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a b s t r a c t

Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable
reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,
which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial
role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are
difficult to meet actual production demand. In order to improve the drilling encounter rate of high-
quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the
non-subsampled contourlet transform (NSCT). Firstly, the seismic structural data are analyzed at multiple
scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural
components. Then, the signal of each component is reconstructed to eliminate the low-frequency
background of the structure, highlight the structure and texture information, and recognize the low-
amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-
amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an
example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By
combining the variation characteristics of logging curves, such as organic carbon content (TOC), natural
gamma value (GR), etc., the real structure type is verified and determined, and the false structures in the
recognition results are checked. The proposed method can provide reliable information on low-
amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification
methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local fea-
tures of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing
promise for application.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The increase in shale gas production plays a crucial role in
optimizing the energy structure (Qian et al., 2018). Shale, as an
integrated reservoir system for production and storage, can only
realize its commercial value through horizontal well fracturing
technology. Currently, shale gas development primarily relies on
horizontal wells in many areas (Xue et al., 2021). In horizontal well
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guidance, geophysical data provides valuable insights for macro-
scopic guidance, while 3D seismic data offers advantages in pre-
dicting planar and spatial combinations. However, accurately
identifying various low-amplitude structures (such as uplifts, folds,
faults, and pop-up structures) solely from the seismic dataset is
challenging. Additionally, erroneous impedance interface analysis
may lead to the creation of false structures during prediction (Liu
et al., 2022a). These factors can result in the deviation of the
actual drilling trajectory from the design trajectory or a low drilling
encounter rate for high-quality reservoirs. To mitigate errors and
losses, it is imperative to conduct research on fine identification of
low-amplitude structures without delay. This technology enables
accurate identification of genuine geological patterns and types of
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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low-amplitude structures, effectively rectifying false structures
resulting from erroneous predictions. Additionally, it enables
analysis and determination of formation breakpoints, fault dis-
tances, the true trend pattern of the formation, and the position of
the trajectory relative to the reservoir. Consequently, this method
provides robust technical support and ensures effective quality
assurance for optimizing and adjusting horizontal well trajectories,
thereby enhancing the drilling encounter rate of high-quality
reservoirs.

Low-amplitude structures, characterized by gentle geological
features and closure amplitudes ranging from 10 to 20 m, are also
known as small or micro-amplitude structures (Zhao, 1982, 1987).
Despite their importance in the field of oil and gas exploration, the
study of low-amplitude structures has only recently garnered
attention. The challenges lie in their subtle nature, reflected in
seismic data through flat reflection axes and minimal amplitude
variations, rendering identification a complex task. The accuracy of
interpreting low-amplitude structures hinges on multiple facets of
seismic data acquisition, processing, and interpretation. Existing
methods for identifying these structures can be categorized into
three main groups. The first approach involves establishing a high-
precision velocity field through velocity analysis, a crucial param-
eter in seismic exploration, especially when studying low-
amplitude structures. Inaccurate velocity analysis can obscure
genuine structures or introduce false ones. Achieving a highly
precise interpretation of horizons and faults and employing high-
precision velocity fields for time-depth conversion are essential
for mapping low-amplitude structures. Wang et al. (2015) and Pu
(1998) conducted an analysis of correction methods for low-
amplitude structural velocity fields and structural maps using
drilling and logging data. Zhang and Huang (2002) proposed the
presence of velocity anomalies by selecting different static correc-
tion datums. This assertion is based on the premise that, against the
backdrop of T0 as awide and gentle platform, a specific threshold of
velocity anomaly difference in the up-dip direction is required to
generate an anticline shape in that direction. Shao et al. (2003)
integrated static correction, correlation processing, and velocity
spectrum with interpretation, velocity analysis, and mapping to
achieve a comprehensive analysis, ultimately resulting in a struc-
tural map with significantly enhanced velocity accuracy. Mean-
while, Teng et al. (2005) utilized P-wave and S-wave velocity
models to conduct pre-stack Kirchhoff integral migration on 2D
seismic data, obtaining depth and time profiles of various P-wave
and converted S-wave components, and subsequently performing
joint interpretation of minor faults and low structures based on
these findings. Zhou et al. (2006) proposed the utilization of the
average velocity changemethod for the analysis of stacking velocity
and velocity within layers. Based on this approach, the correction of
velocities using VSP velocity can enhance the resolution of both
vertical and horizontal velocities. Taking into account the velocity
mapping characteristics in the southern margin of the Junggar
Basin, Xu et al. (2012) applied the standard layer correction velocity
anomaly method to eliminate the influence of seismic anomaly
spectrum points and improve the quality of seismic velocity. This
improvement resulted in a more reliable structural map for oil and
gas exploration purposes. Wang et al. (2015) conducted seismic
data reprocessing and interpreted and analyzed the data volumes
processed by various methods. Through refined velocity analysis,
the low-amplitude structure of the Matouying uplift was re-
implemented using variable-velocity mapping technology. Build-
ing upon the full application of the stacking velocity spectrum and
incorporating well point velocity correction and stratigraphic
control methods, Zheng et al. (2017) accurately characterized
shallow low-amplitude structures by finely adjusting the average
velocity field in the area. To address the challenge of long
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wavelength static correction in complex surface areas, Wang et al.
(2018) employed a layered constraint modeling approach for
layered constraint tomography inversion near-surface modeling.
This enabled the identification of low-amplitude structures. Finally,
Hu et al. (2019) proposed the utilization of stratified fitting to
obtain layer velocities and establish the average velocity field. This
approach allowed for the reliable identification of low-amplitude
structures above 3 m through the creation of a large-scale struc-
tural map.

However, the aforementioned methods based on velocity anal-
ysis still have many deficiencies. First, there are many causes of
velocity variation (Liu et al., 2020, 2021), including formation li-
thology, burial depth, thickness variation, formation combination,
denudation, surface velocity anomaly, formation porosity, fluid
properties, etc. Therefore, it is difficult to accurately establish the
three-dimensional velocity field with large velocity variation,
which leads to distortion, large calculation, and high cost. Secondly,
with the continuous improvement in the accuracy requirements for
characterizing low-amplitude structures, the previous structure
mapwas prepared by time-depth conversion using a single velocity
gauge plate with points instead of surfaces. This method often ig-
nores the spatial variation of formation velocity, resulting in low
accuracy of structure mapping and deviation of trap implementa-
tion, which leads to drilling failure. Thirdly, the method cannot
describe the overall trend of low-amplitude structure systemati-
cally. Therefore, to further improve the accuracy of low-amplitude
structure prediction and better analyze the trend surface back-
ground, some scholars applied the trend surface analysis to the
low-amplitude structure identification technique. Lancaster and
Salkauskas (1981) introduced the moving trend surface method
for detecting low-amplitude structures. Jiang et al. (2005) proposed
a methodology involving fine structural mapping, subtraction of
regional structural trend backgrounds to derive residual structural
maps in complex structural settings, and subsequent analysis of
low-amplitude structures. Ge and Kang (2008) incorporated a
weighted term into the trend surface analysis algorithm to account
for varying distance effects on interpolation points. Mullineux
(2008) advocated for a least-squares fit approach to layering and
investigated the behavior of fitting coefficients. Fang et al. (2010)
enhanced the accuracy of identifying low-amplitude structures by
integrating the coherence cube, slicing, structural residual, and
integral seismic trace methods. Hu et al. (2012) utilized seismic,
logging, and other datasets to detect and explore low-amplitude
structural traps through trend surface analysis, isochronal slicing,
coherent body, and fine-scale mapping of well-point data. Li et al.
(2016) developed a three-dimensional dynamic trending method
based on the original two-dimensional moving trend surface
method, applied notably in ground subsidence analysis. Wu et al.
(2017) iteratively applied the moving trend surface method to
identify low-amplitude structures. Through the selection of
quadratic fitting and optimization of sampling intervals and influ-
ence radii, they determined the most effective parameter combi-
nation for such identification. Chai and Bi (2019) employed a two-
dimensional trend surface technique to identify low-amplitude
structures in areas characterized by steep dip angles of the strata.
He and Chen (2020) utilized the phase-body constraint method for
detailed layer interpretation following meticulous processing of
original seismic data, successfully pinpointing low-amplitude
structures. Zhu et al. (2020) proposed a true-false low-amplitude
structural analysis and identification technique based on trend
surface analysis, enabling precise recognition of genuine low-
amplitude structural configurations and types. However, the
trend surface analysis method relies too much on the structural
background data, which results in a low-amplitude structure
“illusion" and affects the recognition effect. At the same time, the



