid-
solid interface. To address this challenge, we propose a novel numerical scheme that integrates the
lattice Boltzmann method (LBM) and lattice spring model (LSM). In this scheme, LBM simulates vis-
coacoustic wave propagation in the fluid area and LSM simulates elastic wave propagation in the solid
area. We also introduce three different LBM-LSM coupling strategies, a standard bounce back scheme, a
specular reflection scheme, and a hybrid scheme, to describe wave propagation across fluid-solid
boundaries. To demonstrate the accuracy of these LBM-LSM coupling schemes, we simulate wave
propagation in a two-layer model containing a fluid-solid interface. We place excitation sources in the
fluid layer and the solid layer respectively, to observe the wave phenomena when seismic waves
propagate to interface from different sides. The simulated results by LBM-LSM are compared with the
reference wavefields obtained by the finite difference method (FDM) and the analytical solution (ANA).
Our LBM-LSM coupling scheme was verified effective, as the relative errors between the LBM-LSM so-
lutions and reference solutions were within an acceptable range, sometimes around 1.00%. The coupled
LBM-LSM scheme is further used to model seismic wavefields across a more realistic rugged seabed,
which reveals the potential applications of the coupled LBM-LSM scheme in marine seismic imaging
techniques, such as reverse-time migration and full-waveform inversion. The method also has potential
applications in simulating wave propagation in complex two- and multi-phase media.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Fang et al., 2023; Li et al., 2023) and reverse-time migration (RTM)
(e.g., Yuetal, 2016; Li et al., 2019, 2021; Mao et al., 2021; Li and Qu,

Wave propagation across the fluid-solid interfaces is a common
and vital topic in many engineering application fields (e.g., marine
seismic survey, borehole sonic log, non-destructive testing, rock
physics; Zhang, 2004; Zhan et al., 2020), and can be used in full-
waveform inversion (FWI) (e.g., Liu et al., 2013; Shi et al., 2014;
Liu et al., 2019; Wang et al., 2019; Qu et al., 2020; Aghamiry et al.,
2020; Yao et al., 2020; Zhang et al., 2020; Wang et al., 2022b;
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2022; Zhou et al., 2022; Wang et al., 2022d; Qu et al., 2023; Mu
et al,, 2023; Li et al., 2024). To address these problems, a lot of
simulation approaches have been proposed, such as finite-
difference method (FDM) (Virieux, 1986; Graves, 1996; van
Vossen et al., 2002; Zhou et al., 2005; Qu et al., 2016; Chen et al.,
2017, 2019; Wu et al., 2018; Zou et al., 2020; Wang et al., 2022a,
2022c; Ren et al.,, 2022), and finite-element method (Lysmer and
Drake, 1972; Serén et al., 1990, 1996). Two common computa-
tional methods are frequently employed to calculate the wavefields
in fluid-solid coupled media. The partitioned approach uses one
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numerical calculation method to solve the acoustic wave in the
fluid region and another simulation method to calculate the elastic
wave in the solid region. The coupling of the fluid-solid boundary is
achieved by introducing appropriate explicit boundary conditions
that enable seismic waves to propagate throughout the computa-
tional region. However, this approach usually requires detailed
information such as the specific location and morphology of the
fluid-solid interface to be known (Yu et al., 2016). van Vossen et al.
(2002) proposed a mirroring method to deal with the fluid-solid
boundary for the wavefield error problem caused by the devia-
tion of the interface position in the FDM simulation. It is shown that
this method can suppress the numerical dispersion caused by the
tilted interface to a certain extent, but it is not suitable for irregular
fluid-solid interfaces. Carcione and Helle (2004) simulated the
seismic wave crossing through a fluid and viscoelastic solid
coupling media based on domain decomposition techniques and
also analyzed the waves associated with the fluid-solid interface
using amplitude variation with offset (AVO). Wilcox et al. (2010)
introduced a high-order discontinuous Galerkin scheme for the
numerical solution of three-dimensional wave propagation prob-
lems in coupled elastic-acoustic media. Soares (2011) summarized
the common partitioned coupling methods for computing fluid-
solid coupling problems and found that such methods usually
require the use of domain decomposition techniques where either
common interface nodes or partially or fully overlapping compu-
tational grids are used at the interface, and then the direct transfer
process of the wavefield in two different regions is realized with the
help of some explicit direct coupling method or implicit iterative
coupling method. To better fit with the topographic interface on the
sea bottom, Sun et al. (2021) proposed a curvilinear-grid FDM to
implement the fluid-solid boundary conditions. Lecoulant et al.
(2022) employed the spectral finite-element scheme to simulate
the low-frequency seismo-acoustic waves generated by submarine
earthquakes in the ocean and found they are comparable to the
theoretical ones.

While conventional numerical schemes can enhance the
computational accuracy of wave propagation near interfaces by
incorporating boundary conditions (such as normal displacement
and traction continuity for horizontal interfaces) and averaging
elastic moduli and densities, they fall short in providing an intuitive
depiction of wave scattering at irregular interfaces. Moreover, these
methods rely on continuity assumptions about the wave equation
and may impede the flexibility in modeling interfacial wave
phenomena.

The lattice Boltzmann method (LBM) is a microscopic dynamic
simulation method based on statistical physics. It is suitable for
modeling various physical phenomena in fluids without solving the
traditional wave equations or the Navier-Stokes equations. LBM
achieves the purpose of simulating macroscopic complex physical
phenomena by tracking the simple collision and streaming process
between microscopic particles. LBM originated from the Navier-
Stokes equation and was first proposed by McNamara and Zanetti
(1988) to realize the numerical simulation of flow field. Due to its
flexible boundary processing, simple calculation, easy parallelism,
and complete discrete characteristics, it has a certain development
in the field of wave propagation. Chopard et al. (1998) studied the
wave and fracture evolution processes in solid systems based on
the LBM model with the Bhatnagar-Gross-Krook collision operator.
Xu and Sagaut (2011) proposed an ideal strategy for reducing
dispersion and dissipation errors of the LBM model for simulating
aeroacoustics problems. Li and Shan (2011) studied the propagation
and attenuation laws of adiabatic acoustic waves based on the LBM
theory. Frantziskonis (2011) and O'Brien et al. (2012) successively
tried to use LBM to simulate the propagation of elastic waves and
discussed the dispersion and computational stability issues in
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numerical simulations, respectively. Xia et al. (20173, 2022) modi-
fied LBM to simulate wave propagation in viscous media, revealing
a quantitative relationship between the relaxation time in LBM and
the quality factor in the Kelvin-Voigt-based wave equation. Escande
et al. (2020) proposed von Neumann stability analysis and
Chapman-Enskog analysis for LBM for wave propagation in
isotropic linear elastic solids, and successfully calculated the sur-
face wave in elastic solids by LBM for the first time. Jiang et al.
(2022) proposed a set of stability models for the multiple-
relaxation-time lattice Boltzmann model and verified by the
seismic wavefield simulation experiments. Although some experts
have applied LBM to the numerical simulation of elastic waves, but
the relevant research is not yet mature, so LBM is more suitable for
the simulation of waves in fluids.

