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The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-
linear elliptic pressure equation. We developed a modified version of the Anderson acceleration (AA)
algorithm to fixed-point (FP) iteration method. It computes the approximation to the solutions at each
iteration based on the history of vectors in extended space, which includes the vector of unknowns, the
discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA
algorithm, including a limitation of the time step variation during the iteration process, which allows
switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the
improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution
for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a
narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing
reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of
unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear
elliptic pressure equation under consideration describes various physical processes, such as the
displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,
the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage
of well production (fracture flowback), and multiphase filtration in a rock formation. We estimate
computational complexity of the developed algorithm as compared to Jacobian-based algorithms and
show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We
believe that the developed algorithm is a useful numerical tool that can be implemented in commercial
simulators to obtain fast and converged solutions to the non-linear problems described above.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction numerical solution is usually obtained by a certain discretization
with a consequent solution of non-linear algebraic equations.
Iterative non-linear solvers are usually composed of two parts,
namely, linearization of the problem (e.g., by fixed-point or

Jacobian-based methods) and a solution of the linear system (e.g.,

1.1. Motivation

Design of oilfield service technologies including hydraulic frac-

turing is typically developed using commercial simulators based on
mathematical models of continuum mechanics (Osiptsov, 2017).
One of the strict requirements to commercial simulators is their
ability to carry out a very fast numerical solution of governing
equations, which allows performing massive computations in the
framework of parametric studies and optimization tasks. After
governing equations of a fluid flow process are formulated, their
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by families of the Krylov space or multigrid methods).

Our previous study (Muravleva et al., 2021) discussed the effi-
cient numerical implementation of finding the solution to a large
system of linear equations using the black-box multigrid solver
with matrix-dependent prolongation operators. This method was
applied to a five-diagonal block matrix obtained by discretization of
a quasi-linear Poisson equation (2D problem) of the form:
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V+(A(p)Vp) = f. (1)
Here, p(r) € CX(Q) is a smooth function defined over a domain in
Euclidean space Q € R", where n depends on the dimension of the
corresponding mathematical model (n = 1, 2, 3), and coefficient 4 is
a function of the solution p, so the equation is essentially non-
linear.

The current study is aimed at developing an easy to implement
yet effective and stable numerical algorithm based on the Anderson
acceleration (AA) of the fixed-point (FP) method for iterative so-
lution of the nonlinear problem described by Eq. (1), which is the
first part of the numerical solution workflow discussed above.

Eq. (1) describes various physical processes, including multi-
phase flow of a particle-laden non-Newtonian suspension in a
hydraulic fracture, multiphase flow in a rock formation (used in
modeling enhanced oil recovery technologies and reservoir pro-
duction simulations), hydraulic fracture cleanup, and displacement
of fluids with complex rheology in a cylindrical annulus during well
drilling and cementing (Bittleston and Hassager, 1992; Pearson,
1994; Hammond, 1995; Pelipenko and Frigaard, 2004b; Adachi
et al.,, 2007; Boronin and Osiptsov, 2010; Boronin et al., 2015a;
Osiptsov et al., 2020).

Hydraulic fracturing (HF) is a key well stimulation technology
required to develop low-permeability oil and gas fields (see reviews
by Osiptsov (2017), Barboza et al. (2021)). Various aspects of HF
modelling maintain significant interest of petroleum scientific and
engineering community (e.g., see recent papers by Zhang et al.
(2017), Yuwei et al. (2020); Li et al. (2023a, 2023b) Isaev et al.
(2023)). Below we describe exiting methods of numerical solu-
tion of governing equations describing hydraulic fracturing (HF) of
underground hydrocarbon-bearing rock formation and the need for
fast and stable numerical solution of Eq. (1).

A mathematical model of the HF process describes two essen-
tially coupled phenomena, namely, elastic rock response to fluid
pressure change in the fracture and flow of fluids transporting solid
particles (proppant) in the fracture channel (Adachi et al., 2007).
Governing equations describing these processes are usually solved
numerically by applying one of the following coupling strategies:
(i) semi-implicit coupling, in which the mass conservation for
suspension and rock elasticity equations are solved simultaneously
to obtain distributions of fluid pressure and fracture aperture; then
proppant concentration advection equations are solved explicitly
by using the obtained distributions of particle velocity and fracture
aperture (Adachi et al., 2007; Dontsov and Peirce, 2015; Shiozawa
and McClure, 2016); (ii) explicit coupling, when elastic rock equa-
tions and a simplified variant of suspension mass conservation
equation (with fixed distribution of fluid viscosity and/or with
reduced dimension in case of 1D rock elasticity models) are solved
to obtain fracture aperture; then the calculated aperture is used to
solve general 2D suspension flow mass balance equation described
by Eq. (1) (with coefficient 4 being dependent on local pressure
gradient due to complex fluid rheology, details are provided in
Section 2.1 below); the obtained fluid and particle velocity fields
are then used to update concentrations of fluids and proppant
particles according to advection equations (Shiozawa and McClure,
2016; Isaev et al., 2023).

The semi-implicit coupling strategy allows us to obtain more
accurate solution to the full system of equations as compared to the
explicit one, while it requires the solution of the two coupled and
essentially non-linear (in terms of the fluid pressure and fracture
aperture) equations. The corresponding matrix determining the
linearized system is dense and large (twice the number of mesh
nodes, as the vector of unknowns contains the approximated
pressure and aperture, see details of the numerical solution of
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governing equations in the framework of semi-implicit coupling in
the study by Adachi et al. (2007)). The system of these equations is
additionally complicated due to a non-Newtonian (power-law or
viscoplastic) fluid rheology. The numerical solution of these equa-
tions consumes the major part of overall CPU time required for the
solution of the total system of equations. The explicit coupling
strategy described above is more flexible and potentially allows us
to obtain faster numerical solution. Elastic rock response and sus-
pension flow models of different dimensions can be coupled using
this approach to speed-up computations significantly, while pre-
serving the ability to calculate proppant transport accurately (e.g.,
1D pseudo 3D geomechanics model (Dontsov and Peirce, 2015) can
be used to obtain fracture aperture distribution and 2D proppant
transport model can be implemented to describe proppant trans-
port and settling as described in (Isaev et al., 2023)); in the
framework of more accurate calculations using 2D geomechanics
(Planar3D, see Adachi et al. (2007)) and proppant transport models,
the explicit coupling can still be beneficial. It allows simplifying the
non-linear system of rock-fluid equations described above by
neglecting several physical effects, while preserving the total mass
balance of suspension in the hydraulic fracture (e.g., gravitational
convection, proppant settling, pressure gradient-dependent fluid
viscosity for power-law and viscoplastic fluids). In the framework of
the numerical solution of governing equations using the explicit
coupling strategy, quasi-linear elliptic Eq. (1) have to be solved at
consequent time instants assuming the that the fracture aperture is
a known function of spacial coordinates and time.

The study aims to enhance standard proppant transport models
used in commercial simulators. The current models use the power-
law model to describe the rheology of fracturing fluids and are
effective in describing the rheology of slick-water and linear gels at
arbitrary flow shear rates. However, cross-linked polymer gels
exhibit yield-stress behavior in rheology experiments (Acharya and
Deysarkar, 1987; Hu et al., 2015; Barbati et al., 2016). We obtained
that during the formation of unyielded zones, the number of FP
iterations per time step required to solve numerically Eq. (1) was
extremely high. These zones are characterized by a local pressure
gradient that is not sufficient to induce a viscous stress above a
yield stress limit, causing the viscoplastic fluid to behave as a solid
body and not move. Additionally, the iterative procedure diverged
in the majority of time steps. As demonstrated below, the FP iter-
ation method cannot resolve unyielded zones, significantly
reducing calculation accuracy and resulting in unrealistic behavior
of viscoplastic fluids.

1.2. Brief overview of non-linear solvers

Below we present a brief overview of existing nonlinear solvers
and studies related to the development and application of the AA
method.

One of the easiest to implement methods for solving nonlinear
problems described by Eq. (1) is the FP iteration method (also
known as Picard iteration), which is usually applied to equations of
the form

(2)

Here, A is a mapping operator R* — R" and p € R" is a vector of
unknowns (e.g., pressure field approximation in mesh nodes). The
method is based on iterative computation of approximations to the
solution ps, 1 using the following equation:

A(p) =p.

Dsi1 = Asi1(Ds)- (3)

Here, s is the number of the current iteration. This is a variant of the
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general Krasnoselskii—-Mann (KM) method (Mann, 1953; Hillam,
1975) based on weighing the results of applying the trans-
formation operator to the solution guess at the previous iteration
and the guess:

DPsi1 = (1 —a)ps + aAs1(Ds), O<a < 1. (4)

The convergence of the KM method is proved for non-expansive
mapping operators for which the following inequality holds:

[A(p1) —AP2)ll2 < [P1 = P2ll2:

Here, p1, p, € R" are arbitrary vectors and || +|| is the standard norm
defined in the Euclidean space R". While the KM algorithm is
relatively easy to implement, it usually converges slowly and re-
quires a large number of iterations. To improve the convergence
rate, a balance between the number of iterations and the compu-
tational cost of each iteration is required.

Consider a function A defined as

A(p) = p — aVE(p). (6)

This is a problem of finding a minimum of a differentiable function
F of a vector argument p using the gradient descent method. The
problem can be solved using a family of Newton—Raphson methods
or accelerated gradient descent methods (Luenberger et al., 1984).
There are also hybrid methods based on coupled KM and Newton
algorithms that aim to maintain a fast convergence rate and reduce
the computational cost of each iteration (Scieur et al., 2020). Note
that the elements of the Jacobi matrix corresponding to Eq. (1)
describing a flow of non-Newtonian (power-law or Her-
schel—Bulkley) fluids can be calculated either numerically or
analytically. Due to the complicated expression of the fluid mobility
(coefficient 4 in Eq. (1)) in terms of the pressure gradient, both
these variants require time-consuming CPU operations to raise a
number to a non-integer power, potentially reducing the perfor-
mance of the computations.