Fig. 1. Illustration of the “de-low frequency" process.
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method is affected by many vital parameters, and the optimal
parameter combination for different work areas requires repeated
experiments, resulting in low efficiency. Moreover, the method
only considers the two-dimensional horizon information. It cannot
explore the rich structural information in the three-dimensional
seismic data, resulting in a limited agreement between the recog-
nition results and the drilled wells.

The traditional method of low-amplitude structure identifica-
tion is difficult, mainly because the structure background frequency
band is multiple, which affects the judgment of low-amplitude
structure. The time-frequency analysis technique can well
describe the variation pattern of structure signal frequency, i.e.,
meticulously portray the characteristics and properties of various
types of structures in the data, visually identify, examine and
classify the data, separate the low-frequency information reflecting
the large background of structures, and enhance the information of
low-amplitude structure frequency band. Therefore, in recent
years, scholars have made efforts to identify low-amplitude struc-
tures through time-frequency analysis, yielding promising out-
comes. For instance, Bai et al. (2011) established a seismic cycle
characteristic model and an S-domain time-frequency response
model for representative sedimentary cycles. Concurrently, they
created a precise isochronous sedimentation grid for the entire
study area through the joint calibration of 2D spectra and single-
well sedimentation cycles. This grid facilitated the detailed
tracing of low-amplitude structures. Xia et al. (2021) employed the
trend decomposition method to map low-amplitude structures by
identifying inflection points of structural fluctuations and
combining them with wavelet decomposition to generate inter-
pretation maps. Wu et al. (2022) enhanced data resolution and
accuracy in imaging low-amplitude structures by employing near-
surface Q compensation and robust deconvolution techniques.
However, these methods primarily analyze at a single scale, lacking
detailed decomposition and highlighting of different frequency
components. Consequently, they fail to address structural in-
tricacies, such as subtle fluctuations in the structure map, resulting
in low recognition accuracy, multiple spurious images, and limited
sensitivity to low-amplitude structures.

Based on previous methods in time-frequency analysis for
identifying low-amplitude structures, we have taken into account
the characteristics of low-frequency smoothing and local high-
frequency fluctuations within these structures. Our proposal in-
volves a multi-scale recombination of the low-frequency and high-
frequency components of the structure, aiming to enhance the
weight of high-frequency components in the identification process
while reducing the masking effect of low-frequency components.
To achieve this, we have conducted an extensive study on the
multi-scale analysis method. One commonly employed technique
in multi-scale time-frequency analysis is wavelet transform, which
has found wide application in signal processing, image processing,
compression coding, and other related fields. The concept of
wavelet transform was initially introduced by the French mathe-
maticians Grossmann and Morlet (1984). It utilizes wavelet basis
functions with variable scales and translation parameters for signal
analysis. Therefore, the careful selection of appropriate wavelet
basis functions is crucial for effectively identifying low-amplitude
structures. Various wavelet basis functions offer different time-
frequency resolutions and smoothness, and the improper choice
of these functions may lead to inadequate identification of low-
amplitude structures. To overcome the limitations of wavelet
transform in processing two-dimensional signals, American
mathematicians Candes and Donoho (1999) proposed curvelet
decomposition as a curve-based representation method based on
multi-scale and multi-directional analysis. Herrmann et al. (2008)
applied this method to seismic signal research, achieving robust
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separation of primary and multiple reflections in the curvelet
domain. Compared to wavelet transform, the decomposition co-
efficients of curvelet transform provide a better reflection of the
local features of signals and images, effectively capturing the
characteristic information of low-amplitude structures. However,
the performance of curvelet transform is greatly influenced by
parameter selection, such as thresholding of curvelet coefficients,
scale, and direction selection. Moreover, curvelet transform is
sensitive to noise when identifying low-amplitude structures,
which can easily lead to misjudgment or over-interpretation. In an
effort to further overcome the limitations of traditional multi-scale
analysis methods in image processing, Do and Vetterli (2002)
proposed contourlet transform, which inherits the idea of multi-
scale analysis and introduces the multi-scale analysis characteris-
tics of curves and surfaces. This method can accurately capture the
microstructure information of images, thereby improving their
resolution and representation capability. Asmare et al. (2015) found
that the basis functions used in contourlet transform possess higher
direction selectivity and spatial locality, making them better suited
for capturing the local characteristics of low-amplitude structure
signals. Furthermore, this method provides better resolution at
different scales, enabling a more accurate description of the multi-
scale features within low-amplitude structures.

Therefore, by extensively referring to previous research
methods, we propose the adoption of a de-low frequency approach.
This method entails decomposing the structural travel time data
into details and trends (also referred to as low-frequency back-
ground) using the non-subsampled contourlet transform method.
Through this process, the slope background or complex structural
background becomes more horizontal. The proposed method an-
alyzes the characteristics of micro amplitude structures across
multiple scales and directions. By reducing the low-frequency
components, this approach mitigates the influence of regional
structural morphology and eliminates interference from different
structural backgrounds when interpreting low-amplitude struc-
tures. It effectively highlights the nuanced changes in local struc-
tures, rendering their morphology more visually comprehensible.
Ultimately, this approach enhances the accuracy and reliability of
low-amplitude structure recognition.

2. Methodology

We utilize three methods for decomposing the data of structural
interpretation, thereby separating it into two components: the
structural background and the low-amplitude structural details.
Through this process, the influence of the structural background is
attenuated while the local low-amplitude structural features are
enhanced, enabling the effective highlighting of low-amplitude
structures. This “de-low frequency" procedure is visualized in
Fig. 1. The three employed methods encompass wavelet
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decomposition, curvelet decomposition, and the non-subsampled
contourlet decomposition method.

2.1. Wavelet decomposition

Wavelet transform is a multi-scale analysis method that inherits
and expands on the idea of short-time Fourier transform localiza-
tion. It overcomes the limitations of fixed window size with fre-
quency and provides a ‘time-frequency' window that varies with
frequency. This method has the ability to fully accentuate certain
aspects of the problem through the transform, localize time (or
space) frequency analysis, and gradually refine the signal (or
function) through scaling and translation operations across multi-
ple scales. With this approach, high frequencies can be subdivided
into smaller frequency bands while low frequencies can be coarsely
subdivided, automatically adapting to the requirements of time-
frequency signal analysis to focus on any details of the signal.
Additionally, the method allows for obtaining the low-frequency
structure background (Shang and Caldwell, 2003; Schonewille
et al., 2007).