The lattice spring model (LSM) is a non-wave equation modeling
scheme used for numerical simulations of dynamic wave propa-
gation or quasi-static deformation in solid media. Toomey and Bean
(2000) proposed a discrete particle model where a continuous solid
media is represented as closely spaced microscopic spheres ar-
ranged in a hexagonal structure. The numerical simulation of elastic
waves in Poisson solid was achieved through Hooke's law and the
Verlet algorithm, which is known as the discrete particle scheme
(DPS) or elastic lattice method (ELM). However, the Poisson's ratio
of the media described by the DPS model is fixed at 0.25, which
limits its application in certain fields. O'Brien and Bean (2004)
added a non-central force term to the ELM model proposed by
Toomey and Bean (2000) to get rid of the restriction on the Pois-
son's ratio in the ELM model. Pazdniakou and Adler (2012) intro-
duced two groups of angular springs (i.e., 45° and 60°) into the
original LSM model to improve its flexibility and adaptability, and
the idea of elastic elements was also incorporated in the new model
to realize wavefield simulation in complex media like porous me-
dia. Hu and Jia (2016, 2018) modified the ELM model and termed it
as dynamic lattice method (DLM) by making use of the orientations
of the bonds in the lattice and by including more adjacent nodes or
bonds to increase the calculation accuracy, and the proposed DLM
scheme was employed to simulate wave propagation in heteroge-
neous Tl media and further to be tested in seismic imaging. Xia et al.
(2015, 2017b, 2018) combined LSM with the Verlet algorithm and
proposed a new method to simulate elastic wave propagation in
subsurface media. The proposed method makes the mesh genera-
tion more flexible, which means a wide potential application. As a
promising simulation technique in complex solid/porous media,
the non-wave equation-based LSM characterizes the elastoplas-
ticity from a micromechanics perspective thus enjoys good elastic
system dynamics and can effectively simulate waveform propaga-
tion in complex media. More recently, Liu et al. (2020) proposed a
modified LSM that can be used to analyze and characterize the size-
dependent effect on wave propagation in an elastic media with a
higher Poisson's ratio by comparison with the modified couple
stress theory. Wei (2021) studied fatigue cracking in homogeneous
and composite materials by using a similar lattice particle method
and achieved reasonable computational accuracy and efficiency.
Tang et al. (2022) proposed a novel perfectly matched layer (PML)
boundary condition for LSM to model wave propagation in complex
media. It can be seen that LSM or its derivative model is very
suitable for simulating the wave problem in solid media.

The collaboration between LBM and LSM holds promise in
providing a comprehensive and versatile approach to address a
wide range of wave simulation challenges across diverse media and
scenarios. To simulate seismic wave propagation in geological
models with significant variations in media properties, the devel-
opment of accurate and stable methods for solving coupled fluid-
solid boundary models is a crucial research area in exploration
seismology and other related fields. Ladd and Verberg (2001)
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proposed a numerical calculation method that can simulate the
hydrodynamic interaction between suspended solid particles by
modifying the classical lattice Boltzmann equation and using the
idea of momentum exchange to integrate the forces between solids
and fluids into the updated formulation of the LBM. O'Brien and
Bean (2004) implemented the coupling between the LBM and
LSM considering only the action of the wire spring with the help of
momentum exchange algorithm. This technique was used to solve
the mechanical coupling problem of the deformation of the fluid-
rock system, and the effectiveness of the coupling method was
verified by using the reciprocity theorem. Pazdniakou and Adler
(2013) developed a novel LBM-LSM coupling model based on
O'Brien and Bean (2004), in which the LSM not only considers the
conventional linear spring but also incorporates angular springs,
allowing the Poisson's ratio of the simulated solid media to be
variable within a certain range. Adler and Pazdniakou (2018)
further employed this LBM-LSM coupling method to study the
corresponding seismic wavefields of complex geological models
containing pores and compared the differences between the cor-
responding wavefields with and without pores under different
model assumptions. Jiang and Zhao (2019) and Li et al. (2022)
developed a similar fluid-solid coupling scheme based on the
LBM and a distinct LSM, in which the coupled model shows its
ability to mimic hydraulic fracturing in formations with complex
fracture networks. Nguyen et al. (2021) numerically investigated
the acoustic properties of dry or saturated Fontainebleau sandstone
porous media using a combination of LSM and LBM. Wang et al.
(2023) reviewed the recent progress of LBM-solid coupling
schemes, which provide new directions for wave simulation with
advanced LBM-LSM coupling schemes. As far as we know, the
commonly used LBM-LSM-based fluid-solid boundary coupling
schemes for wave simulations are mainly carried out through
combination of the standard bounce back strategy and the mo-
mentum exchange algorithm. Under this assumption, the fluid
particles will be bounced back along the original path when they
hit the solid boundary, while the momentum carried by the fluid
particles will be transferred to the solid nodes at the interface, thus
triggering the deformation of the solid interface, so this type of
fluid-solid boundary coupling method is called momentum ex-
change algorithm.

Several coupling techniques between LBM and LSM have been
proposed, but their applications have mainly been in fluid dy-
namics and not directly in numerical simulations of wavefields. It is
essential to note that the two methods are not interchangeable;
instead, they complement each other and can work in tandem to
tackle different aspects of wave propagation problems effectively.
In this paper, we focus on simulating wavefields in fluid and solid
media using LBM and LSM, respectively, and explore a feasible and
effective mutual coupling technique for studying seismic wave
propagation in two-phase media with fluid-solid interfaces.

The rest parts of this paper are as follows. In Section 2, we give
the basic theory of the LBM method, LSM method, and the LBM-
LSM coupling method in detail. In Section 3, we verify the effec-
tiveness of the proposed fluid-solid coupling schemes in two-layer
fluid-solid coupled media and apply it to a complex seabed model.
At last, we make discussions and reach some conclusions.