The vast majority of existing numerical methods developed to
solve nonlinear problems have been shown to converge only under
certain assumptions imposed on the operator A, for example that A
is differentiable in the neighborhood of the solution p (Schlenkrich
and Walther, 2009; Chen et al., 2014) or that the Jacobi matrix is
symmetric (Li and Fukushima, 1999; Zhou and Li, 2007). In most of
the algorithms mentioned above, a line search is used to guarantee
the global convergence, which usually leads to a significant in-
crease in computation time if the computation of the operator A(p)
requires a large number of mathematical operations.

AA algorithm is proposed to achieve the global convergence of
the numerical algorithm with the minimum number of mathe-
matical operations per iteration (Anderson, 1965; Fang and Saad,
2009). According to various test calculations, the variant of the
AA algorithm proposed by Fang and Saad (2009) converges faster
compared to the original version (Anderson, 1965), while the
former is less stable in terms of convergence (Fang and Saad, 2009;
O'donoghue et al., 2016). Existing studies of the AA applied to
nonlinear problems (with the exception of the variant of Fang and
Saad (2009)) show that its convergence requires differentiable
operator A and is either proved locally (Gay and Schnabel, 1978;
Rohwedder and Schneider, 2011; Toth and Kelley, 2015) or requires
non-expanding mapping (Scieur et al., 2017, 2020). AA method is
widely and successfully used to solve nonlinear problems for which
the convergence cannot be strictly proved (Pavlov et al., 2018;
Matveev et al., 2018; Walker and Ni, 2011; Potra and Engler, 2013);
the algorithm is implemented in several computational libraries
including SCS (O'donoghue et al., 2016) and CVXPY (Agrawal et al.,
2018).

(5)
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The base variant of AA algorithm applied to the FP iteration is
shown to be a useful tool in solving non-linear numerical problems
of fluid mechanics and geomechanics, including those arising in
oilfield technological processes: saddle-point problem in fluid
mechanics (Ho et al., 2017); modeling of multiphase flows in porous
media (Salinas et al., 2017) and high-rate hydraulic fractures driven
by wellbore energy source (Chertov and Chaplygin, 2019); numer-
ical coupling of wellbore and hydraulic fracture models to study
proppant placement and flowback problems (Aksenov et al., 2021;
Sinkov et al., 2021).

1.3. Contribution

Current study is aimed at developing a variant of the AA algo-
rithm to solve essentially non-linear problem formulated during a
numerical solution of Eq. (1) describing the flow of particle-laden
yield stress fluids in a hydraulic fracture. Based on test numerical
simulations of viscoplastic suspension flow in a narrow channel
approximating a hydraulic fracture, we show that the developed
algorithm allows us not only to speed up the basic FP iterative al-
gorithm, but also to obtain a converged solution in the presence of
unyielding zones formed in a hydraulic fracture.

A parametric study of the convergence rate is performed to
identify the optimal values of the tuning parameters of AA algo-
rithm (namely, memory and delay) that provide the best perfor-
mance. The set of test cases is representative in terms of ranges of
values of input parameters (flow rates, rheology of fluids, fracture
dimensions), so that the obtained results can be used to perform
CPU-time efficient and convergent computations of problems
described by the quasi-linear Eq. (1), including those describing
hydraulic fracturing and well cementing processes.

To the best of our knowledge, the proposed modification of the
AA algorithm is novel. Our estimations show that its performance is
significantly better as compared to that of the family of Jacobian-
based algorithms (typically used to solve the equations describing
hydraulic fracturing (see Adachi et al. (2007), Shiozawa and
McClure (2016), Dontsov and Peirce (2015)) as applied to the
problem of viscoplastic fluid flows in narrow channels.

2. Mathematical model

Hydraulic fracturing is a technology widely used in the oilfield
services industry to stimulate hydrocarbon-bearing formations
(eg., Economides and Nolte (2000)). It usually comprised of the
following steps: (i) injection of a fluid into the target rock formation
through the perforated wellbore at bottom-hole pressures
exceeding the effective minimum rock stress to create a fracture;
(ii) placement of solid proppant particles into the open fracture
channel by injection of a particle-laden suspension; (iii) appro-
priate well clean-up procedures to prevent proppant flowback
leading to disconnection of the created fracture from the wellbore
and to clean the proppant pack from the fracturing fluid to main-
tain long-term production of hydrocarbons. The result is a highly
conductive, proppant-filled channel that significantly increases
hydrocarbon production compared to the untreated formation. A
single hydraulic fracture wing attached to a vertical well is shown
schematically in Fig. 1.

2.1. Governing equations

In the following, we describe the mathematical model for the
flow of a particle-laden suspension in a single wing of the hydraulic
fracture approximated by a narrow planar channel. The governing
equations are formulated in the framework of the lubrication
approximation to the 3D Navier-Stokes equations describing the
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Fig. 1. Schematics of suspension flow in a single wing of the hydraulic fracture.

flow of the carrier fluid and the particulate phase using the two-
fluid approach (e.g., see Brennen (2005)).

Several incompressible and immiscible carrier fluids and several
proppant types (non-Brownian spherical particles) are assumed as
interpenetrating continua. The rheology of the fluids is described
using the Herschel-Bulkley model. Note that the power-law model
is typically used to describe the rheology of fracturing fluids in
industrial simulators, which fits the rheological behavior of slick-
water and linear gels very well, while cross-linked gels show
yield-stress behavior in rheological experiments (Acharya and
Deysarkar, 1987; Hu et al., 2015). Governing equations describing
the flow of Newtonian or power-law particle-laden fluids in a
narrow hydraulic fracture are provided, for example, in the studies
of Adachi et al. (2007), Boronin and Osiptsov (2010), Isaev et al.
(2023), while the model for particle-free flow of yield-stress
fluids in a hydraulic fracture and narrow cylindrical annulus dur-
ing well cementing is formulated in Boronin et al. (2015a),
Bittleston and Hassager (1992), Pelipenko and Frigaard (2004a),
Carrasco-Teja and Frigaard (2010).

While a hydraulic fracture propagation is essentially coupled
process of rock deformation/fracturing and fluid flow in the open
channel, in this study we focus only on the latter problem. We
assume that the fracture aperture dynamics is calculated using the
appropriate geomechanics model (Adachi et al., 2007; Dontsov and
Peirce, 2015) in the framework of explicit numerical coupling as
discussed in Section 1.1, so that the suspension flow equations
formulated below are solved at consecutive time instants.

Consider a Cartesian coordinate system Oxy with the horizontal
x-axis and the vertical y-axis, the origin O is located at the fracture
midplane (see Fig. 1). The following scales are used: fluid velocity at
the fracture inlet (injection zone) U, which is calculated based on
the volumetric injection rate of suspension; fracture length L and
aperture dg (so that do/L < 1 is a small parameter), density p;,
viscosity uq and 7y;1 scales are calculated using the parameters of
the fluid 1 (assuming that 7y; > 0); note that the viscosity scale is
calculated at the shear rate y; = 6U/d, using the power-law model
w1 = Ky7o™. The coordinates x and y are scaled by the fracture
length L so that the flow domain is (x, y) € [0, 1] x [0, h], where
h = H/L is the fracture height to length ratio (H ~ L).

Mass conservation of fluids and particles at constant substance
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densities are formulated as follows:

W+ V. (w(1 - Cp)c,-vf) = 2u;G, i=1,...1,
(7)
a"gtcp LV (WCpVp) = O, (8)
o qai
Y

Here, i = 1, ..., | is the fluid number (with [ > 2 bieng the total
number of fluids); ; are the fluid volume concentrations; Cp, is the
proppant volume concentration (for simplicity we assume a single
proppant type); w(x, t) is the fracture aperture, which is assumed to
be a predefined function of coordinates and time as described
above; vy; is the leak-off velocity of a fluid ‘i’ through the fracture
walls, which is determined according to the Carter law with “fluid
exposure time” ty(x, y) (the time instant, at which the fracture tip
reached the location (x, y)) and (constant) coefficients ¢y ;; vfand v,
are the carrier fluid and particle (mass-averaged) velocities,
respectively.

Gap-averaged momentum conservation equations formulated
for carrier fluids and particles in the lubrication limit take the
following form:

2
w
Vi = 12p Y()F, vp =V + Vs, Vs = —vs€3, ©)
B _ (pp — pr)gD? B 5.1
Vs = USLf(CIJ)7 Ust = 18uf,u1U ) f(CP) - (1 - CIJ) ) (10)
Fw (2K\'/"
fm = tis (Cp) e, e = 12k (m) » F=Vp+Bupyey, F=|F|,
(11)
ke "™y = ta—agrm(10l oy
n+1)(2n+1) 2 n ’
(12)
B Bnry B Cp —2.5n
V= G = (1= ) (13)
N N N
K:ZCiMia n:ZCinia Ty:ZCiTiy (14)
i=1 i=1 i=1
N N
pm=(1-GC) <C1 + ZC,-L-) +Cplp, v = Zcivl,h vy
i—2 i=1
_ Gy
T Vit (15)
p18d* Tyad Pi
Bu = X = , G =— l:27.4.,1\]7 16
mu mu g P1 ( ) (1e)
p K.-n—l Tos
¢ =2, 1\/11.:7‘?'2 —, T =-% (17)
P Ky Ty1

Here, p is the fluid pressure; F is the fluid pressure gradient
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accounting for gravity; K, n, and 7y are the dimensionless consis-
tency index, power-law index and yield stress determining the
rheology of a mixture of viscoplastic fluids according to the
Herschel—Bulkley model; v; is the total leak-off velocity of the
fluids; pm and up, are the density and shear viscosity of the sus-
pension, respectively; p, and D are particle substance density and
diameter, respectively.