The 2D wavelet forward transform formula can be expressed as
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After performing a 2D wavelet multi-scale analysis on the

interpreted travel time data, we select the large-scale data for 2D
wavelet inverse transformation to derive the construction back-
ground. The equation for the 2D wavelet inverse transformation is
as follows:
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where Cg is the Fourier transform of the wavelet function, and Gg is
the Fourier transform of g.

The process of structural recognition through wavelet decom-
position involves the manual selection of appropriate scale pa-
rameters and the utilization of 2D wavelet transform technology to
conduct multi-scale analysis on structural interpretation horizon
data, resulting in the extraction of low-frequency (multi-scale)
structural backgrounds. This separation effectively isolates the
background from local details (small-scale structures), achieving
the objective of accentuating low-amplitude details. By fully uti-
lizing the time-frequency characteristics of wavelet decomposition,
different frequency components are decomposed and emphasized,
enabling the focus on specific details such as small fluctuations
within the entire structural map. Ultimately, a de-low-frequency,
low-amplitude structural map is obtained, capable of highlighting
changes in detail (Bai et al., 2011).

2.2. Curvelet decomposition

Although the wavelet coefficient scaling presented by Donoho
(1995) has been extensively utilized, it can only display “over"
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edge information and not “along" edge information when pro-
cessing 2D images. Thus, Emmanuel and Donoho (2000) proposed
the curvelet transform based on their research on the ridgelet
transform. The first-generation curvelet is a multi-scale ridgelet
transform that initially divides the image into subbands of diverse
scales using filters. Afterwards, edge and noise information can be
distinctly separated on different subbands, and the ridgelet trans-
form is applied to each block after dividing the subbands. However,
the first-generation curvelet transform requires spatially posi-
tioned multi-scale windows and overlapping to prevent block ef-
fects, leading to redundancy. To overcome these limitations, Candes
and Donoho (2010) proposed a new curvelet compact framework
that directly performs multi-scale analysis from the frequency
domain, similar to the first-generation algorithm's anisotropic scale
relations. This new framework accurately reconstructs the object
and is called the second-generation curvelet transform.

The second-generation curvelet framework reduces the number
of parameters used in previous curved wave implementation
methods, and its parameters are mðj; l; kÞ, where j is the scale
parameter, j ¼ 0;1;2;/, l represents the direction parameter, k is
the position parameter. The reduction of parameters facilitates the
computational analysis. The second-generation curvelet transform
can be expressed as the inner product of the basis function and the
signal (or function) in the same way as the wavelet transform, as
follows:

Cðj; l; kÞ ¼def Cf ;4j;l;kD (4)

Cðj; l; kÞ ¼def
ð bf UjðuÞeiCb;uÞdu (5)

where 4j;l;k is the curvelet function.
There are two discrete digital implementations of the second-

generation curvelet transform, unequally-space fast Fourier trans-
form (USFFT) and wrapping. The main difference between the two
methods is the different processing methods for each pair of scale
and angle ðj; lÞ unit space.

Given the known object f2R2, the USFFT is implemented by the
following steps:

(1) Perform a 2D Fourier transform on f to obtain the Fourier

sampling set bf ðn1;n2Þ; � n
2 � n1;n2 � n

2;

(2) For each pair of scales and angles ðj; lÞ, bf ðn1;n2Þ is resampled

(or interpolated) as bf ðn1;n2 � n1 tan qlÞ;
(3) Multiply bf with fitting window bUðn1;n2Þ to obtain ~f ;
(4) Perform a 2D inverse Fourier transform to obtain the curvelet

coefficient cDðj; l;kÞ.

Given the object f2R2, Wrapping is divided into the following
four steps:

(1) Perform a 2D Fourier transform on a to obtain the Fourier

sampling set bf ðn1;n2Þ; � n
2 � n1;n2 � n

2.

(2) Calculate the product ~Uðn1;n2Þbf ðn1;n2Þ in units of each pair
of scales and angles ðj; lÞ.

(3) Transform the above product ~f ðn1;n2Þ ¼Wð~Uj;l
bf Þðn1;n2Þ, 0 �

n1 � L1;0 � n2 � L2.

(4) Perform a 2D inverse Fourier transform on ~f to obtain the
curvelet coefficient cDðj; l;kÞ.

Based on this, we select the wrapping method to implement the
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curvelet, take the construction interpretation horizon data as a
function f , and then perform the inner product with the curvelet
function 4j;l;k to obtain the curvelet coefficients Cðj; l; kÞ at different
scales. The processed structural region information and detail in-
formation (low-amplitude structure) can be obtained by processing
the curvelet coefficient and reconstructing the inverse curvelet
transform.

2.3. Non-subsampled contourlet decomposition

The 2D separable wavelet transform, an extension of the
commonly used 1D wavelet transform, exhibits significant limita-
tions in capturing the edge geometric features of 2D images. This is
primarily due to the limited directionality of the extended 2D
wavelet transform, rendering it inadequate as a true 2D wavelet
transform. To overcome these limitations, Lu and Do (2003) intro-
duced the contourlet transform as a novel tool for multiscale geo-
metric analysis. Unlike the 2D wavelet transform, the contourlet
transform not only retains the key features of wavelets, such as
multiscale and time-frequency localized distribution properties but
also exhibits a high degree of directionality and anisotropy. This
enables a varied and adaptable number of directional de-
compositions at each scale. Consequently, the contourlet transform
can effectively decompose different frequency components of
actual structural data, enabling a focused representation of struc-
tural details such as minor undulations, ultimately highlighting
low-amplitude structures.

The non-subsampled contourlet transform (NSCT) is an exten-
sion of the contourlet transform (Cunha et al., 2005) that enables
multi-scale and multi-directional image decomposition. It was
developed to address the issue of frequency aliasing caused by the
up-sampling and down-sampling operations in the contourlet
transform during image decomposition and reconstruction (Zhang
and Guo, 2007). Due to its exceptional characteristics, NSCT has
found wide applications in image denoising (Cunha et al., 2006),
image enhancement (Zhou et al., 2005), and image fusion, estab-
lishing itself as one of the most effective image fusion algorithms.

Similar to wavelet variations, NSCT comprises two main com-
ponents: the forward transform and the inverse transform, as
illustrated in Fig. 2. The forward transform involves decomposing
the source image, while the inverse transform reconstructs the
source image using the sub-band images obtained from the
decomposition. Both the decomposition and reconstruction pro-
cesses of NSCT are based on the non-subsampled pyramid (NSP)
and non-subsampled directional filter bank (NSDFB). The NSP ac-
complishes the multi-scale decomposition (reconstruction), while
the NSDFB achieves the multi-directional decomposition (recon-
struction) of the image. These processes share the same basic
principles.

Taking the forward transform process of NSCT as an example,
the NSCT decomposition process is shown in Fig. 3. It can be seen
that the NSCT decomposition structure in the figure consists of two
main parts: non-downsampling pyramid decomposition and non-
downsampling directional decomposition. Multi-resolution
feature extraction is performed on the constructed image of size
M � M in a layer, and the constructed image is decomposed into
high-frequency and low-frequency components. The obtained
Multiscale decomposition and
multidirectional decomposition

Original
construction image

NSCT forward transform

Image decomposition process

Sub
im

Fig. 2. The NSCT flow diagram of low-amplitu
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high-frequency components continue to be directionally filtered,
while the low-frequency components continue to be decomposed
by the pyramid filter NSP in the following scale iteration until the
set number of decomposition layers is reached. Taking the two-
scale and two-direction decomposition as an example, the frame-
work of its decomposition structure is shown in Fig. 3.

