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ABSTRACT

The similarities and differences in inherent mechanism and characteristic frequency between the one-
dimensional (1D) poroelastic model and the layered White model were investigated. This investiga-
tion was conducted under the assumption that the rock was homogenous and isotropic at the meso-
scopic scale. For the inherent mechanism, both models resulted from quasi-static flow in a slow P-wave
diffusion mode, and the differences between them originated from saturated fluids and boundary con-
ditions. On the other hand, for the characteristic frequencies of the models, the characteristic frequency
of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it
were misused and then compared to that of the layered White model. Both of them moved towards
higher frequencies with increasing permeability and decreasing viscosity and diffusion length. The dif-
ferences between them were due to the diffusion length. The diffusion length for the 1D poroelastic
model was determined by the sample length, whereas that for the layered White model was determined
by the length of the representative elementary volume (REV). Subsequently, a numerical example was
presented to demonstrate the similarities and differences between the models. Finally, published
experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.
The prediction of the combined model was in good agreement with the experimental data, thereby
validating the effectiveness of the 1D poroelastic model. Furthermore, the modified characteristic fre-
quency in our study was much closer to the experimental data than the previous prediction, validating
the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model. The
investigation provided insight into the internal relationship between wave-induced fluid flow (WIFF)
models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic
modulus dispersion and attenuation caused by the WIFF at different scales.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

is considered to be the main cause of the dispersion and attenua-
tion in fluid-saturated rocks (e.g., Gurevich et al., 2010). WIFF refers

Seismic wave propagating through shallow earth often un-
dergoes significant dispersion and attenuation caused by intrinsic
physical mechanisms in addition to scattering (e.g., Miiller et al,,
2010; Gurevich and Carcione, 2022; Chen et al., 2022, 2023a).
These physical mechanisms are always influenced by the saturated
fluid, the temperature and tectonic stress of the medium in which
the wave propagates (e.g., Carcione et al., 2020; Chen et al., 2023b;
Zong et al., 2023), and wave-induced fluid flow (WIFF) mechanism
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to the fluid flow induced by the passing wave that creates pressure
gradients within the fluid phase and is accompanied by internal
friction until the fluid pressure get equilibrated (Miiller et al., 2010).
The WIFF can be categorized into macroscopic (global), mesoscopic
and microscopic (local) flows in terms of the scale on which it oc-
curs (Pride et al., 2004). Macroscopic flow occurs on a wavelength
scale whereas microscopic flow occurs on a grain contact/pore size
scale. Meanwhile, mesoscopic flow is supposed to take place on a
scale much smaller than the prevailing wavelength but sufficiently
larger than the typical pore size. All of them have been extensively
investigated by theoretical models (e.g., Biot, 1941, 19564, 1956b;
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White, 1975; White et al., 1975; Mavko and Jizba, 1991; Vogelaar
and Smeulders, 2007; Gurevich et al., 2009, 2010; Deng et al.,
2012; Ba et al., 2016; Pimienta et al., 2016; Song et al., 2016; Chen
et al., 2019; Sun et al.,, 2019; Tan et al., 2020; Zhao et al., 2022),
numerical modeling (e.g., Quintal et al., 2011, 2016; Tisato and
Quintal, 2013; Chen et al.,, 2018; He et al., 2023) and physical ex-
periments (e.g., Plona, 1980; Batzle et al., 2006; Subramaniyan et al.,
2015; Pimienta et al., 20154, 2015b; Mikhaltsevitch et al., 2016; Yin
et al., 2017; Ding et al., 2017; Chapman and Quintal, 2018; Li et al.,
2020; Sun et al., 2022).