Egs. (10)—(14) determine the closure relations for the apparent
suspension viscosity um and the particle settling velocity vs in terms
of the flow parameters; Egs. (9), (11), and (12) describe the flow of
yield-stress fluids only if the maximum local viscous stress along
the fracture aperture is greater than the suspension yield stress 7y,
which is described in a non-dimensional form as ¥ < 0.5 (Y(y) > 0)
and is equivalent to F > F. = 2Bnry/w according to Eq. (12). If the
local pressure gradient is below the threshold F, the flow stops (the
fluid is unyielded), which is described as follows:

vi=0 or Y(¥)=0 if ¥ >0.5. (18)

The dimensionless groups in Eqs. (16) and (17) are calculated
based on the parameters of the fluid 1: Bu is the buoyancy number
determining the effect of gravitational convection; Bn is the Bing-
ham number (the ratio of yield stress scale to the viscous stress
scale), M; and {; are the apparent viscosity and density ratios of fluid
‘7" to fluid ‘1’, respectively, T; is the yield stress ratio of fluid ‘i’ to fluid
‘1", and {;, is the density ratio of proppant to fluid ‘1".

Mass conservation equations (see Eqs. (7) and (8)) and expres-
sions for the carrier fluid and particle velocities (Eq. (9)) allow us to
derive the quazi-linear elliptic equation determining pressure
evolution in the flow domain:

3
v. (é"TmY(w)Q :‘th"+2ul + V- (WCpVs). (19)

It is obtained by (i) summing Egs. (7) and (8); (ii) applying the
volumetric balance condition C; + --- + C; = 1; (iii) expressing the
fluid velocity vr in terms of the pressure gradient F via Eq. (9) and
(iv) expressing the particle velocity vy in terms of the pressure
gradient Fand the particle volume concentration C, via Egs. (9) and
(10).

Note that parameters um, and vs in Eq. (19) depend on the local
volume concentrations of particles Cp and fluids G; (see Egs. (13)
and (14)), so the system described by Eqgs. (7)—(9) and (19) is
essentially coupled. The viscosity of the suspension up and the
mobility coefficient Y(y), which determine the yield-stress
behavior of Herschel—Bulkley carrier fluids, depend on the local
pressure gradient F (Egs. (11) and (12)), so that the second-order
partial differential Eq. (19) is essentially nonlinear with respect to
pressure.

As mentioned above, a similar set of governing equations is used
to describe a wide range of oilfield problems, including well
cementing and multiphase flow in a proppant-filled hydraulic
fracture during clean-up and production (Bittleston and Hassager,
1992; Pearson, 1994; Hammond, 1995; Pelipenko and Frigaard,
2004b; Osiptsov et al., 2020). Multiphase flow in hydrocarbon
reservoirs using the black oil model is typically used for routine 3D
reservoir production modeling and is also described by a very
similar set of governing equations. The only difference is that
adequate reservoir modeling requires consideration of fluid
compressibility, so that the Eq. (1) (or (19)) becomes parabolic.
Nevertheless, both quasi-elliptic and quasi-parabolic nonlinear
pressure equations can be solved using a similar finite-difference
(or finite-volume) spatial approximation scheme.
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2.2. Initial and boundary conditions

For the hyperbolic transport Eqgs. (7) and (8), the boundary
conditions at the inlet x = 0 (perforated segment of the well) and
the initial distribution of fluid and proppant concentrations are
specified:

Ci(ovyEIperfvt) :Clm7 i=1,..L Cp(OJ/EIperfvt) = Cli)n;

(20)

Gi(x,y,0) = CQ(x,y), i=1,...1; G(x,y,0) = Co(x,y). (1)

Boundary conditions described by Eq. (20) are imposed at the
subsection of the left vertical boundary of the fracture corre-
sponding to the perforations y € Iperf, Which is the inlet zone of the
computational domain.

The quasi-elliptic equation in terms of fluid pressure (see Eq.
(19)) requires either Neumann or Dirichlet boundary conditions.
We impose the no-flow boundary conditions for the fluids at the
upper and lower horizontal boundaries. At the perforated region of
the left boundary, there is a specified volumetric injection rate,
which is expressed in terms of the pressure gradient according to
Eq. (9).

We consider two flow configurations, namely a Hele—Shaw cell
and a propagating hydraulic fracture. For a Hele—Shaw cell (a
narrow channel with an outlet at the right vertical boundary), we
impose a variant of the “soft” boundary condition at the outlet x =1
so that the pressure distribution is hydrostatic (equivalent to zero
vertical fluid velocity) at each time instant. For a propagating hy-
draulic fracture, all boundaries except the inlet zone are imper-
meable (no-flux condition), while the fluid injection rate, the total
fluid leakoff rate, and the rate of change of the fracture volume are
subject to a volumetric equilibrium condition at each time instant.
Note that since the fluids are incompressible and Neumann
boundary conditions are imposed at all boundaries of the compu-
tational domain, the solution to Eq. (19) is determined up to a free
additive constant. Therefore, a unique solution to Eq. (19) formu-
lated for a propagating hydraulic fracture is found by imposing a
certain pressure value at any location within the hydraulic fracture
(e.g., bottomhole pressure corresponding to the perforated region).

3. Numerical solution using the FP algorithm

The quasi-elliptic pressure equation (see Eq. (19)) can be
formulated in the following operator form:

o5 [P35

Here, x; are coordinates, the differential operator Aa is the Laplacian
and 4 = w3Y(y)[12um is the fluid mobility multiplied by the fracture
aperture w.

An alternative form of Eq. (22) can be formulated using the in-

verse Laplace operator Agl (p) acting on the right-hand side f:

AP =Ff, A=

i=1,2

(22)

p=Ay' (0f (23)

In fact, Ag] (p) is a solution of the quasi-linear Laplace Eq. (22)
subject to the boundary conditions formulated in Section 2.

We consider the discretization of Eq. (22) at the mesh Q(Nx, Ny),
where Ny and Ny, are the number of mesh cells in horizontal and
vertical directions, respectively, so that p = {p;;, 0 <i < Ny, 0 <
j < Ny} is an approximation of the pressure field. The discrete
analogue of the Laplacian A, is represented by the matrix operator

a(p).
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A, so that the differential problem defined by Eq. (22) becomes the
matrix problem:

Ap)p=f, A=Az (24)

Similar to Eq. (23), Eq. (24) can be represented as follows (pro-
vided that the matrix A is non-degenerate):

p=A"'(p)-f. (25)

As mentioned above, one of the most robust strategies for the
numerical solution of Egs. (7)—(9) and (19) is based on the splitting
of the governing equations by physical processes, which leads to a
FP problem described by Eq. (24).

3.1. Description of the numerical algorithm for solving the pressure
equation

We consider the standard finite-difference discretization using
the 5-point “cross” stencil, a rectangular staggered uniform grid
and the approximation of the derivatives by central differences (see
detailed description of the approximation in Appendix A). The
following numerical algorithm is used to solve the pressure equa-
tion at each time step:

1. The pressure equation (see Eq. (19)) is discretized assuming a
fixed distribution of fluid tracers G, particle concentrations Cp
and particle slip velocity vs, so that the coefficients are fixed. The
corresponding linear system can be solved by a certain effective
linear solver (e.g. the multigrid method proposed in Muravleva
et al. (2021));

. Due to the Herschel-Bulkley rheology of the fluids, the sus-
pension viscosity um depends on the local pressure gradient F
according to Egs. (11) and (12), so the pressure equation is non-
linear and the solution performed in step 1) typically leads to a
large residual; according to the FP iteration method, after step 1)
we recalculate the coefficients in Eq. (19) and perform the cal-
culations according to step 1).

The iterative process 1—2 ends when certain convergence
criteria are met. For example, the following criteria can be used
(s > 1 is the number of current iteration of the solution of the
pressure equation at a given time step):

va‘s —Vis1 H

Jves

Hps —Ps_1 ”
Ips i

<€, <e. (26)

Here, ¢, are certain small numbers that determine the accuracy
of the calculations, and ||-|| is any suitable type of norm, for
example:

lall,, = [>_a?, |al,_ = maxia].
i

Multiple convergence criteria can be used simultaneously to
ensure proper control of the accuracy of the calculations.

Note that the pressure equation (see Eq. (19)) degenerates when
there are unyielding zones in the computational domain. The
reason is that the fluid mobility A(p) = w3Y(y)/(12um) in these
zones is zero according to the condition described by Eq. (18). To
solve this issue, we apply a regularization to the mobility of a yield-
stress fluid described in the study of Boronin et al. (2015a), so that
the coefficient Y(y) takes a small non-zero value in the unyielding
zones.

After solving the pressure equation at the current time step, the

(27)
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advection equations (see Egs. (7) and (8)) are solved explicitly using
a particular finite-difference scheme (e.g., the second-order TVD
scheme with a flux limiter, see Leveque (1996)).

The entire algorithm of solving the governing equations
describing the suspension flow in a hydraulic fracture is similar to
the “Implicit Pressure—Explicit Saturation” (IMPES) method for the
numerical solution of multiphase filtration problems (Aziz and
Settari, 1979).

3.2. Improved Anderson acceleration

We started by implementing the original version of AA method
(Algorithm 1 in Appendix B) to solve the nonlinear problem
described by Eq. (19). Test calculations showed that for the visco-
plastic fluid rheology, the number of time steps at which the iter-
ative algorithm described above diverges is unacceptably large for
reasonably small values of the tolerance parameters ¢;, » described
above.

To address this issue, we made the following modifications to
the original AA algorithm:

1. Each time step begins with several iterations using the standard
FP iteration procedure. These iterations are not stored in the AA
memory array and are not used during the optimization pro-
cedure. This allows the algorithm to reach the convergence re-
gion. We refer to this parameter as the delay of AA algorithm, as
it is commonly termed in the literature (Walker and Ni, 2011).