To ensure that NSCT possesses multi-scale characteristics, a
dual-channel nonsubsampled filter bank is adopted in the NSP of
NSCT. The dual-channel nonsubsampled pyramid filter bank in
NSCT is represented by fh0;h1; g0; g1g, where fh0;h1g denotes the
decomposition filter bank, h0 is the low-pass filter, and h1 is the
high-pass filter. Similarly, the reconstruction filter bank is denoted
by fg0;g1g, where g0 and g1 represent the low-pass and high-pass
filters. The fh0;h1; g0; g1g filter bank acts as the prototype filter for
the nonsubsampled pyramid transform in NSCT. The filters used for
the kth layer (k ¼ 2, 3, 4, …) pyramid decomposition in the image
decomposition stage of NSCT are obtained by upsampling the
prototype filters h0 and h1 (with zero-padding). The size of the
pyramid filters is doubled at each layer. The reconstruction stage
follows the same principle (Eq. (6)). It is important to note that
these filter banks must satisfy the perfect reconstruction condition,
as illustrated in Fig. 4.

H0ðzÞG0ðzÞþH0ðzÞG0ðzÞ ¼ 1 (6)

In each level of the pyramid decomposition, the image is
decomposed into high-frequency and low-frequency subband im-
ages. Furthermore, through iterative processes, the obtained low-
frequency subband images are subjected to the same pyramid
decomposition. Therefore, k-level pyramid decomposition gener-
ates kþ1 subband images, including k high-frequency subbands
and one low-frequency subband image, all of which have the same
size as the source image. Fig. 5 is a schematic diagram of a three-
level pyramid decomposition for constructing an image. In this

figure, H0

�
Z2

kl
�
ðk ¼ 0; 1; 2Þ represents the low-pass filter bank,

H1

�
Z2

kl
�
ðk ¼ 0; 1; 2Þ represents the high-pass filter bank, k de-

notes the number of decomposition layers, and the gray area rep-
resents the frequency passband of each level of pyramid
decomposition.

During the process of non-subsampled pyramid decomposition
of an image, the ideal frequency support interval of the low-pass

filter for the kth layer pyramid decomposition is ½�ðp=2kÞ;p=2k�2,
and the ideal frequency support interval of the high-pass filter is

also ½�ðp=2j�1Þ; ðp=2j�1Þ�2=½�ðp=2jÞ; ðp=2jÞ�2. Generally, upsam-
pling the pyramid filter of the current level can provide the pyramid
filter used in the next level. The definition of the non-subsampled
pyramid filter for the kth layer is as follows:
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where Zk represents ½Zk1;Zk2�.
Different from other image single decomposition methods, in
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Fig. 3. Schematic diagram of low-amplitude structure identification using NSCT decomposition.

x
x-

H0(z)

H1(z)

G0(z)

G1(z)

y0

y1

Fig. 4. The ideal NSP filter.

F. Lyu, X.-Y. Liu, L. Chen et al. Petroleum Science 21 (2024) 3062e3078
order to obtain rich structural information, we continue to use a
NSDFB composed of a two-channel fan filter bank and a plum
matrix for two-stage directional filtering superposition for the
high-frequency components obtained from the decomposition in
Fig. 3. The four-channel filtering structure and the filtering fre-
quency domain distribution are shown in Fig. 6. The first stage is a
fan filter bank, which first filters the high-frequency components in
the vertical U0ðzÞ and horizontal U1ðzÞ directions, and then sends
the filter results to the second stage quadrant filter. The overlap
with the direction of each quadrant filter is the frequency domain
distribution of the directional sub-map. The directional sub-map of
the overlap area yk is output to complete the directional filtering
process. After filtering, the high-pass component of each scale is
decomposed into 2bi ði¼ 1;2;/; aÞ directional sub-band images,
with i being the number of decomposition layers and bi being the
number of high-frequency subband filtering directions in the cur-
rent layer. The frequency domain distribution in each direction is
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shown in Fig. 6(b).
The output equivalent formula of the filter structure can be

expressed as

yk : U
eq
k ðzÞ¼UiðzÞUk

�
zQ

�
; ði¼0;1; k¼0;1;2;3Þ (8)

where yk is the output sub-band in the k direction, corresponding
to each labeled frequency band in the filtered partition diagram,
UkðzQ Þ represents the sector filtering in the k direction, and UkðzQ Þ
represents the quadrant filtering in the k direction. Through the
above operation, the direction filter group obtains
1þPa

i¼12
bi ði¼ 1;2;/; aÞ sub-band images with the same size as

the input structure image after completing directional filtering on
each decomposition layer. Each decomposition sub-image has
anisotropy, thus capturing the structural features of each direction
of the structure plane more comprehensively and providing richer
structural information for reconstruction after separation.
2.4. Comparison of three decomposition methods

The aforementioned wavelet transform, curvelet transform, and
NSCT are commonly used transformation methods in signal anal-
ysis. They all rely on the principle of multi-scale analysis, allowing
for the decomposition and reconstruction of signals at varying
scales. In the following analysis, we will assess the strengths and
weaknesses of these three methods using mathematical formulas,
thereby providing theoretical support for comparing the outcomes
obtained by applying these methods to identify low-amplitude
structures in practical engineering scenarios.

Thewavelet transform is amathematical tool used for signal and
image analysis, providing a multi-resolution representation by
decomposing signals or images into subbands of different fre-
quency ranges. Unlike the Fourier transform, the wavelet transform
offers a more refined time-frequency analysis and performs better
when dealingwith non-stationary signals or images. The basic form



Fig. 5. NSP: (a) three-layer pyramid decomposition structure and (b) frequency domain distribution.

Fig. 6. NSDFB: (a) four-channel directional filter structure and (b) frequency domain distribution.
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of the wavelet transform can be represented by the following
mathematical formula:

Wða;bÞ¼
ð∞

�∞

xðtÞja;bðtÞdt (9)

where xðtÞ denotes the input signal, ja;bðtÞ represents the mother
wavelet function, and a and b are scale and shift factors,
respectively.

The advantages of wavelet transform can be discerned from the
formulas: through adjustment of the scale parameter a, wavelet
transform is capable of analyzing signals at varying time or fre-
quency resolutions, thus allowing for the simultaneous provision of
time and frequency information and facilitating multi-scale anal-
ysis. Moreover, wavelet function jðtÞ exhibits local properties in
both the time and frequency domains, signifying that it has non-
zero values within specific ranges. This characteristic implies that
wavelet transform is adept at capturing the local features of a signal
in time and frequency without being affected by overall signal
interference. Nevertheless, the limitations of wavelet transform can
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also be deduced from the aforementioned formulas. The selection
of wavelet function significantly influences the results of wavelet
transform, yet there exists no unified standard or rule for choosing
the most suitable wavelet function. Different types of wavelet
functions demonstrate diverse frequency characteristics and time-
domain responses. Consequently, the selection of an appropriate
wavelet function in practical applications often relies on experience
or specific problems, involving a degree of subjectivity. Addition-
ally, wavelet transform is sensitive to signal boundaries, potentially
leading to the appearance of unnecessary artifacts or distortions at
these boundaries.

The curvelet transform is a multiscale analysis method used in
signal and image processing, capable of capturing and representing
signal features with curved structures and local directionality. As an
extension and improvement upon the wavelet transform, it ex-
hibits superior performance in handling signals and images with
curved and singular characteristics. These advantages can be
explained through mathematical formulae and transformation
properties:
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Cðu; vÞ¼
X
j;k;l

jjklðu; vÞajkl (10)

where Cðu; vÞ represents the coefficients obtained after the curvelet
transform, jjklðu; vÞ denotes the curvelet function of the l th ridgelet
wavelet in the jth layer and the kth small area, and ajkl corresponds
to the associated coefficients.