2. LBM-LSM coupling schemes

The lattice Boltzmann method (LBM) is a computational fluid
dynamics technique used to simulate and model fluid flow and
other complex physical phenomena. It is a mesoscopic method,
meaning it operates at an intermediate level between the macro-
scopic continuum and the microscopic particle-based approaches.
The lattice spring model (LSM) is a discrete model used to study the
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mechanical behavior of materials, particularly in the context of
solid mechanics and material science. It is a mesoscopic approach
that bridges the gap between the macroscopic continuum and the
microscopic atomistic models. The frameworks of LBM and LSM are
shown in Appendix A and Appendix B, respectively.

Based on the LBM-LSM coupling method to simulate wavefields
in complex media with fluid-solid dual phases, the most critical
aspect is to handle the propagation of seismic waves at the fluid-
solid boundary. The most commonly employed strategy for
coupling LBM and LSM at the fluid-solid boundary is to discretize
the entire computational domain using the same set of spatial grids
and to differentiate which nodes represent solids and which
represent fluids by defining Boolean variables or phase functions.
The schematic diagram of LBM-LSM fluid-solid coupling method is
shown in Fig. 1, where the red solid dots represent LSM solid nodes,
and the blue hollow circles represent LBM fluid nodes. The fluid-
solid boundary is generally located at the midpoint of the line
connecting the solid node and the adjacent fluid node in the vi-
cinity of the boundaries, which is labeled with the green dashed
line in Fig. 1. Suppose x represents the fluid boundary node coor-
dinate, and x — e; represents the adjacent solid boundary node
coordinate, which are located on both sides of the boundary. When
the fluid-solid boundary is fixed, the standard bounce back scheme
is expressed as
ﬁ(xat+1):f—i(xat)7 (1)
where —i is the opposite direction of i. On the other hand, when the
fluid-solid boundary is moving and both the boundary velocity and
solid node velocity are v, the standard bounce back scheme is
expressed as (O'Brien and Bean, 2004; Buxton et al., 2005)
f;(xat‘i’]):ffi(xat)+2pBi(V'ei)a (2)
where, B; = w;/cZ is a constant. In this case, due to the presence of
the fluid node, the total force acting on the LSM solid nodes is

N M
Fi= =K ga[(uj — tn) « Xy | Rj + > G, (3)
n=1 i
where
Zei
Gji :E [f,(XJ — €, t+ l) +p(x1 — €, t+ 1)81(\’] . e,')] (4)

N in the summation sign of Eq. (3) is the summation over the
adjacent linear springs, and M in the summation sign is the

Solid Boundary Fluid
|
| o o
|
|
O (@] @ LSM solid node
|
|
|
i (@] (@] O LBM fluid node
|
|
o o

Fig. 1. Sketch map of the LBM-LSM fluid-solid coupling scheme. The red solid dots
represent LSM solid nodes, the blue hollow circles represent LBM fluid nodes, and the
green dashed line represents the fluid-solid boundary (Revised after O'Brien and Bean
(2004)).
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summation over the adjacent fluid nodes. In other words, the part
before the plus sign in Eq. (3) is the force exerted by the neigh-
boring solid nodes, and the part after the plus sign is the force
exerted by the neighboring fluid. K is the spring elastic constant and
gn is the coupling constant. The final elastic wave equation can be
ensured to be isotropic by choosing the value of g, reasonably. u;
and u, are the displacements of nodes ¥; and xp, respectively, and
ﬁjn is the unit vector pointing from node ¥; to node xy.

The standard bounce back scheme is commonly used in litera-
ture when fluid particles come into contact with the fluid-solid
interface. However, this scheme may not be appropriate for
seismic waves that cross the wave impedance interface, as the re-
flected wave is usually reflected back to the fluid region as a
specular reflection. Furthermore, actual subsurface strata are not
smooth and regular partition interfaces, so seismic waves are likely
to be diffusely reflected when they cross such uneven wave
impedance interfaces. Therefore, two different LBM-LSM fluid-solid
coupling schemes, namely the specular reflection scheme and the
hybrid scheme, have been developed and utilized in this work.

The sketch maps of the two typical LBM-LSM boundary condi-
tions, standard bounce back scheme and specular reflection
scheme, are shown in Fig. 2. For simplicity, we assume that x¢
represents the coordinates of the fluid boundary node above the
interface and xs represents the coordinates of the solid boundary
node below the interface, which are located on both sides of the
boundary. Suppose at a certain moment, a fluid particle streaming
along direction i at node x; will encounter a solid node xs. If the
particle has a standard bounce back, the particle will stream along
direction —i at node x; at the next moment, and if the particle has a
specular reflection, the particle will stream along direction + i (see
Fig. 2). The following describes the basic principles for LBM-LSM
coupling schemes in three cases:

1) Standard bounce back scheme

Assuming that the motion velocity of the solid node x; at the
fluid-solid boundary is vs, when the fluid particle hits the fluid-
solid boundary with velocity ¢; and a standard bounce back oc-
curs, consider that the streaming velocity of the LBM fluid particle
does not change, and according to the momentum exchange algo-
rithm, the particle distribution function along the standard bounce
back direction —i at node x; after the collision can be expressed as

f—i(xf’ t+ Af) =fi (va f) — 2w;B;(vs - €;), (5)

where f;(x,t) is the particle distribution function along the di-
rection i after the streaming step of grid node x;, ¢; is the particle
streaming velocity along the i direction, w; is the LBM discrete
weighting factor, and c; is the LBM lattice speed of sound. Since the
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forces are reciprocal, the force exerted by a fluid particle on a
neighboring solid node xs can be expressed as

Ah3

At ()

F i(xs,t+Af) = [cfi (xf, t) - c,J,,»(xf, t+At>]
in which, At and Ah are the time and space sampling steps,
respectively.

2) Specular reflection scheme

Similarly, according to the momentum exchange algorithm, the
particle distribution function along the specular reflection direction
+i at the node x; after the collision can be expressed as
Foi(®e e+ A8) =Fi(%c,t) — wiBi[vs - (¢ — €.7)]. (7)

Accordingly, the force exerted by the fluid particles on the adjacent
solid node xs can be expressed as

Ah3

At (8)

F i(xs,t+At) = [cfi (xﬁ t) —c,if i (xf, t+ At)]

3) Hybrid scheme

According to the fluid-solid boundary momentum exchange
algorithm, assuming that part of the fluid particles on the node x¢
after encountering the fluid-solid boundary (accounting for «)
moves along the standard bounce back direction — i, and the other
part (accounting for §) moves along the specular reflection direc-
tion + i. In this case, the particle distribution function on the node
x; after the collision step can be expressed as

f,i<xf, t+ At) =« V,- (xf, t) — 2w1~B,~(vS-c,~)},

fii (xf, t+ At) = ﬁ{fi (Xf» f) — W;Bj[vs-(c; — C+i)}}- ©

where the scaling factors a« and ( are required to satisfy the
following conditions

Consequentially, the force of the fluid particles at the boundary
on the neighboring solid particles can be expressed as

0<a,f<1,

a+p6<1. (10)

F(xs,t+ At) =aF _j(Xs,t + At) + BF (x5, t + At). (11)

With such LSM and LBM fluid-solid coupling boundary conditions,

Standard bounce back scheme

Specular reflection scheme

Solid area

Fig. 2. Two typical LBM-LSM boundary conditions.
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the seismic wavefield can propagate in both directions between the
fluid and solid regions.