. At each iteration, a solution guess is computed using solutions
obtained from several previous iterations. The number of pre-
vious iterations used is determined by the memory parameter,
typically introduced to conserve memory.

. The optimization process is applied to the expanded vector
composed of the linearized pressure approximation operator
(matrix) As, the right-hand side f;, and the approximation to the
solution at each iteration ps, not just to the vector of the
approximate solution at each FP iteration ps.

. At each iteration s, the fluid mobility 4 (see Eq. (22)) is updated
based on fluid pressure values ps_1 obtained from a discretized
problem determined by Eq. (19). A linearized pressure approx-
imation operator is then calculated, along with the right-hand
side, to form a mapping over the expanded vector space.

. Transport equations (Egs. (7) and (8)) are solved using an
explicit 2nd-order TVD approximation scheme, and the time
step is determined according to the Courant—Friedrichs—Lewy
(CFL) stability condition. A modification of pressure leading to a
change in fluid velocities according to Eq. (9) results in a change
in the time step calculated by the CFL condition. If the value
changes significantly compared to the previous iteration (e.g.,
the relative difference exceeds 1%), subsequent iterations will
use the standard FP iteration with AA algorithm switched off to
prevent divergence caused by significant changes in the pres-
sure approximation matrix during the iterative procedure.

Modifications 1 and 2 are commonly used in published studies
and are considered part of the basic AA algorithm. Modifications
3—5 are novel, and Appendix B provides a detailed line-by-line
comparison of the basic (Algorithm 1) and proposed (Algorithm
2) AA algorithms to highlight these differences. It is important to
note that all unknown quantities, namely pressure p, the matrix
representing the linearized operator A, and the right-hand side f,
enter the algorithm in a vector form.

4. Numerical simulations

This section presents the results of the numerical solution to
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Egs. (7)—(9) and (19) for several flow configurations typical of real
hydraulic fracturing jobs.

4.1. Input parameters of test cases

Our goal is to compare the performance and convergence of the
modified AA algorithm (Algorithm 2 or MAA) with the standard FP
iterations. Comparison is made in terms of the computational time
(seconds of CPU time), convergence rate (average number of iter-
ations required for convergence of the non-linear pressure solver
per time step) and convergence quality (percentage of time steps, at
which the non-linear pressure solver could not converge in 50 it-
erations). Note that CPU time is provided solely for the purpose of
comparing results obtained using different non-linear solvers on a
specific computer. Therefore, absolute values of CPU time are
meaningless.

In all tests, the computational domain representing a single
wing of the hydraulic fracture is set to 100 m x 100 m box. The
injection zone is located in the middle of the left vertical boundary
and occupies a single mesh cell (its size depends on the mesh
resolution and affects the linear fluid velocity scale in the near-
wellbore zone). This represents a transverse hydraulic fracture
attached to a horizontal well, which is part of the completion of
multistage hydraulically fractured wells. These wells are widely
used to stimulate production in low-permeability oil and gas res-
ervoirs, including shales. The maximum fracture opening is set to
0.01 m, which is typical for real hydraulic fractures. The channel
aperture is described by the function w(x, y, t) as explained below.

For Test 1, which considers the flow in an open channel
(Hele—Shaw cell), the aperture remains constant:

w(x,y,t) =wg =0.01m. (28)

Tests 2—4 examine a suspension flow in the elliptic hydraulic
fracture with the tip ryp propagating at a constant velocity viip:

2
rtip

(t),

if 1 < rip (1)

)

otherwise

2
wieyty = § Wy 1=/
Wnin = Woéw,

(29)

P = (x=%0)? /4+ (0~ ¥0)%, Tip(t) = To + vipt.

Here, xo = 0, yo = 50 m; the parameter ry(t) determines the
location of the fracture tip propagating with a constant fracture tip
velocity vyip; in Tests 2, 3, and 4, vyp, is set to 0.015 m/s and 0.06 m/s,
respectively; ro = 5 m and wy = 0.01 m; wpjp is the minimum
aperture of the computational domain outside of the fracture; & is
a small regularization parameter that is set to 10~3 in the test cal-
culations. Note that according to Eq. (29), the fracture shape at each
time instant is a semi-ellipse with an axis ratio of 2:1, elongated
horizontally.

In cases of propagating hydraulic fractures, the value of injection
rate Qj, at each time instant is consistent with the rate of change in
the fracture volume Qg:ac and total fluid leakoff rate Q, to preserve
the volumetric balance. It is formulated as follows:

Qin = erac - Ql (30)

Eq. (30) is used to calculate the injection rate at each time
instant, while the rate of fracture volume change rate is determined
by the aperture model described by Eq. (29), and the total leakoff
rate is set to 20% of the injection rate. It is important to note that the
leakoff is only applied to the area of the computational domain
where the fracture is open (i.e., where condition w > Wy, is met),
and the leakoff distribution along the open fracture is uniform for
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simplicity.

The input parameters for Tests 1—4, including fluid and prop-
pant properties and injection schedules, are described in Table 1.

In this section, we have set the values of tuning parameters of
MAA algorithm to m = 20 (memory) and d = 0 (delay) (see
description of Algorithm 2 in Appendix B). These values were
chosen based on the performance of the MAA algorithm in a
parametric study of proppant transport using the developed nu-
merical algorithm. We discuss the sensitivity of the MAA algorithm
performance with respect to these parameters in Section 5. Cal-
culations are performed on mesh with resolutions of 32 x 32,
64 x 64, and 128 x 128 cells. These resolutions are commonly used
by hydraulic fracturing engineers to perform routine calculations in
commercial simulators.

Before jumping to description of results, we discuss the choice of
input parameters of simulations and their relevance to real hy-
draulic fracturing jobs.

Input parameters of the test simulations are set specifically to
cover the range of variations of parameters (dimensional and non-
dimensional ones) typical of real hydraulic fracturing jobs (e.g., see
these ranges in the study by Boronin et al. (2015b)). In the test
cases, key physical parameters are as follows: fracture aperture
scale is 0.01 m, length and height are 100 m, linear velocity at
perforations is from 0.1 m/s (early stage of fracture growth in Tests
2 and 3 and 32 x 32 mesh) up to 15 m/s (Test 4 at 128 x 128 mesh),
viscosity (at perforations) is from 0.001 up to 0.3 Pa-s, fluid density
is close to that of water (1000 kg/m?), proppant density is 2600 kg/
m?> (sand or ceramic proppant); these parameters are consistent
with the ranges presented in the study by Boronin et al. (2015b) and
other papers describing physical parameters of real fracturing jobs.

The flow is determined by the set of non-dimensional param-
eters entering the system of Egs. (7)—(9) and (19). In particular, the
effect of yield-stress rheology on the flow (and associated compu-
tational difficulty determining the convergence of the iterative al-
gorithm applied to Eq. (19)) is the Bingham number (Bn)
representing the ratio of the yield stress to the viscous stress scales.
It is estimated to be in the range in between 0 (insignificant yield-
stress rheology effect) and 1.5 for slow flows of viscoplastic fluids in
hydraulic fractures, where yield stress effect is significant (see the
range of non-dimensional parameters typical of hydraulic frac-
turing in Boronin et al. (2015b)). In our calculations, depending on
the mesh resolution determining the size of perforations zone and
the linear velocity scale, the Bingham number varies in the range
between 0 (Test 2) and 20 (Test 3 at 32 x 32 mesh), which covers
the range described above. The same conclusion applies to the rest
of the non-dimensional parameters as we have chosen the flow
conditions typical of hydraulic fracturing jobs.

Therefore, the results of test cases are representative and the
obtained values of tuning parameters determining the performance
of MAA algorithm (i.e., the performance of the developed algo-
rithm) are expected to be suitable for simulations of real fracturing
jobs.

4.2. Test 1: displacement of the viscoplastic fluid in the open
channel

This test simulates fluid-fluid displacement in an open channel
with immobile walls in the absence of proppant particles. As dis-
cussed above, a hydrostatic pressure (soft boundary condition) is
applied to the right vertical boundary, which is the outlet region of
the cell. At the initial time instant, power-law fluid 3 fills the
channel and is subsequently displaced by the Herschel—Bulkley
fluid 2 and the Newtonian fluid 1 according to the injection
schedule outlined in Table 1. Injection occurs in three stages, each
lasting 10 min, with a volumetric injection rate of 0.05 m>/s.
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Table 1
Input data for Tests 1—4.

Group Parameter Test 1 Test 2 Test 3 Test 4

Fracture Tip velocity viip, m/s - 0.015 0.015 0.06

Fluid

1 Flow behaviour index n 0.8 0.6 0.6 0.6
Consistency index K, Pa-s" 0.03 0.7 0.3 0.3
Yield stress 7y, Pa 2 0 2 2
Density p, kg/m® 1.025 x 103 10° 10° 10°

2 Flow behaviour index n 0.5 0.1 0.5 0.5
Consistency index K, Pa-s" 0.3 0.5 0.03 0.03
Yield stress 7y, Pa 0 0 0 0
Density p, kg/m® 10° 10° 10° 10°

3 Flow behaviour index n 1 0.5 - -
Consistency index K, Pa-s" 3 x 1073 0.1 - -
Yield stress 7y, Pa 0 0 - -
Density p, kg/m> 10° 103 - -

Proppant

1 Density pp, kg/m? — 2.6 x 10° 2.6 x 10° 2.6 x 10°
Diameter D, m - 1073 103 103

2 Density pp, kg/m> - 26 x 10° 2.6 x 10° 2.6 x 10°
Diameter D, m - 5x 1074 5x 1074 5x 1074

Stage

1 Fluid/proppant number 1/— 17! 15 11
Volume concentration C, - 0.1 0.1 0.1
Duration, s 600 500 1500 375

2 Fluid/proppant number 2/— 2[2 2/2 2/2
Vol. concentration C, - 0.1 0.1 0.1
Duration, s 600 500 1500 375

3 Fluid/proppant number 3/— 3/1 — —
Volume concentration C, - 0.1 - -
Duration, s 600 500 — —

4 Fluid/proppant number — 1/2 — —
Volume concentration Cp - 0.1 - -
Duration, s — 1500 — —
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Fig. 2. Distributions of the volume concentration (top row) and the mobility coefficient Y(y) (bottom row) (see Eq. (12)) of the viscoplastic fluid 1 in Test 1 obtained using the base
FP algorithm at time instants 600 s (left column), 1200 s (middle column) and 1800 s (right column) at the grid with 64 x 64 cells.
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Fluids are injected through a narrow region in the middle of the
left vertical boundary, creating a flow configuration that is close to
radial near the inlet. This can be observed in the left plots of Figs. 2
and 3. The densities of the fluids do not differ significantly, and the
power-law fluid 2 forms a narrow channel in the layer of visco-
plastic fluid 1, so the local velocity is high and the viscosity is low.
As soon as the channel of fluid 2 is formed in the layer of fluid 1, the
latter becomes unyielded. This is shown in the bottom row of plots
in Figs. 2 and 3, where unyielded regions correspond to small values
of Y.

