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a b s t r a c t

In the early time of oilfield development, insufficient production data and unclear understanding of oil
production presented a challenge to reservoir engineers in devising effective development plans. To
address this challenge, this study proposes a method using data mining technology to search for similar
oil fields and predict well productivity. A query system of 135 analogy parameters is established based on
geological and reservoir engineering research, and the weight values of these parameters are calculated
using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used
to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as
similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity
are identified using the Pearson coefficient and mean decrease impurity (MDI) method. To establish
productivity prediction models, linear regression (LR), random forest regression (RF), support vector
regression (SVR), backpropagation (BP), extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM) algorithms are used. Their performance is evaluated using the coefficient
of determination (R2), explained variance score (EV), mean squared error (MSE), and mean absolute error
(MAE) metrics. The LightGBM model is selected to predict the productivity of 30 wells in the PL field with
an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction
and meets the application requirements in the field. Finally, a software platform integrating data query,
oil field analogy, productivity prediction, and knowledge base is established to identify patterns in
massive reservoir development data and provide valuable technical references for new reservoir
development.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Oilfield development is a complex and challenging process that
requires extensive knowledge of the geological attributes, as well as
efficient production strategies. Analogizing similar oilfields has
become a popular method for identifying oilfields that share
comparable characteristics with the target oilfields. By examining
the development experience and mode garnered by the analogy
oilfields, through long-term development adjustments and opti-
mizations, it is possible to create a roadmap for productivity pre-
diction and effective full life cycle development of the target
oilfields. Analogous reservoirs and the target reservoirs have nearly
similar geological characteristics and development methods, and
g).
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these analogous reservoirs have gone through long-term develop-
ment adjustment and optimization, and have formed valuable
development experience and scientific development mode, which
can point out the way to the target reservoirs for efficient devel-
opment. When facing new reservoirs or reservoirs that have been
developed for a period, the analogical method can provide a
reference for them in the case of missing dynamic and static data.

Machine learning and data mining techniques have introduced
novel tools for analyzing data in the petroleum industry
(Ghahramani, 2015; Gurina et al., 2020; Pirizadeh et al., 2021;
Werneck et al., 2022). These tools have proven to be efficient in
identifying patterns and trends in large datasets, which can aid in
the prediction of well performance and the optimization of pro-
duction strategies. Data mining is the process of extracting implicit
and unknown effective information from a large volume of actual
data containing noise, using artificial intelligence, machine
learning, statistics, and other technologies (Liao et al., 2012; Yuan
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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et al., 2017;Wang and Ayala, 2020; Cai et al., 2020). In the field of oil
exploration and development, data mining and artificial intelli-
gence have found application in various fields, including produc-
tion index prediction and agent model simulation (Bravo et al.,
2013; Feng et al., 2020; Wang and Seright, 2021; He et al., 2023).
For instance, Lolon et al. (2016) deeply explored the relationship
between oil well parameters and production and established pre-
dictive statistical models to evaluate various fracture treatment and
completion designs. Zhou et al. (2014) combined principal
component analysis, clustering method, and regression analysis to
investigate the impact of hydraulic fractures, vertical depth, prop-
pant, and fracturing fluid volume on gas production in Marcellus
shale. Guo et al. (2018a) integrated the support vector regression
surrogate model into the distributed Gauss-Newton method and
demonstrated that machine learning algorithms, such as SVR, can
be successfully integrated into gradient-based optimization
methods to improve overall efficiency. The process of generating
accurate prediction models or tools is known as prediction
modeling. These models typically include one predictive variable
(output) and one or more known independent predictive variables
(input) (Awoleke and Lane, 2011; Ma et al., 2015; Lecun et al., 2015;
Guo et al., 2019). Similarly, machine learning is frequently used for
log analysis, lithofacies, depositional environments, and seismic
data inversion (Iraji et al., 2023a; Soltanmohammadi et al., 2024).
The study by Iraji et al. (2023b) combines log data, borehole im-
aging, conventional and micro CT plug data analysis, and thin-
section descriptions aimed at characterizing the reservoir in the
formation. They used deep learning to predict porosity, perme-
ability, and rock type.

A variety of productivity prediction models have been devel-
oped using data mining techniques (Wang et al., 2021a;
Eskandarian et al., 2017; Wood, 2020; Handhal et al., 2022). These
models provide critical insights into the oil industry's production
patterns. They allow for the identification of commonalities and
differences between analogous oilfields (Guo et al., 2018b; Bahonar
et al., 2022; Wei et al., 2022). Montgomery and O’Sullivan (2017)
compared the application of five regression models in predicting
the productivity of tight oil wells and confirmed that the linear
regression model is more accurate than the generalized linear
regression model, support vector regression model, random forest
regression model and gradient boosting regression model. Aïfa
(2014) developed a productivity prediction model based on artifi-
cial neural networks and determined the sensitivity of each influ-
encing factor that affects productivity. Akbilgic et al. (2015) used
neural networks to predict the gas-oil ratio of oilfield reservoirs and
identified the determinants of SOR (steam-to-oil ratio) to be
reservoir depth, gamma curve, and permeability. Wang et al. (2018)
compared the performance of several machine learning algorithms,
including random forest, adaboost, SVM, and ANN, and developed a
productivity prediction model that was optimized by comparing
prediction accuracy and error loss on test set data. In reservoir
development, statistical models are commonly used to identify the
geological and engineering parameters that have the greatest
impact on production. While many models can accurately predict
productivity, they require a significant amount of data to establish
the model, limiting their application in fields with limited data.
Moreover, the combination of oilfield analogy and productivity
prediction has not been fully explored, and no complete process has
been developed. Wang et al. (2021b) presented the application of
big data technique in the oil fields of thewestern South China Sea to
build a knowledge base of theoretical/empirical formulas to eval-
uate well productivity. Guo et al. (2022) used reservoir engineering
methods (relationship between core permeability and porosity in
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similar areas) and the categorical boosting (CatBoost) model to
predict reservoir permeability respectively, and finally selected the
CatBoost model to predict DLG block reservoir permeability
through comparison. However, most of the current reservoir dy-
namic parameters prediction methods do not consider the impor-
tance of field analogies (Wang et al., 2023; Bai et al., 2024), and the
existing analogies are difficult to screen many similar reservoirs
and lack interpretability quickly and accurately. The parameters
considered in the analogical methods are not comprehensive, only
for the same type of reservoir, and they do not combine the
analogical results with the prediction of dynamic indicators.