In this equation, we can observe that the curvelet transform
possesses a multiscale property by employing a multilevel
decomposition approach to decompose the signal into different
scales of subbands. Each layer of small regions utilizes the same
number of curvelet functions, and the boundaries of each region are
smooth. Consequently, the curvelet transform is capable of effec-
tively capturing both local and global features of the signal.
Furthermore, the curvelet transform exhibits a directional property
by adopting the concept of ridgelet waves, constructing a set of
basis functions with different directions using orthogonal wavelets
within small regions. These basis functions can effectively capture
various directional features in the signal, including edges and tex-
tures. Moreover, the curvelet transform demonstrates sparsity,
representing the signal with a small number of non-zero co-
efficients, which contributes to its good sparsity property. Due to
the localized characteristics of curvelet functions, the curvelet
transform can accurately represent the signal with fewer co-
efficients. However, from the equation, we can also identify the
limitations of the curvelet transform. Its performance heavily relies
on the selected parameters, such as scale and direction divisions.
Choosing inappropriate parameters may lead to inaccurate results.
However, the specific mathematical formulas cannot directly
indicate how to select these parameters in practical applications;
instead, they require empirical and experimental support. Addi-
tionally, when dealing with translation-invariant signals, the cur-
velet transform may result in information loss. Its basis functions
are localized in the spatial frequency domain, making it less precise
for representing translation-invariant structures.

The NSCT is a multi-scale transformation method based on the
NSP and the NSDFB. It is used for image processing and analysis.
Given a two-dimensional discrete image f ðm;nÞ, NSCT can be rep-
resented as follows:

NSCTðf Þða; b; q; sÞ¼
XM�1

m¼0

XN�1

n¼0

f ðm;nÞ4a;bðm;nÞjq;sðm;nÞ (11)

where ða; bÞ represents the translation parameter, q represents the
rotation angle, and s represents the scale parameter. The function
4a;bðm;nÞ denotes the filter response of the non-subsampled pyr-
amid, which is used for scale decomposition of the signal. The
function jq;sðm;nÞ represents the filter response of the NSDFB,
which is used for directional decomposition of the signal.

The mathematical expression of NSCT comprises two essential
elements: NSP and NSDFB. NSP is a multi-scale decomposition
method employed to decompose signals or images into different
scale bands. Within the context of NSCT, NSP is utilized for scale
decomposition of signals. On the other hand, NSDFB represents a
set of filters used to decompose signals in different directions. The
combination of these two elements forms the fundamental prin-
ciple of NSCT.

Therefore, from the aforementioned expression, we can observe
that NSCT possesses the following advantages: Firstly, NSCT is
capable of providing a multi-scale representation of images,
capturing features at different scales. By employing NSP and NSDFB,
NSCT effectively handles details and edge information in images.
Secondly, NSCT utilizes NSDFB to extract directional features from
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images, enabling the analysis of textures and structures in different
directions. This gives NSCT an advantage when processing images
with prominent directional characteristics, such as textures and
edges. Additionally, NSCT adopts a non-subsampled approach for
image decomposition, eliminating the need for traditional sub-
sampling operations and thereby preserving more image infor-
mation, ultimately enhancing the quality of reconstructed images.
Moreover, due to its ability to retain more image detail information,
NSCT improves the quality of reconstructed images. Lastly, NSCT
exhibits a certain degree of noise robustness. Through its multi-
scale decomposition and direction selectivity, NSCT reduces the
impact of noise on images and further attenuates noise during the
reconstruction process through filtering operations. However, this
method also presents certain limitations. Firstly, it incurs high
computational complexity, particularly when processing larger-
sized images. The execution of multi-level pyramid decomposi-
tion and directional filtering in NSCT results in significant compu-
tational overhead, limiting its practical applicability. Furthermore,
parameter selection in NSCT is relatively challenging, requiring
empirical knowledge and experimentation to determine appro-
priate filter choices and pyramid levels. Different images and
application scenarios may demand different parameter settings,
thereby increasing the difficulty of parameter tuning in NSCT.

In summary, from a theoretical perspective, the wavelet trans-
form, curvelet transform, and NSCTeach have their own advantages
and limitations when applied to low-amplitude structure recog-
nition. The wavelet transform can effectively extract texture infor-
mation and edge features of structures, offering certain advantages
for structures with prominent frequency domain characteristics.
However, its weakness lies in the relatively weak handling of
directional features of images, potentially resulting in suboptimal
performance when dealing with low-amplitude structures exhib-
iting clear directional characteristics. The curvelet transform can
provide a more accurate description of the geometric structure and
edge features of an image, thereby presenting advantages for low-
amplitude structures with complex geometric forms. Nevertheless,
the curvelet transform also suffers from high computational
complexity and sensitivity to parameter settings, requiring fine-
tuning for optimal results. NSCT, on the other hand, can simulta-
neously consider the multi-scale and multi-directional features of
an image, offering advantages for low-amplitude structures with
rich textures and complex structures. However, its high computa-
tional complexity, challenging parameter selection, and require-
ment for substantial storage space limit its practical application.
Therefore, in practical applications, we choose an appropriate
method based on the specific characteristics and requirements of
the low-amplitude structure, and conduct a comprehensive
comparative analysis of the recognition performance of the three
methods to achieve better low-amplitude structure recognition
results.

2.5. Workflow of the low-amplitude structure recognition

We use time-frequency analysis techniques to decompose the
structural interpretation data from different perspectives and then
divide it into the structural background and low-amplitude struc-
tural details. Ultimately, the influence of the structural background
is weakened, local low-amplitude structural features are enhanced,
and low-amplitude structures are revealed. The traditional time-
frequency analysis techniques mainly include wavelet, and curve-
let transform. In this section, we review the theory of these
transform methods. Subsequently, we introduce the NSCT for
identifying low-amplitude structures, leveraging its potential in
multi-scale andmulti-directional analyses. Finally, we delineate the
method for identifying low-amplitude structures based on time-
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frequency analysis. The technical workflow diagram is illustrated in
Fig. 7.
3. Application example

3.1. Geological settings

In recent years, a comprehensive study on shale gas genesis and
geological conditions in China has determined that shale gas pro-
duction in the Sichuan Basin is primarily concentrated in the
Ordovician Wufeng Formation and Silurian Longmaxi Formation.
Current research has made significant progress in the middle and
shallow layers, which have burial depths of less than 3500 m (Liu
et al., 2023b). However, deep shale gas research has yet to meet
commercial development standards, despite extensive research
indicating that the development potential of deep shale gas is
approximately twice that of the middle and shallow layers. To
investigate this further, we selected a study area in the western
Chongqing block of the Sichuan Basin where the producing for-
mation is buried more than 3500 m deep, as shown in Fig. 8(a). We
began by studying the structural, seismic, and logging response
characteristics in the study area, following which we carried out
low-amplitude structure fine identification to adjust the drilling
trajectory (Zhu et al., 2020). The recognition results formed the
foundation for subsequent shale gas high-quality reservoir
prediction.