Table 2 compares the statistics of calculations performed by FP
iteration and MAA algorithms. It was found that the FP iteration
method diverges in the majority of time steps (more than 98%) and
therefore cannot provide the required accuracy for calculations.

Due to the poor convergence of the FP iteration algorithm, the
distribution of function Y(y) describing the unyielded zones ap-
pears unrealistic. This can be observed by comparing the bottom
plots in Figs. 2 and 3: (i) during stage 1, when the viscoplastic fluid 1
is injected, the distribution of function Y(y) have to be continuous
in the area filled with fluid 1 to preserve volumetric balance: as
fluids are incompressible and the flow is close to radial-symmetric
in the vicinity of the injection zone, the velocity depends on the
distance from the perforations only; this behavior is correctly
reproduced in simulations carried out using the MAA algorithm,
while in simulations carried out using the base FP algorithm, the
function Y(y) takes minimal value in the majority of area filled with
fluid 1 (see bottom left plots in Figs. 2 and 3); (ii) during stage 2, the
power-law fluid 2 is injected and triggers the Saffman—Taylor
instability at the interface with fluid 1 due to a contrast of viscos-
ities; it breaks through the layer of fluid 1 via a narrow channel, so
that the layer of fluid 1 is still moving, and the function Y(y) is
continuous; while this behavior is reproduced in the simulations
carried out using the MAA algorithm, the base FP algorithm
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Table 2
The statistics of calculations performed using the base FP and MAA algorithms in
Test 1.

Grid resolution  Algorithm  Nijme Np Nnc Nesr Tcpu, s
32 x 32 MAA 1080 5487 0 5.08 7.0

32 x 32 FP 1082 80976 1065 74.83 68.7

64 x 64 MAA 3840 23223 0 6.04 77.9

64 x 64 FP 3872 290485 3821 75.02 6114
128 x 128 MAA 15176 95328 0 6.28 1500
128 x 128 FP 15106 1136607 14953 7524 10166.6

Ntime is the total number of time steps, N;, is the total number of iterations required
to solve the pressure equation, Ny is the total number of time steps, at which the
non-linear solvers diverged, Negt = Np/Niime is the convergence efficiency of the non-
linear algorithm (average number of pressure iterations per time step), Tcpy is the
CPU time required for the calculations.

produces the unyielded layer of fluid 1 with artificial diffusive layer
at its leading boundary; (iii) at the end of stage 3, both fluids 2 and 3
break through the layer of fluid 1 and form wide channels, so that
fluid 1 is unyielded; while the MAA algorithm provides mostly
uniform distribution of function Y(y), this is not the case in the
simulations made with the FP method (see wide diffusive zone at
the leading boundary of the fluid 1 layer).

The base FP algorithm cannot provide a realistic distribution of
function Y, and therefore the fluid mobility, when dealing with
viscoplastic fluids that are either in motion or unyielded. The FP
iteration resulted in poor convergence, leading to inaccurate cal-
culations and unrealistic behavior of the viscoplastic fluid. Addi-
tionally, this method required significantly more CPU time for
calculations compared to the MAA method (6.8x to 9.8x slower
depending on the grid size).

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
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0 50 100

1.0 1.0
0.8 0.8
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Fig. 3. Distributions of the volume concentration (top row) and the mobility coefficient Y(y) (bottom row) (see Eq. (12)) of the viscoplastic fluid 1 in simulations of Test 1 obtained
using the MAA algorithm at time instants 600 s (left column), 1200 s (middle column) and 1800 s (right column) on the grid with 64 x 64 cells.
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4.3. Test 2: Injection of power-law fluids with proppant into the
propagating elliptic fracture

This test simulates the sequential injection of power-law fluids
transporting proppant particles into the propagating elliptic hy-
draulic fracture. The fluid properties are similar to those of actual
hydraulic fracturing fluids (refer to parameters of Test 2 in Table 1).
Note that fluid 2 has a relatively small flow behavior index value of
0.1, which significantly complicates the numerical solution of the
nonlinear pressure equation (Eq. (19)).

Distributions of proppant concentrations are shown in Fig. 4,
while statistics of calculations is summarized in Table 3. We
discovered that the MAA algorithm has no impact on the conver-
gence of the base FP iterations. This is due to the small number of
iterations needed for convergence of the FP algorithm at each time
step, averaging 3—4 iterations per time step. The total number of
non-linear iterations and CPU time are nearly identical for both
methods. Note that during the calculations carried out at the grid
with 128 x 128 cells, there are several divergent time steps for both
the base FP and MAA algorithms. Therefore, we can conclude that in
the case of a power-law fluid rheology, the base FP method usually
allows obtaining a converged solution. Applying MAA algorithm
does not lead to a performance degradation, especially for low
resolution grids.

4.4. Test 3: Injection of viscoplastic and power-law fluids with
proppant into the propagating elliptic fracture

We consider the sequential injection of viscoplastic and power-
law fluids carrying proppant into the propagating elliptic hydraulic
fracture. The parameters for Test 3 can be found in Table 1. Ex-
pressions for proppant settling velocity (Eq. (10)) and correction for
suspension viscosity due to particle volume concentration (Eq.
(13)) are valid for power-law fluids, but are applied to the flow of
viscoplastic fluid to compare the performance of nonlinear solvers
applied to the pressure equation (see Eq. (19)). For more informa-
tion on accurate modeling of flows of particle-laden viscoplastic
fluids, please refer to other sources.

Distributions of proppant concentrations at the end of the
simulation are shown in Fig. 5, and the corresponding statistics are
summarized in Table 4. As in Test 1, the base FP iteration method
fails to produce a converged solution for a large number of time
steps (approximately 44% at 32 x 32 grid, 39% at 64 x 64 grid and
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Table 3

Statistics of calculations made by the base FP and MAA algorithms in Test 2.
Grid resolution Algorithm Ntime Np Nne Negt Tepu, S
32 x 32 MAA 834 3051 0 3.65 48
32 x 32 FP 834 3139 0 3.76 4.7
64 x 64 MAA 2982 8617 0 2.88 67.4
64 x 64 FP 2982 9436 0 3.16 66.5
128 x 128 MAA 11942 32654 15 2.73 813.2
128 x 128 FP 11951 33247 16 2.781 777.6

17% at 128 x 128 grid). The MAA algorithm achieved convergence
at each time step for the 32 x 32 and 64 x 64 mesh. On the finer
128 x 128 mesh, the number of diverged time steps was minimal,
accounting for less than 1% of the total time steps taken. This en-
ables the desired accuracy of calculations to be maintained while
achieving a significant speed-up of simulations compared to the FP
iteration algorithm. Specifically, at the grids 32 x 32, 64 x 64 and
128 x 128, the speed-up is 6%, 7.3x, and 2.2x, respectively.

4.5. Test 4: Injection of viscoplastic and power-law fluids with
proppant into the elliptical hydraulic fracture at a higher tip velocity

This test replicates the flow configuration, fluids, and proppants
used in Test 3. The only difference is that the fracture tip velocity is
four times larger, with a velocity of 0.06 m/s compared to 0.015 m/s.
The duration of the stages was reduced in proportion to the
increased tip velocity to maintain the final dimensions of the
fracture (refer to parameters of Test 4 in Table 1). It is important to
note that an increase in the fracture tip velocity, as considered in
the current test compared to Tests 2 and 3, results in an increase in
the injection and leakoff rates according to balance condition
described by Eq. (30). This, in turn, leads to a decrease in the
apparent fluid viscosity and an increase in the proppant settling
velocity.

The final distributions of the proppant concentrations are
shown in Fig. 6. There is a noticeable increase in the area filled with
settled proppant 2, which can be attributed to the decrease in
viscosity of the power fluid at higher velocities. Statistics of cal-
culations is summarized in Table 5. In this test, the MAA resulted in
2.5x%, 8.7x and 3.1x acceleration of computations made at 32 x 32,
64 x 64 and 128 x 128 grids as compared to those carried out using
the base FP algorithm, respectively. There are fewer diverged time
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Fig. 4. Volume concentration of proppant 1 (left) and 2 (right) obtained in simulations of Test 2 at t = 3000 s using the MAA algorithm. The grid resolution is 64 x 64.
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Fig. 5. Volume concentration of proppant 1 (left) and 2 (right) obtained in simulations of Test 3 at t = 3000 s using the MAA algorithm. The grid resolution is 64 x 64.