This study proposes a method for predicting well productivity
based on statistical analysis and data mining techniques, with
reservoir geological characteristics and development dynamic data
as the core, and similar reservoir analogies as the research samples.
Firstly, a comprehensive consideration of eight categories encom-
passing 135 analogy parameters is taken. Big data algorithms are
utilized to calculate the weight values, forming an analogy system.
Secondly, methods such as the fuzzy matter-element method and
comprehensive evaluation are employed to calculate the similarity,
determining similar oilfields. The Pearson correlation coefficient
method and MDI are applied to identify the factors influencing
productivity. LR, RF, SVR, BP, XGBoost, and LightGBM algorithms are
adopted to establish productivity prediction models. R2, EV, MSE,
and MAE are used to optimize productivity prediction models.
Finally, a software platform integrating data inquiry, oilfield anal-
ogy, and productivity prediction is developed.

2. Workflow

This paper presents an analogy system and oil well productivity
prediction model based on big data algorithms, enabling the rapid
screening of similar oilfields and accurate prediction of oil well
productivity in target oilfields. The workflow is divided into four
distinct modules: data query, oilfield analogy, productivity pre-
diction, and knowledge base (Fig. 1).

Data query: This module enables the quick selection of basic
parameter tables of oilfields, blocks, and single wells that meet the
self-defined data range through multi-attribute filtering, based on
the constraint conditions of single or multi-parameter indexes. The
statistical analysis of the basic parameter table also generates
charts and variation laws of related parameters. The data obtained
from this module is subsequently used for oilfield similarity
calculation and oilfield single-well productivity prediction.

Oilfield analogy: Initially, the parameters of the target oilfield
are imported according to the defined data format. Then, the
relevant parameters are selected for analogy between the target
oilfield and the similar oilfield. The weight values of the selected
parameters are calculated using the big data algorithms, and an
analogy system for the target oilfield is established. The similarity
between the target oilfield and the analogy oilfield is calculated
using the similarity algorithm (fuzzy matter-element method,
comprehensive evaluationmethod, cosine similarity, and Euclidean
distance) based on the established analogy system. Finally, the re-
sults of the data query are compared with the target oilfield to
determine the oilfield similar to the target oilfield from the sample
library.

Productivity prediction: In this section, we first define the fac-
tors influencing oil well productivity based on the parameter data
of similar oilfields. The Pearson correlation coefficient and MDI
method are utilized to calculate the correlation coefficients be-
tween the selected factors and oil well productivity. The factors
with strong correlations are then chosen as input parameters, while



Fig. 1. Workflow of oilfield analogy and productivity prediction in the oilfields.
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oil well productivity is designated as the target parameter. Next,
80% of the selected input parameter data is used as the training
sample, while the remaining 20% is designated as the test sample.
Six machine learning algorithms are employed to build prediction
models for oil well productivity. Finally, the model with the best
performance is selected based on the evaluation metrics.

Knowledge base: Utilizing the established oilfield analogy index
system and model, this study aims to uncover and comprehend the
various characteristics of oil and gas fields while integrating the
productivity prediction models for different types of oilfields. To
achieve this, we construct an extensible oilfield analogy knowledge
base and productivity prediction knowledge base. With this
knowledge base, we can swiftly match, query, and study the most
similar oilfields to the target oilfields, enabling us to predict the
dynamic parameters of the target oilfields with accuracy and
precision.
3. Setting analogy system

When assessing the similarity between oilfields, both static and
dynamic characteristics need to be considered. The selection of
analogy parameters is critical to oilfield analogy. In this regard, we
have extracted 135 oilfield dynamic and static parameters from 8
categories (profile, reservoir, well, fluid, energy, reserves, devel-
opment effect, and production performance) based on the research
results of reservoir description, oilfield development scheme
design, oilfield development adjustment scheme design, reservoir
dynamic analysis, and reservoir development effect evaluation.
These parameters are provided in a comprehensive parameter
query system (Appendix A) that facilitates oilfield analogy and
productivity prediction.

In practice, collecting all the analogy parameter data for target
oilfields can be challenging, and in some cases, only a limited
amount of basic parameter data is available. To improve the oper-
ational and practicality of oilfield analogies, we extract a set of
analogy parameters applicable to various reservoirs from 135
parameter query systems based on Chinese industry standards SY/
T6169 and SY/T6219, combined with expert knowledge and expe-
rience (Table 1). Certainly, in the actual process of analogical
comparison, adjustments may be made to certain parameters in
Table 1 from the 135 parameters by considering the specific data
2556
collected from various target oil fields. Then, using the expert
scoring method, analytic hierarchy process, and principal compo-
nent analysis method, we calculate the weights of the analogy
parameters and establish an analogy system suitable for all types of
reservoirs.

The actual analog process mainly considers static parameters,
and for different target oil fields, the system's built-in analog pa-
rameters can be appropriately added or deleted from the 135
parameter templates. Take the actual offshore oil field PL as an
example, which has a depth of 1000e1500 m, an average porosity
of 25.42%, and an average permeability of 1039 � 10�3 mm2.
However, the actual data for dynamic and static parameters are
limited, and Appendix B lists the specific parameter data for the
target PL oilfield. Based on relevant reservoir knowledge and
parameter data obtained from statistical analysis of the PL oilfield,
we aim to ensure an ample number of analogous oilfield samples,
and appropriate additions or deletions of the parameters involved
in the above analog system are made. A similarity system con-
taining the four basic parameters of permeability, porosity, reser-
voir effective thickness, and oil viscosity is established. Table 2
shows the weight values of analog parameters calculated by
different algorithms. Based on this analogy system, big data algo-
rithms are used to screen for similar oilfields to the PL oilfield.

The expert scoring method relies on the expertise of pro-
fessionals with years of experience in reservoir work to assign
scores to the 135 parameters in the system, on a scale of 0e1. The
parameter scores are then normalized to derive the weight of each
parameter in the analogy system.

Analytic hierarchy process (AHP) is used to determine the
appropriate scale for each parameter in the analogy system by
comparing them pairwise. The importance of a parameter is
directly proportional to the scale value assigned to it, with larger
values indicating greater importance. To ensure the rationality of
parameter selection, the consistency index (CI) and the consistency
ratio (CR) are calculated. CI value of 0 indicates complete consis-
tency, with higher values indicating greater inconsistency. When
the CR value is less than or equal to 0.1, the parameter matrix is
considered reasonable. In our study, the CI and CR values calculated
for the parameter matrix shown are both 0, indicating that the
selected parameters are reasonable.