The Huangguashan anticline, located in the study area, exhibits
an average elevation ranging from 300 to 600 m (Fig. 8(b)). The
maximum elevation difference between the twowings and the core
of the anticline reaches 300 m (Fig. 8(c)). Oriented nearly NE-SW,
the Huangguashan anticline features a dip angle of 30� in the
Fig. 7. The low-amplitude structure recognit
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northwest wing and 28� in the southeast wing, resulting in a
symmetrical anticlinal structure. The exposed strata in the core
consist of the Upper Triassic Xujiahe Formation (Wang et al., 2021).
Within the core of the anticline, a fault is present near the north-
west wing, which has caused displacement in the Jialingjiang For-
mation, Leikoupo Formation, and Xujiahe Formation. On the wings,
the predominant exposed strata are the Jurassic Zhenzhuchong
Formation, Ziliujing Formation, Xintiangou Formation, and Shax-
imiao Formation. Huangguashan belongs to the Yongchuan block,
situated at the center of the Kaijiang-Luzhou paleo-uplift and
within the east Sichuan fault-fold zone. It exhibits a structural
pattern characterized by “two depressions and one uplift". The
overall structure represents a northeast-oriented long-axis anti-
cline. The axis of the anticline sequentially exposes the Lower
Triassic Feixianguan Formation and Jialing River Formation.
Furthermore, it can be further divided into five secondary struc-
tures: the northern syncline area (burial depth 3700e4200 m), the
southern syncline area (burial depth 3850e4150 m), the holding
fault block area (burial depth 3850e4050 m), the uplift fault block
area (burial depth 3750e3950 m), and the anticline deformation
area (Duan and Chen, 2020). Although the Yongchuan block has
experienced several large structure movements, large faults are not
developed, and large dip angles exist locally. Affected by the pale-
ostructure during deposition and the later multi-stage structure
movements, small faults and low-amplitude structures are devel-
oped (Liu et al., 2023a), and the amplitude of low-amplitude
structures is generally not more than 20 m. According to the cau-
ses of formation, the micro structures in the study area can be
classified into two categories. The first category is typically influ-
enced by paleogeomorphology, differential compaction, and sedi-
mentary environments. Under the influence of differential
ion workflow proposed in this research.



Fig. 8. Geological characteristics of the actual study area. (a) Location map of the study area (modified according to Zhu, 2020). (b) Plane structure diagram (DEM data volume of the
study area). (c) Crossline elevation model map of the work area.
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compaction, they exhibit either negative or positive low-amplitude
structural features. The second category is usually caused by tec-
tonic movements, such as those induced by faults. When the upper
plate experiences uneven force distribution, it forms concave
structures under stronger stress and convex structures under
weaker stress. Research findings indicate that the low-amplitude
structural morphology in the study area mainly manifests as pos-
itive types (micro-nasal shapes, micro-fault noses, and micro-
anticlines) and negative types (micro-grooves, micro-fault
grooves, and micro-synclines).

The deep shale gas in Yongchuan Block takes Wufeng-Longmaxi
Formation as the target layer, which is overall gentle deep-water
shelf facies (Fig. 8(a)). The lithology is mainly gray-black siliceous
shale, gray shale, clay shale, and silty shale, with stable horizontal
shale development (Huang et al., 2020). Meanwhile, it is subdivided
into four types of microfacies: carbon-bearing argillaceous deep-
water shelf, graptolite-bearing argillaceous deep-water shelf,
bioclastic-lime argillaceous deep-water shelf, and radiolarian-
bearing argillaceous deep-water shelf. Among them, the domi-
nant microfacies are mainly distributed in the middle and lower
part of the Wufeng-Longmaxi Formation, with the total organic
carbon content (TOC) ranging from 1.5% to 3.0%, the average gas
content of 3.61 m3/t, the reservoir pressure of about 70 MPa, the
ground pressure coefficient ranging from 1.77 to 1.80, the reservoir
temperature of about 130 �C, and the geothermal temperature
gradient of 2.70 �C/100 m, which is a high-pressure dry gas reser-
voir with good gas content (Xie et al., 2019).

We have performed accurate horizon tracing of the bottom of
the Wufeng Formation in the study area (global 5 � 5, well passing
area 1 � 1), and obtained a horizon structure map with a work area
of about 180 km2. Based on this, we have compared and analyzed
the low-amplitude structure identification results of the three low-
frequency reduction methods with the actual 3D seismic data.
Finally, we combined with the horizontal well verification tech-
nique, i.e., the variation characteristics analysis using multiple
logging values such as TOC values and GR values to guide the ac-
curacy of low-amplitude structure identification.
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3.2. Comparison in de-low frequency structure mapping

Employing the concept of de-low frequency, we utilize wavelet
transform, curvelet transform, and NSCT to depict low-amplitude
structures into maps. It is essential to highlight that during the
implementation of the wavelet frequency division method, a
meticulous selection of the wavelet basis function is imperative.
The process involves performing 2D wavelet transform on the
constructed data to generate a 2D scale time-frequency map. Sub-
sequently, the wavelet inverse transform is applied to derive a low-
amplitude structure map based on wavelet decomposition. Simul-
taneously, when employing the NSCT method for low-amplitude
structure recognition, the complexity of calculation hinges on the
filter composition of NSP and NSDFB, necessitating careful
consideration in filter selection.

Fig. 9(b)e(d),(f) illustrate a comparison of the low-frequency
components decomposed by wavelet transform, curvelet trans-
form, and NSCT, respectively. These components primarily capture
the fundamental characteristics of the regional structure. Upon
closer examination of the figures, it becomes evident that all three
methods exhibit a consistent macro trend in representing the
structure. However, notable local variations exist among them. By
considering both the contour patterns and depth values, it is
apparent that the wavelet transform produces the most distinct
deviation from the original structure.

Fig. 9(c)e(e),(g) depict the structural details of the three
methods subsequent to the removal of low-frequency background
(residuals with the original structure), i.e., the results of recognizing
low-amplitude structures. Negative residual values correspond to
depression, while positive residual values correspond to uplift.
Overall, the low-amplitude structure recognition results from
Fig. 9(c)'s wavelet transform and Fig. 9(e)'s curvelet transform
exhibit relatively consistent resolution, primarily reflecting larger
or overall structural variations. The low-amplitude structure is
difficult to identify. The closure height of the wavelet transform
recognition result is approximately 80 m, and that of the curvelet
transform recognition result is about 50 m, significantly surpassing



Fig. 9. Comparison of the regional background structures: (b), (d), (f) and the corresponding low-amplitude structures (c), (e), (g) obtained by decomposing (a) the original
structure horizon using wavelet transform, curvelet transform, and NSCT.
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the closure height of the confirmed low-amplitude structure in the
actual work area. Notably, the resolution of the NSCT results in
Fig. 9(g) is markedly enhanced, enabling the reflection of small
uplift and depression structures, aligning with the recognition of
the proven low-amplitude structure closure height within 20 m in
the actual work area. Therefore, to further analyze the reliability of
the methods, we proceed to conduct a comprehensive comparison
and validation by integrating seismic data and horizontal well data
from the actual working area.

