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ABSTRACT

Finite-difference (FD) method is the most extensively employed numerical modeling technique. Never-
theless, when using the FD method to simulate the seismic wave propagation, the large spatial or
temporal sampling interval can lead to dispersion errors and numerical instability. In the FD scheme, the
key factor in determining both dispersion errors and stability is the selection of the FD weights. Thus,
How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum
dispersion error is critical. The FD weights computation strategies can be classified into three types based
on different computational ideologies, window function strategy, optimization strategy, and Taylor
expansion strategy. In this paper, we provide a comprehensive overview of these three strategies by
presenting their fundamental theories. We conduct a set of comparative analyses of their strengths and
weaknesses through various analysis tests and numerical modelings. According to these comparisons, we
provide two potential research directions of this field: Firstly, the development of a computational
strategy for FD weights that enhances stability; Secondly, obtaining FD weights that exhibit a wide
bandwidth while minimizing dispersion errors.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Forward modeling of seismic wave is an efficient way to
research the physical properties of the earth. In general, the nu-
merical forwarding modeling technology includes ray tracing
method (Julian and Gubbins, 1977; Dines and Lytle, 1979; Virieux
and Farra, 1991; Mao and Stuart, 1997), integral equation method
(Wannamaker et al, 1984a, 1984b) and differential equation
approximation method (Alford et al., 1974; Cerjan et al., 1985;
Gupta, 1966). The differential equation methods include the finite-
difference (FD) method (Alterman and Karal, 1968; Dablain, 1986;
Kelly et al., 1976), finite-element method (Bathe and Wilson, 1976;
Brebbia, 1978; Belytschko and Mullen, 1978), pseudo-spectral
method (Kreiss and Oliger, 1972; Orszag, 1972; Fornberg, 1975).
The FD method is a valuable tool for efficiently approximating the
seismic wave propagation process. Its widespread adoption in
various industrial applications is primarily attributed to its cost-
effectiveness and ease of implementation.
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In numerical modeling, the FD method may generate severe
dispersion error and instability due to improper simulated
parameter selection. To overcome these problems, many strategies,
like the FD method in frequency domain (Plessix and Mulder, 2004;
Abubakar et al., 2011), the compact finite difference method (Lele,
1992; Kim and Lee, 1996), the staggered grid finite difference
method (Levander, 1988; Madariaga, 1976), flux-corrected trans-
port technique (Boris and Book, 1973; Book et al., 1975), implicit
finite difference method (Kim and Lim, 2007; Liu and Sen, 2009b;
Chen et al., 2016; Ren and Li, 2019) and the modification FD weights
(Holberg, 1987; Kindelan et al., 1990; Yang et al., 2017a) are pro-
posed. In all of these methods, the modification FD weights method
is the only way that does not lead to an increase in the computa-
tional cost of the numerical simulation. The specific implementa-
tion process of this method is using appropriate FD weights to
replace worse weights in the numerical modeling process. For the
least-squares reverse time migration imaging (Tarantola, 1984; Gu
et al., 2021; Zhu et al.,, 2018; Huang et al., 2015, 2016; Mu et al.,
2020) and full waveform inversion (Mora, 1987, 1988; Pratt et al.,
1996; Yong et al., 2019), the substantial computational expenses
are a significant limiting factor for their utilization in the petroleum
industry. Consequently, tremendous development and research
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into appropriate FD weights have been carried out due to that it
does not increase the computational cost.

According to the mathematical ideology of the computation of
FD weights, the strategies can be categorized into three types,
Taylor expansion strategy (which employs Taylor expansion to
expand dispersion relation at zero wavenumber), optimization al-
gorithm strategy (which involves solving the optimal problem by
optimization algorithm) and window function strategy (which
truncates the spatial convolution series of the pseudo-spectral
method by window function).

Utilizing the Taylor expansion to approximate the dispersion
relation in the space domain is the simplest method for obtaining
the FD weights, commonly known as the conventional FD weights.
These FD weights exhibit a significant temporal dispersion error
because they only account for the dispersion relation in the space
domain. To improve the temporal accuracy of the conventional FD
weights, the Taylor expansion of the dispersion relation in the time-
space domain was developed (Liu and Sen, 2009a, 2010, 2013; Yan
and Liu, 2013; Tan and Huang, 2014). This novel approach shows a
superior performance in minimizing phase velocity error compared
to conventional FD weights (Liu and Sen, 2009). The application of
this new Taylor expansion method can result in the FD method
achieving 2M-th order accuracy. Moreover, the FD weights ob-
tained through this method are notably more stable when
compared to the conventional FD weights.

For the optimization algorithm strategy, we classify the opti-
mization methods by their cost function, as the cost function plays a
pivotal role in determining the FD weights properties. The cost
functions can be divided into three types, L, norm cost function
(Holberg, 1987; Kindelan et al., 1990; Kosloff et al., 2010; Zhang and
Yao, 2013a, 2013b; Yang et al., 2017a, 2017b; He et al., 2019; Liu,
2020a, 2020b, 2022; Koene and Robertsson, 2020), L, norm cost
function (Wang and Wu, 2002; Etgen, 2007; Du et al.,, 2010; Liu,
2013, 2014; Yong et al., 2016, 2017a, 2017b; Zou et al., 2020a,
2020b; Ren and Liu, 2015; Ren and Li, 2017, 2019) and L; norm cost
function (Miao and Zhang, 2020). L, norm cost function minimizes
the maximal error within a given wavenumber region. L., cost
function can make the FD weights cover a large bandwidth. L, norm
cost function minimizes the sum of square errors within a given
wavenumber region, and it is less susceptible to converging to local
minima due to the convex nature of the L, optimization problem. L,
norm cost function minimizes the sum of absolute errors within a
given wavenumber region. This type of cost function is effective in
reducing the dispersion error. Except for the norm form, the cost
functions can be categorized into other types, which can be clas-
sified into the phase velocity cost function, group velocity cost
function and dispersion relation cost function.

Window function strategy (Zhou and Greenhalgh, 1992a,b; Igel
et al.,, 1995; Chen et al., 1997; Shao et al., 2003; Xiao and Tang, 2006;
Chu et al., 2009; Chu and Stoffa, 2012; Wang et al., 2014; Liu and
Wang, 2015; Zheng et al., 2016; Wang et al., 2017a; Wang et al.,
2017b; Li et al.,, 2021) computes the FD weights by using the win-
dow function to truncate spatial convolution series of the pseudo-
spectral method. The FD weights are influenced by the width of the
main lobe and the attenuation of the sidelobe of the window
function. Single window functions tend to have narrower main
lobes and smaller sidelobe attenuation, resulting in FD weights
covering a narrower bandwidth and causing greater dispersion
error, compared with those obtained using the combined window
function (Wang et al., 2015; Liu and Wang, 2015; Zheng et al., 2016;
Wang et al., 2017a, 2017b). The combined window function widens
the width of the main lobe and enhances the attenuation of the
sidelobe by merging various single window functions. Neverthe-
less, for all window function methods, it's important to note that
the shape of the main lobe and the side lobe of the window
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function is highly related to the input parameters. In the single
window function, these parameters include, § in Kaiser window
function, « and @ in Hanning window function, § in Gaussian
window function, and so forth. In the combined window function,
additional input parameters come into play, such as auto-
convolution times (Wang et al., 2015), combination weight (Wang
et al,, 2017a), and modulate time (Wang et al., 2017b). For this
strategy, numerous parameters are involved in the computational
process. Nevertheless, the relationships of these parameters with
the main lobe and side lobe have not been clearly summarized
through either theoretical analysis or numerical experimentation
in the previous research.