In the theoretical models for macroscopic flow, one important
model is the one-dimensional (1D) poroelastic model, which is
obtained by analytically solving the fluid pressure diffusion at the
global scale. This model can govern the elastic modulus dispersion
and attenuation from the drained state to the undrained state (i.e.,
drained/undrained transition) for fully-saturated rock samples
(Pimienta et al., 2016). In the drained state, the pore fluid can flow
freely in or out of the sample, and the elastic properties of the
sample are similar to those under dry conditions. In the undrained
state, the pore fluid has no time to flow out of the sample, and the
pore pressure in the sample increases but remains isobaric. The
undrained properties can be accurately predicted using the Gass-
mann formula (Gassmann, 1951). On the other hand, the White
model is a mesoscopic WIFF model that is widely used to account
for the elastic modulus dispersion and attenuation for partially
saturated rock samples. The different fluids in the sample are
distributed in patches (i.e., patchy saturation). The model was
derived by extending the approach used by Gassmann and can be
classified into the spherical White model (three-dimensional, 3D),
which analyzes the response of gas pockets in a water-saturated
porous medium, and the layered White model (1D), which con-
siders the response of porous layers alternatively saturated with
gas and water (White, 1975; White et al., 1975). Deng et al. (2012)
rederived the layered White model based on Biot’s consolidation
equations (Biot, 1941) and obtained the same results as White et al.
(1975). At a later time, Chapman and Quintal (2018) numerically
modeled the patchy saturation in layers using the Biot’s consoli-
dation equations and the result showed exact consistence with the
prediction of the layered White model, validating Deng et al.
(2012)'s rederivation. Furthermore, Chapman and Quintal (2018)
and Cao et al. (2019) also numerically modeled the drained/un-
drained transition based on Biot’s consolidation equations,
respectively, and both of the numerical results were in good
agreement with the prediction of the 1D poroelastic model. The
numerical results show that these two representative WIFF models
at different scales (i.e., the 1D poroelastic model and the layered
White model) are related to Biot’s consolidation equations, sug-
gesting that they are similar to each other. However, similarities
between these two models have not yet been investigated. Do these
two models originate from the same physical mechanism? Are
there any differences between these two models?

To this end, we investigate the similarities and differences be-
tween these two representative WIFF models to reveal the internal
relationship between them, and better understand the underlying
mechanism and related modulus dispersion and attenuation. The
investigation is conducted under the assumption that the rock is
homogenous and isotropic at the mesoscopic scale. First, we briefly
introduce the models. Then, we theoretically analyze the similar-
ities and differences between them in terms of the inherent
mechanism and characteristic frequency. In following section, we
present a numerical example to demonstrate the similarities and
the differences between the models. Finally, we compared the 1D
poroelastic model with experimental data.
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2. Theoretical backgrounds
2.1. The 1D poroelastic model

Based on the linear isotropic poroelastic theory, Zimmerman
(2000) derived a partial derivative equation governing pore pres-
sure (Pp) in a fluid-saturated homogenous medium:

9Py KBy
ot na

V2P, (1)

where « is the rock permeability, B is the Skempton coefficient, Ky is
the drained bulk modulus, 7 is the pore fluid viscosity, « is the Biot

coefficient, and P is the confining pressure. The expressions for B
and « are (e.g., Zimmerman, 2000; Pimienta et al., 2016)

1 _ 1
K K

1

B= , (2)
Ky
a—l—n, (3)

where Ky is the grain bulk modulus, Kf is the pore fluid bulk
modulus, and ¢ is the rock’s porosity.

By assuming that the pore pressure P, varies only with the z-
axis, Pimienta et al. (2016) simplified Eq. (1) into a 1D case and
obtained a 1D poroelastic model in the bulk modulus. In this study,
we developed a 1D poroelastic model in terms of Young’s modulus.
In the 1D case, Eq. (1) can be simplified as follows:

oP, kBKy 8°Pp B P
ot nma  8Z2

30 (4)

For the drained/undrained transition, the pore fluid at both ends
of the sample is connected to the atmosphere (Fig. 1), with the
boundary condition of

Undrained Drained

(@

(b)

Fluid line

Fig. 1. Schematic of fluid-saturated rock sample with different states: (a) undrained
state, (b) drained state.
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Pp|,—0 =Ppl,— =0, (5)
where L is the length of the sample. )

With the time-harmonic confining pressure P. (=APe'!, AP is
very small and close to a nil value, and w is the angular frequency),
the solution to Eq. (4) is

and other parameters are

_ sinh(a(L - 2)) + sinh(az)

sinh(al) ©®

Py(z,t) :gAPei“" [1

awn

where the parameter a = (1+i), /55y
defined as before.

