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ABSTRACT

High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well
as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher
resolution seismic images in petroleum exploration. Although there have been successful applications of
conventional signal processing and machine learning for post-stack seismic resolution enhancement,
there is limited reference to the seismic applications of the recent emergence and rapid development of
generative artificial intelligence. Hence, we propose to apply diffusion models, among the most popular
generative models, to enhance seismic resolution. Specifically, we apply the classic diffusion mod-
el—denoising diffusion probabilistic model (DDPM), conditioned on the seismic data in low resolution, to
reconstruct corresponding high-resolution images. Herein the entire scheme is referred to as SeisRe-
soDiff. To provide a comprehensive and clear understanding of SeisResoDiff, we introduce the basic
theories of diffusion models and detail the optimization objective's derivation with the aid of diagrams
and algorithms. For implementation, we first propose a practical workflow to acquire abundant training
data based on the generated pseudo-wells. Subsequently, we apply the trained model to both synthetic
and field datasets, evaluating the results in three aspects: the appearance of seismic sections and slices in
the time domain, frequency spectra, and comparisons with the synthetic data using real well-logging
data at the well locations. The results demonstrate not only effective seismic resolution enhancement,
but also additional denoising by the diffusion model. Experimental comparisons indicate that training
the model on noisy data, which are more realistic, outperforms training on clean data. The proposed
scheme demonstrates superiority over some conventional methods in high-resolution reconstruction
and denoising ability, yielding more competitive results compared to our previous research.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

propagation as well as some limits in seismic acquisition and data
processing, constraining the band-width of signals or damage some

Exploration seismology plays an extremely important role in
petroleum industry to determine the distribution of reservoirs and
guide the location of well drilling by providing the images of sub-
surface structures. Seismic images with high resolution are helpful
for interpreting the geologic structures precisely, and inverting for
subsurface physical properties accurately (Yilmaz, 2001). However,
due to the stratum absorption effect during the seismic wave
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frequencies that benefit high resolution, people sometimes cannot
obtain seismic data with satisfied resolution. Therefore, resolution
enhancement has always been a hot topic in seismic exploration.
For post-stack (or migration) seismic data that are the results of
seismic processing procedures and ready for the subsequent
interpretation tasks, high resolution generally means good
distinction of thin layers underground in a seismic section and
broad band of signals in the spectrum. Many approaches have been
proposed to extend the band-width of seismic data as the objective
for resolution enhancement. These approaches can be divided into
two aspects in general: conventional ways, and deep-learning-
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based methods.

Among the conventional ways, deconvolution, which com-
presses the seismic wavelet to approximate reflectivity based on
seismic convolution theory (Robinson, 1967), has become a type of
the most commonly used methods (Cao and Yuan, 2016). There
have been a few classic methods including least-squares inverse
filtering (Berkhout, 1977), Wiener spiking deconvolution (Leinbach,
1995), predictive deconvolution (Peacock and Treitel, 1969),
surface-consistent deconvolution (Levin, 1989), etc. Developed
from the deconvolution, some new methods based on the sparsity
assumption of the reflectivity have been proposed and successfully
applied, constituting the sparse-spike deconvolution (SSD) or the
sparse-spike inversion (SSI) (Taylor et al., 1979; Levy and Fullagar,
1981; Sacchi, 1997; Puryear and Castagna, 2008; Velis, 2008;
Zhang and Castagna, 2011; Gholami and Sacchi, 2012; Kazemi and
Sacchi, 2014; Ma et al., 2017; Li et al., 2021). To compensate the
attenuation on high frequencies caused by the stratum absorption
effect, inverse-Q filtering (Hale, 1981; Hargreaves and Calvert, 1991;
Wang, 2002, 2006; Margrave et al., 2011) under the constant-Q
theory (Kjartansson, 1979), becomes another critical technology,
and has been applying to both pre- and post-stack data (Yao et al.,
2003; Zhang and Ulrych, 2007; Li et al., 2015; Zhang et al., 2015).
Considering the wavelet variation in time and space (nonstationary
situation), some researchers have recovered frequencies with
Garbor transform (Margrave, 1998; Margrave et al., 2011; Gao et al.,
2009; Wang et al., 2013), S transform (Stockwell et al., 1996; Zhou
et al., 2014; Lin et al., 2022), and empirical mode decomposition
(Huang et al., 1998; Dragomiretskiy and Zosso, 2014; Chen et al.,
2022c; Cao et al, 2023). Some other approaches that invert for
reflectivity in complicated cases (e.g. non-stationary signals, noisy
data, and blind deconvolution) have been developed as well (Chai
et al.,, 2014; Chen et al., 2019, 2022b; Jiang et al., 2021). The con-
ventional approaches mentioned above have been demonstrated to
be effective and applied widely in resolution enhancement, but
those methods have limitations as well. For instance, some of the
methods have their own assumptions towards seismic data or the
subsurface properties, such as the sparsity assumption of the
reflectivity in SSI. Some methods rely on the elaborate design of the
algorithms involving massive expertise, experience, and manipu-
lation of experimental setups.

Deep learning has been increasingly attracting attention in
exploration geophysics in which automation and intelligence are
highly valued (Harsuko and Alkhalifah, 2022; Cheng and Alkhalifah,
2023). There are many successful deep learning applications in
solving seismic problems, such as data denoising and reconstruc-
tion with self-supervised learning (Zhang et al., 2019b; Zhang and
Liu, 2022; Chen et al., 2022a; Birnie and Alkhalifah, 2022; Liu
et al., 2023b; Chen and Liu, 2024), wavefield extrapolation and
simulations with Fourier neural operators (Song and Wang, 2022;
Grady et al, 2023), full waveform inversion (FWI) (Sun and
Demanet, 2020; Li et al., 2023; Alali and Alkhalifah, 2023; Yang
et al., 2023b; Wang et al., 2023a), seismic impedance as well as
amplitude variation with offset (AVO) inversion (Zhang et al.,
2022a, 2022b; Sun and Liu, 2022; Sun et al., 2024), and geological
structure segmentation (Wu et al., 2019; Zhang et al., 2021; Yang
et al., 2024). Applying deep learning techniques in seismic resolu-
tion enhancement is certainly without exception. In view of the
similarities between seismic sections and natural images, the ideas
from image super-resolution in computer vision problems can be
borrowed for improving seismic resolution (Li et al., 2022; Sun
et al., 2022; Hamida et al., 2023; Min et al., 2023; Lin et al., 2023;
Zeng et al, 2023). Nonetheless, the resolution degradation in
seismic data is not identical with that in natural images, and
seismic resolution enhancement is a comprehensive change for the
signals including amplitude and phase adjustments. Combining the
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conventional algorithms with deep learning is a good way to
exploit the advantages from both. To this end, some parts in the
conventional algorithms can be substituted by neural networks
that are able to build complex mappings between data and provide
prior information to the reflectivity inversion (Chen et al., 2021a,
2021b, 2023; Gao et al., 2022b; Xu et al., 2022). Generalization of
the networks is a big issue when we train networks on a dataset
which has different features from the data that we apply to in the
inference stage. Therefore, the structure and the facies constrains
can be added into the deep learning applications (Li et al., 2022;
Hamida et al.,, 2023; Gao et al., 2023; Wang et al., 2023b). In
addition, using well logging as auxiliary information to build
training datasets (Choi et al., 2021; Gao et al., 2023; Guo et al., 2023)
or adopting domain adaptation methods (Zhang et al., 2023) is
effective for the generalization improvement.