In this paper, we provided a comprehensive overview of
fundamental theories for the window function, the Taylor expan-
sion, and the optimization algorithm. Subsequently, we delve into
the classical methods within these three computational strategies
through theoretical analysis and numerical simulations. According
to these tests, we draw some conclusions about each computational
strategy. Finally, we discussed the possible challenges and sug-
gested some recommendations in the field of computing FD
weights.

2. Methodology

For simplicity, we begin by considering 1D acoustic modeling.
The acoustic wave equation in homogeneous medium can be
written as

?ud 1 o%uf )
otz 12 ox2’

where u is the wavefield, v is the velocity, t is the time, and x de-
notes the horizontal distance along the x-axis, the wavefield u]’. isa

short form of u(x + hj,t + 7).

The 2M-th order FD operator is employed to approximate the
second spatial order derivative, and the 2nd order FD operator is
used to approximate the second temporal order derivative. These
operators can be written as follows:

Puy 1 A 0

——P= > Cmlify, (2 -1)
ox2  h2

2u? 1 B

S (- 2+ ), (2-2)

where ¢, represent FD weights, the h is the space sampling in x
dimension, and 7 is the time step. We rewrite the acoustic wave
equation by substituting Eq. (2) into Eq. (1),

l M

1 0, =1 _,2:2 0
up— 2+’ = vy > cmp,
m=-M

(3)

Given the approximation of wave propagation omitted trunca-
tion error and equivalent infinitesimal, the numerical solution of
the wave equation computed by FD scheme is inherently inaccu-
rate. However, we can use proper FD weights to improve the nu-
merical result.

In general, the strategies for computing FD weights can be
divided into three types according to their mathematical principle,
Taylor expansion, optimization algorithm and window function as
shown in Fig. 1. According to the development history, we have
created a classification chart (Fig. 1), in which we have highlighted
eight methods (in red) as classical approaches that we examine
through theoretical analysis and numerical testing. The
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F(p)is listed in Table 1. 1}
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Kaiser window
function

Chebyshev auto-convolution
combined window

Generalized-Power
Hanning window
function

(Wang et al., 2015)

Optimum combined
window function

(Zhou and Greenhalgh, 1992)

(Wang et al., 2017a)

Gaussian Cosine-modulated
window function window function
(Igel et al., 1995) (Wang et al., 2017b)

Scaled binomial
window function

Improved cosine combined

window function

(Chu and stoff, 2012)

(Lietal,, 2021)
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Fig. 1. The classification chart of

methodology section will provide a detailed illustration of the
computational processes for all the methods listed in Fig. 1.

2.1. The taylor expansion strategy

2.1.1. The Taylor expansion of dispersion relation in space domain
(TES)

The exact 2M-th order FD operator of second spatial derivative
and the exact 2nd order FD operator of second temporal derivative
can be written as

aZuO 1 2M+ 2U0

0 2M 2M+1

ol R Z lel +€x X 2M+2mh +O(h " ) )
where

B M2
G= - (2M+2 Z m ©)
20 1 o%u
_atzﬂzT_z[_2u8+u},+ual] +etWT +0( ) (6)
where

2 4* 4*

where the O(h?M+1) and O(73) are the higher order infinitesimal

terms, and can be denoted as Qy and Q, respectively; the
2M+2
e,caa s hz"" represents as Py, and Py is the truncated error term.

These approximation (Eq. (4) and Eq. (6)) can be rewritten as

Signal simulation theory

computational strategy of FD weights.

o%ul 1

ax2 =12 Z cmud + Px + Qx, (8)

2u? 1 B

GTZO:T—Z[—ZunguE,Jruol +Q, 9)
According to the plane wave theory, we have

u]l_ — eillc—ot) gi(ikh—lor) (10)

where k represents the wavenumber, and  is the angular fre-
quency. By substituting Eq. (10) to Egs. (8) and (9) and omitting the
Px, Qx, Qr, the spatial 2M-th and temporal 2nd order FD operators
can be rewritten as

M
—k*=—|co+2 > cm cos(mkh) |, (11)

m=1
—w? [— 2+ 2 cos(wr)], (12)
wherecy = — 2 E%:1cm. Applying the Taylor series expansion for
cosine functions in Egs. (11) and (12), we obtain

(mkh)

—k? h2+h2 Zcm 1+Z( 1Yy | (13)
—w? = 2 = +Z( 1y (@) (14)

@’

where Eq. (13) is the Taylor expansion of the dispersion relation in
space domain. After comparing the weights of k%, k2, k*,...k?M the
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simplification of Eq. (13) is

10 20 . M 1%¢, 1
12 22 ... M 2%¢c, 0

-] s

12M-2 2M-2 M2 | | M2ey, 0

By solving Eq. (15), the FD weights from TES can be computed by

_1)ym+1 2
cm:% L m=(1,2,3,...,M). (16)
m 1<n<M,n#m ne—m
The ¢g = — Zzhnlecm. It's worth noting that FD weights are

computed through the Taylor expansion of the dispersion relation
in the spatial domain at zero wavenumber, which leads to signifi-
cant spatial and temporal dispersion errors. For comparing the
spatial error and the temporal dispersion error, we introduced the
relative error of the dispersion relation in the space domain and the
error of phase velocity. In Fig. 2(a), the relative error of dispersion
relation in the space domain is

M
Co+2 > cm cos(mkh)
REDR = m-1 41,

h2k2 a7

where the expression is derived from the dispersion relation in the
space domain. Thus, the REDR indicates the spatial dispersion error.
We can observe that the FD weights from the TES exhibit significant
spatial dispersion errors at the high-wavenumber region as shown
in Fig. 2(a). The error of the phase velocity is

2 g, d 5
EPV = sin \jr mzzjlcm sin®(mkh/2) — 1, (18)

where r = Y. Fig. 2(b) shows the curve of error of phase velocity. If
the curve's value is greater than zero, it signifies that this compo-
nent of the wavefield will exhibit temporal dispersion errors. On
the contrary, if the curve's value is less than zero, it suggests the
presence of spatial dispersion errors in this component. Regarding
the FD weights from TES, Fig. 2(b) illustrates that it will have a large

(@) -1

4th-order
— — — - 6th-order

8th-order
— — — - 10th-order
12th-order
14th-order
16th-order

5 T T T T T T
0 0.5 1.0 15 20 25 3.0

kh

Relative error of dispersion error
N
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temporal error at the middle- and high-wavenumber regions.
When using the FD weights from TES to simulate the forward
modeling, the accuracy of the FD scheme is the sum of errors in the
temporal derivative and that in the spatial derivative. The TES FD
weights only consider the weights of k0, k2, k4, ...k in Eq. (13). Eq.
(13) is derived from second spatial derivative. Thus, the rest of Eq.
(13) is the error of spatial derivative, which can be expressed as

p o J(mkh)%

Espa=+5 Zcm Z (*1)1 - . (19)
h? m=1 j=M+1 (@)

Similarly, the error of temporal derivative can also be expressed

as
2 | &, L jlwn)?

