Petroleum Science 21 (2024) 3090—3101

KeAi

CHINESE ROOTS
GLOBAL IMPACT

journal homepage: www.keaipublishing.com/en/journals/petroleum-science

®
Petroleum
Science

Contents lists available at ScienceDirect

Petroleum Science

Original Paper

3D rock physics template-based probabilistic estimation of tight 0 )
sandstone reservoir properties T

Hao-Jie Pan ?, Chao Wei ™ ", Xin-Fei Yan °, Xiao-Ming Li °, Zhi-Fang Yang ",

Zhi-Xian Gui ", Shu-Xian Liu ?

2 College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, 430100, Hubei, China
b Research Institute of Petroleum Exploration and Department, Petrochina, Beijing, 100083, China

ARTICLE INFO

Article history:

Received 6 April 2023
Received in revised form

24 September 2023

Accepted 18 April 2024
Available online 21 April 2024

Edited by Jie Hao and Meng-Jiao Zhou

Keywords:

Tight sandstones

Pore structure

3D rock physics template
Seismic inversion

Reservoir property estimation

ABSTRACT

Quantitative prediction of reservoir properties (e.g., gas saturation, porosity, and shale content) of tight
reservoirs is of great significance for resource evaluation and well placements. However, the complex
pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make
the correlation between reservoir parameters and elastic properties more complicated and thus pose a
major challenge in seismic reservoir characterization. We have developed a partially connected double
porosity model to calculate elastic properties by considering the pore structure and connectivity, and to
analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling
results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while
the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model pre-
dictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the
volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the
calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir
properties’ impacts on the P-wave impedance, S-wave impedance, and density. The template combined
with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corre-
sponding uncertainties from elastic parameters. The application of well-log and seismic data demon-
strates that our 3D rock physics template-based probabilistic inversion approach performs well in
predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Rock physics models that relate rock properties and micro-
structures to elastic properties provide physical bases for reservoir

As an important unconventional hydrocarbon resource, tight
sandstone reservoirs have low porosity, low permeability, high
heterogeneity, non-uniform gas—water distribution, and complex
pore structures. These features reduce the contrast between the
elastic behaviors of hydrocarbon reservoirs and surrounding for-
mations, which results in the multiplicity and uncertainty of
seismic interpretation. Therefore, the key to accurately predicting
reservoir properties relies on a reasonable relationship between
reservoir characteristics and elastic responses of tight sandstone
reservoirs.
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property estimation. Some authors have presented different theo-
retical models to characterize the elastic properties of tight sand-
stone reservoirs. According to the classification of Smith et al.
(2009), Ruiz and Cheng (2010) divided the pore spaces into stiff
pores with a relatively large aspect ratio and soft pores with a small
aspect ratio. The authors proposed a soft-porosity model based on
the self-consistent approximation (SCA) model to describe the
elastic properties of tight reservoirs. Liu et al. (2015) developed a
rock-physics modeling scheme based on the extended Raymer
equation, SCA, and Gassmann equation to calculate the elastic
moduli of tight sandstone reservoirs containing the disconnected
pores. Yan et al. (2016) combined the Mori—Tanaka model (MT)
with the Gassmann equation to establish a theoretical model for a
partially connected porous medium.
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More recently, Luo et al. (2019) introduced feldspar-related
pores into the Xu—White model and proposed a multi-pore
Xu—White model of tight sandstone reservoirs. Pan et al. (2020)
developed a multi-pore Pride model by considering the complex
pore structure and the consolidation of tight sandstone reservoirs.
However, these models often allow for no more than two factors of
the pore structure, pore connectivity, and partial fluid saturation.
Consequently, the relationship between reservoir properties and
elastic behaviors of tight sandstone reservoirs via theoretical
modeling remains poorly characterized, which presents a challenge
in reservoir prediction. It is therefore necessary to develop a
theoretical model that sufficiently incorporates the mineral
composition, pore fluids, and microstructures.