Based on orthogonal transformation, principal component



Table 1
Built-in analogy parameters for all types of reservoirs.

Analogy aspects Specific parameters

Structural characteristics Trap type; structural type.
Reserves Original oil in place; technically recoverable reserves; oil-bearing area; single-well controllable reserves; reserve abundance; original gas

saturation.
Drive types Water volumetric multiple; drive energy; water type.
Fluid properties Natural gas viscosity; gas-oil ratio; natural gas formation volume factor; formation water type; formation water salinity; formation water pH;

crude oil viscosity; asphaltene content in crude oil; wax content in crude oil; crude oil density.
Temperature-pressure

system
Original formation temperature; temperature gradient; formation pressure coefficient; formation fracture pressure; pressure gradient; original
formation pressure.

Reservoir characteristics Sedimentary facies; coefficient of variation; permeability contrast; sand ratio; dart coefficient; median pressure; displacement pressure; pore
throat ratio; pore type; throat radius; porosity; permeability; irreducible water saturation; reservoir effective thickness; number of oil layers.

Stratigraphic
characteristics

Lithology; water depth; offshore/onshore; burial depth; stratigraphic age; stratigraphic thickness.

Table 2
Three methods of oilfield analogy parameter weight allocation results.

Parameter Expert scoring Analytic hierarchy process Principal component analysis

Reservoir effective thickness 0.114 0.165 1.02
Porosity 0.114 0.041 0.12
Oil viscosity 0.114 0.165 0.60
Permeability 0.114 0.041 0.75

Fig. 2. The sorting results of oilfield similarity using the fuzzy matter-element method.
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analysis (PCA) is a method that can reduce multiple related vari-
ables into a few independent variables. By analyzing the com-
pressed variables, the weight of the original features can be
calculated. At this time, the calculated weight is the label-free
weight, and its significance indicates the proportion of the infor-
mation expressed by the feature data in all data.

From the weight values calculated by the three methods
(Table 2), it can be concluded that the weight value of parameters
calculated by the expert scoring method is consistent with the
conventional experience, while the results of the analytic hierarchy
process and principal component analysis are different from the
conventional knowledge. In the PL oilfield analogy system, the
weight value of expert scoring is mainly considered, and the three
calculation weight results are saved for calculating the similarity
between the target oilfield and the analogy oilfield.

4. Screening of similar oilfields

This study employs six big data algorithms to calculate the
similarity between the target oilfield and analogous oilfields, using
the established analogy system. The algorithms used for similarity
calculation include the fuzzy matter-element method, compre-
hensive evaluationmethod (which includes expert scoringmethod,
analytic hierarchy process, and principal component analysis),
cosine similarity, and Euclidean distance. These algorithms are
described in detail in Appendix C, including their basic principles,
advantages, and disadvantages. The sorted list of similarity scores
between the target and analogous oilfields enables the identifica-
tion of the most similar oilfields, which can provide valuable
technical support for the efficient development of the target oilfield
throughout its life cycle.

Firstly, we introduce the principle of fuzzy matter-element
method. The fuzzy matter-element method is an improvement on
Euclidean distance, introducing the concept of weight, which is no
longer the absolute spatial distance between two points as repre-
sented by Euclidean distance. The basic principle is to calculate the
squared difference between each parameter's weighted value
multiplied by the normalized value of the corresponding parameter
of the oilfield, sum them up to obtain a comprehensive value, take
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the square root to get a decision coefficient, normalize the decision
coefficient to get similarity, and the similarity sorting result is
shown in Fig. 2.

From the results, it can be visually observed that the QK6-21
oilfield is the most similar to the target PL oilfield, with a similar-
ity degree of 96.68%. The QK1-1S, QK1-8N, and QK1-4 oilfields have
a similarity degree higher than 80% with the target oilfield.

Next is the comprehensive evaluation method, which is based
on a certain characteristic of the evaluation index. The whole is
composed of multiple related evaluation indexes, integrates mul-
tiple indexes into a comprehensive evaluation through a mathe-
matical model, and evaluates the objective entity according to
certain standards. This method can judge the advantages and dis-
advantages of the evaluation object according to the system attri-
butes, and the detailed study is shown in Fig. 3. Fuzzy affiliation is
introduced to replace the data normalization in the fuzzy set
method, in which the fuzzy set's mathematical tools are mainly
applied to the fuzzy affiliation and the degree of affiliation function.

The comprehensive decision value is obtained by accumulating
the product of fuzzy affiliation and weight. Due to the uncertainty
of the subordinate relationship between factor u and the fuzzy sets
on U, to effectively describe this relationship, a value in the interval



Fig. 3. Detailed process of comprehensive evaluation method.

Fig. 4. The sorting results of oilfield similarity using the comprehensive evaluation
method: (a) The results of expert scoring method. (b) The results of principal
component analysis method. (c) The results of analytic hierarchy process method.
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[0, 1] is selected to replace 0 and 1, thus describing the “truth” that
an element belongs to a fuzzy set. The calculation of similarity using
this method is shown in Fig. 4.

The oilfield with the highest similarity to the target PL oilfield,
calculated using the comprehensive evaluation method (expert
scoring), is QK6-21. This result is consistent with the fuzzy matter-
element method but differs from the results of the principal
component analysis and the analytic hierarchy process. Overall, the
computational similarity of the comprehensive evaluation method
is high, all around 50%.

Finally, cosine similarity and Euclidean distance are introduced.
Cosine similarity, an algorithm commonly used to quantify the
degree of similarity between two entities or two indicators, spe-
cifically refers to the cosine of the angle between any two vectors in
a vector space. The closer the calculated cosine is to the value 1, the
more similar the two vectors are in space. The Euclidean distance is
themetric we usemost frequently tomeasure the size of a distance,
and it quantifies the size of the distance between two points in
space when the dimensionality of the space is high. Again, we can
think of this method simply as the absolute distance between two
points or vectors. The smaller the actual distance calculated, the
more similar they are. The results of the similarity between the two
methods are shown in Fig. 5.

Based on the similarity calculation principle and sorting results,
it can be concluded that the cosine similarity and Euclidean dis-
tance methods mainly calculate the similarity between numerical
values. Both methods show a high similarity between the actual PL
oilfield and the analogy oilfield, with a similarity level above 90%.
This similarity, however, does not hold any reference significance.