Among deep learning algorithms, generative models have
shown promising abilities of generating data subject to the distri-
bution learned from the given data. Generative adversarial network
(GAN) (Goodfellow et al., 2014) becomes a representative of this
type of models. Zhang et al. (2019a) used high resolution data
processed by a conventional method as labels to train a GAN.
Oliveira et al. (2019), Sun et al. (2022), and Lin et al. (2023)
improved the seismic resolution by GANs in an image super-
resolution way which conducts seismic section interpolation and
reconstruction. To ensure more reasonable generated high resolu-
tion results and good generalization of the networks, some scholars
use CycleGANs in the resolution enhancement task with adding
structure constrains (Gao et al.,, 2022a) and weakly supervised
learning (Liu et al., 2023a). However, there are difficulties in
training GANSs, specifically, when trying to find a proper set of
hyper-parameters and decide the balanced weights between
different loss functions to make the training stable (Arjovsky and
Bottou, 2017; Pan et al., 2020; Wang et al., 2023c). Diffusion
models become one of the state-of-the-art deep generative models
at present, showing superb performance with flexibility and huge
potential in a variety of fields (Dhariwal and Nichol, 2021; Saharia
et al,, 2022; Yang et al., 2023a). Diffusion models avoid training a
discriminator like in a GAN and just learn the reverse of simple
forward diffusion process. The application of diffusion models in
geophysics is emerging but still at an early stage, in which the
diffusion models are mostly used in seismic denoising and data
reconstruction. For example, Peng et al. (2024) applied a denoising
diffusion probabilistic model (DDPM) (Ho et al., 2020) to the strong
random noise attenuation. The initial DDPM and some other ver-
sions of diffusion models such as denoising diffusion implicit model
(DDIM) (Song et al., 2021a) are used for shot gather interpolation
(Hou et al., 2023; Deng et al., 2024; Wei et al., 2023; Liu and Ma,
2024). Durall et al. (2023) apply a conditioned DDPM (Sohn et al.,
2015; Saharia et al., 2023) to eliminating multiples from seismic
data in addition to random noise attenuation and data interpola-
tion. There are a few applications on other topics. Wang et al.
(2023a) trained a diffusion model which offers prior subsurface
knowledge as a regularizer to improve the performance of the
conventional FWI process. Jiang et al. (2023) applied a conditional
DDPM to a geological structure identification task. Nevertheless,
there has not been a reference about diffusion-model application
on seismic resolution enhancement so far. In this paper, we
implement a preliminary test on this task.

We introduce a scheme in which we apply a conditional diffu-
sion model that combines the classic DDPM with low-resolution
seismic images as prior conditions to enhance seismic resolution.
Firstly, we present the theories of diffusion models and derive the
optimization objective. The derivation of this objective shows sig-
nificant differences from other deep-learning-based methods.
Following this, we propose a workflow to generate pseudo-wells
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and simulate geological models based on features from target field
data, ensuring the availability of sufficient training data. To bolster
the reliability of predictions, we incorporate diverse noisy data for
network training. Experiments using both synthetic and field
datasets are conducted to validate the feasibility and efficacy of the
proposed scheme. The promising predicted results reveal the
considerable potential of diffusion-model-based applications for
seismic resolution enhancement.

2. Resolution enhancement with a diffusion model

The basic theory of diffusion models includes diffusion and
denoising processes, as shown in Fig. 1. The training of the diffusion
models contains both of the processes, while only the denoising
process is conducted in the inference stage. The details are illus-
trated in the subsections below. Specifically, the procedures of the
method are illustrated in the subsection “Training and inference”.

2.1. Diffusion (forward process)

Diffusion is a process adding Gaussian random noise to a piece
of given clean data step by step, until the clean data become pure
Gaussian noise ultimately. This process looks like molecular diffu-
sion in thermodynamics which inspires the name of diffusion
models. As illustrated in Fig. 1, the diffusion process which reflects
the posterior q(X1.7/Xg) can be formed through a Markov chain with
adding noise to the original seismic data X over T steps:

T

q(xq.r/%0) := [ [ a(eXe—1)
i1

(1)

where q(x;|X;_1) represents the conditional distribution of the data
X; at step t given X;_1 at previous step t—1, and “:=" indicates
“define as”.

To make the diffusion controllable, following Ho et al. (2020)
and Luo (2022), normal distribution is chosen for this process.
The data x; can be obtained through X, 1 by adding the noise e
sampled from a standard normal distribution N(0,1):

xe = \/1-Bxe 1 +/Be. e~ N(©O,)

where (; in our work is the designated hyper-parameter at step t
and increases as t goes from O to T, subject to 0 < §; < 1. Then, q(x|
X;_1) can be written as

axelxe 1) = N (%6 /1= Bexe 1, 64)

with /1 —:X,_; as the mean and f; as the variance in this

(2)

(3)

q(x%;_1)
diffusion

Denoising
Po(Xe_1|X:)
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Gaussian distribution.

Further, according to the property of Gaussian distribution,
combining the Eqgs. (1) and (3), one can derive the probability
distribution of the data x; at any step t given the original clean data
Xp:

axaixo) = A (xe: Vo 0.1~ )1 (4)
ie,
xt:\/_a_;x0+\/l—;vte, e~ N(0,1) (5)

where o :=1— 6, and a ¢ : = [T ;.
2.2. Denoising (reverse process)

Literally, denoising process removes the noise from the begin-
ning pure Gaussian noise X,_7 and reconstructs data X;_; step by
step until the desired Xo, which is the clean seismic dataset in high
resolution in our research. As the reverse of the aforementioned
diffusion process q(X¢|X;_1), denoising can be denoted as q(x;_1 |X;).
If §; is small enough, q(x;_1|X;) satisfies a Gaussian distribution as
well (Feller, 1949). However, it is impossible to deduce the exact
posterior q(X;_1|X¢) in reality because there are numerous possi-
bilities when one samples noise from a normal distribution in the
diffusion process. In practice, the reverse process is performed by a
network (denoted by the distribution py(xg.r) with network
weights ¢ an transitions in another Markov chain, starting at the
given noise p(Xr) = N (Xr;0,1):

Ps(Xo.T)

Po(Xe_1[X¢)

T
= p(Xr) Hpe(xt—ﬂxt) (6)

=1
=N (Xe_15 Hg(Xe, 1), 09 (Xt T))

where py(X;_1|X;) represents a single step in the reverse process
with shared network weights 6 across steps, as shown in Fig. 1. To
that end, the objective of network training is to learn a distribution
py consistent with the distribution q.