Rock physics template (RPT), directly relating the elastic pa-
rameters to reservoir parameters, has proven to be an effective tool
for fluid identification and reservoir characterization. The classic 2D
RPT based on the acoustic impedance and velocity ratio is unable to
predict more than two of the reservoir parameters and thus fails to
provide satisfactory estimations. By contrast, the 3D RPT considers
the influences of porosity, water saturation, and shale content (or
pore structure) on elastic responses, significantly improving
reservoir property estimates’ accuracy. Li and Zhang (2018) con-
structed a 3D RPT by combining the Gassmann equation and dif-
ferential effective medium analytical model to predict gas
saturation, pore aspect ratio and porosity from the seismic-inverted
P-wave and S-wave impedances, and density for the carbonate
reservoirs. Pan et al. (2019) proposed a 3D elastic-electrical RPT to
estimate hydrate saturation, porosity, and shale content simulta-
neously. Pang et al. (2021) developed a multi-scale 3D RPT based on
attenuation, impedance, and velocity ratio for tight sandstone
reservoirs and predicted water saturation, porosity, and shale
content from the laboratory, well-log, and seismic data. Tan et al.
(2021) constructed a 3D RPT based on the equivalent inclusion-
average stress model for shale reservoirs and applied it to predict
crack aspect ratio and quartz content from seismic-inverted elastic
parameters. Unfortunately, such 3D RPTs combined with the
deterministic optimization algorithm are often used to predict
different types of reservoir properties and fail to quantify their
corresponding uncertainties.

A 3D RPT-based probabilistic inversion method is proposed to
overcome the problems mentioned earlier to predict reservoir
properties from seismic-inverted elastic parameters. We first
establish a partially connected double porosity model based on
several effective medium theories and analyze the effects of pore
structure and connectivity on elastic responses. Then, we construct
a 3D RPT based on P-wave and S-wave impedances and density to
quantitatively characterize tight sandstone reservoirs. Combined
with Bayesian inverse theory, a 3D RPT calibrated with ultrasonic
laboratory data is applied to predict the reservoir parameters and
their uncertainties for tight sandstone reservoirs in central Sichuan.

2. Geological background

Sichuan Basin in the southwest of China is an important gas-
producing region. Based on the basement properties, genetic
types, and structural characteristics, it can be divided into five
tectonic units (Li et al., 2017; Shen et al., 2021) (Fig. 1): 1) eastern
Sichuan steep structural zone; 2) southern Sichuan gentle struc-
tural zone; 3) western Sichuan depression zone; 4) central Sichuan
uplift zone; and 5) northern Sichuan flat folded zone. The Anyue
gas field study area is located in the central Sichuan Basin. The
Upper Triassic Xujiahe Formation is an important interval for
developing tight sandstone gas reservoirs. It is commonly divided
into six members from bottom to top according to their lithology,
reservoir development, and sedimentary cycle (Zou et al., 2013; Lai
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et al., 2016). The first, third, and fifth members are the source rocks
composed of mudstones and shales. The second, fourth, and sixth
members represent the reservoir rocks dominated by sandstones
and conglomerates. Among them, the tight sandstone reservoirs in
the second member are the intervals of interest, characterized by
low permeability (0.01—-1 mD), low porosity (5—10%), and high
heterogeneity due to a series of mechanical compaction, cemen-
tation, and dissolution processes.

Apart from controlling the reservoir quality, diagenesis also has
an appreciable impact on the microscopic characteristics, such as
pore structures, connectivity, and fluid distribution. Thin-section
analysis shows that the pore types in tight sandstone reservoirs
of the second member mainly consist of the intergranular/intra-
granular dissolved pores and micro-cracks (Fig. 2). The former is
generated by dissociating some unstable minerals, while the latter
is generated by the hydrocarbon expulsion and geopressure evo-
lution (Vernik and Landis, 1996). Such complex pore structures
together with the clay/calcite cement might be the crucial factors
affecting the pore connectivity, which further makes gas—water
distribution more complicated. Therefore, the microscopic fea-
tures, such as the pore structure and pore connectivity, as well as
the gas—water distribution, should be taken into account when
carrying out the rock physics modeling of tight sandstone
reservoirs.

3. Rock physics modeling of tight sandstone reservoirs
3.1. Partially connected double porosity model

Considering that the tight sandstone reservoirs have poor pore
connectivity, uneven gas—water distribution, and complex pore
structure, we developed a partially connected double porosity
model based on different effective medium theories to characterize
elastic wave velocities. The main rock physics modeling procedure,
as portrayed in Fig. 3, includes three parts: (1) calculating the
elastic moduli of the rock matrix; (2) computing the elastic moduli
of dry rock framework; (3) obtaining the elastic moduli of saturated
rock.