Table 4

Statistics of calculations made by the base FP and MAA algorithms in Test 3.
Grid resolution  Algorithm  Nijme Np Nnc Nest Tcpus S
32 x 32 MAA 1113 5056 0 4.54 8.1
32 x 32 FP 1072 39191 475 36.55 489
64 x 64 MAA 3516 9707 0 2.76 45.8
64 x 64 FP 3286 103116 1281 31.38 336.0
128 x 128 MAA 12449 41664 108 334 1428.6
128 x 128 FP 13238 195605 2210 14.77 31022

steps of the base FP iteration compared to the previous test, which
we attribute to a smaller viscosity contrast in the flow domain due
to a larger propagation velocity of the fracture.

5. Sensitivity of simulations with respect to values of tuning
parameters of the MAA algorithm

The AA algorithm includes several tuning parameters, namely,
memory size m and delay parameter d (see formal description of
the base and modified versions of algorithms in Appendix B). This
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Table 5

Statistics of calculations made by the base FP and MAA algorithms in Test 4.
Grid resolution  Algorithm  Niime Np Nhc Nese Tcpu, S
32 x 32 MAA 750 3037 0 4.04 5.2
32 x 32 FP 750 10749 108 14.33 13.1
64 x 64 MAA 2840 9936 2 3.49 80.1
64 x 64 FP 2846 125643 1595 44.14 6948
128 x 128 MAA 11197 38200 63 3.41 12263
128 x 128 FP 11165 223767 2653 20.04 3789.0

section analyzes the sensitivity of the performance of AA algo-
rithms applied to Tests 1, 3 and 4 with respect to the values of m and
d. Calculations are carried out at the mesh resolution of 64 x 64.
Test 2 (injection of particle-laden power-law fluids) is not consid-
ered in this case since the AA algorithm performs similar to the base
FP iteration. This is due to the very fast convergence of the FP al-
gorithm, as discussed in Section 4.2. The performance of the AA
algorithm is also studied in different configurations: (i) AA is
applied to the linearized operator A, the solution guess x and the
right-hand side b, which is the MAA algorithm (see Algorithm 2 in
Appendix B); (ii) AA is applied to the matrix A and the right-hand
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Fig. 6. Volume concentration of proppant 1 (left) and 2 (right) obtained in simulations of Test 4 at t = 750 s using the MAA algorithm at the grid with 64 x 64 resolution.
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side b; (iii) AA is applied to the solution guess x only, which is the
base algorithm (see Algorithm 1 in Appendix B). In all figures
shown in this section, the dashed line represents the value obtained
using the FP algorithm.

The results indicate that the performance of the MAA algorithm
is significantly lower than that of the FP algorithm in simulations of
Test 1 with non-zero delay (d > 0) and large memory m > 3 (see
Fig. 7, where the computational time of the FP algorithm is shown
by the dashed line). We address it to a rapid rate of divergence of
the FP algorithm in case of the strong non-linearity of the pressure
equation due to a viscoplastic rheology of fracturing fluids: at each
time step, even few iterations made by the FP algorithm lead to
large residuals, significantly increasing the number of consequent
iterations required to obtain the converged solution.

During the calculations, time steps are determined by the CFL
stability condition due to an explicit approximation of hyperbolic
transport equations, so that they are calculated based on the ve-
locity field and a fixed value of the Courant number. Therefore, the
total number of time steps should be identical in the calculations
carried out using all algorithms under consideration provided the
tolerance is maintained small (i.e., when the solution is converged).
This is confirmed by the results of calculations (see Fig. 8).

Each iteration made during the solution of a non-linear pressure
equation requires the solution of a corresponding linear problem as
discussed in the introduction, which is made using the blackbox
multigrid algorithm (Muravleva et al., 2021). The MAA algorithm
has the potential to reduce the total number of iterations in a global
(non-linear) algorithm and the number of iterations made by an
internal linear solver. The former can be reduced due to a modifi-
cation in the linearized matrix and the right-hand side, while the
latter can be reduced by providing a better initial guess to the so-
lution at each iteration of the outer “non-linear” algorithm. The
results show that the MAA algorithm significantly reduces the
number of iterations in the outer “non-linear” algorithm. Typically,
only one iteration of the linear solver is required per iteration of the
“non-linear” solver, indicating high performance of the blackbox
multigrid algorithm (see Figs. 9 and 10). The only exception is Test 1,
where for small values of memory m or large delay d, the number of
iterations performed by the linear solver per iteration of the MAA
algorithm is larger than that of the FP algorithm.

Next we analyze the convergence rate of the developed MAA
algorithm. As previously mentioned, the performance of the nu-
merical algorithm for solving the non-linear pressure equation that
describes the flow of power-law fluids is comparable between the
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standard FP and the MAA algorithms. Therefore, both algorithms
converge in the vast majority of time steps in Test 2. However, this
is not the case for calculations performed during Tests 1, 3, and 4.
Test 1 shows the worst convergence efficiency with the de-
pendency of the number of divergent time steps on the values of
the tuning parameters m and d of the MAA algorithm (see Fig. 11).
The worst convergence efficiency is observed in Test 1. The best
convergence of the developed MAA algorithm is achieved atd = 0
(zero delay, so that AA is applied at the start of each time step) and
m > 20 (sufficiently large memory). If we consider the additional
calculations required due to an increase in the memory parameter
and the associated increase in CPU time (refer to Fig. 7), m = 20 is
the optimal value.

Above we discussed the MAA algorithm, which modifies not
only the initial guess, but also the linearized matrix and the right-
hand side at each iteration, in comparison to the base FP algorithm.
The performance of the AA algorithm was analyzed for different
configurations, including the conventional AA algorithm (which
modifies only the initial guess at each iteration) and an alternative
algorithm that modifies the linearized matrix and the right-hand
side of the pressure equation (excluding the initial guess from
Algorithm 2). The overall performance of these algorithms is shown
in Figs. 12—15.

First, we analyze the performance of the variant of the AA al-
gorithm that deals with the initial guess only (base AA algorithm
described by Algorithm 1 in Appendix B). The number of non-linear
iterations in the considered version of the AA algorithm is similar to
those obtained using the base FP algorithm (see Fig. 16), as the
numerical procedures producing the matrix of the linearized
pressure equation and its right-hand side are similar in both al-
gorithms. Therefore, the base AA algorithm cannot produce a
converged solution for the pressure equation that describes a flow
of viscoplastic fluids. Note that the AA algorithm results in addi-
tional overhead compared to the base FP method, which increases
with an increase in the memory parameter m. The number of it-
erations made by the linear solver cannot be reduced, as discussed
above. Therefore, applying this variant of the AA algorithm only
slows down the computations. Nevertheless, we obtained a certain
decrease in the average number of iterations performed by the
linear solver per iteration of the Algorithm 1 as compared to that
obtained using the Algorithm 2 (compare Figs. 10 and 17). This ef-
fect is most noticeable in Test 1 for a non-zero delay and sufficiently
large memory.

Next we analyze the performance of the AA algorithm based on

AA applied to A, b, x
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Fig. 7. CPU time of calculations Tcpy (in s) in Tests 1, 3 and 4 depending on values of tuning parameters m and d; calculations are made using the MAA algorithm described in

Appendix B (Algorithm 2).
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AA applied to A, b, x
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Fig. 8. Number of time steps Niime in Tests 1, 3 and 4 depending on values of tuning parameters m and d; calculations are made using the MAA algorithm described in Appendix B
(Algorithm 2).
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Fig. 9. Average number of non-linear solver iterations per time step Neg in Tests 1, 3 and 4 depending on parameters m and d, MAA algorithm is described in Appendix B
(Algorithm 2).
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Fig. 10. Average number of iterations made by the linear solver (blackbox multigrid) per iteration of the non-linear solver Ni, in Tests 1, 3 and 4 depending on parameters m and d,
MAA algorithm is described in Appendix B (Algorithm 2).
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AA applied to A, b, x
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Fig. 11. Number of time steps, at which the developed AA algorithm diverged Ny (i.e.,
convergence criterion is not met in 50 iterations) in Test 1.
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the optimization of a vector composed of the matrix describing
linearized pressure equation and the right-hand side at each iter-
ation, while the initial guess is ignored in the optimization pro-
cedure. Comparing Figs. 7 and 12, 9 and 13, as well as 10 and 14, we
conclude that this version of the algorithm shows slightly better
performance as compared to Algorithm 2. We attribute this
improvement to the efficient linear solver, which typically con-
verges in a single iteration regardless of the initial guess. To avoid
over-fitting, we recommend using a more general version of the AA
algorithm (Algorithm 2) to solve non-linear problems described by
quasi-linear elliptic equations.

6. Estimation of algorithm complexity and comparison with
Jacobian-based methods

The time and memory complexity of the entire algorithm is
dependent on the convergence rate. Nevertheless, the time and
memory complexity of the additional computations for a single
iteration of the AA algorithm (i.e., the overhead introduced over the
base FP iteration) can be estimated. The algorithm's memory
complexity is O(m[NxNy]Z) when the optimization vector includes
the linearized pressure equation A, and O(mNxNy) otherwise, where
NyNy is the total number of mesh cells and m is the memory

AAappliedto A, b

Test_3

350
L0

300 A
500 A
250

400 -
200 -

TC PU

300 A
150

200 1 100 -

100 4 50 4

700 ftemmcmccccccccccmmccceamaeaamamen===a

600 -
-=e-d=o(FP)

I d=0
I J=1
. d=3
I o-5
. d=7
. -0

500

400 -

300 A

200

100 A

10 15 25 50 100

m

15 25 50 100

m

Fig. 12. CPU time of calculations Tcpy (in s) for Tests 1, 3 and 4 depending on parameters m and d, AA is applied to linearized pressure equation A and its right-hand side b.
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Fig. 14. Average number of linear solver (blackbox multigrid) iterations per iteration of non-linear solver Njs for Tests 1, 3 and 4 depending on parameters m and d, AA is applied to
linearized pressure equation A and its right-hand side b.
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Fig.15. CPU time of calculations Tcpy (in s) for Tests 1, 3 and 4 depending on parameters m and d, AA is applied to solution guess x (base AA algorithm as described by Algorithm 1 in
Appendix B).
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Fig. 16. Average number of non-linear solver iterations per time step N for Tests 1, 3 and 4 depending on parameters m and d, AA is applied to solution guess x (base AA algorithm
as described by Algorithm 1 in Appendix B).
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Fig. 17. Average number of linear solver (blackbox multigrid) iterations per iteration of non-linear solver N, for Tests 1, 3 and 4 depending on parameters m and d, AA is applied to

solution guess x (base AA algorithm as described by Algorithm 1 in Appendix B).

parameter. The time complexity is determined by solving a mini-
mization problem and is either O(m? [NxNy]z) or O(mszNy),
depending on the algorithm version. Therefore, even for the most
computationally intensive version of the algorithm, time and
memory overhead is estimated to be less than that of a single FP
iteration applied to the quasi-linear pressure equation.