2.3. Optimization of the reverse process

Based on the analysis above, the reverse process that gives us
expected high resolution results is an optimization problem, in
which the learnable distribution py is forced to be similar to the
reverse of the diffusion process q. It is natural to use Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951) Dy (q || pg) for
the distance measurement between the two distributions. Then,
the objective function can be formulated as

Fig. 1. Diagram of diffusion and denoising processes in diffusion models.
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. L q(x;)
argminDyq(q | py) = argminy_qxlog( 205 )
0 - o(Xi)

m m

= arg;nin ( > ax)log q(x;) — > q(x;)log Pe(&'))
p i1

i=

m

= argmin ( - Z q(x;)log po(x,-)> (q is known)
0 n

i=1
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(7)

= argminky._qx)[ — log py(x)] (Definition of expectation E)
0

where the function “argmin” stands for “argument of the mini-
mum” and herein outputs a set of network weights § that minimize
Dy1(qllpg) over the domain of network weights, and q represents
the diffusion which is already designated and nothing related to the
network.

The derivation above reveals that the network optimization
pursues a largest py. In particular, we need to obtain the largest
probability for reconstructing the original seismic data xg. With the
definition of expectation and KL divergence, Bayes rules, and the
previous formulas as well as some algebraic manipulation, the
optimization of the reverse process forces the neural network to
predict noise as similar to Gaussian noise as possible. That is, the
optimization objective of the reverse process during model
training, is equivalent to the minimum of the difference between
the network output and Gaussian noise:

arg;ninDKL(q Il pg)e=

(8)

argmin|[€y(X¢, t) — €13, €0 ~ .7 (€0, 1)
0

where the source Gaussian noise ¢y determines seismic data x; at
any step t from the original data Xo, and ¢;(X;,t) represents the
network prediction that approximates ¢y when given the data x; at
step t. We refer the readers to Appendix A for the detailed deri-
vation of the optimization objective.

q(X:[X:_1)
Diffusion

Once the network has the ability of predicting Gaussian noise
(after network training), we are able to infer the data x; ; from X;
based on Eq. (6) and appendix Eq. (A.10):

P alx) = (R 1y, 0),6°T) o
X1 = P«(}(xh t) + &Z,Z ~ /y(o’l)

_ ;_a_t (xt _ ;1‘4__“%25(&, r)) 52,2~ (0.1)
(9)

where the standard deviation ¢ is only the function of «; (appendix
Eq. (A.6)) that is designated in advance during the diffusion process.
In the formula above, we use the similar reparameterization of
writing a normal distribution as in Eq. (2). The details about
network training and inference are illustrated afterwards.

2.4. Conditional diffusion models

The purpose of our research is the reconstruction of high reso-
lution seismic data from low resolved data. The network needs to
learn the low-high resolution relationship in a supervised manner.
Fortunately, diffusion models can be easily conditioned (Saharia
et al.,, 2023; Durall et al., 2023), so that we are able to train the
models with input-label data pairs.

We can give source-target (i.e. input-label) data pairs as the

X;

Eq. (5)

Eq. (9)

© [
2
©
8
B b=}
g vy
[=
o
o
Denoising
Po(Xe_1[X:)

Concatenate
Concatenatem
<

Network

A single denoising step: p,(X;_1|Xs ¥)

Fig. 2. Diagram of the proposed conditional diffusion model SeisResoDiff, in which the diffusion and denoising processes are depicted in red and blue arrows, respectively.
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Fig. 5. Generation process of the 3-D impedance geological models with similar structural features to field seismic data using pseudo wells.
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Fig. 6. Process of seismic data simulation based on impedance geological models.

samples drawn from a distribution p(x|y), in which y and x repre-
sent the source and target data, respectively. Conditional diffusion
models are trained to map the source data y into the target x in a
stochastic iterative refinement process that is defined above as the
denoising process, i.e. pg(X;_1|X¢,y) such that Xo ~ p(X|y). For res-
olution enhancement, the diffusion model is conditioned on the
seismic data in low resolution as the source data y, and starts the
refinement from pure Gaussian noise X7 until the denoised seismic
data in high resolution Xg. In our practice, a piece of data xysampled
from the standard normal distribution is concatenated with a low
resolved seismic data section y as a part of the network inputs
(whereas the other part is the step t). After training, the network is
supposed to output Gaussian noise ¢;(X¢,y, t), and we can calculate
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X¢_1 with Eq. (9) iteratively till the desired high resolution data xo.
This section is depicted in Fig. 2.

2.5. Training and inference

Both of the diffusion and denoising processes are involved in the
training stage. During every training iteration, each piece of target
data xo within a batch is randomly assigned a forward diffusion step
t to provide x; based on Eq. (5). Then, x; concatenated with the
source datay that are in low resolution, forming dual-channel data,
are input into the network. The corresponding step t is embedded
into a vector as a network input as well, using the positional
encoding method from Chen et al. (2021c). The discrepancy
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between the network output and the Gaussian noise sampled from
N(0,1) is calculated to update the network according to Eq. (8) or
appendix Eq. (A.11). We refer the readers to Algorithm 1 for the
training details.

Algorithm 1. Training a network in the conditional diffusion
model SeisResoDiff.

Input: T: Number of diffusion steps in the forward process;

y: Source data (low resolution); Xq: Target data (high resolution, label);
Output: Trained diffusion model with network weights 6;

1: Initialize: t ~ Uniform(1,T);

: Initialize: 8, ~ Uniform(§_start, 5_end), i.e. 8,
: while not converged do

: (target,source) = (Xo,¥) ~ q(X0.Y);

ar =1- B @ = [T

oe~70,1;

TOXe = VaXo + VT — e

: Compute the gradient w.r.t. the network weights 6:

9 Vyly(xe,y, ) — ell3, ie. Vyl|ep (VA xo + VI =Gz ey, ) — €|2;
10: Update network weights 6;

11: end while

(6-end — B_start)t/ T;

2
3
4:
5:
6:
7
8

In the inference stage, a step-wise denoising process from step T
to 1 is conducted for providing the noise-free high resolution re-
sults. Similar to the reverse process in the training, the network
gets the source data y as well as x; as inputs, and predicts the noise
€9(X¢,y, t). As illustrated in the last subsection, the whole inference
process starts from xy with the condition y, and reconstructs the
ultimate high resolution seismic data based on Eq. (9). We use the
same hyper-parameters (; as in the training. The detailed proced-
ures are listed in Algorithm 2.

Algorithm 2. Inference of the conditional diffusion model
SeisResoDiff.

Petroleum Science 21 (2024) 3166—3188
2.6. The network

In fact, excluding the network design, the conditional diffusion
model can accept either 2-D or 3-D seismic data. The data shape
depends on the network architecture, which is primarily influenced
by the desired results and computational efficiency. In this work,
we develop a 2-D network that takes 2-D seismic sections as input
and outputs 2-D results to achieve high efficiency. We take the
fundamental idea of U-net (Ronneberger et al., 2015), and use a
network adjusted from classic works in diffusion models including
Ho et al. (2020), Song et al. (2021b), and Saharia et al. (2023). Fig. 3
depicts the network architecture in detail. Note that the data size in
both the seismic traces and time samples maintains same for both
low-resolution inputs and high-resolution outputs.

3. Data preparation

Supervised learning needs plenty of labeled training data to
train neural networks. However, generalization issue appears easily
when there are prominent differences between the training and
inference data. It is necessary to create training datasets as similar
to the inference data as possible. We propose a workflow in which
we can model the training data based on the features from a target
field seismic survey. Taking the field data we use as an example, the
data preparation steps are listed as follows.