3.1.1. Elastic moduli of the rock matrix

The tight sandstones are mainly composed of quartz and clay
with a small amount of other minerals, such as feldspar and calcite.
Then, the Voigt—Reuss—Hill (VRH) average (Hill, 1952) is used to
calculate the bulk (Kma) and shear (u,,,) moduli of the solid mineral

mixture:
1] N -17
Kma = 5 Zﬁ1<i+<2fi/1<f> : (1)
i—1 i=1
1] N —17
Mma =3 Zfi#i + <Zf1/,uz> ) (2)
i1 i1

where K; and p; are the bulk and shear moduli of the ith mineral
component, respectively; f; is the volume fraction of the ith mineral
component, and N is the total types of solid mineral components.

The unconnected pores, hindering the flow and exchange of
pore fluids with the outside, are impermeable and treated as iso-
lated pores embedded in a rock matrix (Liu et al., 2015). Assuming
that the fractions of stiff and soft pores are the same for both iso-
lated and connected parts, the SCA model can be used to obtain the
bulk (Kp) and shear (ug) moduli of the rock matrix with the
disconnected pores (Berryman, 1980):
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Fig. 1. The Sichuan Basin's tectonic divisions and the study area's location (after Shen et al., 2021).

Fig. 2. Thin sections showing the pore systems of Xu-2 tight sandstones (Modified after Lai et al., 2018): (a) intergranular pores, (b) dissolution pores, (c) intragranular pores, and

(d) micro-cracks.
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Fig. 3. Rock physics modeling scheme of tight sandstone reservoirs.
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where ¢ is the total porosity; 7 is the connectivity coefficient; Ppa
and Qm; are the polarization factors of the rock matrix embedded
by the solid mineral mixture; x; represents the fraction of the iso-
lated pore i; Ky is the bulk modulus of water; Pi, and Qi, are the
polarization factors of the rock matrix embedded by the water; and
M is the total number of isolated pores.

3.1.2. Elastic moduli of dry rock

The dry rock skeleton comprises a rock matrix and empty pore
space, which can be regarded as the mixture of connected dry pores
and rock matrix. Assuming that the dry pore spaces also include
stiff and soft pores, the bulk (Kgy) and shear (uqy,) moduli of dry
rock can be calculated using the MT model (Mori and Tanaka, 1973):

M .
Kma(1 — @) + (1 = n)eKw > viPy,
i=1

(5)

Kary = M L
1*<ﬂ+(1*ﬂ)§0ZlVfP\lN+77wZ%ViP
i= i=

Pma(l — o)
M . L ~i
1-e)+(1 _n)fP;ViQ\’/v+77€0;ViQ

Mdry = (6)

)

where »; is the volume fraction for each inclusion i; IA’I and Q'
represent polarization factors of ith dry connected pores, respec-
tively; and L is the total types of dry connected pores.

3.1.3. Elastic moduli of saturated rock

Due to the heterogeneous distribution of gas and water in the
pore spaces of tight sandstone reservoirs, the Wood equation fails
to calculate the effective modulus of pore fluids. The Brie model
(Brie et al., 1995) was utilized to calculate the bulk modulus of two-
phase fluids:

K= (Kw — Kg) (1 — Sge)€ + Kg, (7)

3093

where Ky, Kw, and Kg represent the bulk modulus of the pore—fluid
mixture, water, and natural gas, respectively; e denotes the satu-
ration index that reflects the characteristics of fluid distribution;
and Sge is the gas saturation in the partially connected pores
determined by solving the equation proposed by Yan et al. (2016)
with the assumption that the gas is injected into the water-
saturated pore spaces and gradually replaces the water.

Once obtaining the elastic moduli of the rock matrix, dry rock
framework, and pore fluids, the saturated rock moduli can be
calculated using the Gassmann equation (Gassmann, 1951):

(1 — Kary / K0)2

, ®)
ne /Kn+ (1= 1¢)/Ko — Kary / K3

Ksat = Kdry +

Msat = Kdrys (9)
where Ksa; and ug,; are the bulk and shear moduli of saturated rock,
respectively.

3.2. Numerical modeling

Understanding the effects of the microstructures on elastic be-
haviors is crucial for accurate lithology identification and fluid
detection. Based on the partially connected double porosity model,
we investigated the influences of the porosity, pore type, shale
content, and pore connectivity on the elastic responses of tight
sandstone reservoirs. The tight sandstone is assumed to be
composed of clay and quartz, the pore fluid is a mixture of gas and
water, and the aspect ratios of stiff and soft pores are set to 0.8 and
0.01 (Zhang et al., 2021), respectively. The elastic constants for each
component used in the calculations are listed in Table 1.