Etem=—5 | > (=1/~55-|. (20)
| & 2)!

When the left side of Egs. (11) and (12) plus the Espa and Egem,
respectively, we obtain the following equations:

M
) Co 2
—k* 4+ Espa = 2 + 2 mE:] Cm cos(mkh), (21)
-2 2
2
0 + Erem = — + 5 Cos(w). (22)

The total error of FD scheme for TES FD weights can be
expressed as

o 2 U . 1[-2 2
Etotal =33 + 17 >~ cm cos(mkh) — 5 [Ztzcosen].  (23)
m=1
Substituting Eqs. (21) and (22) into Eq. (23), we obtain
(b) 0.0
-
O = - - ~
o =2
~ ~N
2 N AN
' -0.05 i \\ Q
k=] \ \
g | .
3 \\ \\
@ -0.10 - \ \
< \
Q. \ \
Y \ \
2 o}
g -0.15 A 4th-order \\
L — — — - 6th-order \
8th-order \
— — — - 10th-order \
—0.20 4 12th-order
14th-order
16th-order
-0.25 . : T
0 1 2 3
kh

Fig. 2. The comparison of error curve for different order TES FD weights.
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=) e 2j— 2k j 22 M
Eroral = — 2 Z (-1y o) h +ZZcm
Jj= m=1
(mk)? 5
x (1YL h2-2 (24)
P

where r = VT/pe The first term of Eq. (24) is — Z%hz, where the
power of h is equal to 2. Thus, the FD accuracy is 2nd-order. In order
to increase the FD accuracy and mitigate the temporal error, Liu and
Sen (2009a) proposed a new FD scheme solved in the time-space
domain.

2.1.2. The Taylor expansion of dispersion relation in time-space
domain (TETS)

Combining Egs. (11) and (12), the dispersion relation in the
time-space domain can be expressed as

M
Co+2 > cm cos(mkh)=2r~2[cos(rkh) — 1. (25)

m=1

0 4r2j—2k2j .
Eoal= — 2| > (—1/———7%2
total lj=M+] ( (2])' ]
M =) M =)
mky cos
+2§jcm[ > (- )’%hzf ]+2§:cml S (-
m=1 j=M+1 m=1 j=M+1

Using the Taylor expansion to expand cosine functions in Eq.

(25), we obtain
(mkh)zJ] , [ Zf] |

(26)
kM Eq. (26) can be

00

> (-

j=

M o
C0+2 ) Cm llJr > (-
m=1 =

Considering the weights of k9, k2, k*, ..
expanded as

1 0 20 MO 1 2C1 1
12 22 M? 2%c) r2
12M-2  52M-2 M2M-2 | | 02 cu 2M-2

(27)

After solving Eq. (27), we can obtain the FD weights from TETS
by

n?—r
nZ _

m+1
% m=(1,2,3,...M). (28)

Cm=

1<n<Mn#m

When r = 0, the FD weights obtained by Eq. (28) are the same as
Eq. (16). Comparing Eqs. (25) and (26), the spatial error and tem-
poral error can be written as
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ESDa _h2 mz::] Cm l]%;l ( 1)] (2])' ] . (29)
71 = B '(&)T)2j
Erem =5 L%( Y onr } (30)

When the left side of Egs. (11) and (12) plus the Esp, in Eq. (29) and
Ewem in Eq. (30), respectively, we obtain the one-dimensional total
error formulation for the FD weights from TETS:

Eroral = — 2 f: (71)’*2];2"2]721—2 +2 Izwj c
total - (21)' — m
Jj=M+1 m=1
NS (mk)¥ 2j-2
j:%;]( W g } (31)

Similarly, the two- and three-dimensional total error formula-
tion for the FD weights from TETS can be expressed as

(32)
(mkz sin )5
(2))! 7
o r2] 2k2] .
E 5 B 2j-2
total L%l ( (2))! T ]
Z 2"’: mkx cos  cos ¢)¥ B2 (33)
m=1 j=M+1 (2))!
3 (- 1y (mky coszﬁ sin )4 B2i-2
m=1 Jj=M-+1 ( ])'

00

Z mkZ sm 0) hzf*z 7
m=1 Jj=M+1 !
where 6 is the plane wave propagation angle measured from the
horizontal plane perpendicular to z-axis, ¢ is the azimuth of the
plane wave.

The FD scheme with the FD weights from TETS is 2M-th order
accurate because the minimum power of h in Eq. (31) is 2M. With
these FD weights, the accuracy of the 1D acoustic wave equation is
up to 2M-th order in Eq. (31), that of the 2D acoustic wave equation
is 2M-th order in 8 directions in Eq. (32), and that of the 3D acoustic
wave equation is 2M-th in 48 directions in Eq. (33). Fig. 3(a) illus-
trates that the TES has less spatial dispersion error than TETS.
However, the stability of the FD scheme is determined by the
temporal dispersion error. For the temporal dispersion error, the
TETS significantly mitigates temporal dispersion errors as shown in
Fig. 3(b). Thus, its less temporal error renders it more stable than
TES as shown in Fig. 4.
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Fig. 3. The comparison of error curve for the different order TETS FD weights.
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Fig. 4. The comparison of stability for different order FD weights computed by TES and
TETS. The r_max represents the stability of the FD simulation. The physical meaning of
this parameter has been proven by Liu (2020b) detailedly.

2.2. The optimization algorithm strategy

The optimization algorithm strategy contains many methods,
but the scope of this paper focuses on the classical FD weights
optimization case in the acoustic wave equation. The application of
this strategy, like optimized FD weights in viscoacoustic media, is
not considered within the scope of this paper.

The focal point of research in the optimization algorithm field
revolves around expanding effective bandwidth and minimizing
dispersion errors. Both of these objectives are closely tied to the
choice of cost function. Thus, we classify and summarize the
existing methods based on the cost function. The cost function
shown in this paper is based on the pressure equation.

2.2.1. The Ly norm cost function

L, norm cost function is constructed by minimizing the
maximum error within a limited bandwidth (Holberg, 1987; Zhang
and Yao, 2013a, 2013b; Yang et al., 2017b; He et al., 2019). Holberg
(1987) applied the least-squares method to solve the L, norm

optimization problem, whose cost function is minimizing the
maximum relative error of the group velocity. The L,, norm cost
function as presented in Zhang and Yao (2013a, 2013b) aims to
minimize the maximum absolute error of dispersion relation in the
space domain. This optimization problem is addressed using the
simulated annealing method (SAM) in Zhang and Yao (2013a,
2013b). The L, norm cost functions in Zhang and Yao (2013a,
2013b), Yang et al. (2017b) and He et al. (2019) are very similar, as
all of these minimize the maximum absolute or relative error of
dispersion relation in the space domain.