(1) Fitting the relationship between P-wave velocity and rock
density from well-logging. There are 11 wells in our target
survey. All samples of the rock density (noted as p) and P-
wave veloctiy (noted as vp) from the 11 wells are shown in a
scatter plot in Fig. 4(a). We take p as a function of vp. The
nonlinear relation of p-vp can be observed obviously. Inspired
by the empirical relations in Brocher (2005), we employ
quintic polynomial regression to fit the p-vp relation and get
the fitting function shown as below:

Input: T: Number of denoising steps in the reverse process, normally equals to that in the forward process; y: Source data (in low resolution);

Output: Denoised high resolution seismic data Xq;

Amplitude

1: Initialize: x; ~ .7°(0,1);
2: Initialize: t ~ Uniform(1,T);
3: Initialize: §; ~ Uniform(g_start, $_end), i.e. §; = (8_end — (_start)t/T;
4: For t =T to 1, steplength =1 do
5. ar =1- B = [0
6: z~.7 01 ift>1elsez =0;
1 1—ar Q-—a)—arq), .
7 Xe 1 =— (Xt — ——€(X¢,y,t) | + ———————"7,ie. Eq. (9);
t-1 \/aTt([ m‘o(r,y )) 1-a q.(9)
8: end for
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1
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Fig. 7. SeisResoDiff inference results of two inline sections in the synthetic training dataset. The four images from left to right in each section exhibit the low resolution image as the
conditional part of network inputs, the predicted high resolution result from the trained network, the high resolution label (ground truth), and the difference between the pre-

diction and the label, respectively. (a) Training section-A. (b) Training section-B.
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Fig. 8. SeisResoDiff inference results of two inline sections in the synthetic test dataset. The four seismic images in each sample section are positioned with the same layout as in
Fig. 7. The curve plot below the seismic images in each subgraph displays the comparison between the network input and prediction for a randomly selected seismic trace at the

location indicated by the red triangles on seismic images. (a) Test section-C. (b) Test section-D.
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Fig. 9. SeisResoDiff inference results of two inline sections in the synthetic noisy training dataset. The four images from left to right in each section exhibit the noisy low resolution
image as the conditional part of network inputs, the predicted high resolution result from the trained network, the high resolution label (ground truth), and the difference between

the prediction and the label, respectively. (a) Training section-E. (b) Training section-F.
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Fig. 10. SeisResoDiff inference results of two inline sections in the synthetic noisy test dataset. The four seismic images in each sample section are positioned with the same layout
as in Fig. 9. The curve plot below the seismic images in each subgraph displays the comparison between the network input and prediction for a randomly selected seismic trace at
the location indicated by the red triangles on seismic images. (a) Test section-G. (b) Test section-H.
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p= —3.077i3 + 42.231i — 230.1i + 622.125i2 — 834.748ip
+446.949
(10)

where vp = 1p/1000.0, under Systéme International d’Unités (SI).
The fitting curve is plotted in red in Fig. 4(a). It is necessary to point
out that the data fitting above can be completed even if there is
only a single well. The more wells we have the more accurate data
fitting we get.

(2) Generating massive pseudo-wells according to the rock
property fitting function. Since there are many possibilities
to return a density when given a certain velocity, we also
offer a range of density values along and neighboring to the
fitting curve. That is, regarding to each sample of velocity, we
are able to obtain a density sample randomly chosen from a
range satisfied in Gaussian distribution, of which the mean
value is located on the fitting curve. Velocity samples are
randomly generated in a trend consistent with the general
velocity increase trending in depth, but limited by the range
on the actual wells. An example pseudo-well is shown in
Fig. 4(b).

(3) Creating an amount of geological models with similar
structural features from the field data based on the pseudo-
wells. Same as in our antecedent research (Zhang et al,
2023), we adopt the geologic modeling approach from Wu
et al. (2020) to build subsurface models. Taking the product
of the velocity and density from the pseudo-wells as
impedance, we expand the impedance of each pseudo-well
(1-D time series) to 3-D layered models by spreading
impedance laterally. Then, for each layered model, we add
tilting, folds, and faults in sequence to the model with
different groups of parameters. By investigation on the field
data, we constrain the dip angle of the layers changing in a
small range as in the real case. Slight folds and few faults are
controlled in the same reason. Finally, we obtain diverse
geological models, some as shown in Fig. 5.

(4) Modeling low and high resolution data based on the
geological models. The reflectivity (also called reflection co-
efficients) of the models can be calculated by taking the
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difference between the impedance values of upper and lower
layers over the impedance sum of the two layers. Then, the
reflectivities are convolved with two different seismic
wavelets to simulate low (for network inputs) and high (as
labels) resolution seismic data. We use a wavelet extracted
from the field data for the low resolution synthetic data,
whereas an expected broad-band wavelet for the labels.
Fig. 6 shows a diagram of this step.

We present two experimental examples on synthetic and field
data, respectively, in the following sections. In the former example,
the synthetic dataset is divided into the training and inference
datasets. The diffusion model is trained with the training dataset,
and used in the inference both for the synthetic and field data
examples to validate our approach. All of the field data are used for
inference.

4. Synthetic data example
4.1. Performance in training and inference

Following the steps above, we acquire 220 geological models in
three dimensions (81, 64, 256), representing (inline numbers,
crossline numbers, time samples) for the experiments. Taking
inline sections (in 2-D) as the data we test on, a half of all inline
sections is randomly selected as the training data. A single random
inline section chosen except for any training section from each
model composes the test dataset.

To reach a balance between performance and efficiency, the
conditional diffusion model is trained for 20000 iterations with
batch size of 16 on an NVIDIA GeForce RTX 4090 GPU. The training
is quite efficient, taking 2 h. We set the number of total diffusion
steps as 2000 in our experiments. The inference conducts full 2000
steps for denoising, while in the training, the diffusion step t is
assigned randomly for each piece of data to provide x; within a
batch per iteration.

Fig. 7 shows some examples of the training results. In each row,
the image at first column is in low resolution as the condition part
of the network input. The second and third images show the ulti-
mate output of the network and the labeled high resolution section,
respectively. The last image shows the discrepancy between the
network output and the label. We can observe the stable training

(b) 104
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Fig.11. Amplitude spectra of the network inputs (in black), predictions (in blue), and labels (in red), for the two sample sections in Fig. 10. (a) Spectra of test section-G. (b) Spectra of

test section-H.
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Fig. 12. An overview of the contrast between the field data prior to and after resolution enhancement. (a) Original seismic data. (b) Predicted high resolution data.
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Fig. 13. SeisResoDiff inference results of the inline sections randomly selected from the
field data. The images on the first row display the original field seismic sections, while
the second row shows the corresponding predicted high resolution sections.

performance from the figure, where the predictions are highly
similar to the labels with little difference. The inference results on
test data are presented in Fig. 8. The layout of the images is same as
in Fig. 7. The high similarity between the labels and network out-
puts, as well as the tiny prediction error, can be observed appar-
ently. Moreover, we check the network prediction in the test results
from a single seismic trace that is selected randomly from each
section (actually from the same location in each section, indicated
by red triangles), as shown in the curve plots below seismic images
in Fig. 8. We can observe that the predictions are highly consistent
with the labels, except the part located in the fault area.
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Fig. 14. The time slices randomly extracted from the original and predicted field data
cube. The images on the first row display the time slices from the original field seismic
data, while the second row shows the corresponding time slices in the predicted high
resolution data cube.