3.2.1. Effect of pore type on elastic properties
Fig. 4 displays the elastic moduli and wave velocities varying
with porosity and stiff pore fraction. As expected, both elastic

Table 1
Elastic properties of minerals and fluids for rock physics modeling.

Components Bulk modulus, GPa  Shear modulus, GPa  Density, g/cm®
Quartz® 38 44 2.65

Clay? 21 7 2.58

Water? 2.5 0 1.03

Gas® 0.03 0 0.125

Note: 2 Li and Zhang (2018); ® Zillmer et al. (2005).
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Fig. 4. Variations of elastic moduli (a) and velocities (b) of saturated rock with the volume fraction of the stiff pores for different porosities. Solid lines represent the bulk modulus
(a) and P-wave velocity (b); dashed lines represent the shear modulus (a) and S-wave velocity (b).

properties of saturated rock decrease with the porosity but increase
with the stiff pore fraction. In Fig. 4(a), although the stiff pore
fraction exerts an apparent effect on the bulk and shear moduli, the
increment of shear modulus is relatively larger than that of bulk
modulus, especially at higher porosities and stiff pore fractions. As
shown in Fig. 4(b), the variation trends of wave velocities are
similar to those of elastic moduli, but the changes in P-wave ve-
locity with stiff pore fraction are more significant than those in S-
wave velocity for the three specific porosities. The abovementioned
results suggest that the small number of soft pores (or cracks) can
dramatically reduce wave velocities, and the impact of the pore
type on the elastic responses of tight sandstone reservoirs gradu-
ally weakens with the decrease in porosity.

3.2.2. Effect of pore connectivity on elastic properties

An increasing number of digital core analyses and experimental
studies show that the pore connectivity of tight sandstone is
extremely complex due to the coexistence of connected pores,
isolated pores, and partially connected pores (Mousavi, 2010; Ruiz
and Cheng, 2010; Yan et al., 2016). Fig. 5 shows the saturated rock
moduli and wave velocities as a function of pore connectivity and
shale content. The porosity and stiff pore fraction are set to 10% and
50%, respectively. In Fig. 5(a), the bulk modulus shows a sharp
decreasing trend with the pore connectivity coefficient, whereas
the shear modulus decreases linearly with the increase in the pore
connectivity coefficient. This comparison indicates that the pore
connectivity mainly affects the fluid modulus and slightly affects
the elastic moduli of the rock matrix and rock skeleton. For the
given pore connectivity coefficient, the bulk and shear moduli of
saturated rock decrease with the increase in shale content. As
shown in Fig. 5(b), the P- and S-wave velocities decrease with the
shale content increase and pore connectivity coefficient. Therefore,
pore connectivity should be considered in rock physics modeling
and reservoir characterization.
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4. 3D RPT-based probabilistic estimation

The traditional 3D RPT inversion projects logging data or
seismic-derived elastic parameters into the 3D template and
searches the grid node nearest to the data point with the deter-
ministic optimization algorithm. The estimated reservoir parame-
ters are the gas saturation, porosity, and shale content
corresponding to the optimal grid point. As we know, the estima-
tion of reservoir parameters from seismic attributes is an inverse
problem that is uncertain and non-unique. Thus, it is essential to
quantify the uncertainty of inversion results. As such, a probabilistic
estimation under the Bayesian framework is developed for quan-
tifying reservoir properties and their corresponding uncertainties.
Generally, the posterior probability distribution in Bayesian infer-
ence is the product of the prior distribution (the prior knowledge of
model parameters) and likelihood function (the misfit between the
observed and simulated data) given as (Tarantola, 2005)

___p(djm)p(m)

a(mid) = (djm)p(m)dm’

(10)

where m = (Sg, ¢, Vg,)" and d = (Ig(Ip), 1g(Is), p)" are the reservoir
properties and measured data, respectively. If the model variables
and observed data both follow Gaussian distribution, the prior in-
formation p(m) and likelihood function p(d|m) can be written as

p(m)xexp{ — 5(m — mo)"Cy/ (m — mo) . ()

piaim)exp{ - 3(frr(m) - 7G5 (for(m) - @) f. (12)

where my is the prior information; fgpr(m) represents the 3D RPT

built by the partially connected double-porosity model; Cy and Cp

are the model and data covariance matrix, respectively.
Combining Eqs. (10)—(12), the posterior probability distribution
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Fig. 5. Variations of elastic moduli (a) and velocities (b) of saturated rock with the pore connectivity coefficient for different shale contents. Solid lines represent the bulk modulus
(a) and P-wave velocity (b); and dashed lines represent the shear modulus (a) and S-wave velocity (b).