By comparing and analyzing different similarity algorithm
models, Appendix C summarizes the applicability, advantages, and
disadvantages of each similarity algorithm. Among them, weights
are introduced in the fuzzy matter-element method to eliminate
the influence of magnitude on the results, making it more suitable
for reservoir analogy. The setting of weights fully utilizes the
experience of oil engineers in oilfield development, and the scoring
template can be optimized later by using multiple experts' scoring.
The comprehensive evaluation method in addition to the consid-
eration of the establishment of the affiliation function, based on the
calculation of the weights of the indicators (expert scoring method,
analytic hierarchy process, principal component analysis) should
not be ignored. If the affiliation function and the weights are set
reasonably, theoretically, the effect is better. Otherwise, the effect
will be less than optimal.
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The fuzzy matter-element method and comprehensive scoring
method (expert scoring method) use the weight values calculated
by the expert scoring method, and the oilfield with the highest
similarity in both methods is QK6-21. However, in the latter
method, the similarity of 22 analogical oilfields is generally high
during the similarity calculation, and the results of the principal
component analysis and the analytic hierarchy process are similar,
probably because the algorithm's subordination function configu-
ration is unreasonable. By looking at the actual situation of the 22
oilfields in the comparison, the size of the similarity between oil-
fields calculated by the fuzzy object-element method is most
consistent with the actual situation, so the calculation results of the
fuzzy object-element method are mainly considered.

To ensure the validity of the results, a similarity threshold of 0.7
is set, meaning that only similarity scores greater than 70% are
considered as similar oilfields. The similarity between the target



Fig. 5. The sorting results of oilfield similarity using cosine similarity (a) and Euclidean distance (b).

Fig. 6. Radar diagram of four parameters in the target PL oilfield analogy system.

Table 3
Comparison of actual and predicted productivity in the oilfield.

Oil well 2018 2019

Actual
productivity, t/d

Predicted
productivity, t/d

Actual
productivity, t/d

Pr
pr

Oil well 1 114.33 112.41 123.24 11
Oil well 2 200.16 203.74 202.36 20
Oil well 3 110.00 108.69 111.02 10
Oil well 4 121.80 119.87 119.25 12
Oil well 5 110.01 107.24 108.56 11
Oil well 6 135.60 134.69 142.21 12
Oil well 7 123.38 125.40 100.21 97
Oil well 8 154.82 168.30 145.89 13
Oil well 9 124.45 114.56 120.34 12
Oil well 10 121.80 117.29 115.26 10
Oil well 11 92.30 94.27 90.12 94
Oil well 12 210.00 215.29 208.25 20
Oil well 13 94.09 96.28 94.12 90
Oil well 14 55.81 47.20 52.21 24
Oil well 15 144.44 135.90 142.56 13
Oil well 16 120.32 162.45 118.56 11
Oil well 17 201.78 197.50 200.23 19
Oil well 18 123.58 116.87 120.14 11
Oil well 19 132.22 135.21 130.23 13
Oil well 20 140.09 134.70 138.56 12
Oil well 21 117.72 100.20 110.23 10
Oil well 22 126.32 106.80 123.26 13
Oil well 23 127.96 156.30 119.56 11
Oil well 24 219.62 236.20 210.23 20
Oil well 25 100.13 105.60 95.64 89
Oil well 26 114.33 121.36 110.23 97
Oil well 27 193.80 195.74 192.13 20
Oil well 28 106.48 100.20 100.45 10
Oil well 29 56.93 67.40 45.26 38
Oil well 30 134.91 129.63 120.41 11
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oilfield and analogy oilfields is represented by a radar chart of four
parameters from the PL oilfield analogy system. Fig. 6 shows the
radar chart of the four parameters and provides an intuitive com-
parison of the similarity between the target oilfield and analogy
oilfield parameters.

By studying the development measures implemented in
different stages of QK6-21, valuable development experience can be
gained for the PL oilfield. Such measures can include production
techniques, drilling methods, and reservoir management strategies
that have been successfully applied in QK6-21. This knowledge can
be used to optimize the development of the target oilfield in its
entire life cycle. To ensure that there are sufficient similar oilfield
sample data available for establishing the productivity model,
based on the similarity calculation results in Fig. 2, oilfields with
similarity scores greater than 70% are selected as similar oilfields.
These include a total of 10 oilfields with 394 oil wells, which are
2020 2021

edicted
oductivity, t/d

Actual
productivity, t/d

Predicted
productivity, t/d

Predicted
productivity, t/d

0.27 110.23 106.70 110.14
5.46 201.41 201.30 201.56
9.29 100.24 106.40 100.12
1.45 112.25 121.43 100.89
0.23 100.25 98.70 100.14
3.63 132.56 129.46 129.85
.20 98.45 99.63 97.54
5.90 125.63 119.36 132.13
3.40 110.28 105.21 108.56
9.76 100.56 97.42 99.52
.21 85.23 82.13 80.57
5.23 200.24 197.23 196.54
.24 92.16 105.12 89.52
.76 42.23 51.42 38.98
4.27 140.52 138.70 135.56
0.46 98.56 102.40 95.47
7.23 200.56 194.20 197.21
6.42 121.14 116.23 116.28
2.71 126.24 114.78 120.58
9.80 137.25 126.54 132.41
5.24 109.56 106.42 105.26
4.10 121.26 103.27 120.17
5.42 118.78 112.70 118.12
9.58 209.25 202.30 200.23
.45 94.89 102.30 90.56
.23 109.23 104.21 104.21
4.10 191.56 196.45 190.56
2.70 97.23 101.20 93.24
.25 42.13 39.78 40.12
3.27 119.56 121.03 110.34



Fig. 7. Correlation analysis chart of Pearson correlation coefficient method and MDI
method.

Fig. 8. Statistical diagram of productivity changing with 13 parameters: (a) permeability;
reservoir effective thickness; (g) crude oil viscosity; (h) gas-oil ratio; (i) API; (j) crude oil d

W.-P. Bai, S.-Q. Cheng, X.-Y. Guo et al. Petroleum Science 21 (2024) 2554e2570
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used as sample data for building the productivity prediction model.
5. Analysis of influencing factors

To analyze the correlations between the actual dynamic and
static data of the selected similar oilfields and the oil well pro-
ductivity, we use the Pearson correlation coefficient method. The
mean decrease impurity (MDI) method is then applied for verifi-
cation of the selected influencing factors. To reduce the short-term
impact of many factors on production performance, this study uses
the average productivity of 1 year as the main evaluation metric for
determining the influencing factors.