On the other hand, the axis strain is (Zimmerman, 2000)

P aby

€ax =

where Egq is the drained Young’s modulus.
Subsequently, we obtained Young’s modulus for the drained/
undrained transition at the local position of the sample by

P

€ax

(8)

The Young’s moduli and their corresponding attenuations at the
sample scale (global scale) and strain gauge scale can be obtained

by

P
By = ————, (9a)
%J eax(z,t)dz
0
Q= Im(Egl) /Re (Egl), (9b)
P
Esg = Z1+1 £ s (103)
%’J 83)((27 t)dZ
Z1
g = Im(Esg) / Re(Esg), (10b)

where Eg is the Young’s modulus at the global scale, legl is the
corresponding attenuation at the global scale, Esg is the Young’s
modulus at the strain gauge scale, Qg}sg is the corresponding
attenuation at the strain gauge scale, [ is the length of the strain
gauge, and z; is the starting point at which the strain gauge is
bonded to the sample (Fig. 1).

2.2. The layered White model

White et al. (1975) initially developed a mesoscopic WIFF model
to explain the elastic modulus dispersion and attenuation at
seismic frequencies for partially saturated rocks (i.e., the layered
White model, Appendix A). In the model, the partially saturated
rock was assumed to be composed of porous layers alternatively
saturated with gas and water (Fig. 2). Then, Deng et al. (2012)
rederived the model using Biot’s consolidation equations (Biot,
1941) (also called Biot’s quasi-static equations of consolidation,
Appendix B) and obtained the same results.

In the layered White model (Fig. 2), for each layer n (n =1, 2) in
the representative elementary volume (REV), the variation in the
fluid pressure along the z-axis was derived using Eq. (B2-B4):
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Fig. 2. Schematic of the layered White model: porous layers alternatively saturated
with different fluids (gas and water). The porous layers saturated with different fluids
in the black box represents the representative elementary volume (REV).

oPs 62Pf7 0022
E_Daﬂ__ or ’ an
D:%, (12)

where D is the diffusivity constant and the definition of parameters
1, and Kg can be found in Appendix A.

To solve Eq. (11), the boundary conditions were (Deng et al.,
2012)

K an K anz

ﬁ a—;\z:—hl/z = 5z =2 =0; (13)
K an] _K anz

7 0z l.—o+ =3 oz lz—0-> (14)
Pe1],_0+ =Pgal,0- (15)

where Pr; and Pp, are the fluid pressures in layers 1 and 2,
respectively.

With the boundary conditions, Deng et al. (2012) obtained the
complex P-wave modulus, which is the same as that in Eq. (A1).
Furthermore, they derived analytical expressions for the fluid
pressure, relative flow velocity of the pore fluid and frame
displacement, providing more physical insights into the energy-
loss mechanism associated with mesoscopic flow.

3. Similarities and differences in the inherent mechanism
and characteristic frequency

3.1. The inherent mechanism

For the Biot consolidation equations (Appendix B), taking the
divergence of both sides of Eq. (B2), we obtain

Tor
M ot

Ogii _ K _p
o =y VP (16)

In addition, with the constitutive Eq. (B3), we can get
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0ii = (2pq + 3Aq)eii — 3Py, (17)
Taking Eq. (17) into Eq. (16) gives

1 o®\oP a 0% «k_,
<M+E>W+E v (18)

Because P = 9, so Eq. (18) becomes

1 o®\ 0P a 9P Kk_,
() Tt =P (19)
With the definition of «, M, B, we can transform Eq. (19) into

aniKBKd 2 6Pc
Bt pa v B (20)