of m given the measured data d can be written as
q(m|d) =N exp[—/(m)] (13)

where N is a normalization constant that satisfies the following
equation: J[/N exp[—J(m)] = 1;J(m) is the objective function given
by

Jm) =3 [ rpr(m) — &)"C5 Grpr(m) — ) + (m — mo)"Cy/
(m —my)]
(14)

In the case of an uninformative prior, the above objective function
reduces to

J(m) =3 Gror(m) — d)"Co! pr(m) — d)

Then, the posterior probability in Eq. (13) is simplified into only
a term describing the likelihood function multiplied by a normal-
ized constant:

(15)

atmid) =N exp{ 5 [Gior(m) - 4)°C5' Gor(m) ~ )] }.
(16)

The optimal model parameters can be found by maximizing the
objective function in Eq. (14). To evaluate the uncertainty in the
estimate of the specific model parameter m;, a calculation of the
marginal distribution is required (Tarantola, 2005):

atm) — | q(mid)dm;dmydms --dm, (17)

Typically, it is infeasible to obtain an analytical solution in many
practical applications. Hence, the numerical integration with
respect to the other model parameters is often used to determine
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the above marginal distribution. It should be noted that the nu-
merical integration should be done on a grid dense enough to
incorporate all the key features of the posterior distribution.

Assuming that the ranges of gas saturation, porosity, and shale
content in the 3D RPT are Sgmin < Sg < Sgmax» ®min<¢<@max, and
Vshmin < Vsh < Vshmax, respectively, the normalized constant can be
written as

ngax Vshmax
J.ngin vahmin

The integral in Eq. (18) can be discretized and rewritten as
follows:

(18)

J‘ Pmax

Pmin

exp[ _](Sg7 @, Vsh)] Cngd(pdVSh,

1 ASgApAVy & G I

—= exp| —J(Sek, o1, V-

N 3 kzz; ; mz::l{ P[ J( g k> Pl sh,m)] (19)
+exp { _](sg,k-H » Pli1s Vsh,m-%—l)} }’

where ASg = Sig"“,zjg’“‘“, Ap = Poyp—fmn and AV, = 4‘/5'“";6,:15‘““““

represent the intervals of reservoir parameters in 3D RPT. K, L, and
M represent the number of grid points along the direction of gas
saturation, porosity, and shale content, respectively.

Once the normalized constant is determined, the marginal
probability density functions (PDFs) for each case can be found by
Eq. (13). The corresponding marginal probability density distribu-
tion for gas saturation is given by

ApAVy, - M
q(Sg) = N="7=" > > {exp[—J(Sg o1 Vshm)]
1=1 m=1

+ exp{ *](Sga Pl+1> Vsh,m+1)] }7

(20)

and for porosity as
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4(0) = ASgAVsh Z Z{exp[ ( gk#ﬂ:‘@h,m)] 1)
+ eXp[ —]<Sg,k+1 ) P, Vsh,m+1)] },
as well as for shale content as
NASsA L
q(Vsn) = g ¢ kz: ;{GXP{ ( gkv(/’lvvshﬂ (22)

+ exp[ *](sg,k+l s L1 Vsh)] }

It is thus possible to find a global maximum a posteriori solution
for each reservoir parameter since we have obtained the exact
marginal PDFs.

5. Application to actual data

In the following section, we first validate the developed model
with the ultrasonic laboratory data. Then, the 3D RPT-based prob-
abilistic inversion scheme is tested by the well-log data. Finally, this
approach is applied to predict reservoir properties from the pre-
stack seismic-inverted elastic parameters.

5.1. Calibration of theoretical model

To determine the stiff pore fraction in the developed model, we
compare the predicted elastic moduli of the dry rock with ultra-
sonic laboratory data of 16 sandstone samples in the target area
reported by Yan et al. (2011). Concerning the uneven gas—water
distribution in tight sandstones, the saturation index is set as 2.0.
As shown in Fig. 6, the elastic moduli decrease with porosity but
increase with the stiff pore fraction. It is found that most data
points sit within a narrow range of stiff pore fraction from 50% to
80%, and the fluctuations of elastic moduli are mainly caused by the
variations in mineral content and pore aspect ratio. Thus, the stiff
pore fraction of 0.65 is recommended to use in this area. Although
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the data are very scattered, the positive trend of stiff pore fraction
with porosity indicated from model predictions and measurements
is consistent. This is no surprise because the low-porosity layer
often experiences strong compaction, decreasing the pore aspect
ratio.