Pearson correlation coefficient is a measure of similarity that
quantifies the linear correlation between two random variables X
and Y. It ranges from 0 to 1, and a higher absolute value indicates a
stronger correlation. In this study, the Pearson correlation coeffi-
cient is utilized to determine whether there exists a strong
(b) porosity; (c) oil saturation; (d) choke size; (e) production pressure difference; (f)
ensity; (k) mudstone content; (l) thickness measurement; (m) vertical thickness.



Fig. 9. Productivity prediction results of machine learning models: (a) LR; (b) RF; (c) SVR; (d) XGBoost; (e) LightGBM; (f) BP.
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correlation between the statistical oilfield parameters and the
productivity of oil wells. Table 3 presents the criteria for deter-
mining the strength of correlation in different ranges of correlation
coefficient. MDI method is a random forest feature selection
method, which belongs to the label training method. In this paper,
oil well productivity prediction is a regression problem, usually
using variance or least squares fitting to measure error. When
training the decision tree, we can calculate the change in each
feature's impure value. For the decision tree forest, we can calculate
howmuch the impure of each feature is reduced, which can be used
as a measure of the importance of features, and the calculation
formula is shown in Appendix D.

To identify the factors that have a great impact on oil well
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productivity, 13 parameters are considered in the analysis of actual
dynamic and static data from oil wells in similar oilfields identified
through the similarity ranking method. These parameters include
porosity, permeability, oil saturation, gas-oil ratio, crude oil density,
oil API degree, choke size, thickness measurement, vertical thick-
ness, reservoir effective thickness, mudstone content, crude oil
viscosity, and production pressure difference. The Pearson corre-
lation coefficient method is employed to assess the strength of the
linear correlation between these parameters and oil well produc-
tivity. The results show that porosity, permeability, oil saturation,
choke size, and crude oil viscosity are strongly correlated with
productivity, while gas-oil ratio, production pressure difference,
and reservoir effective thickness have moderate correlations. Crude



Fig. 10. Column diagrams of four evaluation metrics: (a) R2; (b) EV; (c) MSE; (d) MAE.

Fig. 11. Comparison of productivity prediction results in PL oilfield: (a) Actual and predicted productivity in 2018. (b) Actual and predicted productivity in 2019. (c) Actual and
predicted productivity in 2020. (d) Predicted productivity in 2021.
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oil density and API degree have weak correlations, and mudstone
content, thickness measurement, and vertical thickness are
extremely weakly correlated with productivity. Additionally, the
MDI method is used to measure the importance of these parame-
ters in predicting oil well productivity. The MDI method is also
applied to verify the results, which yield low correlation co-
efficients but are consistent with the Pearson method. Based on
these findings, eight parameters (porosity, permeability, oil
2562
saturation, choke size, crude oil viscosity, gas-oil ratio, production
pressure difference, and reservoir effective thickness) are selected
as the influencing factors for single well productivity in the target
PL oilfield. The results of the analysis are presented in Fig. 7.

To analyze the influence of the selected parameters on the
productivity of offshore oil wells, 394 wells in similar oilfields are
studied using their actual dynamic and static data. Thirteen box
diagrams (Fig. 8) are created to illustrate the productivity changes



Fig. 12. Software interface of oilfield analogy module.

Fig. 13. Software interface of productivity prediction module.
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across different parameter ranges.
The results of the box diagrams indicate that productivity in-

creases with higher levels of porosity, permeability, oil saturation,
choke size, production pressure difference, and reservoir effective
thickness. Permeability, porosity, oil saturation, and reservoir
effective thickness are all physical parameters of the reservoir, and
productivity will increase with increasing values of these param-
eters under conventional production operations. The choke size is
controlled by human factors, and the larger the nozzle size, the
higher the productivity. The higher the production differential
pressure, the lower the bottomhole pressure, the faster the fluid in
the reservoir flows to the bottom of the well, and the productivity
rises sharply. Conversely, productivity shows a negative correla-
tion with crude oil viscosity and gas-oil ratio. The greater the
crude oil viscosity, the poorer the fluid mobility, and the lower the
productivity of the well in the same situation. The greater the gas-
oil ratio, the sharper the gas production and the lower the oil
production. Nevertheless, there is no significant correlation be-
tween productivity and oil API, crude oil density, mudstone con-
tent, thickness measurement, and vertical thickness. The box
diagrams' trends are consistent with the Pearson method and MDI
method, which verifies the reasonableness of the selection of
productivity influencing factors.

Based on the patterns of actual parameter data, as well as the
results of correlation ranking, and combined with relevant reser-
voir experience and knowledge, we consider parameters that have
a significant impact on productivity during the actual mining pro-
cess of the reservoir. Ultimately, we select eight parameters
including porosity, permeability, oil saturation, choke size, crude oil
viscosity, gas-oil ratio, production pressure difference, and reser-
voir effective thickness as the factors affecting PL oilfield's single-
well productivity, which participate in training to establish the
productivity prediction model.
6. Productivity prediction models

The input parameters for the prediction models are the eight
influencing factors in the 394 single well samples determined
previously, and the output parameter is the oil well productivity.
We have selected six machine learning algorithms, namely LR, RF,
SVR, XGBoost, LightGBM, and BP, to establish the productivity
prediction models. Appendix E provides the principles, advantages,
and disadvantages of each algorithm. We use four evaluation
metrics to assess the performance of the models and select the best
one to save the model parameters. The evaluation metrics are
determination coefficient (R2), explained variance score (EV), mean
squared error (MSE), and mean absolute error (MAE). The specific
calculation method is provided in Appendix F. We train and test the
models using 80% of the collected data as training samples and the
remaining 20% as testing samples. Fig. 9 depicts the exponential
curve-fitting relationship between the actual productivity and the
predicted productivity of the six models. The red point set repre-
sents the training set, and the yellow point set represents the
testing set. The upper right corner of each box shows the algorithm
parameters and their respective values. Specific parameters for the
different regression models can be found in Appendix G. It can be
observed that XGBoost and LightGBM outperform the other
models, indicating a better prediction effect.

Fig. 10 presents a comparison of the evaluation metrics for the
six regression models, where the LightGBM algorithm out-
performed the other models with the highest R2 and EV values and
the lowest MSE and MAE values. Thus, we chose LightGBM as the
optimal model for predicting the productivity of the target PL
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oilfield. Table 3 displays the predicted productivity results using the
LightGBM model.

Fig. 11 illustrates the error analysis of the LightGBM productivity
prediction model on 30 oil wells in the target PL oilfield from 2018
to 2020. The plot reveals that the predicted values from the model
are largely in agreement with the actual productivity values.