In summary, the simulation of fluid-solid coupling wavefields
with the LBM-LSM scheme can be carried out in three steps as
shown in Fig. 3 and described below.

1) LSM iteration. The first step involves the LSM iteration, which
includes locating all solid grid points and calculating linear and
angular spring forces using Eq. (B-7), and updating relevant
displacements, velocities, and accelerations using the velocity
Verlet algorithm in Eq. (B-8).

2) LBM iteration. The second step involves the LBM iteration,
which includes locating all fluid grid points, performing the
collision step using the collision operator in Eq. (A-3), and per-
forming the streaming step using the improved streaming step
in Eq. (A-8). This step is carried out differently depending on
whether the next node is fluid or solid. If it is fluid, then
streaming is performed directly, while if it is solid, then the
bounce-back occurs.

3) LBM and LSM coupling calculation. The third step involves the
coupling calculation of LBM and LSM. In this step, the vibration
velocity of a solid node is assigned to a neighboring fluid node
using interpolation or a weighting factor multiplication if the
neighboring node is fluid. The fluid forces on solids are trans-
ferred to neighboring solid nodes through momentum exchange
or interpolation algorithms if the neighboring node is solid after
the LBM calculation.

3. Numerical examples
3.1. 2D layered models

To examine whether aforementioned fluid-solid coupling
method is feasible, this paper will first adopt a relatively simple
two-layer fluid-solid coupling model to conduct wave simulation
tests, with the upper layer of the model being the fluid region and
the lower layer the solid region. The P-wave velocity in the fluid
region is 1155 m/s and the density is 1000 kg/m?>; the P-wave and S-
wave velocities in the solid region are 1443 m/s and 962 m/s,
respectively, and the density is 2000 kg/m>. The dominant fre-
quency of the Ricker wavelet source used in the simulation is 15 Hz,
and the delay time is 0.08 s. The position of the source is (x = 500 m,
z =450 m), when the source is added on a node in the fluid region,

LSM calculation

Update displacement, velocity
and acceleration
(velocity Verlet algorithm)

P e

|
} [ Fluid forces on fluid nodes are ’ }
| |
| |
| |
|

transferred to neighboring solid
nodes through momentum
exchange algorithms

node is assigned to neighboring
fluid nodes by multiplying by
weighting factors

The vibration velocity of a solid
coupling calculation

LBM + LSM ‘

‘ Locate fluid grid nodes ‘

[ Perform collision step J

Case 1: The next node is fluid (direct stream)

Perform streaming step
Case 2: The next node is solid (bounce occur)

LBM calculation

Fig. 3. Flow chart of LBM-LSM fluid-solid coupling wavefield simulation scheme.
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the depth of the fluid-solid interface is set to 550 m; when the
source is added to the solid region, the depth of the fluid-solid
interface is set to 300 m (see Fig. 4). The spatial sampling interval
is 1.0 m, the time sampling interval for the FDM results of the
Kelvin-Voigt model (denoted as FDM-KV) (Madja et al., 1985) is
0.125 ms, and the time sampling interval for the LBM-LSM scheme
is 0.50 ms. The number of discretization grids used in the entire
computing area is 1001 x 1001. In the numerical simulation tests in
this section, the LSM uses a square grid considering both linear and
angular spring forces, while the LBM uses a relatively simple but
typical single-relaxation-time LBM model with the relaxation time
to be 0.6 or 1.0. Three distinct LBM-LSM coupling schemes are
tested as follows.

3.1.1. Standard bounce back scheme

First, consider the case where a fluid particle encounters the
fluid-solid boundary with a standard bounce back, i.e., the fluid
particle bounces back to the fluid region along the original direction
of incidence (see Fig. 4). In order to examine the application of this
fluid-solid coupling method more comprehensively, the cases of
seismic waves propagating from the fluid region to the fluid-solid
interface and then incident into the solid region are simulated
(the simulation results are shown in Figs. 5—7), and the cases of
seismic waves propagating from the solid region to the fluid-solid
interface and then incident into the fluid region (the simulation
results are shown in Figs. 8 and 9). The wave profiles calculated by
the LBM-LSM coupling method along the depth direction at
x =400 min Figs. 6 and 9 are extracted in Figs. 5 and 8, respectively,
for comparison with the FDM-KV solution and an analytical solu-
tion for the wavefield reflected at a fluid-solid boundary (denoted
as ANA) (de Hoop and van der Hijden, 1983). The relative errors are
calculated with the least-squares misfit function defined in Xia
et al. (2018).

According to Figs. 5—9, it can be seen that the seismic wavefields
solved by the LBM-LSM coupling method match well with those
calculated by FDM-KV with the same simulation parameter settings

—> 1001 m

—

\ 4

<

Vo, =1155 m/s, Vs, =0 m/s

500 m

1001 m

V,, = 1443 m/s, V, = 962 m/s

Y
z

Fig. 4. A two-layer model separated by a horizontal fluid-solid interface. When the
interface is located at the depth indicated by the red dashed line, the source is placed
at the solid side. Conversely, when the interface is at the depth indicated by the blue
dashed line, the source is placed at the fluid side.
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Fig. 6. Seismic profiles of (a) Vx and (b) Vz at x = 400 m for the two-layer fluid-solid coupling model, where the source is placed in the fluid layer. The relative error between the

LBM-LSM and FDM-KV profile of Vx is 7.87% and of Vz is 0.84%.

when the standard bounce back scheme is used for the fluid-solid
coupling interface of LBM-LSM, except for some minor differences
in the details of the wavefields at the interface as shown in the
residual wavefields between LBM-LSM and FDM-KV. The main
morphology and polarity characteristics of the wavefields simu-
lated by both methods are in agreement. Both methods agree well
regardless of whether the source is loaded on a fluid node or a solid
node.