We now estimate the complexity of Jacobian-based algorithms
(e.g., Newton—Raphson, NR) applied to the problem under
consideration as their typical convergence rate is faster as
compared to that of the family of FP algorithms. We consider the
standard 5-point “cross” stencil and central differences to discretize
the pressure equation (Eq. (19)). Our test calculations showed that
the numerical resolution of unyielded zones requires accurate
approximation of the function Y(y) (see Eq. (12)), which is a func-
tion of the local pressure gradient F determining the formation of
unyielded zones and entering the fluid mobility coefficients in the
elliptic equation. This requires approximation of the pressure
gradient at larger (as compared to standard “cross”) stencil, namely,
5-point stencil to approximate the pressure derivatives in each
direction (see Appendix A). As aresult, the Jacobi matrix required to
implement NR method has 25 non-zero diagonals, so that the
corresponding solution of linear system requires larger number of
mathematical operations as compared to that of a single FP itera-
tion at least by a factor of 5 (see details in Appendix C).

Note that this estimate is actually a lower bound of the NR al-
gorithm overhead as compared to the calculations made in the
framework of the developed AA method. The reason is that the
blackbox multigrid linear solver we use in course of our study is
developed specifically for 5-diagonal matrices and is shown to be
substantially (typically, by a factor of several dozens) faster as
compared to other existing linear solvers including the family of
Algebraic Multigrids (see Muravleva et al. (2021)). Therefore, the
overhead of calculations in course of NR algorithm is expected to be
significantly larger due less efficient linear solvers suitable for 25-
diagonal matrices. As discussed in Section 4, the developed MAA
algorithm requires from 3 to 6 iterations to converge per time step
(see values of parameter N in Tables 2, 4 and 5), and it does not
significantly increase the CPU time of computations performed
during a single iteration as compared to that of base FP algorithm.
Therefore, the Jacobian-based algorithms must converge in a single
iteration per time step to compete in performance with the
developed AA algorithms, which is quite unrealistic due to essential
non-linearity of the problem under consideration.
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7. Summary and conclusions

On the basis of AA algorithm we developed a new efficient
solver to the non-linear pressure equation describing a flow of
particle-laden viscoplastic fluids in a hydraulic fracture. In contrast
to the standard AA method, the developed MAA algorithm opti-
mizes the vector of unknowns at each iteration based not only on
the history of approximate solutions calculated at several previous
iterations, but also on the combined vector formed by the vector of
unknowns, the matrix approximating the non-linear operator, and
the right-hand side. MAA is implemented in the framework of the
coupling strategy of solving the system of governing equations
describing a particle-laden flow in a hydraulic fracture similar to
the well-known IMPES method. Reliable convergence of the overall
algorithm was found to require a certain limitation of the time step
variation during the iterative procedure.

The convergence and performance of the MAA algorithm is
compared against: (i) the base FP algorithm; (ii) standard AA al-
gorithm applied to the solution guess at each iteration; (iii) the
alternative AA algorithm applied to the linearized pressure equa-
tion and the right-hand side. The set of test calculations considered
in the current study covers injection scenarios typical of real hy-
draulic fracturing operations. It includes the injection of particle-
free and particle-laden power-law and viscoplastic fluids into a
plane channel with steady walls and propagating hydraulic frac-
tures, so that the obtained results are reliable and can be used in the
engineering practice.

Simulation results show that both the FP and proposed AA al-
gorithms reliably converge in simulations of the injection of power-
law fluids with zero yield stress. The difference in their perfor-
mance is insignificant due to the small number of pressure itera-
tions made per time step. However, in simulations of viscous fluid
flows, the FP and standard AA algorithms showed significant
instability in calculations of injection of viscoplastic fluids. They
diverged at the majority of time steps due to the presence of
unyielded zones, such as those formed by the development of the
Saffman-Taylor instability (viscous fingers). As a result, these al-
gorithms cannot be used to solve the non-linear elliptic equation
that describes the injection of viscoplastic fluids into a hydraulic
fracture, as the solution is shown to be physically unrealistic. The
MAA method proposed in this study allows for obtaining a
converged solution. This results in a physically realistic distribution
of unyielded zones in a hydraulic fracture during unstable fluid-
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fluid displacement.

A sensitivity study of the performance of the considered AA
algorithms was carried out, and it was shown that the best per-
formance and convergence in the simulation of suspension flow in
a narrow channel is obtained when the memory parameter is large
enough (above 20), while the delay parameter is set to zero (so that
the MAA algorithm is applied starting from the first iteration at
each time step).

We have analyzed the computational complexity of Jacobian-
based methods in course of discretization of quasi-linear elliptic
equation considered in the current study. Due to significant over-
head in mathematical operations per time step of the Jacobian-
based algorithms as compared to the family of FP algorithms, the
former ones must converge in a single iteration per time step to
compete in performance with the MAA algorithm, which is quite
unrealistic due to essential non-linearity of the problem under
consideration due to complex fluid rheology.

Input parameters of test cases considered in the current study
cover the range of variation of key physical parameters (injection
rates, fracture shape, fluid rheology properties) determining the
suspension flow in hydraulic fractures. While we consider only
fluid mechanics problem, the MAA algorithm is expected to be
applicable to solution of the full fracture propagation problem as
soon as the proper explicit coupling of the solution of equations is
implemented. Therefore, the MAA algorithm and optimal values of
its tuning parameters are expected to perform well in simulations
of hydraulic fracturing process.

The developed MAA algorithm can be applied to a numerical
solution of non-linear problems described by general quasi-linear
elliptic (or parabolic) equation (see Eq. (1)), which describes a
wide range of oilfield processes including hydraulic fracturing, well
cementing, fracture flowback and reservoir production; we expect
that it is specifically effective in solutions of essentially non-linear
problems, for example, those corresponding to flows of visco-
plastic fluids.
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Appendix A. Approximation of particle transport equations

We consider a finite-difference approximation of Eqgs. (7)—(9)
and (19) using a uniform rectangular staggered grid. The para-
bolic advection equations for fluid tracer and particle volume
concentrations are approximated using a second-order TVD flux-
limiting scheme, which is not shown here for brevity of notation.

As we are concerned with the numerical solution of parabolic
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Eq. (19), below we present details of its approximation, which is
considered in the framework of current study. We reformulate Eq.
(19) and its boundary conditions below for the convenience of the

reader:
9 ap\ o ap _ow  IwCpus
(31)
x=0: yEIin o U = Ujp, y%[in ZUfZO; (32)
xe[0,1], y=0,h:wf=0; (33)
x=1,y€[0, h]: p=pou(y) or uf =0. (34)
h
=30 pou(y) = —Bu [pm(y')dy'.
WinHin y

Here, K = w?Y(y)/ (12,ueff) is the fluid mobility; urand vrare the

horizontal and vertical components of the fluid velocity, respec-
tively; ujy is the fluid velocity at the perforations calculated using
the prescribed volumetric injection rate Qiy. Hjj is the height of the
perforation interval; wyy is the fracture aperture in the vicinity of
the perforated interval; Ij, is the interval of the perforations (inlet
region); h is the non-dimensional height of the computational
domain. Boundary conditions described above (Egs. (32)—(34))
correspond to two flow configurations, namely, an open channel
with a “soft” pressure boundary condition at the outlet poy¢ (in-situ
hydrostatic pressure at the right vertical boundary) and a hydraulic
fracture immersed into a rectangular computational domain with
zero flux through the right vertical boundary. Note that in the latter
flow configuration, flux condition is imposed at all boundaries of
the computational domain (Neumann problem), so that a pressure
needs to be set in one of the grid nodes to obtain a unique solution.
Since multiphase flow is considered, K is a function of spatial co-
ordinates (x, y) and varies rapidly in the vicinity of interfaces of
fluids with viscosity contrast, and we have moved to the right-hand
side of Eq. (19) all terms that do not explicitly depend on the fluid
pressure p.

The computational domain (x, y) [0, 1] x [0, H/L] is approxi-
mated by the staggered rectangular mesh Q with the mesh nodes
introduced as follows:

Q = {(xi.y), xi = ihx, yj =jhy, i€[0, Ny, j€[0, Ny]},  (35)
where hy = 1/Ny and hy, = H/(LNy) are dimensions of mesh cells in
horizontal and vertical directions, respectively. Note that according
to Eq. (35), there are mesh nodes located at the boundaries of the
computational domain. The fluid pressure p, the volume concen-
trations G, Cp, the density py, and the viscosity wefr of the mixture
are approximated at the mesh nodes (x;, y;), while the velocities are
approximated at the cell faces (semi-integer nodes): the horizontal
velocities are approximated at (Xi05, ¥;) and vertical ones at (x;,
Yj+05), where X;,05 = ihy + 0.5hy, yj.05 = jhy + 0.5h,.