Fig. 7 compares the theoretical predictions with experimental
results of varying gas saturations. The ultrasonic measurements are
from Yan et al. (2016) and were acquired on a sandstone sample
with varying water saturations. As we can see, the gas saturation
and pore connectivity can also exercise appreciable impacts on
elastic properties of tight sandstones apart from the aspect ratio
and volumetric fraction of pores. As expected, the pore connectivity
decreases both P- and S-wave velocities. This is predominantly
attributed to the fact that, for a wave passing through porous rocks,
the pore connectivity greatly promotes the pore fluid communi-
cation, and thus ensures the pore pressure equilibrated within a
given relaxation time. However, the relationship between elastic
wave velocities and gas saturation are much more complicated
under different pore connectivity conditions. Typically, lower pore
connectivity coefficients indicate the patchy saturation scenario,
whereas higher pore connectivity coefficients favor the uniform
saturation scenario. As a consequence, with the increase of pore
connectivity coefficient, the P-wave velocity variation with gas
saturation deviates from the upper patchy saturation boundary and
is closed to the lower uniform saturation boundary. In contrast, the
S-wave velocity decreases with gas saturation for lower pore con-
nectivity coefficient, but it first increases and then decreases
monotonically after exceeding a threshold value. This can be un-
derstood, because the pore connectivity not only impacts the bulk
modulus of pore fluids, but also exerts an influence on the elastic
moduli of rock matrix which might contribute to the change of S-
wave velocity. It can be observed from Fig. 7 that the measured data
mostly follow the variation trend of model predictions with a pore
connectivity coefficient of 0.55. This comparison conveys a message
that the moderate pore connectivity coefficient indicating the
mixing gas-water distribution may be applicable for tight sand-
stones when using the proposed model to interpret the sonic logs
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Fig. 6. The bulk (a) and shear moduli (b) of dry rock as a function of porosity for different fractions of stiff pores. The laboratory data used for comparison are from Yan et al. (2011).
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and seismic-inverted elastic properties.

5.2. Test of well-log data

Two wells in study area are utilized to verify the feasibility of the
3D RPT-based probabilistic inversion method. Among them, well
Y1 is an industrial gas well whose production is 114,300 m> per day,
while the gas production of well Y2 is 8646 m> per day. The
reservoir type in the interval of interest is thin interbed of sand-
stone and mudstone. The cumulative sandstone thickness is
20—25 m for Y1 and approximately 25 m for Y2, respectively. The
well-log analysis shows that the rock minerals consist of quartz and
clay, and the pore fluid is a mixture of water and gas.

Based on the calibrated model, a 3D RPT that allows for the
influences of gas saturation, porosity, and shale content on the P-
wave impedance, S-wave impedance, and density is constructed.
The elastic attributes all decrease with the increase in reservoir
properties. Before the actual application of the 3D RPT, it is
necessary to calibrate the template with well-log data. Fig. 8
compares the well Y2 logging data to the template. The red, blue,
and green curves represent the constant gas saturation, porosity,
and shale content lines, respectively. The distribution of the
superimposed data points color-coded by the log interpretation is
in good agreement with our templates, confirming the applicability
of the 3D RPT in predicting gas saturation, porosity and shale
content simultaneously.

Fig. 9 shows the probabilistic estimates of gas saturation,
porosity and shale content from the elastic properties for well Y2.
The black and blue curves represent the logging measurements or
interpretation and the inversion results from the wave impedances
and density based on 3D RPT. As shown in Fig. 9(a)—(c), the
calculated elastic attributes are basically the same with the actual
logging data. Fig. 9(d)—(f) compares the estimates of gas saturation,
porosity and shale content with the logging interpretation results.
It can be seen that the estimated porosity varies from 0 to 15% and
the shale content varies from 0 to 35%, having a good agreement
with the logging interpretations, except for the water-saturated

intervals at depths of 2170—2188 m and 2215—2228 m. By
contrast, the estimated gas saturation ranging from 2% to 40% gives
a good match with the interpretation at the gas-bearing intervals
but overestimates at several water-saturated zones. To assess the
uncertainties of the estimates, we introduce a 95% confidence re-
gion. Typically, the narrower the confidence intervals represent the
more reliable estimates. By observing the width of the 95% confi-
dence intervals, we can see that the estimation uncertainty of
porosity is the smallest, the uncertainty of shale content is slightly
larger, and the uncertainty of gas saturation is the largest. This is
mainly because the elastic properties have low sensitivity to gas
saturation compared with the porosity and shale content.