3.1.2. Specular reflection scheme

Next, consider the case where a fluid particle hits the fluid-solid
boundary and undergoes a specular reflection, i.e., the fluid particle
bounces back to the fluid region along the mirror-symmetric di-
rection. The simulation parameters are consistent with subsection
3.1.1, except for the interface coupling scheme. Without loss of
generality, Figs. 10 and 13 contrast the snapshots calculated by
LBM-LSM and FDM-KV for the seismic source added on the fluid
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node and the solid node, respectively. Figs. 11 and 14 abstract the
corresponding wave profiles in the depth direction. Moreover, the
seismic traces for LBM-LSM, FDM-KV and ANA recorded at (900 m,
700 m) for the two-layer fluid-solid coupling model with the source
added on fluid LBM node are compared in Fig. 12, which shows the
difference between LBM-LSM/FDM-KV and the analytical solution
is a little large because the analytical solution is fully elastic, while
the adopted LBM-LSM coupling and FDM-KV schemes take into
account a certain viscosity (i.e., 7 = 1.00). It is easy to conclude from
Figs. 10—14 that the wavefields of the z-component of the vibration
velocity calculated by the LBM-LSM agree well with the FDM-KV
results, while the simulated results of the x-component differ
more significantly from the FDM-KV reference solution. The reason
why there is a good match of z-component of the vibration velocity
and a bad match of x-component of the vibration velocity is that the
velocity of the z-component of the bounced particle is almost
constant and the velocity of the x-component of the bounced
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Fig. 7. Seismic traces of (a) Vx and (b) Vz recorded at (900 m, 700 m) for the two-layer fluid-solid coupling model, where the source is placed in the fluid layer. The relative error of
the seismic records between LBM-LSM/FDM-KV and ANA is 0.28%/0.68% for Vx and 0.91%/0.81% for Vz, respectively.
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(c and f). The black dashed line denotes the position of the fluid-solid interface.

particle is reversed when changing from the standard bounce back
scheme to the specular reflection scheme. By comparing the results
in this subsection with those in the previous subsection, it is easy to
find that the difference in the motion of fluid particles at the
interface when implementing LBM-LSM fluid-solid coupling
scheme can directly lead to the difference between the simulated
seismic wavefields.

3.1.3. The hybrid scheme

In this subsection, a hybrid scheme is employed to simulate the
motions of fluid particles at the fluid-solid interface, and for
simplicity, the scaling factors « and 8 in Eq. (9) are both chosen to be
0.50. Similarly, the snapshots and depth profiles of the LBM-LSM
and FDM-KV are also compared here. As can be seen from the
snapshots in Fig. 15, the snapshots of the LBM-LSM using the hybrid
method have similar transmitted/reflected P- and S-wave patterns
with those of FDM-KV, but still there are deviations between the
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LBM-LSM calculated wave profiles and the FDM-KV results. Similar
conclusions can be drawn from the results of the seismic profiles in
Fig. 16.

This section highlights the differences between wavefields ob-
tained from simulations using the three different LBM-LSM fluid-
solid interface treatment strategies. Table 1 presents the relative
errors between the profiles or snapshots of LBM-LSM and FDM-KV.
The specular reflection scheme shows the best agreement with
FDM-KV, while the standard bounce back scheme shows the worst
agreement. The conclusion cannot be drawn that the standard
bounce back scheme is necessarily incorrect, as it may be necessary
to use both standard bounce back and specular reflection particles
at an unsmooth interface, where a full reflection scenario is more
probable. Besides, one can find from Table 1 that the relative errors
of Vx are generally larger than those of Vz, that's because the var-
iables for z component are less affected by the different rebound
methods, while the variables for x component are more affected.
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Fig. 9. Seismic profiles of (a) Vx and (b) Vz at x = 400 m for the two-layer fluid-solid coupling model, where the source is placed in the solid layer. The relative error between the

LBM-LSM and FDM-KV profile of Vx is 1.92% and of Vz is 1.17%.
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Fig. 10. Snapshots of (a and b) Vx and (d and e) Vz calculated by (a and d) LBM-LSM and (b and e) FDM-KV for the two-layer fluid-solid coupling model, where the specular
reflection scheme is used to couple LBM and LSM. The source is placed in fluid layer. The relative error between LBM-LSM and FDM-KV snapshot of Vx is 4.56% and of Vz is 1.41%. The
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Therefore, LBM-LSM offers flexibility in coupling the fluid-solid
interface. In the following application examples, unless otherwise
specified, the standard bounce back strategy is used for numerical
calculations of LBM-LSM for simplicity.

3.14. Scholte wave simulation

The numerical simulation of seismic wavefields in fluid-solid
coupled media is full of challenges. In addition to accurately
reproducing the complex wavefield characteristics near the fluid-
solid interface, such as the propagation law of behavior of the
classical P-wave and S-wave, the generation of the Scholte wave is
also a crucial yet difficult problem that cannot be overlooked. The
conditions under which Scholte waves are generated have been
summarized through numerical studies: Scholte wave can emerge
at the fluid-solid interface when the P-wave velocity of the fluid
medium lies between the P-wave velocity and the S-wave velocity
of the solid medium (Glorieux et al., 2001; Carcione et al., 2018). To

enhance the clarity of the Scholte wave demonstration, we
employed a small relaxation time (i.e., 7 = 0.65) and designed a
fluid-solid interface located close to the source at a depth of 500 m,
as depicted in Fig. 4. The source location, the source wavelet
function, and parameters of the upper- and lower-layer media
remain consistent with the previous examples. For comparison,
Fig. 17 illustrates the FDM-KV solution as well as snapshots of the
three different LBM-LSM coupling schemes. Observations from the
simulation data reveal that while the Scholte waves generated us-
ing LBM-LSM schemes exhibit a close resemblance to those derived
from the conventional FDM scheme, nuanced variations are evident
among the outcomes of the different LBM-LSM coupling methods.
Consequently, it can be inferred that LBM-LSM schemes are effi-
cacious for simulating Scholte waves, with the stipulation that
varying fluid-solid boundary conditions exert a direct influence on
the wave characteristics at the fluid-solid interface.
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Fig. 11. Seismic profiles of (a) Vx and (b) Vz at x = 400 m for the two-layer fluid-solid coupling model, where the source is placed in the fluid layer. The relative error between the

LBM-LSM and FDM-KV profile of Vx is 3.85% and of Vz is 1.09%.
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Fig. 12. Seismic traces of (a) Vx and (b) Vz recorded at (900 m, 700 m) for the two-layer fluid-solid coupling model, where the source is placed in the fluid layer. The relative error of
the seismic records between LBM-LSM/FDM-KV and ANA is 3.82%/4.49% for Vx and 5.23%/5.17% for Vz, respectively.