4.2. Resolution enhancement with denoising

In reality, there is more or less noise in post-stack field data,
though a few specific seismic denoising steps may have been
conducted. Fortunately, denoising is an intrinsic characteristic of
diffusion models. Moreover, the data with diverse levels of random
noise in addition to noise-free data can be included in the network
inputs as the condition of diffusion models. Therefore, we complete
experiments on the noisy synthetic data at different noise levels to
test if noise can be eliminated while resolution is enhanced.

To make the synthetic data more realistic, we add not only the
white noise at different signal-noise ratios (SNR), but also band-
limited Gaussian noise with different filtering windows, to the
clean data to obtain noisy network inputs. For noise adding in the
data preparation, the SNR of the data with white noise float from
2 dB to 18 dB. In addition, when adding the noise to data, the white
Gaussian noise is selectively low-pass filtered with an upper cut-off



H.-R. Zhang, Y. Liu, Y.-H. Sun et al.

1.0 A

0.8

0.6

Amplitude

0.4

0.2 4

40

20 60 80 100

Frequency, Hz

Fig. 15. Amplitude spectra of the original field data (in black) and predicted data (in
red).

frequency ranging from 80 Hz to 150 Hz. Each piece of data is
assigned randomly to add with the noise or not. There are two
reasons for adopting this noise adding strategy: (1) The noise
existing in the field data in this research looks like band-limited
Gaussian noise mainly; (2) The noise differs a bit across different
sections, and it is necessary to extend the diversity of the training
dataset. It should be noted that we only add noise to the low res-
olution input data as opposed to the labels (i.e. high resolution
expectations). The training set-up maintains same as that in pre-
vious noise-free tests.

Figs. 9 and 10 show some examples of results in training and
inference, respectively. We exhibit the examples from the network
inputs with different SNR levels, different noise frequency bands,
and different subsurface structures. For some cases with relatively
complex structures like faults, the diffusion model is able to pre-
cisely recover the seismic events split by the faults (Figs. 9(a), 9(b),
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and 10(b)). In some cases, even if seismic events are contaminated
significantly because of low SNR, the signals can be reconstructed
correctly as well (e.g. Figs. 9(a) and 10(b)). Like in Fig. 8, we show
curve comparisons from designated seismic traces in this case in
Fig. 10 as well. There is some mismatch between the predictions
and the labels in this scenario where the diffusion model enhances
resolution from noisy data in low resolution. However, the pre-
diction errors mainly occur upon the amplitude mismatch with
minor phase shift. Apart from the high similarity and low predic-
tion discrepancy between the outputs and labels in time domain,
we can observe the effectiveness of the frequency extension from
the spectra in Fig. 11. There is little inconsistency between the
spectra of the original and predicted data. The experimental results
demonstrate the good performance of the diffusion model.
Denoising is an accessional feature of the diffusion-model-based
resolution enhancement. We then infer the trained diffusion
model to the field case later on.

5. Field data example

The field data used in this research are a subset of the data from
the previous work (Zhang et al., 2023), with dimensions (inline
numbers, crossline numbers, time samples) of (67, 64, 256) and a
sampling rate of 1 ms, extracted from a 3-D survey. Similar to the
synthetic data example, here, 2-D inline sections within the 3-D
low-resolution data cube are input into the trained diffusion
model, section by section. Subsequently, the 2-D outputs are
assembled to form the 3-D predicted data cube. It is not necessary
to fine-tune the diffusion model for field case, because the syn-
thetic training dataset used above is created based on the field data,
and the model is trained accordingly. We analyze the resolution
enhancement results and show the effectiveness of our approach in
terms of the comparisons on both inline sections and time slices,
the amplitude spectra prior to and after the enhancement, and the
result comparisons with the real well-logging profiles. An overview
of the comparison between the original field data and its corre-
sponding resolution enhanced data is given in Fig. 12, from which
we can see a great improvement of seismic resolution. Although the
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Fig. 16. Seismic sections of the original and corresponding predicted data among different frequency bands. The first row in each subplots displays the inline sections of the original
low-resolution data, and the second rows display the inline sections of the predicted high-resolution data. (a) Inline #26. (b) Inline #61.
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Fig. 17. The data at well locations from the original data (in black), the predicted data (in blue), and the synthetic data using the real impedance from well-logging (in red). The
wiggles in the graphs on the left and right in each subplot are displayed in waveform and wiggle plus variable area, respectively. (a) Well #1. (b) Well #3. (c) Well #5. (d) Well #2.

Table 1

The similarity measurement between the predicted data and the synthetic data using the real well impedance, as well as the original data and the synthetic data using the real
well impedance, with different metrics (Correlation coefficient (Corr), R?, and Semblance) for each well.

Metric Well #1 Well #2 Well #3 Well #4 Well #5 Well #6

Predicted Original Prediction Original Predicted Original Predicted Original Predicted Original Predicted Original
Corr 0.778 0.714 0.785 0.789 0.703 0.666 0.683 0.588 0.791 0.692 0.732 0.651
R? 0.600 0.504 0.586 0.602 0.493 0.398 0.465 0.343 0.625 0.427 0.512 0.388
Semblance  0.864 0.825 0.892 0.892 0.834 0.830 0.815 0.769 0.881 0.845 0.862 0.819
Metric Well #7 Well #8 Well #9 Well #10 Well #11

Predicted Original Predicted Original Predicted Original Predicted Original Predicted Original

Corr 0.678 0.722 0.737 0.738 0.764 0.662 0.817 0.772 0.795 0.801
R? 0.443 0.509 0.537 0.535 0.582 0.437 0.662 0.589 0.627 0.637
Semblance 0.831 0.853 0.861 0.863 0.873 0.810 0.894 0.879 0.879 0.894

diffusion model processes 2-D inline sections in our tests, the
crossline sections and time slices extracted from the 3-D predicted
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data cube reveal acceptable prediction results. These results exhibit
enhanced resolution and good continuity of seismic events.
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Fig. 18. The field high resolution results inferred by the network trained on clean
synthetic training data. (a) Results displayed in time domain. (b) Amplitude spectra of
the original (in black) and predicted (in red) data.
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(in black), the data predicted using the network trained on noisy inputs (in blue), the
data predicted using the network trained on clean inputs (in green), and the synthetic
data using real impedance from well-logging (in red).
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5.1. Comparison in the time domain

We randomly select the sections of inlines #13, #26, #50, and
#61 as the result examples shown in Fig. 13. It can be observed that
the seismic events in the network predictions are highly resolved
compared to the original sections. High resolution is not only
shown on the increase of seismic events but also the enhancement
of geological structures. For example, regarding the section of
inlines #50 and #61, there are a few seismic events with similar
intensity (amplitude) evenly spaced from time 865—950 ms or so in
the original seismic sections, while in the predicted sections, it is
easier to identify different strata with amplitude variation and tiny
structures like slight folds and small faults (highlighted by yellow
parallelograms in Fig. 13). Compared with the previous approach
(Zhang et al., 2023) applied to the same field data, the proposed
scheme in this work provides cleaner predictions in a new style. For
the distribution of some subsurface layers, the results predicted by
the diffusion model show more reasonable delineation, compared
to the Figs. 4 and 9 in Zhang et al. (2023).