1) Holberg (1987) case

In Holberg (1987) case, the cost function is constructed based on
the group velocity. The group velocity is

vg =kde/Ok + &, (34)
with
M
2 > cmcos(mkh)
g=_m=—M -1, (35)

k2h2
The definition of vg is denoted by Koene and Robertsson (2020).
For the acoustic equation in a homogenous model, Holberg (1987)

pointed out that the minimizes the peak error in group velocity can
be considered as cost function, which is

||EH°°:mln{o?’?£§<[1<6€/al<+€]}, (36)

where K signifies the maximum optimized wavenumber of the
differentiator. Holberg (1987) quadrupled relative error within in-
terval [0, K] in Eq. (36), which can be expressed as

4

K
j:J (koe/ok + &) dk. (37)
0
Eq. (37) is a least-squares problem, which can be effectively
solved by using standard numerical techniques, as outlined in

works by Wolfe (1978) and Garbow (1980).
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2) Kindelan et al. (1990) case

In the Holberg optimization method, the derivative of the D’(k)

. ZZM? Cm cos(mkh)
(D(k) = —=m==ttp;———) has M2 extreme values {kn} for a 2M-th
order FD operator. Apart from the fixed extrema at k = 0, the other
members of the set {k,} depend on the FD weights. So, Kindelan
et al. (1990) introduced a novel approach to address the optimi-
zation problem by considering the second derivative of D(k),

D' (ky)=0,n=2,3,...M/2. (38)

A variant of Newton's method is employed to solve the opti-
mization problem with just a few iterations. Its solution will
converge to the FD weights defined by the optimization procedure
described in Holberg (1987). Actually, the cost function of this
approach can be expressed as

|IE|| o = min[max(D’ (kn))], (n=2,3,....M/2), (39)
where the cost function of this methods also is the L., norm.

3) Zhang and Yao (2013a, 2013b) case

The cost function of Zhang and Yao (2013a, 2013b) is illustrated
as follows:

M

(6)2* Z Cm(

m=—M

1- cos(mﬁ))‘}, (40)

E|| . =min{ max
1Ells {0<ﬁ<6max

where the § = kh, 8,4 is the maximal optimized bandwidth.
Zhang and Yao (2013a, 2013b) applied the SAM to compute the cost
function based on three criteria as follows: (1) ¢y, are real valued FD
weights, and the ¢; = c_p; (2) the sum of the ¢, should be equal to
zero; (3) ¢y should be an amplitude of damped oscillation away
from the center position (m = 0).

4) Yang et al. (2017b) case

The cost function in Yang et al. (2017b) can be expressed as

2 %/Ij cm(1 — cos(mp)) + 2(

m=2

1 —cos ) + 2m? % cm(1 — cos(mp))
m=2
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M
2" cm(1 - cos(mp))

m=1
2
B

|E||, =ming max -1

42
Ogﬁgﬁmax ( )

The cost function in He et al. (2019) considers the c¢; as a vari-
able, different from that in Yang et al. (2017b). Eq. (42) is the cost
function based on the dispersion relation of the second-order
spatial derivative. He et al. (2019) also used REA to solve the opti-
mization problem. The L,, norm cost functions can be generally

max [F(B)]}. The F() is listed in Table 1.
0<B<Brmax

In the previous case, the primary objective of using the L., norm
cost function is to make the FD weights cover more bandwidth.
Zhang and Yao (2013a, 2013b) found that using the L, norm cost
function can cover more bandwidth. Yang et al. (2017b) proposed
that the FD weights obtained from REA can cover broader band-
width than those obtained from SAM. Finally, He et al. (2018)
further widened the covered bandwidth by modifying the cost
function. According to the Chebeshev criterion, the solution from
He et al. (2019) is equiripple, thus, the solution has the widest
bandwidth.

expressed as E = min{

2.2.2. The Ly norm cost function

The target of L, norm cost function aims to minimize the sum of
the squared error within the specified bandwidth. Etgen (2007)
constructed the L, norm cost function based on the absolute er-
ror of phase velocity. In the case of Du et al. (2010), the relative error
of dispersion relation in the space domain is used to construct the
L, norm cost function. Liu (2013, 2014), in addition to using the
dispersion relation in the space domain, also employed other
dispersion relations to construct the cost function.

1) Etgen (2007) case

The cost function in Etgen (2007) can be expressed as

E|| ., =min{ max -1 41
Bl 0<B<Bmax 32 (41)
. . . . 2 «—M . . 2
Eq. (41) is obtained by substituting ¢; =1 —m? Y m_,cm into |||, =min Z{Uphase(k) - vmre] , (43)
relative error of the dispersion relation in space domain. The k

optimized FD weights can be computed by using the Remez ex-
change algorithm (REA) to solve this cost function.

5) He et al. (2019) case

The cost function in He et al. (2019) can be expressed as
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where the vppse = 2%sin~! \/r2 SM_ ¢ sin? (mkh/2).
2) Du et al. (2010) case

The cost function in the Du et al. (2010) can be expressed as
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Table 1
Expressions of F(), based on the acoustic wave equation.

Petroleum Science 21 (2024) 2311-2328

F

Absolute error of dispersion relation in space domain for 1D acoustic equation
Relative error of dispersion relation in space domain for 1D acoustic equation

Relative error of dispersion relation in time-space domain for 1D acoustic equation

Absolute error of dispersion relation in time-space domain for 1D acoustic equation
Relative error of dispersion relation in time-space domain for 2D acoustic equation

Absolute error of dispersion relation in time-space domain for 2D acoustic equation

i
1

_126m(1 — cos(mB)) —
2cm(1 -

sm 26 ( 5505("16)) _
1 — cos(mp)

SRt~ cos(rl))

Y-126m(1— cos(mp)) — 2r~2(1 - cos(rf))
M Cm(2 — cos(m@ cos 0) — cos(mf sin )

L1 r=2(1 — cos(rB))

SM_ cm(2 — cos(m cos 8) — cos(m@ sin 6)) — r=2(1 — cos(rB))

Iy 2
- Cm(1 — cos(mp))

m=1
2
B

~1]| dp (44)

. ﬁmax
|E|l, = min jo

The Lagrangian multiplier method, which can be found in the
Wang and Wu (2002), is an elegant technique to solve the L,
optimization problem.

3) Liu (2013, 2014) case

The cost function in Liu (2013, 2014) can be expressed as

.
|mu:mm{[
JO

Notably, Eq. (45) is the standard model formula in the least-square
sense. The F(f) in Eq. (45) represents all of the formulations listed
in Table 1. Applying the LSM (Least-square method) can obtain the
globally optimal solution due to no iteration involved in this
process.

F(ﬁ)zdﬁ}. (45)

4) Yong et al. (20173, 2017b) case

Yong et al. (2017a, 2017b) showed that solving L, optimization
problems in an equivalent staggered-grid FD scheme by Newton's
method can avoid the inability of LSM to solve nonlinear problems.
The cost function is different from the other cost functions refer-
enced above because it is constructed with the stress equation in
the equivalent staggered-grid FD scheme. The cost function in the
equivalent staggered-grid finite-difference scheme can be written
as

cm)

2
- 46
2(0.507) ’ (46)

2

Elz—ZZK:X/:OZ/:

where

M 2
q(cm) = { > cm sinf(m — O.S)kxh}} T
> cmsin[(m—0.5 (47)

v B 2

{ )kyh}} + ;
mI\;I .

{ Z Cm Sin[(m — 0. S)kzh}}

0 is the plane wave propagation angle measured from the
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horizontal plane perpendicular to z-axis, and ¢ is the azimuth of
the plane wave.