3.2. The seabed model

Since the media parameters are homogeneous in either the fluid
or solid phase in the previous simulation examples, a more general
and realistic complex geological model of the undulating seabed
interface encountered in marine seismic exploration will be tested,
and the specific velocity model is shown in Fig. 18. In which the
depth of the water is around 450 m.

By applying a single-shot source (its horizontal distance to be
500 m) and multi-shot seismic sources (its horizontal distance to be
350, 450, 550, and 650 m) to the vertical component the vibration
velocity at the depth of 637 m, the corresponding snapshots of the
two components of the vibration velocity are displayed in Fig. 19.
Since the sea floor is a relatively strong wave impedance interface,
the reflected, transmitted, and converted waves at the sea floor can
be clearly seen in Fig. 19. One can find from Fig. 19 that the simu-
lation results of LBM-LSM closely resemble those of FDM-KV, the
wave patterns near the seafloor appear more natural, and the
snapshots produced by LBM-LSM exhibit almost no artifacts. The
minor discrepancy in the simulation results between the two
methods primarily stems from their inherent differences in solving
the wave equations and the way they handle the fluid-solid
boundary. Therefore, the combined LBM and LSM approach can

be employed to solve complex seismic wave propagation problems
in the fluid-solid two-phase coupled media.

4. Discussions

LBM is ideal for modeling waves in fluids, while LSM is suited for
modeling waves in solids. Thus, handling the bidirectional propa-
gation mechanism of waves at the fluid-solid boundary is crucial to
solving wave problems in complex media. Based on our literature
research, we found that the standard bounce back scheme of LBM-
LSM is often used in fluid-solid coupling mechanics applications for
treating the fluid-solid boundary. However, this scheme may not be
suitable for simulating seismic wavefields in fluid-solid coupling
media due to the propagation characteristics of seismic waves.
When seismic waves cross the wave impedance interface, the re-
flected waves are typically reflected to the fluid region as specular
reflections. Furthermore, due to the irregularity of subsurface
strata, seismic waves are often diffusely reflected when crossing
unsmooth wave impedance interfaces. The LBM-LSM coupling
method allows for a hybrid approach of standard bounce back and
specular reflection to simulate this phenomenon, with a weighting
factor used to control the proportion of the two bounce back
boundaries. The hybrid approach, which accounts for the actual
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Fig. 13. Snapshots of (a and b) Vx and (d and e

) Vz calculated by (a and d) LBM-LSM and (b and e) FDM-KV for the two-layer fluid-solid coupling model, where the specular

reflection scheme is used to couple LBM and LSM. The source is placed in the solid layer. The relative error between LBM-LSM and FDM-KV snapshot of Vx is 3.75% and of Vz is 1.28%.
The residual wavefields between LBM-LSM and FDM-KV are displayed in (c and f). The black dashed line denotes the position of the fluid-solid interface.
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Fig. 14. Seismic profiles of (a) Vx and (b) Vz at x = 400 m for the two-layer fluid-solid coupling model, where the source is placed in the solid layer. The relative error between the

LBM-LSM and FDM-KV profile of Vx is 3.44% and of Vz is 0.68%.

motion of seismic waves at interfaces, is more valuable due to its
enhanced accuracy and comprehensive insights into seismic ac-
tivities. In addition, the proposed LBM-LSM scheme has also been
employed to simulate the Scholte wave, and reasonable simulation
results have been obtained. Furthermore, the fluid-solid boundary
coupling method studied in this paper, through further research
and development, is expected to take into account the boundary
deformation, fluid transport, energy dissipation and other factors
caused by the wavefield passing through the fluid-solid interface,
and thus can better solve the wave propagation problem in real
fluid saturating porous media. The energy decay or dissipation is
directly related to the magnitude of the LBM relaxation time and
the coupling strategy of the fluid-solid interface. This will provide a
novel numerical simulation tool for the seismic wave propagation
phenomenon in fluid-solid coupled media models (Adler and
Pazdniakou, 2018; Ding et al., 2018, 2021).

However, the current fluid-solid coupling approach in this paper
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employs only the simplest momentum exchange algorithm. To
improve simulation accuracy for practical wavefield simulations,
future work may incorporate interpolation techniques into the
momentum exchange algorithm. Additionally, the weighting co-
efficients of the proposed hybrid scheme for standard bounce back
and specular reflection particles can be adjusted freely beyond the
current 50% limitation. While this coupled method can solve
complex seismic wavefield simulation problems in various two-
phase or multi-phase media, it is still necessary to validate
against physical experimental results. When dealing with the
problem of seismic wave propagation at the fluid-solid interface in
real geological models, it is important to choose the appropriate
fluid-solid coupling treatment based on the physical characteristics
of the interface. Compared to traditional forward simulation
methods based on wave equations, LBM-LSM has several advan-
tages, including independence from wave equations, flexibility in
handling irregular fluid-solid boundaries, and higher simulation
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Fig. 15. Snapshots of (a and b) Vx and (d and e) Vz calculated by (a and d) LBM-LSM and (b and e) FDM-KV for the two-layer fluid-solid coupling model, where the hybrid scheme is
used to couple LBM and LSM. The source is placed in the fluid layer. The relative error between LBM-LSM and FDM-KV snapshot of Vx is 4.51% and of Vz is 2.00%. The residual
wavefields between LBM-LSM and FDM-KV are displayed in (c and f). The black dashed line denotes the position of the fluid-solid interface.
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Fig. 16. Seismic profiles of (a) Vx and (b) Vz at x = 400 m for the two-layer fluid-solid coupling model, where the source is placed in the fluid layer. The relative error between the

LBM-LSM and FDM-KV profile of Vx is 5.45% and of Vz is 2.06%.