In addition to the inline sections, time slices are extracted to
display another side of the resolution enhancement data cube. The
slices at 830, 881, 967, and 1024 ms are randomly chosen to be
shown in Fig. 14, representing different parts from top to bottom in
the data. Although the result data cube is composed by predicted
inline sections, the seismic events in time slices show good conti-
nuities and the improvement of structural details, implying the
robustness and reliability of our proposed scheme.

5.2. Analysis in the frequency domain

The amplitude spectra of both the original field data and reso-
lution enhanced data are plotted in black and red curves, respec-
tively, in Fig. 15. The spectra are normalized to the range of [0,1] to
give a intuitive comparison. The figure shows frequency extrapo-
lation of the resolution enhanced result in both low and high fre-
quency parts, compared to the spectrum of the original data. The
enhancement of low frequencies near 20 Hz displays improvement
of stereoscopic effects in seismic sections, and the extrapolation of
high frequencies reveals the increase of seismic events. The
magnitude of medium frequencies maintains the same or a bit
enhanced, implying little signal leakage while enhancing seismic
resolution.

To further analyze the results, we split the frequency band into
low, medium, and high parts, corresponding to 8—23 Hz, 23—75 Hz,
and 75—100 Hz, to check the signals from those frequency com-
ponents individually. We extract the original and predicted field
data from the split frequency bands and display two sample sec-
tions in time domain, compared in Fig. 16. Regarding the low fre-
quency components, the predicted data possess clearer low
frequency signals apparently. For the medium band, the predicted
data show similar characteristics to the original data but with
better continuity of seismic events and clearer subsurface struc-
tures. In the high frequency band, the resolution enhanced data are
obviously superior to the original data in terms of the signal en-
ergies and the structures. However, we can also observe the noise
enhancement in the predicted data at the top and bottom parts of
the sections, especially in the low and high frequency bands. We
intend to deal with this issue in the future.

5.3. Comparison with actual well-logging

For field seismic data, regardless how detailed analysis we have
completed towards the high resolution results in both time and
frequency domains, the most convincing evidence is that the res-
olution enhanced data at the well locations can be consistent with
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Table 2
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The similarity measurement between the predicted data and the synthetic data in different metrics (Correlation coefficient (Corr), R?, and Semblance) for each well. The
predicted data are obtained with training the network on clean inputs, and the synthetic data at well locations are simulated with the real well impedance.

Metric Well #1 Well #2 Well #3 Well #4 Well #5 Well #6 Well #7 Well #8 Well #9 Well #10 Well #11
Corr 0.675 0.712 0.616 0.616 0.631 0.619 0.677 0.665 0.571 0.717 0.723
R? 0.398 0.586 0.316 0.342 0.318 0.247 0.437 0.385 0.261 0.436 0.486
Semblance 0.824 0.855 0.806 0.802 0.815 0.809 0.832 0.831 0.781 0.859 0.859
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Fig. 20. Inference of the denoising test with different methods on sections K and L from the synthetic low-resolution dataset. The images in each section show the noisy input, the
denoising result, the label, the difference between the input and the result, and the difference between the result and the label. (a) The conditional diffusion model (SeisResoDiff).

(b) FX-Deconv. (c) MSSA.

Table 3
Setups of the denoising test, and the SNR values of the test sections after denoising based on FX-Deconv, MSSA, and SeisResoDiff (The numbers in bold denote the higher).
Section-I Section-]J Section-K Section-L
SNR after adding Gaussian white noise, dB -2 -2 -2 2
Upper cut-off frequency (if low-pass filtering), Hz / 82 128 /
Ultimate SNR of noisy inputs, dB -2 5.84 4.15 2
SNR after denoising (FX-Deconv), dB 11.30 10.71 10.11 13.71
SNR after denoising (MSSA), dB 11.35 11.23 10.37 14.44
SNR after denoising (proposed SeisResoDiff), dB 18.67 16.15 15.22 17.94
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Fig. 21. Sections and spectra of the original data and high-resolution results on clean and noisy synthetic test data. The high-resolution results are obtained using the SSI method
and SeisResoDiff. (a) Results using original clean data. (b) Results using original noisy data.

the synthetic data based on the actual well-logging (i.e. a single
synthetic trace using well-logging data for each well). As we have
mentioned in the data preparation, a total of 11 wells located in this
field survey are used for data fitting to generate pseudo-wells.
However, there is no participation of the real well-logging

profiles in network training, meaning that all of the well-logging
data can be used for validating the accuracy of high resolution
predictions. To acquire the synthetic seismic data from the well-
logging profiles, first, we calculate the reflectivities based on P-
wave velocity and rock density. Then, we take the broad-band
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Fig. 22. Sections and spectra of the original data and high-resolution results on the field data. The high-resolution results are obtained using the SSI method and SeisResoDiff. (a)
The 3-D display of the original data and high-resolution results. (b) Spectra of the original data and high-resolution results. (c) Sections of the original data and high-resolution
results from Inline #26. (d) Sections of the original data and high-resolution results from Inline #50.

Table 4

The similarity measurement between the high-resolution result by SSI and the synthetic data using different metrics (Correlation coefficient (Corr), R?, and Semblance) for each

well. The synthetic data at well locations are simulated with real well impedance.

Metric Well #1 Well #2 Well #3 Well #4 Well #5 Well #6 Well #7 Well #8 Well #9 Well #10 Well #11
Corr 0.578 0.646 0.554 0.533 0.530 0.477 0.552 0.519 0.502 0.650 0.654
R? 0.078 -0.270 0.055 0.010 —0.157 —0.565 0.135 —-0.185 -0.133 -0.131 0.166
Semblance 0.789 0.800 0.775 0.768 0.762 0.726 0.775 0.756 0.752 0.809 0.823

wavelet that has been used to generate high resolution labels in
network training, and let the reflectivities convolve with the
wavelet to simulate the seismic data at the well locations. Finally,
inspired by the practice of seismic-well tie where people check the
alignment of seismic events between the observed seismic data and
the synthetic data with well-logging profiles, we compare the
wiggle alignment, and measure the similarity with different met-
rics (Correlation coefficient (Corr), R?, and Semblance), between the
predicted data and the synthetic data at the well locations, as well
as the original data and the synthetic data at the well locations,
shown in Fig. 17 and Table 1, respectively.

In Table 1, each number represents the similarity measurement
between the field data (predicted or original) and the synthetic
data for the corresponding well. The values from all of metrics
range from O to 1, and the approach to 1.0 of the values means the
tendency of consistence between the comparative data. The
numbers in bold denote the higher one between the two values for
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the specific metric in that well. From the measurement in Table 1, it
can be counted that there are 7 wells in which the predicted data
show higher values than the original data for all of the 3 metrics,
indicating that the predicted data are more consistent with the
synthetic data than the original field data for 7 out of 11 wells.
Compared with the results in the previous research (Zeng et al,,
2023), the resolution enhancement in this work on Well #1 that
is the test well in the previous work performs higher correlation
(0.778 versus 0.72) with the synthetic data (ground truth). We can
observe the difference intuitively from Fig. 17, in which the subplots
(a) to (c) show the data for 3 wells randomly chosen from the 7
wells. For the residual 4 wells (Wells #2, #7, #8, #11), although the
metric comparisons are not encouraging, the wiggles offer an
inspiring comparison. From Fig. 17(d) that displays the wiggles
from Well #2, the high resolution prediction shows good alignment
with the synthetic data (ground truth) for seismic events whereas
the original low resolution data do not.