3.3. Comparison in horizontal well

To conduct a more comprehensive and accurate comparison of
the three de-low-frequency methods in identifying low-amplitude
structures, we integrate horizontal well data and seismic profiles
from the study area for analysis. By examining the cross-well
seismic profiles along the well trajectory, multiple low-amplitude
structures located at the bottom horizon of the Wufeng Forma-
tion in the horizontal well area are identifiable. Meanwhile, in order
to more comprehensively compare the identification effects of the
threemethods in different structural backgrounds, we selected four
horizontal wells according to the complexity of the geological sit-
uation: The horizontal section of well A1 extends 1500 m
(4290e5790 m) in a direction of 42�, and the target layer is the
Wufeng Formation of the Ordovician. The structural position be-
longs to a part of the Yangtze quasi-platform Chongqing platform
flexure. The actual drilling data is generally consistent with the
seismic data trend, indicating an overall downward dip of the
stratigraphy with some noticeable differences. Local rapid changes
in the stratigraphy occur, making the geological structure relatively
complex. The comprehensive quality evaluation of logging in-
dicates that the Class I reservoir in the horizontal section of A1 well
spans 1313.8 m (87.6%). The horizontal section of well A2 is 1500 m
long, with a trajectory direction from the starting point to the
endpoint at 226�, and the target layers are the Longmaxi and
Wufeng Formations. The structural location is in the southern
section of the Laisu syncline. The overall dip of the target layer is
upward, and the actual drilling trajectory indicates that the hori-
zontal section of the well has a complex structure, consisting of a
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fold belt, a transition zone, a horst, and a steepening belt from the
starting point to the endpoint. The horizontal section of well A3
extends 1500 m in a direction of 42�, and the target layer is the
Ordovician Wufeng Formation. The structural location is the slope
between Huangguashan structure and Laisu syncline. The overall
dip of the target layer slopes upwards, and the horizontal section is
generally flat with local folds. The angle of stratum dip changes
from 2� upward to 2� downward, but the actual stratum dip be-
tween 5200 and 5900 m is 5�e7� upward, which differs signifi-
cantly from the seismic trend. The horizontal section of well A4 is
1500 m long, with a trajectory direction from the starting point to
the endpoint at 223�, and the target layers are the Longmaxi and
Wufeng formations. The structural location is at the southwestern
end of the Dongshan structure. The overall dip of the horizontal
section is downward, with a wave-like shape and significant un-
dulations due to stress compression, resulting in rapid changes in
the stratigraphy and local development of small folds. The inte-
grated quality evaluation of logging shows that the Class I reservoir
of the A4 horizontal section is 1451.0 m, with a proportion of 68.0%.
In conclusion, the overall stratigraphy of the horizontal Sections A1
and A3 is relatively gentle, whereas the stratigraphy of the hori-
zontal Sections A2 and A4 exhibits more significant undulations.

As shown in Fig. 10, the recognition results of the three methods
over the A1 horizontal well trajectory are shown along the profile.
The planar graph is the residual between the low-frequency back-
ground and the original structural data, the blue line in the profile
represents the horizontal well trajectory, and the green line is the
original horizon data. Fig. 10(a) shows the wavelet transform
recognition results. In the planar graph, positive residual values
represent small anticline structures, while negative residual values
represent small syncline structures. By comparing the original
horizons of the seismic profile along the well trajectory with the
low-frequency horizons of wavelet decomposition, it can be noted
that the wavelet transform method can effectively recognize three
low-amplitude structures (marked ①, ②, and ③ in the figure),
including one small syncline and two small anticlines. Fig. 10(b)
shows the results of the curvelet transform, which can effectively
recognize three low-amplitude structures, including two small
anticlines and one small syncline, with almost the same resolution



Fig. 10. Comparison of (a) wavelet transform, (b) curvelet transform, and (c) NSCT recognition results along the well trajectory plane and seismic profile of horizontal well A1 in the
study area.
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as the wavelet transform. Fig. 10(c) shows the results of NSCT
recognition, which can effectively identify six low-amplitude
structures, including three small anticlines and three small syn-
clines, and the low-frequency results of decomposition are better
fittedwith the original horizon than the previous twomethods, and
the resolution of low-amplitude structure recognition is also
improved. We analyze that it is because the NSCT uses a non-
subsampling operation to make the decomposed structure image
with displacement invariant, multi-scale and multi-directional
characteristics. Compared to curvelet and wavelet transforms,
NSCT not only preserves fine details but also exhibits enhanced
capability in distinguishing high-frequency noise from useful sig-
nals, thereby improving the recognition rate of subtle structures.
Furthermore, NSCT possesses advantages such as rotation invari-
ance, local singularity, and robustness against noise, enabling bet-
ter handling of complex image structures and enhancing the ability
to finely identify low-amplitude structures.

Similarly, according to thewell crossing seismic profile along the
well trajectory, multiple low-amplitude structures can be identified
on the horizon of theWufeng Formation bottom in the A3well area,
as depicted in Fig. 11. Through wavelet transform, two low-
amplitude structures can be discerned, while curvelet analysis
identifies three, and the NSCT detects four such structures. Notably,
the curvelet exhibits slightly higher resolution compared to the
wavelet transform, whereas the NSCT demonstrates the highest
resolution. Furthermore, upon comparing the results with the
plane map, it becomes evident that the NSCT recognition yields the
most detailed distribution. The recognition results of wells A1 and
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A3, where the strata of the over-well trajectory are relatively gentle,
show that the number of low-amplitude structures identified by
the NSCT is much higher than that of the wavelet and the curvelet
transform, indicating that the wavelet and curvelet transform are
difficult to identify micro-relief structures. In contrast, the NSCT
displays greater sensitivity towards such features.

Using the same method, multiple low-amplitude structures can
be recognized on the bottom of the Wufeng Formation in the A2
well area based on the cross-well seismic profile along the well
trajectory, as shown in Fig. 12. Four structures can be identified by
wavelet transform, four by curvelet transform, and six by NSCT. The
recognition results of well A2 in both the plane and profile suggest
that the recognition resolution of the curvelet transform appears to
be higher than that of the wavelet transform. We believe that this
may be due to the appropriate selection of wavelet basis functions
at this location, which effectively captures high-frequency details in
low-amplitude structures. In contrast, the curvelet transform usu-
ally employs curve-shaped basis functions with relatively wide
frequency domain characteristics, leading to relatively lower reso-
lution at this location. Moreover, the curvelet transform may be
more sensitive to noise and interference signals at this location,
resulting in lower local resolution. NSCT identifies low-amplitude
structures with the highest accuracy compared to the three
methods and is clearly shown on the surface map.

According to the cross-well seismic profile along the well tra-
jectory, multiple low-structures can also be identified on the ho-
rizon of the Wufeng Formation bottom in the A4 well area, as
shown in Fig. 13, four can be identified through wavelet transform,



Fig. 11. Comparison of (a) wavelet transform, (b) curvelet transform, and (c) NSCT recognition results along the well trajectory plane and seismic profile of horizontal well A3 in the
study area.
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four can be identified through curvelet, and six can be identified
through NSCT. The same shows that the NSCT recognition results
have the highest resolution. Through the recognition results of A1
and A3 wells with relatively large stratigraphic fluctuations in the
well trajectory, it can be seen that although the number of low-
amplitude structures identified by NSCT is more than that of
wavelet and curvelet transform, the difference is smaller, which
indicates that the three methods can identify the low-amplitude
structures with slightly larger differences in stratigraphic struc-
ture height, and the NSCT recognition accuracy is still the highest.
Therefore, combining the four wells with different geological con-
ditions, it can be found that the NSCT recognition accuracy is the
highest for both low-amplitude structures with large differences in
structural elevation, i.e., large scale, and low-amplitude structures
with small undulations, i.e., small scale, indicating that our pro-
posed method is applicable in different geological complexity
situations.

Taking the structures ② and ③ of the seismic profile crossing
the well A4 as an example, the fitting results of the three methods
are intuitively compared and displayed.

Based on the analysis of Fig. 14, it is evident that both the
wavelet transform and curvelet transform methods provide rela-
tively accurate low-frequency separation. These methods effec-
tively fit the target horizons and successfully separate the localized
“small folds". However, the “low frequency volume" generated by
these two methods is limited by their fitting accuracy, resulting in
interconnected local “small folds" and consequently compromising
the resolution of low-amplitude structure identification. In
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contrast, the NSCT fitting produces a residual plane map with
higher resolution, thereby facilitating the identification of low-
amplitude structures within the study area. Consequently, the
NSCT method is recommended as the preferred approach for
recognizing low-amplitude structures in practical applications.