Table 1
The relative errors between the profiles or snapshots of LBM-LSM and FDM-KV.
Rebound ways Source position Vx profile Vz profile Vx snapshot Vz snapshot
Standard bounce back Fluid node 0.0787 0.0084 0.0531 0.0159
Solid node 0.0192 0.0117 0.0384 0.0161
Specular reflection Fluid node 0.0385 0.0109 0.0456 0.0141
Solid node 0.0344 0.0068 0.0375 0.0128
Hybrid scheme Fluid node 0.0545 0.0206 0.0451 0.0200

accuracy. This method has promising applications in seismic rock
physics, reservoir fluid prediction, numerical simulation of acoustic
logging, and velocity dispersion studies. It is worth noting that this
paper only considers two-dimensional simulations, but the pro-
posed method and strategy can be easily extended to three-
dimensional cases.
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5. Conclusions

We propose a novel method for simulating wavefields in fluid-
solid coupling media using the LBM-LSM coupling approach with
the standard bounce back scheme and the innovative hybrid
method of standard bounce back and specular reflection fluid-solid
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Fig. 17. Snapshots of Vz in the 2D layered model calculated by (a) FDM-KV, (b) LBM-LSM with standard bounce back scheme, (c) LBM-LSM with specular reflection scheme, and (d)
LBM-LSM with the hybrid scheme. The black dashed line denotes the position of the fluid-solid interface.
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Fig. 18. Marmousi velocity model with a rugged seabed. The black solid curve denotes
the position of the fluid-solid interface.

coupling boundary conditions. This method takes into account the
complex and realistic wavefield propagation effects at the fluid-
solid boundary, and can be applied to seismic exploration-scale
geological models with high accuracy. We validate the proposed

fluid-solid coupling scheme by comparing the results of the three
different boundary conditions used in seismic forward simulations
for a fluid-solid two-layer model with FDM and ANA solutions. The
observed differences between the proposed scheme and the two
reference solutions, FDM and ANA, primarily arise from the
handling of the solid-fluid coupling boundary conditions, the
characteristics of the algorithms employed for wavefield tracking,
and the limited elasticity capacity of the LBM algorithm. The LBM-
LSM fluid-solid coupling method is then applied to simulate wave
propagation in marine seismic exploration models, producing
reliable results.

The LBM-LSM coupling method used in this study is flexible, and
can be extended to three-dimensional cases. The numerical
dispersion characteristics and stability conditions of the coupling
scheme are important topics worthy of further study. The LBM-LSM
coupling method can be employed in various applications including
wavefield simulation of porous media, rock physics modeling,
seismic data interpretation, reservoir fluid prediction, hydraulic
fracturing simulation, seismic monitoring, and geotechnical engi-
neering. With further development, it also has great potential for
applications in seismic rock physics, reservoir fluid prediction,
numerical simulation of acoustic logging, and velocity dispersion
studies of fluid saturated porous media, etc.
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Fig. 19. Snapshots of (a, ¢, and e) Vx and (b, d, and f) Vz in the Marmousi model. (a) and (b) are calculated by LBM-LSM and (c) and (d) by FDM-KV. A single point source is used. (e)
and (f) are calculated by LBM-LSM with a four-point source. The black solid curve denotes the position of the fluid-solid interface.
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APPENDIX A
Lattice Boltzmann method

The lattice Boltzmann method (LBM) is a numerical modeling
technique that simulates complex physical phenomena at the
macroscopic level by depicting the moving state and interaction
mechanism of microscopic particles at the mesoscopic physical
level. Its governing equation is the lattice Boltzmann equation
shown as (Qian et al., 1992)
fi(x+ci7t+1):fi(xat)+Qi(xat)7 (A_l)
where, f;(x,t) is the particle distribution function in the i direction,
¢; is the corresponding discrete velocity vector, and Q;(x,t) is the
collision term, which represents the increment of the particle
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distribution function along the i direction due to collisions between
particles. In the LBM system, the fluid density p and fluid velocity v
in the macroscopic sense can be easily obtained by a simple
weighted summation using the particle distribution function f;(x, t)
and the discrete velocity c;.

/)(X, t) = Zfi(x7 t)v

1

v(x,t) = ﬁiﬂ(x, t)c;i(x, t).

i

(A-2)

In Eq. (A-1), the most commonly used collision operator in LBM is
the simple linearized Bhatnagar-Gross-Krook collision operator
(short as LBM-BGK) (Qian et al., 1992):

0,0~ [ ) [0,

such a collision operator represents a relaxation process in
which the particle distribution function approaches its equilibrium
state, where 7 is the relaxation time and f9 is the equilibrium
distribution function, which is derived from the Maxwell-
Boltzmann velocity distribution function in statistical mechanics
(Qian and Deng, 1997; Xia et al., 2022):

(A-3)

2 2
w_ o [ve e ]
o=l 4"+ 50

(A-4)

The choice of the discrete velocity model is of vital importance
when using LBM for numerical calculations. An LBM model with
too few discrete velocities may result in some physical quantities
that should be conserved not satisfying the conservation law, while
a model with too many discrete velocities may result in computa-
tional waste. The term “DdQgq” is commonly used in LBM to label
different discrete velocity models, where “d” represents the num-
ber of spatial dimensions and “q” represents the number of discrete
velocities. The discrete velocity sets for the D2Q9 and D3Q19
models are shown in Figs. A-1(a) and (b), respectively. In this paper,
the classical D2Q9 model is employed to conduct 2D LBM
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simulations. The discrete velocity sets for D2Q9 model and its
corresponding weighting factors are as follows:

(0,0),i=0,

Cl: (i170)7 0711)7i:17273747 (A_5)
(ilail)vi: 57677787
4/9,i =0,

wi=< 1/9,i=1,2,3,4, (A-6)
1/36,i=5,6,7,8,

and the lattice speed of sound for the same model is ¢s = 1/ v/3.

To better describe the motion of the wave propagation to the
interface in the inner region, the reflection coefficient (R) and
transmission coefficient (T) are defined as (Xia et al., 2022)

R = P2l2 = P11
P11y + paip

_ 2p1m
P11y + paip

(A-7)

where pq, p, and nq, n, are the densities and streaming velocities on
both sides of the interface. The improved LBM streaming step after
taking the reflection and transmission effects into account is
fi®+e, t+1)=Tf(x,t) + Rf_j(x+¢;, 1), (A-8)
where the subscript —i represents the opposite lattice direction of i.
The collision step remains unchanged. For the wavefield simulation
of a viscous absorbing medium, it is particularly important to match
the relaxation time 7 of the LBM with the quality factor Q of the
media.

(a) G\ (2) @
: of
o

(b)
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different quality factors according to the actual needs. For the inner
boundary condition treatment, there are common schemes such as
standard bounce back, mirror bounce back, and extrapolation, etc.
When it comes to wave problems, artificial reflections from trun-
cated boundaries seriously interfere with the effective signal. By
combining the viscous absorbing boundary and the PML absorbing
boundary based on LBM-BGK, Jiang et al. (2023) proposed a joint
absorbing boundary that better solves the truncated boundary
reflection problem. In the two-dimensional case, its form is given as

F(x+cAt, t+At) — f(x,t)

)

Wy, - W

— nAt (2h +aW + diag(cx) XZTHZ (A-10)
. Wx,z - Wx,zfl

+ dlag(cz) T) ’

where 7° is the modified relaxation time, 5 is an attenuation
function, h is the perturbation component of f¢9, and the auxiliary
quantity.