H.-R. Zhang, Y. Liu, Y.-H. Sun et al.

Well #2

840 840

865 | 865

890 4 890 -

915
915 4

940 A

Time, ms
Time, ms

940

965 -
965 -

990 -
990

1015

1015

SeisResoDiff results

Original data

Time, ms

Synthetic data from actual well-logging (ground truth)

Petroleum Science 21 (2024) 3166—3188

Well #10 Well #11
860 830 o
- <
&= D
885 i 855 -

910 A 880 4

935
905 -

Time, ms

960 -
930 A

}
b4
3 ] { N

SSl results

985 -

1010

Fig. 23. The waveforms at four well locations (Wells #1, #2, #10, and #11) from the original data (in black), the data predicted by SeisResoDiff (in blue), the high-resolution results
by SSI (in green), and the synthetic data using real impedance from well-logging (in red).

6. Discussion
6.1. Performance of training on clean data

The results from the field data example above are on the basis of
the diffusion model trained with noisy synthetic data. However, if
we train the model on clean data when other setups remain un-
changed, we would obtain totally different results, shown in Figs. 18
and 19. First, from the sections in Fig. 18, we can observe stronger
stereoscopic effect which relates to the extrapolation of low fre-
quencies. This effect can be verified in the low frequency part from
the spectrum (Fig. 18(b)) as well. Second, the general appearance of
the sections looks more natural with many newly generated thin
layers — the extrapolation of high frequencies. Nevertheless, most
of the extrapolated thin layers are not geologically reasonable. And
the correlation coefficients decrease heavily when comparing the
values with that in the case where we train the network on noisy
inputs (Table 2). We can also observe the less alignment between
the predicted and the synthetic data from wells (Fig. 19), indicating
the errors of resolution enhancement in this case. Therefore,
training with noisy data is more reliable.

6.2. Denoising test of the conditional diffusion model

The proposed SeisResoDiff has been validated good perfor-
mance in resolution enhancement. To further highlight the supe-
riority of the proposed scheme, we test the denoising ability of the
conditional diffusion model separately on the original low-
resolution seismic data. Using the same framework of the condi-
tional diffusion model as in resolution enhancement, the diffusion
model is still conditioned on the noisy low-resolution data and
starts the reverse process from pure Gaussian noise, while the
desired outputs, as well as the labels, are corresponding clean
versions of the low-resolution data rather than high-resolution
data. To create the training dataset for the denoising experiment,
we add Gaussian noise with SNR ranging from —5 dB to 10 dB and
filter the noise on partial seismic sections with upper cut-off fre-
quencies ranging from 75 Hz to 140 Hz. The same set of hyper-
parameters as in resolution enhancement is adopted during
training. The inference results on the test dataset with the trained
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diffusion model are displayed in Fig. 20(a). The SNR values
computed before and after denoising on the test dataset are
exhibited in Table 3. Apart from that, we implement two other
conventional methods, f-x deconvolution (FX-Deconv) (Canales,
1984) and multichannel singular spectrum analysis (MSSA)
(Oropeza and Sacchi, 2011), for denoising on the same test dataset,
and display the results in Fig. 20 and Table 3 as well. From section
comparisons of the denoising results in Fig. 20, we can observe that
the diffusion model achieves the cleanest denoising image with
clear delineation of faults among the results from all three ap-
proaches. The SNR comparisons from Table 3 provide quantitative
evidence of the diffusion model's superior performance, showing
the largest SNR improvement in denoising. Nevertheless, consid-
ering that the diffusion model in this study requires labels for
training, it does not have an advantage in computational efficiency
compared to the conventional methods. Additionally, the network
is prone to generalization issues. It is meaningful to conduct
specialized and comprehensive investigations of diffusion models'
abilities on denoising tasks in our future work.

6.3. Comparisons with sparse-spike inversion (SSI)

We use the conventional method SSI, known for its effectiveness
and popularity in seismic resolution enhancement, as a benchmark
to further evaluate the performance of SeisResoDiff. The SSI method
is applied to the same synthetic test dataset and field data used in
the SeisResoDiff experiments. The wavelet required for SSI in both
synthetic and field data examples is the same one extracted from
the field data. Figs. 21 and 22 show the SSI results on synthetic and
field data, respectively. The corresponding SeisResoDiff results are
also displayed for comparison.

From Fig. 21, we can observe that both SSI and SeisResoDiff
significantly improve seismic resolution. However, SeisResoDiff
performs much better than SSI when applied to noisy low-
resolution data, demonstrating SeisResoDiff's robustness.
Observing Figs. 21 and 22, SSI tends to provide data with strong
low-frequency energy, whereas SeisResoDiff predicts more high-
frequency details. We calculate the similarity measurements of
the waveforms at well locations, as shown in Table 4, and select the
profiles at four well locations where the similarity measurements
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are generally higher in Table 4, as shown in Fig. 23. From Figs. 22
and 23 and Table 4, it is evident that SeisResoDiff comprehen-
sively outperforms SSI on the given field data, particularly in terms
of the sections and the waveforms at well locations.

6.4. Challenges and future work

The experiments in this research are still initial tests of seismic
resolution enhancement applications using diffusion models.
Although the training process is not typical of supervised learning,
the diffusion model in SeisResoDiff is trained with labels to
generate the desired outputs. Therefore, the diffusion model may
encounter generalization issues when applied to the data outside
the training data distribution. In practice, the data generation
scheme used in this research has been validated as an effective way
to mitigate the generalization issue, even when there is a distri-
bution gap between the field data used in inference and the syn-
thetic training data. We recommend either creating the
corresponding synthetic training data based on the features of
target field data, or adopting transfer learning strategies when
applying SeisResoDiff to new datasets. Otherwise, it is necessary to
study reliable unsupervised methods with diffusion models or
other deep learning techniques for resolution enhancement.

Furthermore, there are other interesting tests to be explored in
future work. For instance, although we have obtained promising
results through current proposed scheme and experimental setups,
the results need to be improved extensively. To this end, we
consider adding well-logging constrains to the training procedure,
and exploring new ways for generating training data. In addition, it
is necessary to improve the inference efficiency, as the current
application performs every single sampling step during inference to
produce the results. Fortunately, there have been accelerated
sampling methods proposed recently, and we consider integrating
them into our scheme. The purpose of this work is mainly to show
the feasibility of diffusion-model-based resolution enhancement.