The results demonstrate that the predicted values of the
LightGBM productivity prediction model are consistent with the
actual values. The average error of oil well prediction in the past
three years is 6.31%, and the actual statistics of the oilfield pro-
duction data are relatively accurate. The results of the 2021 pro-
ductivity data prediction show that the productivity of the 30 wells
in the coming year is not much changed compared with the pre-
vious three years, and the original mining scheme can be main-
tained to continue mining, which can assist in the efficient
development of the oilfield and reduce the cost of crude oil
exploitation.
7. Software platform

To support efficient oilfield development, a data warehouse is
established based on the development data of oilfields. Utilizing big
data algorithms, a geological reservoir analogy research platform is
designed and developed with four functional modules: data query
module, oilfield analogy module, productivity prediction module,
and knowledge base. The data query module allows users to set
parameter constraint conditions to query the oilfields, blocks, and
single wells that meet the conditions from the data warehouse. The
results are presented in a list, and the geographic location can be
displayed on the GIS geographic information map of the main
interface. In the oilfield analogy section, users can import target
oilfield parameter data based on the specified data format. They can
choose to use the built-in analogy system (Table 1) or customize the
analogy parameters from 135 reservoir parameters to establish an
analogy system. The similarity is calculated using big data algo-
rithms to find oilfields that are similar to the target oilfield (Fig. 12).
In the oil well productivity prediction module, users can select and
click on the oil well parameters and productivity for correlation
analysis, save the parameters with high correlation, and then train
the model. The performance of different models on the test set is
evaluated by comparing their prediction results. Subsequently, the
optimal model is selected to predict the oil well productivity, as
shown in Fig. 13. During the training phase, we leverage a historical
dataset to train the model and evaluate its performance to select
the best-performing model. During the inference phase, we utilize
the pre-trained model to make predictions on new data. As such,
retraining for every query is unnecessary; instead, we can rely on
the pre-trained model for inference. This approach not only saves
time and computational resources but also enhances efficiency. The
knowledge base module includes the establishment of a stan-
dardized classification knowledge system, which includes the
collation of structured, semi-structured data, and unstructured
data, and it can be used for knowledge acquisition, query, and push.

The software platform is designed to provide users with a range
of functionality to facilitate the identification of potential reser-
voirs, prediction of production dynamics, and analysis of the per-
formance of similar oilfields. The data query module allows for easy
access to relevant data from the data warehouse. The oilfield
analogy module utilizes the prediction models to identify reser-
voirs with similar characteristics, which can then be used to
extrapolate information about the performance of the target oil-
field. The productivity prediction module enables users to predict
the productivity of specific oil wells using a range of machine
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learning algorithms. Finally, the knowledge base provides users
with a wealth of information on oilfield development, including
best practices and case studies. The platform includes similar oil-
field screening and production dynamic index prediction models at
its core.
8. Conclusions

This paper presents a novel approach for utilizing data tech-
nology to improve oilfield analogy and oil well productivity pre-
diction. The following conclusions can be drawn.

(1) To establish the analogy index system, we customize the
relevant parameters for different oilfields by considering 135
static and dynamic characteristic parameters. The parameter
weights are calculated using a big data algorithm, allowing
for flexibility to meet the unique characteristics of each oil-
field. This approach enables the establishment of a corre-
sponding analogy index system that is tailored to the specific
parameters needs of each oilfield.

(2) Based on the established analogy model, six algorithms are
employed to calculate the similarity between the target oil-
field and the analogy oilfields. The approach enables quick
and accurate quantification of the differences between the
target oilfield and the analogy oilfields, leading to the iden-
tification of the most similar oilfield. The development
strategy of the most similar oilfield provides an excellent
technical reference for efficient development of the target
oilfield.

(3) The oilfields that exhibit similarity greater than 70% are
selected as sample data. Relevant parameters that affect oil
well productivity can be quickly screened out using big data
algorithms. These parameters are then used to develop six
productivity prediction models, which are optimized based
on four evaluation metrics to ensure the accuracy of the
model's prediction for different data samples.

(4) An oilfield analogy research platform covering data query,
setting target oilfields, setting analogy system, screening
similar oilfields, influencing factor analysis, and optimization
of oil well productivity prediction model is established,
which can rapidly and accurately identify the similar oilfields
of a target oilfield and predict its oil well productivity. This
tool is designed to improve the efficiency and accuracy of
Table A1
Parameter query system.

Profile Reservoir

Sedimentary facies Average reservoir thickness
Strata age Reservoir effective thickness
Main drive mechanism Effective porosity
Structure type Pore throat radius
Offshore/onshore oilfield Alkali sensitivity
Development method Cementation type
Pore type Pore-throat volume ratio
Burial depth Porosity
Gas layers temperature Coefficient of variation
Drive type Displacement pressure
Trap type Sand ratio
Water depth Sandstone thickness
Hydrocarbon type Permeability
Production time Permeability contrast
Lithology Irreducible water saturation
Reservoir type Water sensitivity
Abandonment time Speed sensitivity

Acid sensitivity
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oilfield development planning and reduce the cost of crude
oil exploitation.

The oil industry is currently home to vast amounts of production
data, which can be analyzed using machine learning algorithms to
facilitate oilfield analogy and oil well productivity prediction in
newly developed oilfields, thereby reducing the cost of oil com-
panies. This paper presents the application of data mining tech-
nology in oilfield analogy and oil well productivity prediction,
which involves setting up an analogy system, screening similar
oilfields, analyzing the influencing factors of oil well productivity,
and optimizing the prediction model of oil well productivity. The
proposed method is not only suitable for different types of oil fields
but also for gas fields. By quickly and accurately finding similar
oilfields and predicting oil well productivity, this approach provides
robust technical support for efficient development of the target
oilfields. Our team is continually enriching and refining the soft-
ware platform to further enhance and promote the application
program.
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Appendix A. Parameter query system
Well Fluid

Pump frequency Formation water mineralization
Pump inlet pressure Formation water salinity
Thickness measurement Formation water type
Tested productivity The potential of hydrogen in water
Initial gas productivity Oil density
Initial oil productivity Oil viscosity
Vertical measurement Wax content of formation crude oil
Commissioning date Asphaltene in formation crude oil
Oil well productivity Crude oil density in stock tank
Choke size Surface crude oil viscosity (0 �C)
Total number of wells Mobility
Well distance Capillary pressure data
Wellhead pressure Gas-oil ratio
Well pattern type Natural gas density
Well spacing density Gas formation volume factor
Well type Viscosity of natural gas
Duration of the well opening Surface crude oil density (50 �C）
Argillaceous content Surface crude oil viscosity (50 �C）