2.2.3. The Ly norm cost function

The objective of the L; norm cost function is to minimize the
summation of the absolute error. Miao and Zhang (2020) formu-
lated the L; norm optimization problem based on the dispersion
relation in the space domain. They solved the cost function using
the alternating direction method of multipliers (ADMM). In their
results, both the accuracy analysis and the numerical modeling
illustrated that the new method exhibits less dispersion error in the
low-wavenumber region, compared with other optimization
algorithms.

The relative error of the dispersion relation in the space domain
of integral form can be expressed as

8. mzl\zjl cm(1 — cos(mp))
Eine = .[0 3

where Ej, means the integral form error. The Riemann sum of Eq.
(48) can be written as
(l — cos (mn

ﬁmax
(n B

—1|dg, (48)

M
> Cm

m=1

N

|IElly =ming >

n=1

-1 (49)

)
"

Eq. (49) is the cost function in the Miao and Zhang (2020).

2.2.4. Theoretical analysis

We plot the error of dispersion relation in space domain and the
error of the phase velocity for three types of FD weights obtained
through L, L, and L; norm cost function. Ly, L, and L; norm cost
functions are solved by REA (He et al., 2019), LSM (Liu, 2013) and
ADMM (Miao and Zhang, 2020), respectively.

As shown in Fig. 5(a), within the same bandwidth (0, 2.094), the
maximal error generally appears in the high-wavenumbers region.
It's noteworthy that among all the mentioned cost functions, only
the L, norm cost function effectively manages to control this
maximum error. Thus the L,, norm cost function has the least error
at the high-wavenumber region among all cost functions. On the
contrary, L, norm cost function is less effective at reducing errors
in the low-wavenumber region, as evident from the boxed region in
Fig. 5(a). Furthermore, under the same error limitation (—0.0001,
0.0001), the L, norm cost function covers the widest bandwidth,
compared with other cost functions. The L; norm cost function has
the least dispersion error in the low-wavenumber region compared
with other methods, as depicted in Fig. 5(a). The L, norm cost
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Fig. 5. The comparison of error curves for the same order FD weights computed by L., norm cost function (He et al., 2019), L, norm cost function (Liu, 2013, 2014), and L; norm cost
function (Miao and Zhang, 2020) under the same error limitation or same effective bandwidth.

function offers moderate performance in terms of broadening
bandwidth and reducing dispersion error.

Most of the previously discussed cost functions primarily sup-
press spatial dispersion errors and do not consider any temporal
errors. Thus, in the error curves of phase velocity, as shown in
Fig. 5(b), it becomes evident that the optimization strategies suffer
a larger temporal dispersion error than TES and TETS.

Throughout the history of development for the cost function,
geophysicists have strived to construct cost functions using better
error functions. In addition to the method of classification by norm
type, the error function can also be classified into three types, the
group velocity cost function, the phase velocity cost function, and
the dispersion relation cost function. A good error function must
have a remarkable physical meaning, simple expression, and less
calculational cost.

Compared with group velocity, the phase velocity has some
advantages as the cost function. Firstly, the error of phase velocity is
the source of all numerical errors. Secondly, the error of phase
velocity is more sensitive to the error in the low-wavenumber re-
gion than the group velocity. Thirdly, the error of phase velocity
contains the error of temporal and spatial dispersion error.

The cost function relying on phase velocity error has a signifi-
cant drawback—it can lead to instability in its solution process
because it contains inverse trigonometric functions. The cost
functions based on the error of the dispersion relation are more
stable and easier to calculate. The solution obtained through the
cost function based on the dispersion relation tends to outperform
the group velocity, as detailed by Koene and Robertsson (2020).
Thus, for the optimization problem, the error of the dispersion
relation is the best choice to construct the cost function.

2.3. The window function strategy

The window function strategy is an approach to obtain FD
weights by using the window function to truncate the spatial
convolution series of the pseudo-spectral method. Fornberg (1987)
proved that the FD scheme has the same accuracy as the pseudo-
spectral method when the order of the FD operator tends to in-
finity. When the order of the FD operator is fixed, the FD scheme
can be considered as a truncated convolutional counterpart of the
pseudo-spectral method. For this reason, truncating the spatial
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convolution series of the pseudo-spectral method is an alternative
approach to obtain the FD weights.

The finite series of uniformly sampled signals can be interpo-
lated accurately using the following formulation (Smith, 2010):

+o00

= > Un

Lo Sinf(m/h)(x — mh)]
(m/h)(x —mh) ~

(50)

The second-order spatial derivative can be found by differenti-
ating both sides of Eq. (50):

T
2 h . [T
— sin |+ (x — mh
ud I E(xfmh)B X —mh [h( )] o
—0_ h Up,.
aXZ m=—oo
T
-~ cos|— (x —mh
(x — mh)? [h ( )]
(51)

When we are interested in calculating the differentiations at x = 0
only, Eq. (51) can be rewritten as

+o0

o°ud 1 5

0
2 T h2 ’
x> h? =~

2
{fﬁcos(mn)] [T (52)
The FD weights are determined by applying the 2M + 1 point
window function to truncate Eq. (52), where 2M represents the
order of the FD operator, and the finite-difference formulation can
be written as

N/2

>

m=—N/2

24,0
up 1

2
— ——=_cos
ox2  h?

= (53)

w(m) {

()|,

where w(m) is window function. There are numerous window
functions for computing FD weights in the previous studies.

2.3.1. Single window function

1) Kaiser window function case
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Fig. 6. The comparison of amplitude responses for different window functions.
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Io{ Braiy/1 — (m)
w(m) = ,—~M<m<M, (54)

Io(Bai)

where I; is the zeroth-order modified Bessel function of the first
kind. If the sidelobe attenuation is ay; dB, the §,; is computed by

ﬂkai{

Increasing fy,; is an efficient way to widen the main lobe and
decrease the amplitude of the sidelobes. The amplitude response
for this window function is shown in Fig. 6.

0.1102(oai —8.7) , @ai>50

0 y Okaij <21
(55)

2) Generalized-power Hanning window function case (Zhou and
Greenhalgh, 1992a,b)

wm 1 Buan/2

w(m) = | 20p,0 — 1+2(1 — ozhan)coszz(M+ % ,

-M<m

<-M

(56)

The ay,, and B, allow a family of different window functions
to be considered, like the conventional Hanning window function is
determined by the ap,, =0.5 and @y, = 2. The amplitude
response for this window function is also portrayed in Fig. 6.

The conventional Hanning window function is expressed as

m(m+ M)

i (57)

w(m):O.S(lfcos ),—MgmgM.

3) Gaussian window function case (GWEF, Igel et al., 1995)

0.5842 0ty —21)%4 1+ 0.07886(0tygi —21) , 50>y >21.

2320

2
2m
[(M _1)ﬂgau:|

2

w(m) =exps — ,—M<m< M.

(58)

In order to reduce the edge effects and the Gibbs phenomenon, Igel
et al. (1995) computed the FD weights using a Gaussian window
function. The amplitude response for this window function is
shown in Fig. 6.

4) Scaled binomial window function case (SBWF, Chu and Stoffa,
2012)

( 2M +L )
2M+1L)/2+m
wN*(m) = ML —M<m<M, (59)
((2M+L)/2)
where
m m!
(") s o

is the binomial weights formula and [ <m, L > 0 is an even number.
When L = 0, the FD weights from the scaled binomial windows will
reduce to the conventional FD weights from TES. The amplitude
response for this window function is shown in Fig. 6.