3.4. Horizontal well verification

When utilizing horizontal well guidance to validate the inter-
pretation results, 3D seismic data can assist in judging macroscopic
structures. However, due to the weak seismic response of low-
amplitude structures, they are often susceptible to noise interfer-
ence, making it challenging to accurately depict features such as
small faults, uplifts, and folds solely based on seismic interpretation
results. Moreover, incorrect judgments of wave impedance in-
terfaces during interpretation can introduce false structures into
the results, causing deviations between actual drilling trajectories
and expectations, ultimately reducing the probability of drilling
into high-quality reservoirs (Liu et al., 2022b). Therefore, to further
analyze and verify the method's advantages, we validate the low-
amplitude structure recognition results based on real drilled
wells. Using logging curves such as TOC, GR, and well deviation, we
analyze various parameter values and morphological change
characteristics to identify the real drilled low-amplitude structures,
determine the real structure type, check the false structures in the
identification results based on the proposed method, and finally
analyze the location of high-quality reservoir distribution, at the
same time, lay the foundation for horizontal well trajectory



Fig. 12. Comparison of (a) wavelet transform, (b) curvelet transform, and (c) NSCT recognition results along the well trajectory plane and seismic profile of horizontal well A2 in the
study area.
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optimization.
GR is the natural gamma curve, which is usually used to analyze

the shale content. At the same time, TOC represents the total
organic carbon content, which is generally used to characterize the
gas content and hydrocarbon generation capacity of shale, and is
regarded as the critical parameter of the “geological sweet spot",
and usually when its content is higher than 2% (Xiao et al., 2023), it
means the shale has basic hydrocarbon generation capacity.

As shown in Fig. 15, during the actual drilling process, the hor-
izontal well trajectory curve is basically consistent with the strati-
graphic dip angle of the seismic profile, which indicates that the
structure of the seismic profile crossing the horizontal well is
basically consistent with the actual drilling, and can reflect the
structural characteristics of the bottom of the Wufeng Formation
more truly. The sudden drop of GR and TOC can indicate that the
horizontal well meets the “small uplift" structure, and the false
structure can be corrected in time through this feature. By col-
lecting actual drilling and logging parameters, three small anticline
structures are verified in the horizontal well A1 in Fig. 15(a), which
is consistent with the recognition results of the NSCT method. Two
small anticline structures are identified by wavelet transform, and
two small anticline structures are identified by curvelet transform.
The advantages of the NSCT method are apparent. Meanwhile, in
Fig. 15(b), through manual identification of GR and TOC sudden
drop sections, two small anticline structures are identified in hor-
izontal well A2, two small anticline structures are identified in
horizontal well A3 in Fig. 15(c), and four small anticline structures
are identified in horizontal well A4 in Fig. 15(d), which is consistent
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with the recognition results of NSCT-based method. However, two
small anticline structures are identified by wavelet and curvelet
transform-based approaches. In order to demonstrate the effec-
tiveness of the NSCT method more intuitively, we extract the GR
and TOC well logging curves fromwell A1 and display them on the
same profile as the original stratigraphic and NSCT fitted curves
(see Fig.16). It can be observed that there are three significant drops
in thewell curves, which alignwith the identification of three small
anticlines by the NSCT analysis. In summary, combined with the
actual well curve verification, low-amplitude structure recognition
results by using NSCT are almost consistent with the actual drilling,
which proves that the proposed method is reliable and provides
technical support for the optimization and deployment of drilling
trajectories in the later stage and adjacent wells.

In this section, we extract pertinent logging parameters to
validate the accuracy of identifying low-amplitude structures based
on the actual drilling trajectories of horizontal wells. The results of
low-amplitude structure identification are derived from decom-
posing the low-frequency background using multi-scale time-fre-
quency analysis methods. In comparison with the cross-well
seismic profiles, the “low-frequency model" constructed by the
wavelet and curvelet transform can be well differentiated from the
original stratigraphy. However, the performance is insufficient and
suitable for identifying “structural ridge" in the study area. Both
methods have a low degree of fitting with actual drilling trajec-
tories. The highly directional and anisotropic NSCT is more appro-
priate for low-amplitude structure recognition. The result of the
proposed method matches better than that of the traditional



Fig. 13. Comparison of (a) wavelet transform, (b) curvelet transform, and (c) NSCT recognition results along the well trajectory plane and seismic profile of horizontal well A4 in the
study area.

Fig. 14. Comparison of fitting degrees of three methods for crossing the well A4 seismic profile in the study area at (a)② syncline structure and (b)③ anticline structure. The results
obtained from the wavelet transform method exhibit the lowest fitting degree, followed by the curvelet transform method. The NSCT identification results demonstrate the highest
fitting degree among the three methods.
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wavelet transform and curvelet transform. It can more compre-
hensively capture structural features in all directions of the struc-
tural plane, providing richer structural information for
reconstruction after separation. The final step is to verify the low-
amplitude structure recognition results by combining horizontal
wells, using various logging data such as TOC, GR, etc., to analyze
the change characteristics. It can be found that the NSCT-based low-
amplitude structure identification results are basically consistent
with the actual drilling and more suitable for recognizing low-
amplitude structures in the study area. Fig. 9(g) shows the final
low-amplitude structure identification surface of the target layer in
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the study area, where high residual values represent positive low-
amplitude structures and low values indicate negative low-
amplitude structures. The low-amplitude structures are mainly
developed near large anticlines. Meanwhile, three-dimensional
identification of local low-amplitude structures near the drilling
platform in the research area reveals that the amplitude difference
around the well generally does not exceed 3 m. Although small
folds exist, the terrain is relatively gentle compared to the whole
work area. Therefore, studying low-amplitude structures provides a
foundation for selecting well locations.



Fig. 15. Validation of the low-amplitude structure recognition results, i.e., the low-amplitude structure recognition plane and logging curve feature profile of horizontal wells (a) A1,
(b) A2, (c) A3, and (d) A4.

Fig. 16. Comparison of low-amplitude structure recognition results with TOC and GR
logging curves in well A1.
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4. Conclusion

In summary, we propose a process and method for identifying
low-amplitude structures based on time-frequency analysis. The
large-scale analysis obtained through time-frequency trans-
formation preserves the low-frequency background of the struc-
tures, while the small-scale analysis reveals the structural details.
This approach ensures both structural continuity and local focus in
the identification results. It fully utilizes the redundant properties
of scale in time-frequency analysis to achieve a multi-scale
decomposition of the two-dimensional image of the structural
interpretation. Building upon this, we develop a method for precise
identification of low-amplitude structures based on NSCT. This
method captures the characteristics of low-amplitude structures in
multiple directions and scales, allowing for accurate identification
of these structures through reconstruction. Validation through
horizontal wells, as well as the comparison of logging parameters
such as TOC and GR values, confirms that the results of the pro-
posed method align closely with actual drilling data. Through
various comparisons, it is evident that the NSCT exhibits significant
advantages in identifying low-amplitude structures. It effectively
separates regional background from local low-amplitude
3077
structures, enhances the features of local microstructures, and
highlights them on the structural planemap. This demonstrates the
effectiveness and superiority of using NSCT for identifying low-
amplitude structures. The practical application of this method in
work areas provides a reliable basis for well-location deployment.
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