APPENDIX B
Lattice spring model

Lattice spring model (LSM) is a mesoscopic-level physical model
used for studying the elasticity of solid media. It consists of a grid of
mass points connected by linear and angular springs, treating a
macroscopic continuous medium as a series of microscopic discrete
elastomeric elements. Such a discrete model can simulate physical
processes such as deformation, crack propagation, and wave
propagation.

(17)

Fig. A-1. Discrete velocity sets for the (a) LBM-D2Q9 and (b) LBM-D3Q19 model (Revised after Xia et al., 2017a).

Through a mathematical derivation, Xia et al. (2022) obtain

1

Q:4chmCt(T ~05)’

(A-9)

where C; is the time conversion factor, and fy, is the dominant
frequency. With this quantitative relationship, we can adjust the
different relaxation time to suit the attenuation media with
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In 3D space, an elastic solid can be assumed to consist of a series
of interconnected networks of springs distributed in a cubic grid.
The discrete models of LSM are denoted as “DdQgq”, in which the
number “d” after “D” represents the spatial dimension, and the
number “q” after “Q” represents the number of neighboring nodes
connected to the central node by springs. Figs. B-1(a) and (b) show
the diagram for the D2Q8 model and the D3Q18 model, respec-
tively. For an isotropic medium, the elastic energy contained in the
elastomeric element shown in Fig. B-1(b) with node i as the central
node can be expressed by the following equation
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K 18

2
J7

Ei= [(w; — u;)-%y)° (B-1)

(o)
cos O —

where K and c are the elastic constants of the linear spring and the
angular spring, respectively, ;. is the angle with node i as the
vertex and the bonds ji and ki together form an angle, u; is the
displacement of node i, X;; = x;; /|x;;| is the unit vector pointing
from node i to neighboring node j, and x;; is the vector pointing
from node i to neighboring node j. The first term of Eq. (B-1) is the
total contribution to the elastic energy from the central force action
or linear spring action of the 18 neighboring points j on the central
node i, and the second term is the total contribution to the elastic
energy from the bond bending action or angular spring action on all
angles with the central node i as the vertex. In the case of a square
mesh, the energy density ¢ of the elastomeric element can be
expressed as

53

Jjik

E; E

a3

v (B-2)

%

where a is the grid side length. By linearizing Eq. (B-2) and
substituting it into Eq. (B-1), we obtain (O'Brien and Bean, 2004)

2
;- ~XU:|
oy |

"2 !Xu|

2
— U;) ®X; (uk_ui)®xik>

) (B_3)

403%;< x5 x|

where, the signs “-” and “ ® ” represent dot product and tensor
product, respectively.

@ (o) (2) (%)
® o 1
@ . 0
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energy of a 3D isotropic continuum (Landau and Lifshitz, 1959)
yields

A= '; =3
K ;c (B-5)
T a3

Therefore, LSM can be employed to simulate elastic waves in a
continuous medium, and the corresponding P- and S-wave veloc-
ities of computational equation have the following form (Xia et al.,
2017b):

- (31( 2c
P — a 3
pAt (B-6)
V2o 1/K K, 2 2¢
ST p\a a3

where p is the bulk density of the solid media. By taking the partial
derivative of the expression for the elastic energy density ¢ with
respect to u;, the total spring force at the center node i of the lattice
spring model is given by the following expression for the total

spring force on the neighboring nodes:
Fio S w5 e ()

LSM needs to be used in conjunction with the Verlet algorithm
to perform quasi-static deformation or dynamic wavefield numer-
ical simulations. The Verlet algorithm appears in molecular dy-
namics (Verlet, 1967) and it is a time integration algorithm derived
from Newton's law. First of all, we adopt the Verlet algorithm to
calculate the displacement ug, velocity vg, and acceleration ag at a

given time t and a given point 0. Since the position 0 can be arbi-
trary chosen, we replace node index 0 by (x,z), then we have

— uz)

(B-7)
2

(b)

Fig. B-1. Diagram for the (a) LSM-D2Q8 and (b) LSM-D3Q18 model (Revised after Xia et al., 2018).

Using the Taylor expansion for Eq. (B-3) and expressing the
displacement in terms of strain, we obtain the following equation
by omitting the higher-order terms:

3K c\/y 5 oy (K 2¢
N (5%—3) (htey+e) + (g o
X (Sxxgyy + éxx€zz + Eyyé'zz) (B—4)

Comparing Eq. (B-4) with the classical expression for the elastic
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u(x,z,t+ At) =u(x,z,t) + v(x,z, t)At + %a(x, z, t)At? (B-8a)

v<x,z,t+%> =v(x,z,t) +%a(x,z, t)At (B-8b)
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a(x,z, t+ At) :71:(}‘72’ t+Af XV (x, z, t+g> (B-8c)
m 2
At 1
v(x,z,t+At)=v x,z,t+7 +§a(x,z,t+At)At (B-8d)

where At denotes a time step and m is the mass of the media.
In summary, the implementation process of the Verlet algorithm
can be roughly divided into four steps.

1) Let each node of LSM allocate the mass m.

2) Add a constant x similar to viscosity, introduce it into the vi-
bration evolution calculation process to improve the stability of
the calculation.

3) The displacement u, velocity v, and acceleration a of each node
corresponding to the initial time ¢t need to be set in advance to
apply the Verlet algorithm for numerical calculation.

4) The Verlet algorithm is used to calculate the corresponding
values of each physical quantity u, v, and a at time t + At.

The general LSM template can be a regular square, so as to adapt
to the discretization of different geologic models in a more flexible
way. Here the D2Q8 model is employed as an example to give the
elastic constants in different directions. By step-by-step mathe-
matical derivation, the isotropic spring constants are (Xia et al.,
2018)

Az Ax

_(RZz  AX\ o
klo"(Ax 3Az>pv’

_Ax Az 5 ~
koo = (A_z —E)p‘/pv (B-9)
k A2+ A2,

where Ax,Az are the spatial sampling intervals. In general, the
linear springs of the same length have the same elastic constants, so
we have

k13 = kio,
ky 4 = k2o,
ks 678 = k3.

(B-10)

By the way, the truncated boundary reflection problem
encountered when using LSM for wavefield simulation needs to be
handled by loading the perfectly matched layer absorbing bound-
ary was developed by Tang et al. (2022).
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