2.3.2. Combined window functions

1) Chebyshev auto-convolution combined window function case
(CACWEF, Wang et al., 2015).

Diniz et al. (2012) concluded that a narrow main lobe can result
in a wide bandwidth for FD weights, while a significant attenuation
of the side lobe can lead to low dispersion error. According to this,
Wang et al. (2015) proposed the Chebyshev auto-convolution
combined window function:

w(m) =2we(m) + (1 — Hwd(m), (61)
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where, wc(m) is the Chebyshev window function, w&(m) signifies
the Chebyshev window function, Q denotes the auto-convolution
times, w(m) is a combined window function, A represents the
weight coefficient. The amplitude response of the Chebyshev auto-
convolution combined window function exhibits a narrower main
lobe and greater attenuation in the side lobe compared to other
single window functions, as shown in Fig. 6.

2) Optimum combined window function case (Wang et al., 2017a)

Based on Diniz's theory, Wang et al. (2017a) introduced a novel
combined window function with improved amplitude response. In
their work, Wang et al. (2017a) combined the Hanning, cosine,
Kaiser, and binomial window functions. When N + 1 = 5, the
proposed window function can be expressed as

w(m) =0.7y/wp(m)we(m) + 0.3we(m),

where wy,(m) and w¢(m) denotes the Hanning and cosine window
function, respectively. w(m) is the combined window function.

When N + 1 = 9, the proposed window function can be
expressed as

w(m) =0.3/wp(m)w,(m) + 0.7w¢(m),

where wy,(m) denotes the binomial window function.
When N + 1 =13, 17, 25, the proposed window function can be
expressed as

(62)

(63)

w(m) = v/wy(m)we(m)wy(m), (64)
where, wy(m) denotes the Kaiser window function. The window
function expressions of this method are only given with N =4, 8,12,
16, 24, and these expressions don't show any regularity. Thus, it is
hard to apply in industrial production for practical application.

3) Cosine-modulated window function case (Wang et al., 2017b)
-1

cos” (% ”) " [cosT (% n) ] -

where P denotes the modulated range, T denotes the modulated
times. This window function is a combination of the binomial
window function. The amplitude response of this window function
outperforms that of the binomial window function, as demon-
strated in Wang et al. (2017b).

4) Improved cosine-combined window function case (Li et al,
2021)

W(m) = [Weos 1(mM)® x Weos l(m)b]m7 (66)

where the Wgo 1(m) and wys 2(m) denote the combined cosine
window (1) and window (2), respectively. The equations of the two
window functions can be written as

L-1 ml
Weos 1 (M) = Wegs 2(M) = Z (_1)lal X CO0S (M (m +M)) ,—M<m
0

<M.
(67)

where L is the number of terms of the window function. The
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parameters in this case are provided only for specific values of N,
such as N = 4, 8,12, 16, and 24, as discussed by Li et al. (2021). The
Optimum combined window function provides the value of the
parameters only when N = 4, 8, 12, 16, and 24. Consequently, the
improved cosine-combined window function encounters a similar
issue as the Optimum combined window function.

The evolutive process of the window function strategy involves
searching for a window function with an improved amplitude
response to cover more bandwidth or mitigate dispersion error. In
the historical development of window function strategy, there are
two inherent problems as follows. Firstly, the shape of the window
function is highly related to the parameters input, for example, (y,;
in Kaiser window function. However, there is no unified or practical
criterion for determining these parameters. The second problem is
that many combined window functions proposed in recent years
lack a standardized expression, which limits their applications.

3. Discussion

We choose some widely used methods to show the advantages
and disadvantages of three strategies for computing FD weights.
These methods are SBWF (it is an efficient single window function),
GWEF (it is a classical single window function), CACWF (it is a
combined window function with unified formula), ADMM (it is
newly and only method to solve L; norm optimization problems),
LSM (it is a classic method to solve L, norm optimization problems),
REA (it solves L., norm optimization problems to make FD weights
cover the widest bandwidth), TES and TETS. The FD scheme in the
frequency domain is widely applied, and we compared these eight
types of FD weights with the FD scheme in the frequency domain
by using the error of the phase velocity in Appendix A.

We use three properties to test the FD weights from these eight
methods, including stability, effective bandwidth, and dispersion
error. The specific computation scheme for these properties is as
follows.

1) Stability

The maximal Courant-Friedrichs-Lewy (CFL) number represents
the stability of the FD simulation, which has been proven by Liu
(2020b). For the 1D acoustic wave equation, the maximal CFL
number is calculated by

-1/2

I'max = <2 C2m—1> )

where the rpyax is defined as maximal CFL number. The requirement
of a stable FD scheme is that the vmax7/h is smaller than the
maximal CFL number.

The maximal CFL number can also be determined by the
maximum error of the Z%Zlkm(l — cos(mf)), and § [0, ], which
has also been proven by Liu (2020b). According to this, Liu (2020b)
constructs a complex L., norm optimization problem, whose cost
function minimizes the maximum error of dispersion relation in
region [0, it].

int((M+1)/2)
(68)

m=1

2) Bandwidth and dispersion error

We can use the relative error of dispersion relation in the space
domain to compute the effective bandwidth and dispersion error.
The expression of this error function can be expressed as
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Fig. 7. The relative error of dispersion relation in the space domain for the optimized FD weights obtained by LSM.

M
S 2cm(1 — cos(mp))
E_m:]
- 62

The dispersion error represents the total dispersion error within
the bandwidth. For some methods, their dispersion error is
adjustable. Thus, only when the comparison of the total dispersion
error under the same effective bandwidth, the results of the com-
parison are convincing. However, some methods may struggle to
regulate the dispersion error, necessitating the use of an alternative
criterion. Mean dispersion error is a suitable option. Mean disper-
sion error is the ratio of total dispersion error to bandwidth, which
portrays the mean dispersion error at the bandwidth.

We use Fig. 7 to explain how to compute the dispersion error
and bandwidth. The bandwidth is the wavenumber at point A.
Point A is the last intersection of the dispersion curve and the error
limitation. The error limitation is [-0.0001, 0.0001]. The total
dispersion error is the sum of the blue area within the bandwidth.
The mean dispersion error is the total dispersion error divided by
the wavenumbers of point A.

In addition to these properties, two method properties, the
tunability and calculated amount, are employed to evaluate the
feasibility of each method. Tunability refers to the method's ability
to adjust the bandwidth and dispersion error by modifying its pa-
rameters. If a method is tunable, it illustrates that the method is
suitable for a wide range of application scenarios. Tunability also
indicates that a method can do tests under the same conditions
(same bandwidth or error limitation). These superiorities are
beneficial to the application and development of this method. The
calculated amount is measured by consuming time of computing
FD weights.

- 1.

(61)
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Fig. 8. The comparison of relative error curves of dispersion relation for eight
methods.
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Window function strategy, in general, tends to have limited
tunability. For most window functions, the dispersion error and
bandwidth rely primarily on empirical knowledge from previous
research. This phenomenon is due to the fact that the parameters
associated with window functions often lack well-defined physical
meanings. The window function strategy is generally low in
computational cost. Because the process of this strategy typically
involves a single convolution calculation without the need for it-
erations or matrix inversions.