To approximate Eq. (31), a standard 5-point “cross” mesh is
used. In the internal nodes (i, j) € [1, Ny — 1] x [1, N, — 1], the
approximation scheme at a given time step is as follows:
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pn+11 pn+1 pn+1 _ pn+11
(WK)i, 05 ]% — (WK)iLos J”h—)%lJ
pn+l] pn+] pn+] pn+]]
WK 0 5~ L e — (WK 5t
y y
1
_ _Bu (Kpm)ijios — Kpm)ij_os N wi = wi
, At
20 i — (WCPUS)?,j+O.5 (WvaS)u 0.5
la ) hy k]
(36(a))
1
(WE)o55 = 7 (Wi + Wiy (KE + KLyy). (36(b))
1
(WK);'TJEO.S 4 (W + W1J+1) (Kn + I<1J+1) (36(c))

As described above, the fluid mobility K contains the function Y(y)
(see Eq. (12)), which is approximated at the mesh nodes using a 5-

point stencil as shown:
2 2
(&, (3 (), -
0x) ay/ij \ox/;; "~ hy

(37)

L - S . ap
Here, approximation stencil p; ¥ and approximation coefficients I ;

depend on the mesh node (i, j), at which the approximation to the
pressure derivative is considered and described as follows:

{11_27 _ga 07 %’ _11_2}7 2 S l S Nx — 2;
1 1
{ 7 67 27 iv ﬁ}? 1_17
1 1 351 .
- {—ﬁz 2,6,;1}, i=Ne— 1: (38)
{725 7 ‘31-7 7}1}7 i:O7

12’
4 25 .
{47 33 37 47 ﬁ}v l:NX~

{Pi2js Pirj PijPiag P2y 2SI<Ne—2;
{P1 14> Pij»> Pit14> Piv2js Pz+3d}7 i=1;
pf} {pl 34s Pi—2j> Di— U,pu,pH”} i=Nx—1;
{Pijs Picrjs Pivags Piisg Piagle =05
{pi74jv Pi-3j, Di-2j> Pi-1,> pij}y i = Ny.
(39)

Egs. (37)—(39) describe an approximation to the pressure de-
rivative with respect to the x coordinate. Similarly, the pressure
derivative with respect to the y coordinate which enters the pres-
sure gradient F, is approximated using a similar scheme.

The approximation scheme defined by Eq. (36) can be formu-
lated in a simplified form as follows:

Petroleum Science 21 (2024) 3237—3257

SijPij—1 + Wijbi1j+ GijPij + Eijpiy1j + Nijbijr1 = Rij

s~ WBijos ) WKios;
[N} hjz/ ) [N} h}z< )
E ~ (WK)i 05, ~ (WK)iji05
ij = h2 » Nij = h2 )
X y

Gij = —(Sij + Wij + Eij + Nij),

1
R — _Bu (Kpm)ijro5 — (Kpm)ij_os N wi = Wi

(WCDUS)U+O 5 (WCPUS)l,] 0. 5

+2Ul‘ ij — hy

Here, S, W, C, E, N are matrices of coefficients corresponding to
“south”, “west”, “center”, “east”, “north” nodes of the approxima-
tion stencil; R is the matrix representing right-hand side.

Boundary conditions determined by Eqgs. (32)—(34) are formu-
lated in terms of the fluid velocity and are approximated using
ghost cells (denoted below by indexes out of the range described by
Eq. (35)) as follows:

» o« ” o«

Winlinj = 0.5(W_o5;U_0.5; + Wo.5U05,)s
W_g5,U 055 = 2Winllinj — Wo5 o5, (40)
Uinj = Uin, If j€Jiy and u;,j = 0, otherwise;

Wij_05Vij_05 = —Wiji05Vij+05 0 <I<Nx, j=0&Ny; (41)

WN, 405 ,jUN,+0.5] = —WnN,—0.5jUN,—05,, 0 <j < Ny. (42)

Here, Jin is the interval of mesh nodes corresponding to the
perforated region Ij,. It is important to note that volumetric fluxes
were approximated instead of fluid velocities to preserve mass
conservation in discrete form.

At the left boundary (i = 0), the approximation is made taking
into account the boundary conditions defined by Eq. (40):

0, j=0
(WK)o; 05 ,
s hizjv 0<j<Ny
0j — y )
2(WK)oj_o5
oo =N
2(WK)gji05 0
h2 ’
y
Noi=¢ (WK)gi.o. . ,
J %, 0<j<Ny
y
0, =Ny
2(WK)g 5
Wopj =0, Eoj = 1z L, Coj = —(So, +Eoj+Noj),

X
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_9Bu (Kpr}r;)i,()ﬁ _ zuir;{jwin7 i=0
'y X
Ry={ -Bu (Kpm)ojo5 — (KPm)ojo5 UinWin o i _pp
hy hx
2Bu Kpm)im—_os _ 2uin.jWin7 =M
hy hi

No-flux conditions (see Eqs. (41) and (42)) are used at the top
and bottom boundaries (j = 0, Ny; 0 < i < Ny):

2(WK)g ; 2(WK)g ;
( ’1);).1—0.57 N, ( h)gﬁo.s’ i—0
Sij = y , Nij = y ,
0, j=0 0. j=N,
(WK);_o5, (WK); 05 -
ij= hlz L Eij= hlz L, Gj=—(Wij+Eij + Nij), J
X X
= 07 Ny
—2Bu( pl’l’l)l._]+045’ j=o,
hy
fij = (Kpm)ij
zsuimh;foi j=Ny,

The no-flux condition at the right vertical boundary of the
computational domain with an immersed propagating hydraulic
fracture (i = Ny, see Eq. (42)) is approximated as follows:

0, j=o0
wK)y. ;i
WK)n.j-05 1’:’;*057 0<j<Ny
SN] - y )
2(WK)N, j-05
h2 J Bl .’ - Ny
y
2(WK)n, j105 _o
hjz, ’
Nyj=1q WK)n ji05 .
J h—£H7 0<j<Ny
y
0, J=Ny
2(WK)N_05]
Nj = TJ7 Egj =0, Cyj=—(Snj+Wn;+Nnj),
X
K
9By Pm)NXAols’ i=o
hy
K ; — (K ;
Ry; — —Bu( Pm)N,j+05 hy( pm)NX,]—O.S’ 0<j<N, .
K
ZBu( Pm)N,.N,~0.5 J=N,
hy

For an open channel (or Hele—Shaw cell), the pressure boundary
condition at the right vertical boundary is approximated as follows:
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PN.N, = 0, DN.j—1 = PN,j + BUpmn, j_oshy, 0 <j<Ny

Note that the pressure inside incompressible fluids is determined
up to a constant. Therefore, it is assumed to be zero at the right
vertical boundary (i = Ny, j = Ny) of the domain.

Appendix B. Comparison of base and modified AA algorithms

Algorithm 1. Anderson acceleration with delay d and memory m

Input initial guess p,, non-expanding mapping defined by a linear operator A,
maximum iterations limit s,
Output pressure p
1: ay = Ap,
2pi=a
3:fo=a,—po
4: for s < 1, s, do
a,=Ap;
f=a.—p,

k = max(0, min(m, s — d))

o

Find a € R*"' which minimizes Hsz o0 iy
P = Zf:na/a,» .
if convergence criteria then
break
end if
13: end for
14: return p,,,

5 subject to Z,k o0 = 1

Algorithm 2. Modified Anderson acceleration

Input initial guess py; algorithm J(p) producing linearized pressure equation in a
form Ap = b; solver S(A, p, b) which solves linearized equation; maximum iterations
limit s,,., metric norm N defined on matrix and two vectors
Output u = {p, A, b}
1: {4y, bo} = J(po)
2: {tay; ty, ty} = {Aos Po» bo}
3: p1 = S(Ay, pos bo)
4:{A;, b} = J(p)
5:{an, ay, a,t = 1AL prs b}
6: {uy, Uy, Uy} = {Ay, p1, b}
7 fa = an = Uy,
8:f,=a, - u,
9: f, = ay, — uy,
10: for s < 1, 5., do
11: po=S(uy, uy, wy,)
12: {A, b} =J(p)
13: {ay, ap, a,} = {A;, pes b}
14: fi=a, —uy
fo=ap - u,
fo=an - uy,
k = max(0, min(m, s — d))
Find « € R*' which minimizes "Z,k“a](f,L sl

Uy, = Zjeo,an,,

2 k
v subject to X; 00 =1

u,, = Zf:nu}ap&
h, = Teot
if residual increased drastically from last iteration and s > d then
Disable AA for current loop by setting d = $.
end if
if convergence criteria then
break
end if
28: end for
: return u,,,
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Appendix C. Structure of the Jacobi matrix

j+3 X
j+2 X X X
j+1 X x O X X
i %X 0O O O x X
j-1 X X——(O—% X
j-2 X X X
j-3 X
i-3 i-2 i-1 i i+1 i+2 i+3

Fig. 18. The template for approximation of elliptic pressure equation (see Eq. (19)) in
the mesh node (i, j) considered in the current study (away from the boundaries);
standard 5-point “cross” approximation stencil applied to approximate the equation is
marked with circles; shaded in grey is the stencil applied to approximate mobility of
yield-stress fluids (function Y, see Eq. (12)) in the mesh node (i, j + 1); corresponding
extended approximation stencil used to form the Jacobi matrix is marked with
crosses.

We consider the calculations required to apply Jacobian-based
methods to numerical solution of quazi-linear elliptic pressure
equation defined by Eq. (19) (e.g., Newton—Raphson or NR
method).

As explained in Appendix A, we use a standard 5-point “cross”
approximation stencil to approximate the elliptic equation using
central differences (see circles in Fig. 18). The approximation of
mobility coefficients in Eq. (19) requires larger (5-point in each
direction) approximation stencil to resolve unyielded zones (the
nodes involved into the approximation of fluid mobility in the node
(i, j + 1) are marked with the grey area in Fig. 18). As a result, the
corresponding Jacobi matrix has 25 non-zero elements in rows
representing internal nodes (e.g., it is a 25-diagonal one) as shown
by crosses in Fig. 18.
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