(continued on next page)



Table A1 (continued )

Profile Reservoir Well Fluid

Total compressibility Daily gas production Oil saturation
Dart coefficient Daily water production Water saturation
Temperature gradient Penetration thickness Original gas saturation
Salt sensitivity API degree of oil Oil volume factor
Stress sensitivity Casing pressure
Number of oil layers
Reservoir perforation thickness
Median pressure

Energy Reserves Development effect Production performance

Formation fracture pressure Reserves abundance Recovery Recovery degree
Formation pressure factor Dynamic reserves Oil production rate Accumulative condensate oil
Water volumetric multiple Oil-bearing area Productivity index Cumulative gas production
Water type Condensate oil recoverable reserves Water cut rising rate Cumulative water production
Pressure gradient Gas recoverable reserves Flushing efficiency Cumulative oil production
Production pressure difference Oil recoverable reserves Remaining recoverable reserve Average daily fluid production
Present formation pressure Proved reserves Water flooding utilization degree Average daily oil production
Present formation temperature Original condensate oil in place Control of water drive reserves Average daily injection volume
Original formation temperature Original gas in place Reserve-production ratio Average injection pressure
Original formation pressure Original oil in place Injection-production ratio Pressure drawdown
Saturation pressure Yearly decline rate Average daily water production
Bottomhole pressure Natural decline rate Water injection mode

Composite decline rate
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Appendix B. Basic parameter information of the PL oilfield
Table B1
Basic parameter information of the PL oilfield.

Oilfield parameter Value Individual well parameter Value

Reservoir types Lithologic structural reservoir Porosity, % 23.00e29.38
Drive types Artificial water injection Permeability, 10�3 mm2 420.4e1792.5
Sedimentary facies Meandering river Oil saturation, % 41.30e80.15
Lithology Sedimentary rock Gas-oil ratio, m3/m3 28.69e127.49
Reservoir effective thickness, m 51 Crude oil density, kg/m3 905.3e945.1
Porosity, % 25.42 API 17.60e21.31
Permeability, 10�3 mm2 1039 Duration of well production, h 22.99e23.94
Crude oil viscosity, mPa$s 126 Pump frequency, Hz 52e90
Mobility, 10�3 mm2/mPa$s 8.24 Pump intake pressure, MPa 0.10e0.71
Vertical thickness, m 32.0e137.6 Wellhead pressure, MPa 1.22e5.18
Perforation thickness, m 25.3e134.6 Casing pressure, MPa 0.61e5.23
Mudstone content, % 7.11e68.04 Pressure gradient, MPa/m 0.86e1.10
Crude oil viscosity, mPa$s 61.14e231.10 Choke size, mm 10.07e18.14
Water saturation, % 1.97e30 Thickness measurement, m 34.6e343.5
Pressure drawdown, MPa 2.01e8.04
Appendix C. Comparison of similarity algorithms
Table C1
Comparison of similarity algorithms.

Similarity
algorithm

Algorithm principle Advantag

Fuzzy matter-
element

First, the matter-element model is established. Then the
results of the expert scoring method to determine the
weight of each factor to obtain a fuzzy matter element
matrix. Finally, the fuzzy evaluation matrix and the weight
vector of factors are calculated and normalized to obtain
the comprehensive results of the fuzzy evaluation.

The math
to master
and multi

Comprehensive
evaluation

Expert
scoring

Firstly, the factor set and evaluation set of the
evaluated object are determined. Then the
weights and their membership vectors
calculated by expert scoring method, analytic
hierarchy process, and principal component
analysis are used to obtain the evaluation

In the abs
and raw d
made wit

Analytic
hierarchy
process

This algor
data and t

2566
es Disadvantages

ematical model is simple and easy
. It has a good effect on multi-factor
-level complex problems.

It cannot solve the problem of evaluation
information repetition caused by the
correlation between evaluation metrics. Since
the determination of the weight of each factor
is subjective, the subjective judgment of
people is widely used in the evaluation
process.

ence of sufficient statistical data
ata, quantitative evaluation can be
h simple and intuitive features.

It has the characteristics of strong subjective
factors and insufficient explanatory power.

ithm requires a small amount of
akes a very short time for decision-

It is subjective to use AHP to make decisions.
When there are many factors and large-scale



Table C1 (continued )

Similarity
algorithm

Algorithm principle Advantages Disadvantages

matrix. Finally, the evaluation matrix and the
weight vector of the factors are calculated and
normalized to get the comprehensive
evaluation results.

making. The decision-making process is
highly organized and scientific.

evaluation problems, the model is prone to
problems.

Principal
component
analysis

It can deeply analyze the essence, influencing
factors, and internal relations of complex
decision problems, and provide a simple
decision method for complex decision
problems with multi-objective, multi-
criteria, and unstructured characteristics.

It is divided into qualitative analysis and
quantitative analysis. The method of
qualitative evaluation efficiency is less
subjective, and the evaluation results are
accidental.

Cosine
similarity

The chord angle of two vectors in vector space is used to
measure the difference between two individuals. This
method focuses on the difference between the two vectors
in the direction, rather than the distance or length.

It can offset the high-dimensional problem of
Euclidean distance.

It ignores the size of vectors, only considers
their directions, and doesn't consider the scale
differences between different parameters.

Euclidean
distance

The most common measure of distance is the absolute
distance between points in a multidimensional space.

It is intuitive, easy to implement, and can
reflect the absolute difference of individual
numerical characteristics.

The calculated distance may be skewed
according to the unit of elements. With the
increase of data dimension, the use of
Euclidean distance is smaller.
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Appendix D. Calculation formula of correlation algorithm
Table D1
Calculation formula of correlation algorithm.

Correlation
algorithm

Calculation formula Symbolic meaning of the formula

Pearson correlation
coefficient

r ¼ Pnsamples

i¼1 ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnsamples

i¼1 ðXi � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnsamples

i¼1 ðYi � YÞ2
q

r is the correlation coefficient, Xi represents the observed value of variable X at point i, Yi represents the
observed value of variable Y at point i, X represents the average number of X samples, and Y represents the
average number of Y samples.

Mean decrease
accuracy (MDI) Errorstd ¼

���ypred � yobs
���

yobs

ypred represents the predicted value of the random forest model established by using the selected M
parameters, yobs represents the observed value, and Errorstd represents the prediction error value of the
random model.