Fig. 10 compares the log interpretations and probabilistic esti-
mations for well Y1. Fig. 10(a)—(c) illustrate that the calculated
logarithmic P-wave and S-wave impedances and density match
well with the observations. In Fig. 10(d)—(f), the estimated gas
saturation varies from 0 to 100%, the porosity varies from 0 to 15%,
and shale content ranges between 5% and 45%, achieving a satis-
factory consistency with the logging interpretations, except for the
water-saturated interval at depths of 2266—2310 m. The 95% con-
fidence intervals are also calculated to evaluate the uncertainties of
the inversion results. We can see that the confidence region of the
porosity is the narrowest, the confidence region of gas saturation is
relatively wide, and the confidence region of shale content is the
widest, that is, the uncertainty of porosity > gas saturation > shale
content. This phenomenon is primarily attributed to several factors,
such as the measurement imperfection, the logging tool resolution
difference, the unreasonable selection of rock mineral composition,
pore structure heterogeneity, and the different sensitivities be-
tween reservoir properties and elastic parameters.

5.3. Application of seismic data

The proposed 3D RPT-based probabilistic inversion method is
applied to a two-dimensional seismic profile through wells Y1 and
Y2 in the studied area. The depth range of the target layer is
2100—2300 m, the corresponding travel time is 1046—1127 ms, and
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the CDP number is 2288 at well Y2; the depth range of the target
layer is 2220—2370 m, the corresponding travel time is 1035—1102
ms, and the CDP number is 2807 at Y1 well. The P-wave impedance,
S-wave impedance, and density are obtained from the pre-stack
seismic data. Fig. 11 displays the results of the simultaneous AVO
inversion. The estimated elastic parameters have a good corre-
spondence with the logging curves, showing that the pre-stack
seismic inversion can effectively characterize the spatial distribu-
tion of elastic properties and provide reliable data support for
quantifying reservoir parameters.

Fig. 12 shows the probabilistic estimations of gas saturation,
porosity, and shale content based on 3D RPT from the seismic-
extracted elastic parameters. It can be seen from Fig. 12(a) that
the gas saturation estimates in the main reservoirs are relatively
high at both the upper and lower parts of well Y1 but only at the
lower part of well Y2, which is consistent with the logging inter-
pretation. The lateral continuity of gas distribution at well Y1 is
better than at well Y2. The estimated profile of gas saturation is
comparable to the actual drilling information. Fig. 12(b) shows the
inverted porosity profile through wells Y1 and Y2. Compared with
well Y2, well Y1 shows higher porosities, indicating better con-
nectivity and higher gas storage potential for well Y1. Moreover, the
vertical heterogeneity of well Y2 is stronger than well Y1. Fig. 12(c)
shows the inverted profile of shale content. It can be seen that the
shale content of the gas-bearing layers at well Y1 is lower than that
at well Y2, which also shows a good fit with the logging interpre-
tation. Overall, the seismic inversion results of reservoir properties
are consistent with well-log data and actual gas production results,
verifying our method's effectiveness.

6. Discussion

The key to accurate characterization of tight sandstone reser-
voirs largely depends on establishing a reliable relationship be-
tween reservoir parameters and elastic responses. In this study, we
propose a partially connected double porosity model for tight gas
sandstone reservoirs. This model first assumes that all pores are
divided into connected and isolated pores. Typically, the wave-
induced pore pressure among connected pores is easier to reach
equilibrium through fluid communication, whereas fluid in the
isolated pores does not exchange with the outside (Yan et al., 2016).
The fluid-saturated isolated pores are considered part of the rock
matrix, while the connected pores are the inclusions embedded
into the background matrix. Unlike the connected pores filled with
the gas—water mixture, the isolated pores are supposed to be only
saturated with water. A plausible explanation for this assumption is
that gas moves upward via the buoyancy and capillary force and
preferentially accumulates in the permeable pores by replacing the
water.