For the window function strategy, the width of the main lobe
and attenuation of sidelobes play a crucial role in determining the
bandwidth and dispersion error. The single window function,
however, is not good on both sides. The combined window function
overcomes these shortcomings. Thus, the combined window
function widens the bandwidth and decreases the mean dispersion
error as shown in Fig. 8 and Table 2. To conduct fair comparison, we
rely on the mean dispersion error since window functions generally
have limited tunability. The limited tunability means that it is hard
to adjust the parameters to change the dispersion error, due to the
unclear physical meaning of these parameters in the window
function.

Optimization algorithm strategies possess wider bandwidth and
less dispersion error, compared with other strategies as shown in
Fig. 8 and Table 2. For the L, cost function, the L, cost function, and
the L, cost function, the bandwidth and the dispersion error are
decreasing in order under the same given error limitation as shown
in Fig. 5. On the other hand, Table 2 and Fig. 8 illustrate that the
optimization algorithm strategy has the poorest stability among
the three strategies.

For the optimization strategy, the error limitation and optimized
bandwidth can control the dispersion error and the bandwidth. A
large value of these parameters leads to a wide bandwidth and a
large dispersion error. The computed amount of the optimization
algorithm strategy is the highest among the three strategies, pri-
marily because the solving process involves multiple loops and it-
erations. The LSM proposed by Liu (2013, 2014) has the lowest
computation cost among all optimization algorithm methods
because it doesn't require any iteration and loop.

Within all optimization methods, the L; norm cost function
(ADMM) covers the narrowest bandwidth and has the smallest
dispersion error. Compared with the L., norm cost function (REA),
the bandwidth covered by the L; norm cost function (ADMM) de-
creases by 4.14%, while the mean dispersion error reduces by 58.4%
as shown in Table 2. This significant improvement in the L; norm
cost function is beneficial for suppressing the accumulated error in
seismic modeling.

In all eight methods, TES has the smallest dispersion error and
the stability of TETS is the most stable. When the order of the FD
operator is fixed, the Taylor expansion strategy can compute one set
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The comparison of result and properties test. The value in brackets at third column is the mean dispersion error, and the value out brackets at third column is the total

dispersion error.

FD weights properties test

Method properties test

Bandwidth Dispersion error, x 1074 Stability (r_max) Tunability Calculated amount
SBWF 0.758 2.438637 (3.22) 0.524584174 Yes 0.0003594
GWF 0.331 1.841127 (5.56) 0.529864062 Yes 0.0001216
CACWF 1.694 2.253587 (1.33) 0.517421136 Yes 0.0006447
ADMM 2.013 (4.14%) 5.346340 (2.66) (58.4%) 0.509797435 Yes 7.0739712
LSM 2.052 7.663371 (3.73) 0.508241814 Yes 0.0212667
REA 2.100 12.842696 (6.12) 0.506247286 Yes 0.1162639
TES 1.255 1.052343 (0.84) 0.531759239 No 0.0002728
TETS 0.100 0.338343 (3.38) 0.548777813 No 0.0002016
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Fig. 9. The comparison of spatial dispersion error (a) and temporal dispersion error (b) for different strategies.
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Fig.10. The comparison of the residual error for different FD weights in inhomogeneous modeling with high-frequency wavelet. (a) is the waveform recorded by point 1 in Fig. (13),
and (b) is the waveform recorded by point 2 in Fig. (13). The ADMM has the least residual in this modeling.

of FD weights. Thus, this strategy is not tunable. The calculated
amount of the Taylor expansion strategy is almost the smallest
because its computational process only involves a calculation of a
matrix inverse.

We focus on a homogeneous model to do spatial dispersion and
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temporal dispersion scenarios. Using the homogeneous model aims
to present a dispersive waveform of FD modeling results clearly.
Then, we use the inhomogeneous model to test the accuracy of FD
weights. The experiment in an inhomogeneous model injects
wavelets with different dominant frequencies (20, 40, 60 Hz) to test
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Fig. 11. The comparison of the residual error for different FD weights in inhomogeneous modeling with middle-frequency wavelet. (a) is the waveform recorded by point 1 in
Fig. (13), and (b) is the waveform recorded by point 2 in Fig. (13). The ADMM has the least residual in this modeling.
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Fig. 12. The comparison of the residual error for different FD weights in inhomogeneous modeling with low-frequency wavelet. (a) is the waveform recorded by point 1 in Fig. (13),
and (b) is the waveform recorded by point 2 in Fig. (13). The ADMM has the least residual in this modeling.

the feasibility of the FD weights. The specific modeling parameters
are listed in Appendix B.

In the numerical simulation, the spatial dispersion is considered
as the waveform oscillation that occurred after the main lobe of the
wavelet, due to the velocity of spatial dispersion being slower than
the velocity of the main lobe of the wavelet. Because the velocity of
the temporal dispersion is faster than the velocity of the main lobe
of the wavelet, the temporal dispersion appears before the main
lobe of the wavelet. The position of spatial dispersion and temporal
dispersion are illustrated in detail by Jin et al. (2022).

We observe that temporal dispersion and spatial dispersion
indeed appear before and after the main lobe of the wavelet,
respectively in Fig. 9. As shown in Fig. 9(a), the TETS causes the
largest spatial dispersive waveform; the spatial dispersion of single
window function methods (GWF, SBWF) is nearly the same as TES,
meanwhile, it is larger than that of combined window function
(CACWE); the optimization algorithm methods (LSM, ADMM, REA)
have the least amplitude of waveform oscillation.
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TETS has the best simulation result, when the temporal sam-
pling 7 is equal to 0.0025 s, as shown in Fig. 9(b). For these eight
methods, TETS is the only method computed in the time-space
domain, which considers the effect of temporal derivative. Thus,
TETS has the least temporal dispersive waveform. From this
observation, we can conclude that reducing the temporal disper-
sion is efficiently obtained by computing the FD weights in the
time-space domain.

Actually, we observe that the three methods (LSM, ADMM, REA)
have almost the same waveform in the homogeneous model test, as
shown in Fig. 9. However, for simulating seismic wave propagation
in the inhomogeneous model as shown in Figs. 10—12, the accu-
mulated numerical error in the simulative results is determined by
the dominant frequency and the dispersion error of FD weights.
When using the low dominant frequency wavelet to simulate, the
accumulated numerical error is caused by the dispersion error in
the low wavenumber region. Less dispersion error in the low
wavenumber region will cause less accumulated numerical error.
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Thus, the ADMM can provide the modeling result with the least
residual error when the dominant wavelet has a low frequency.
Therefore, geophysicists pay attention to reducing the dispersion
error in the low-wavenumber region.

From these modeling experiments and precision analyses, the
combined window function is a very good research direction in the
window function strategy. CACWF covers a wide bandwidth and
has a good suppression of spatial dispersion as shown in Fig. 9(a).
However, some problems still exist. Firstly, the bandwidth and
dispersion error are hardly controlled by the input parameters of
window functions. Secondly, the bandwidth requires further
improvement. Thirdly, the FD weights from the window function
strategy aim to reduce the spatial dispersion error, not involve the
temporal dispersion error. Thus, the window function strategy is
not a good direction to develop the FD weights.