MDIi ¼ jErrori � Errorstdj
Errorstd

MDIi represents the predicted value of the random forest model established by removing one characteristic
parameter and using the remainingM�1 parameters, and Errori represents the random forest prediction error
with one characteristic parameter removed.
Appendix E. Comparison of six machine algorithms
Table E1
Comparison of six machine algorithms.

Productivity
prediction
model

Algorithm principle Advantages Faults

LR A method to study the linear relationship between
a dependent variable Y and multiple independent
variables X.

There is no need to normalize the data, and the
result is the original data, so there is no dimension
problem.

It has high time complexity. When the number of
samples increases, the computing time will
enhance.

RF Multiple decision trees are constructed. When a
sample needs to be predicted, the prediction
results of each tree in the forest for the sample are
counted, and then the result is selected from these
prediction results by voting.

Training can be highly parallelized, which has
advantages for large sample training speed in the
era of big data.When the sample feature dimension
is high, the model can still be trained efficiently.
The trained model has a small variance and strong
generalization ability.

RF model is prone to overfitting on some noisy
sample collection.

SVR An interval band is made on both sides of the linear
function, and the loss is not calculated for all
samples falling into the interval band. Only outside
the interval band, the loss function is included.

The algorithm is suitable for small sample data
with low computational complexity. It can solve
high dimensional problems and overcome the

The model is sensitive to the selection of
parameters and kernel functions.

(continued on next page)
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Table E1 (continued )

Productivity
prediction
model

Algorithm principle Advantages Faults

Then the model is optimized by minimizing the
width and total loss of the interval.

defects of slow convergence and local minima of
neural networks.

BP The learning process consists of two processes:
signal forward propagation and error
backpropagation. In forward propagation, the input
sample is introduced from the input layer and
processed layer by layer by layer to the output
layer. If the actual output of the output layer is not
consistent with the expected output, the reverse
propagation stage of the steering error. The
backpropagation of error is to back-transmit the
output error layer by layer to the input layer in
some form through the hidden layer, and allocate
the error to all the units of each layer, to obtain the
error signal of each unit. This error signal is used as
the basis for correcting the weight of each unit.

The model has an extremely strong adaptive
function for many non-structural and inaccurate
laws and has the characteristics of information
memory, autonomous learning, knowledge
reasoning, and optimization calculation. The model
has self-learning and adaptive functions and has
certain generalization abilities.

The algorithm is complex, and the network
structure is difficult to determine. It is easy to fall
into local minima, and the learning speed is very
slow. The possibility of network training failure is
large.

XGBoost In the training process, multiple classifiers are
learned by changing the weights of training
samples, and the optimal classifier is finally
obtained. After each round of training, the weights
of the correctly classified training samples are
reduced, and the weights of the wrongly classified
training samples are increased. After multiple
trainings, some wrongly classified training samples
will get more attention, while the weights of the
correct training samples are close to 0, andmultiple
simple classifiers are obtained. By combining these
classifiers, a final prediction model is obtained.

The model is more accurate and flexible, and the
regularization reduces the variance of the model. It
helps prevent overfitting, reduces computation,
processes missing values, and supports parallelism.

The data set needs to be traversed in the process of
node splitting, so the calculation is large. The
spatial complexity of the pre-sorting process is too
high. The algorithm consumes large space and time
and is not friendly with cache optimization.

LightGBM Based on the histogram decision tree algorithm, the
LightGBM algorithm is further optimized. The
algorithm uses the leaf-wise algorithm with depth
limitation, uses GOSS (gradient-based one-side
sampling, gradient-based unilateral sampling) to
sample the samples to calculate the gradient, and
uses EFB (exclusive feature bundling, mutually
exclusive feature binding) to bind some features
together to reduce the dimension of features, so
that the consumption of finding the best
segmentation point is reduced.

The model has high-efficiency parallel training and
has faster training speed, lower memory
consumption, better accuracy, and support for
distributed features. It can quickly process massive
data.

It is based on a deviation algorithm, so it is more
sensitive to noise. It may grow deeper decision
trees, resulting in overfitting.
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Appendix F. Regression model evaluation index
Table F1
Regression model evaluation index.

Evaluation index Formula Evaluation criteria

R2 score
R2 ¼ 1�

Pnsamples

i¼1 ðyture � ypredÞ2Pnsamples

i¼1 ðyture � ytureÞ2
The results are between 0 and 1. The larger the value is, the better the effect is.

Explained variance score
EV ¼ 1� Varfyture � ypredg

Varfytureg
The result is between 0 and 1. The smaller the value is, the worse the result is.

Mean squared error
MSE ¼ 1

nsamples

Xnsamples

i¼1
ðyture � ypredÞ2

The smaller the calculation result, the smaller the error.

Mean absolute error
MAE ¼ 1

nsamples

Xnsamples

i¼1

���yture � ypred
��� The larger the calculation results, the greater the error.

Notes: yture is the actual output value (observed value) for data y, yture is the average actual output value for data y, and ypred is the corresponding predicted value.

Table G2
Random forest regression algorithm parameters.

Parameter Value
Appendix G. Different regression algorithm model
parameters
Table G1
Linear regression algorithm parameters.

Parameter Value

Proportion of testing sets 0.2
Proportion of training sets 0.8
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Proportion of testing sets 0.2
Number of weak learning machines 6
Number of processors available �1
Random state 30
Maximum number of features to consider when dividing Automation
Minimum number of samples for leaf nodes 5



Table G3
Support vector regression algorithm parameters.

Parameter Value

Proportion of testing sets 0.2
Kernel function selection Linear kernel

Table G5
Light gradient boosting machine algorithm parameters.

Parameter Value

Proportion of testing sets 0.2
Model upgrade method Gbdt
The largest leaf of the base learner 10
Minimum data required for leaves 30
Learning tasks and learning objectives Regressionmodel
Maximum depth of base learner tree 3
Learning rate 0.05
Random selection of feature proportion in iteration 0.8
Sample sampling ratio of guided clustering algorithm 105
Random selection of partial sample proportion in each

iteration
0.8

Random number seeds of guided aggregation algorithm 11
Evaluation index Mean square

error
L1 regularization 0.1
Whether to output intermediate information �1

Table G6
Back propagation algorithm parameters.

Parameter Value

Proportion of testing sets 0.2
Proportion of training sets 0.8
Number of iterations 200

Table G4
Extreme gradient boosting algorithm parameters.

Parameter Value

Proportion of testing sets 0.2
Classifier Gbtree
Learning rate 0.1
Maximum delta steps 0.1
Maximum depth of tree 6
The largest leaf node 3
L2 regularized weights 1
Evaluation indicators Rmse

Random tree seed 0
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