In addition to pore connectivity, the pore structures are also
simplified into soft and stiff pores, both of which have fixed aspect
ratios. In addition, the concentration of stiff pores is required to be
identical in both connected and disconnected cases. However, in
real rocks, the pores distribute randomly and exhibit irregular
microstructures with a possible distribution of pore aspect ratios.
Some advanced characterization technologies, such as digital image
analysis (e.g., scanning electron microscope and micro-CT scan-
ning) (Su et al., 2022) and digital rock physics (Yang et al., 2023a;
Zhao et al.,, 2021a), can be used to assist in characterizing the
pore structures of tight sandstones. Another issue is the consider-
ation of rock mineral components. Due to lack of the elemental
capture spectroscopy and LithoScanner logs, we only consider a
simple mineralogical mixture of quartz-clay and calculate the shale
content from Gama Ray log. To improve the accuracy of prediction
results, the mineral constituent selection should be referenced to
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the XRD analysis and petrophysical interpretation in real applica-
tion. Also, the anisotropy induced by the aligned fractures and
preferential arrangement of clay minerals is ignored in our
modeling, which limits our model to describe the deep-buried tight
sandstone reservoirs with high heterogeneity. Therefore, it is
necessary to develop an anisotropic partially connected variable-
matrix multi-pore model to improve the accuracy of tight sand-
stone reservoir prediction.

3D RPT is an effective means to transform elastic attributes into
physical parameters. It should be pointed out that the constructed
3D RPT does not consider the different correlations between elastic
responses and reservoir parameters at the core, log, and seismic
scales. Therefore, the multi-scale 3D RPT should be established
based on the frequency-dependent rock-physics model instead of
the Gassmann equation (Yang and Zhang, 2002; Tang, 2011; Ba
et al.,, 2017). In addition, the tight sandstone reservoirs often have
strong pore structure or fluid distribution heterogeneities, making
it necessary to build an anisotropic 3D RPT to enhance the appli-
cability and reliability of the template. Provided that the rock
mineral component and its volumetric fraction do not vary widely
in the target intervals, the 3D RPT can be adapted to predict the
reservoir properties and the volume fraction of stiff pores or the
pore connectivity. The reservoir property estimation is an ill-posed
inverse problem with non-unique solutions. To evaluate the un-
certainties in the estimates, the probabilistic estimation, instead of
deterministic optimization, is used to search for the optimal solu-
tion from the maximum marginal probability that reflects the best
fitting between the projected data point and the nearest node on
the 3D RPT. Overall, the 3D RPT-based probabilistic inversion
method not only predicts reservoir properties from elastic prop-
erties but also quantifies their corresponding uncertainties,
showing good promise in reservoir characterization.

Quantitative characterization of tight sandstone reservoirs can
not only use the model-driven inversion method introduced in this
paper, but also can use the data-driven method to estimate reser-
voir properties. With the technological advances of artificial intel-
ligence and machine learning, an increasing number of data-driven
approaches have been introduced into the field of applied
geophysics, such as shear wave estimation (Wang et al., 2022),
reservoir property prediction (Zhang et al., 2022a; Yang et al,
2023b), fluid and lithofacies classification (Zhao et al., 2021b),
seismic impedance inversion (Su et al., 2023; Zhang et al., 2022b)
and seismic data denoising (Yu et al., 2019). However, one of the
major challenges in geophysical applications of the data-driven
methods is how to ensure the generalization ability and predic-
tive performance of the machine learning or deep learning algo-
rithm when facing the lack of labeled training data (Chen et al.,
2021).

7. Conclusion

Considering the complex pore structure and pore connectivity,
we propose a partially connected double pore model based on the
SCA, MT, and Gassmann equation. Our new model investigates the
dependence of elastic responses on pore type and connectivity.
Modeling results show that the elastic moduli and velocities both
increase with the fraction of stiff pores but decrease with pore
connectivity. More importantly, such influences largely rely on
porosity and mineral composition. Furthermore, the investigation
also indicates that the pore type significantly impacts shear
modulus, whereas pore connectivity more appreciably impacts the
bulk modulus of saturated rock. The calibration of the developed
model with experimental data enables us to determine the pore
connectivity coefficient and the volume fraction of stiff pores, and
to improve the accuracy of model predictions. Based on the
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calibrated model, we establish a 3D RPT to analyze the linkage
between reservoir and elastic properties. Under the Bayesian the-
ory framework, a 3D RPT-based probabilistic inversion method is
proposed to predict reservoir parameters and their uncertainties.
The application to well-log data shows that the estimated gas
saturation and porosity satisfactorily match the logging in-
terpretations, whereas the shale content is slightly overestimated
at some reservoir intervals. The seismic inversion results are
consistent with logging interpretations and gas production results,
confirming the feasibility of our approach in reservoir quality
prediction for tight gas sandstones.
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