7. Conclusion

In line with the popularity and robust capabilities of generative
diffusion models in recent years, we employ a conditional diffusion
model based on DDPM for seismic resolution enhancement. The
proposed scheme adopts a DDPM conditioned on low-resolution
seismic inputs to extrapolate both low- and high-frequency com-
ponents, thus enhancing resolution. We devise an effective work-
flow for simulating pseudo well-logging profiles, thereby
generating a substantial amount of training data. The experiments
conducted using both synthetic and field data examples, yield

- R q(x;)
argminDy(q || pg) = argmin’y q(xl-)logQ) : )
9 P o(Xi)

= arg;nin < > qx)log q(x;) — > q(x;)log py (&-))
i=1

m
i=1

m

= argmin < - Z q(x;)log p(,(x,-)> (q is known)
0

i=1
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competitive results, validating the rationale and effectiveness of
our proposed scheme. The results, presented in both the time and
frequency domains, along with quantitative comparisons with
synthetic data based on real well-logging at the well locations,
comprehensively demonstrate the robust performance of SeisRe-
soDiff. By employing a diffusion model conditioned on noisy
training inputs, we are not only able to obtain broad-band signals
but also effectively eliminate noise present in the original low-
resolution data. Compared to the conventional method SSI, Seis-
ResoDiff shows superior high-resolution results in the time domain
sections and in prediction consistency with well-logging. Our
application serves as an initial reference and showcases the sig-
nificant potential of diffusion-model-based seismic resolution
enhancement.
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Appendix A. Derivation of the DDPM optimization objective

As illustrated in section 2.3, the reverse process of DDPM is
formed into an optimization problem, in which we seek to mini-
mize the distance between the learnable distribution pg (relying on
network weights #) and the reverse of the diffusion process q. Using
Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951D1(q || pg) for the distance measurement between the two
distributions py and g, the objective function can be formulated as

(A1)

= argminky g [ — log py(x)] (Definition of expectation F)
0
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where the function “argmin” stands for “argument of the mini-
mum” and herein outputs a set of network weights # that minimize
Dxi(q||pg) over the domain of network weights, and g represents
the diffusion which is already designated and nothing related to the
network. The derivation above reveals that the network optimiza-
tion pursues a largest py. In particular, we need to obtain the largest
probability for reconstructing the original seismic data Xo.

Now the optimization problem can be transformed into the
maximization of variational lower bound (Lyig) for the log-
likelihood (i.e. logpy(Xg)) by the derivation below:

|

log py(Xo) = log py(Xo) JQ(X1 TXo)dXo:T

Eqxq1ixo) [IOg Po(Xo)]
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and the standard Gaussian prior, and this term has no trainable
weights so it is a constant. The term Ly is the reconstruction term
which reflects the last step of the reverse process and is actually
dominated by the denoising matching term L;. The term L; mea-
sures the matching between the predicted reverse process py(X;_1|
X¢) and the real reverse process q(X;_1|X¢,Xg). Then, the term L;
becomes the optimization objective.

By Bayes rule, the denoising process q(X;_1|X¢, Xg) can be formed
into

q(x1:7/X0)l0g Py (Xo)dXo.T

_E Po(Xo:T)  d(X1:7/X0)

0urXo) | Pe(Xl T1Xo0) 4(X1.7[X0)
-~ Pe(Xo1) \] Do (X1.7/X0) (A2)
B Eq(xl‘ﬂxl’) ( q(xq T\Xo)) Farrixo) {log( q(X1.1/X0)

X
= Eqoarioo) log( Foltor) )) + Dxa(@(X1iXo) || Po(X1 1/%o))
> log(PoXor) \| _ |, -negativity of KL di
> Eq(xyrfxo) og ax T\Xo) : Lyig (Non-negativity o ivergence)
Q(Xt—l\xtvxo) :‘J(Xt|xt71,XO)Q(Xt71|XO) (A4)

Furthermore, with Bayes rule as well as some algebraic
manipulation (Luo, 2022) and by applying the definition of KL
divergence, the Ly;g can be decomposed into KL divergence forms
below:

Ps(Xo.T) )}

L =E log( ==L ) | =L+ Ly + L
vie q(x”‘xu){ g(Q(X1:T|X0) rrir TR
Lt = —Egu o) [PxL(@(X7[X0) [| Py(XT))]

r (A3)
L == Eguxxo) [PkL(@Xc—11%e, X0) || Py(Xe—11%¢))]

=
Ly = Egux,xo) 108 Py(Xo[X1)]

where Lr measures the difference between the noisy network input
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q(X¢[Xo)

where we have known the exact form of each term on the right side
based on the Egs. (2)—(5) from the main text in the diffusion
process:

= N (Xt; v/ X1, Bel)

q(X¢[Xe—1,X0) = q(X¢|X_1)

q(X¢1[Xo) = A (Xe—15 v/ @1 X0, (1 — @_1)I)
q(X¢—11Xo) = (Xe; /A Xo, (1 — @)l

(A5)

Eq. (A.4) can be further derived through Bayes rule expansion as

where we know that the reverse process q(X;_1 [Xt, Xg) at each step ¢



H.-R. Zhang, Y. Liu, Y.-H. Sun et al. Petroleum Science 21 (2024) 3166—3188

A (Xe; /0 X1, BeD) A (Xe_15 4/ @1 Xg, (1 — Tr_1)])
A (Xe; VA Xg, (1 — T)I)

cexpf - |0 VEx)’ | (e~ VEx)” (x mmz] |

q(Xe_1|Xe,Xg) =

26, 2(1 - 1) 21 —a)
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satisfies a normal distribution with the mean u(x;,Xg) and variance
- _A—-x
71 Xo= LTV %€ 0,1 (A.8)

As we have known from Eq. (6) in the main text, the predicted Va
reverse process py(X¢_1|Xt) can be built in a normal distribution - . )
with the mean gy (xe, t) and variance o, (e, t). Note that the variance ~ S° that # can only condition on x.:
~2 . . . . .
a” of q(X¢_1|Xt,Xg) is only the function of «; that is designated in 1-a@ X A (1 — an X
advance during the diffusion process in our implementation. The o= Vi a1) ]H_ < dea at)Xo
- —

reverse process adopts & as the variance as well. Therefore, we 1 1-a (A9)
have py(x;_1|Xt) = N(xt,l;ug(xt,t),&zl) According to the KL :\/77( *7\/@60),60 ~ 17(0,1)

divergence, the optimization objective can be written and derived .
as Since both g and p merely condition on X;, the mean of the pre-
dicted reverse process can be set as

arg;ninL, = al”g?liﬂDKL(Q(thlXt,Xo) | Po(Xe—11X¢))
= inDy (.7 Qi 721 || . : t),5°1
arg;nm KL( <Xt717/~L(Xt7x0)70’ >|| (thwe(xt, ), )) (A7)

.1 -
= argmin_— || p(Xe, £) — fi(X¢, Xo)|[3
0 20

where we can know that ug is optimized to match . There is still an

issue left: the original seismic data Xp in the reverse process are o (X¢, t) :\/LE (xt - \}1_7_0;29(&, t)) (A.10)
—at

unknown. Nevertheless, from Eq. (5) in the main text, we get

where &j(X;,t) is parameterized by the network that seeks to pre-
dict the source Gaussian noise ¢y ~ N (¢;0,1) that determines data
X; from Xg. Now the optimization problem can be formed into
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. .1 -
afg;mnDKL(Q(thﬂXt,Xo) | Pp(Xe—11Xc)) = arg;nmﬁuug(xt, £) — i(X¢, Xo)|13

= argminL a
7 26 a1

from which we obtain the ultimate optimization objective—mini-
mizing the difference between the network output ¢; and Gaussian
noise e.
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