Under a given error limitation and a fixed order of FD operators,
the REA technique can maximize the covered bandwidth (He et al.,
2019). Thus, expanding the bandwidth is not a feasible ideal to
improve FD weights properties. There are two potential research
directions in this field. The first one is to improve the stability by
computing good FD weights, where Liu (2020b) has made a certain
contribution. The other one is to obtain FD weights with a small
dispersion error in the low wavenumber region. About the high
computation cost of this strategy, try to apply the algorithm with
few iterations or use the global solving technique, like LSM, which
can avoid the increase in the computation cost.

4. Conclusion

Over the past decade, the application of computing FD weights
proves that these strategies are useful tool for analyzing seismic
wave simulation, especially when the problems are involved in
large-scale or multi-scale structures. We provided a historical
overview of three kinds of computing FD weights strategies in
detail. Three strategies include the Taylor expansion, the optimi-
zation algorithm, and the window function. Besides the historical
overview, the possibilities for ongoing and future work for these
methods are also discussed based on the experiment of dispersion
analysis and numerical modeling. Apparently, widening the
covered bandwidth to improve the simulation result is researched
exhaustively, which has been proven mathematically. How to
reduce the dispersion error in the low-wavenumber region, and
how to improve the FD stability have become research hotspots in
the field of FD weights.
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Appendix A

The dispersion analysis for finite-difference method in frequency
domain

The previous analyses are based on the FD scheme in the time-
space domain. However, the finite-difference method has also been
widely applied in the frequency domain. The FD scheme in the
frequency domain is proposed by Pratt (1990), which suffers a
strong dispersion error. This method must maintain 13 mesh points
within a wavelength to reduce the error of phase velocity to 1%.
Then, Jo et al. (1996) proposed the improving 9-point FD scheme.
For reducing the error of phase velocity to 1%, the needed number
of mesh points becomes 4. Shin and Sohn (1998) based on the
improving 9-point FD scheme, introduced the 25-point FD scheme
and then optimized this FD scheme by rotating the coordinate
system. The number of mesh points reduces to 2.5.

For the most accurate rotation 25-point FD scheme, when the
error of phase velocity should reduce to 1%, a wavelength should
contain 2.5 mesh points. As this method an example, the relation of
the wavelength between the wavenumber can be shown as

A (A-1)

_1
Tk’
where the k represents the wavenumber, 1 is the wavelength. When
the 1> 2.5h, the error of the phase velocity is less than 1%, which
can be expressed as

1

kh < 55~ 0.4.

This expression illustrated that the error of the phase velocity is
less than 1% for this method when the kh is less than 0.4. When the
kh is larger, the method requires fewer mesh points in a wavelength
to limit the error of phase velocity to 1%, which indicates the
method is more accurate. For the method reference above, when
the error of the phase velocity is less than 1%, the corresponding
wavenumbers for all these eight methods are listed in Table 4. The
observation of Table 4 illustrates that the FD scheme in the time-
space domain is generally better than the FD scheme in the fre-
quency domain in reducing the error of phase velocity.

(A-2)

Table 4
The comparison of the value of kh for all method using the error of the phase
velocity.

SBWF GWF CACWF ADMM ISM  REA  TES  TETS
kh 1641 1.808 1.613 1614 1614 1613 1706 2002
Appendix B

The parameters and test formula’s in all tests

Fig. 5 is the relative error of dispersion relation (REDR) in the
space domain and error of phase velocity (EPV) in the space domain
can be expressed respectively as
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Table 3
The FD weights obtained by eight methods.
SBWF GWF CACWF ADMM LSM REA TES TETS
C 1.750000000 1.721415953 1.787106643 1.825256814 1.832710227 1.842148015 1.714285714 1.614967967
Cy —0.291666667 —0.274405818 —0.316649531 —0.344513944 —0.350290956 —0.357719918 —0.267857143 —0.228854630
c3 0.064814815 0.057608947 0.077383895 0.093472219 0.097162289 0.102042503 0.052910053 0.044430302
Cy —0.013257576 —0.011339744 —0.017724142 —0.024704801 —0.026556607 —0.029120580 —0.008928571 —0.007452744
Cs 0.002121212 0.001881420 0.003100036 0.005136489 0.005788126 0.006752513 0.001038961 0.000864830
Ce —0.000226625 —0.000250921 —0.000303595 —0.000600282 —0.000718040 —0.000906402 —0.000060125 —0.000049973
Trends and  Perspectives) 874—888.  https://doi.org/10.1111/j.1365-
M 2478.2011.00953.x.
2 > cm(1 — cos(mp)) Alford, R.M., Kelly, K.R., Boore, D.M., 1974. Accuracy of finite-difference modeling of
. m=1 the acoustic wave equation. Geophysics 39 (6), 834—842. https://doi.org/
REDR~ ﬁz -1 (B-1) 10.1190/1.1440470. a .

Alterman, Z., Karal, J.EC., 1968. Propagation of elastic waves in layered media by
finite difference methods. Bull. Seismol. Soc. Am. 58 (1), 367—398. https://
doi.org/10.1785/BSSA0580010367.

2 . 1 2 M .2 Bathe, KJ., Wilson, E.L, 1976. Numerical Methods in Finite Element Analysis. NJ
EPV:%SIH r Z Cm sin”(mkh/2) — 1, (B-2) Prentice-Hall, Englewood Cliffs. https://doi.org/10.1002/nme.1620110913.
m=1 Belytschko, T., Mullen, R., 1978. On dispersive properties of finite element solutions.

Fig. 6 is plotted by the function (wvtool), in the matlab R2016b.
6 = 5 in the Kaiser window function. The § = 0.54, « = 6 in the
generalized-power Hanning window function, § = 0.2 in the
Gaussian window function, the L = 12 in the scaled binomial
window function, L = 6, r = 60, A = 0.89 in Chebyshev auto-
convolution combined window function involve the calculation of
curve in Fig. 6.

In Fig. 9(a), we choose a velocity v = 2000 m/s, for 4000 x 4000
nodes with h = 10 m from O up to 40 km, choose 7 = 0.0005 s and
model for 5 s, use a Ricker wavelet with a 20 Hz peak frequency, the
source injected at 20 km x 20 km.

In Fig. 9(b), we choose a velocity v = 2000 m/s, for 4000 x 4000
nodes with h = 10 m from O up to 40 km, choose 7 = 0.0025 s and
model for 3 s, use a Ricker wavelet with a 40 Hz peak frequency, the
source injected at 20 km x 20 km. The FD weights used in Fig. 9 is
listed in Table 3.

Figs.10—12 are recorded waveforms at point 1 and point 2 in the
modified Marmousi model, whose positions are shown in Fig. 13.
This model is 6.8 km wide and 3.5 km deep, which is dispersed by a
1360 x 700 nodes grid. We inject the Ricker wavelet with 20, 40,
and 60 Hz dominant frequencies in the surface center of the
modified Marmousi model, respectively. The time step
7 = 0.00025 s and the seismic wave propagate 1 s. Note that the
waveform in Figs. 10—12 is the difference between the waveform of
optimized FD weights and the waveform of 20th order conven-
tional FD weights.
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Fig. 13. The modified Marmousi model and the position of point 1, point 2 and source.
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