Comparing Eqgs. (1) and (20), it appears that the only difference
between the two models is the sign of the second term on the right-
hand side of the equations. However, the pore pressure in
Zimmerman (2000) is negative for the fluid pressure in Biot (1941)
and is the same as the fluid tension in Geertsma (1957) and White
et al. (1975), so Eq. (1) becomes

(21a)

o) e )

B—¢
+ at’

or

an KBKd 2 aPc
ﬁ_niav Pf—BW, (21b)
which is exactly equal to Eq. (20), indicating that both models are
quasi-static models formed from the same quasi-static flow owing
to fluid pressure diffusion. Furthermore, Chandler and Johnson
(1981) demonstrated that the quasi-static flow owing to fluid
pressure diffusion in Biot’s consolidation equations is equivalent to
Biot’s slow P-wave. Therefore, both models exhibit a slow P-wave
diffusion mode.

The differences between the two models are (1) the saturated
fluid: there is one single fluid in the 1D poroelastic model, whereas
there are two immiscible fluids in the layered White model, and (2)
the boundary condition: the fluid can flow out at the ends of the
sample in the 1D poroelastic model (i.e., Eq. (5)), whereas the fluid
cannot flow out at the ends of the REV in the layered White model
(i.e., Eq. (13)).

3.2. The characteristic frequency

Pimienta et al. (2015a) determined the characteristic frequency,
that is, at which the attenuation peak appears, for the 1D poroe-
lastic model (i.e., the drained/undrained transition) following
Cleary (1978). The characteristic frequency fc is (Pimienta et al.,
2015a)

d

where L/2 is the diffusion length, and d is the hydraulic diffusivity
and defined by (Pimienta et al., 2015a)

fe= (22)

K
d=Ky—, 23
dy (23)
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Then, taking Eq. (23) into Eq. (22), they obtained (Pimienta et al.,
2015a)

4Ky
=T

fe (24)

However, in Cleary (1978), the hydraulic diffusivity is defined as
K
d=Lm—, (25)
™

where the parameter Ly, is an appropriate modulus of the fluid-
saturated rock (Cleary, 1978). With the references of Miiller et al.
(2010) and Carcione (2015, section 7.13), for a diffusive wave, the
parameter Ly, is determined by

Lm=Kg, (26)

not the dry frame bulk modulus Ky. The parameter Kg is defined in
Eq. (A9). Then, the hydraulic diffusivity d becomes the diffusivity
constant D in Egs. (11) and (12). Furthermore, the frequency related
to the attenuation peak for the slow P-wave is (Brajanovski et al.,
2006)

2d
2 I’
L
9

where w: = 27fc is an angular frequency. Thus, the characteristic
frequency of the 1D poroelastic model is modified to be

We = (27)

_ 4kKg

fe= s (28)

Meanwhile, the characteristic frequency of the layered White
model is (Dutta and Seriff, 1979)

‘White __
A =

AkKg . 29)

TC’I’)(h] + h2

where (hq1+h;)/2 is the total length of the REV in Fig. 2, which is also
the diffusion length.

As both models are quasi-static models, Egs. (28) and (29) show
that the characteristic frequencies for the models are similar. Both
move towards higher frequencies with increasing permeability and
decreasing viscosity and diffusion length. However, the diffusion
length for the 1D poroelastic model is determined by the length of
the sample whereas that for the layered White model is determined
by the length of the REV.

4. Numerical example

A numerical example was conducted to exhibit the similarities
and differences in the inherent mechanism and characteristic fre-
quency between the two models. As the drained/undrained tran-
sition is mainly captured by the dynamic stress-strain method in
the laboratory, which always measures Young’s modulus and its
attenuation, we compared Young’s modulus and its attenuation
based on the two models. For the 1D poroelastic model, Young’s
modulus and its attenuation at the global and strain gauge scales
are determined by Eqgs. (9) and (10). For the layered White model,
the Young’s modulus and its attenuation is computed by
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3ugP — 4u?
Ewnite = Re <1d3_7’udd ; (30a)
_ 3ugP — 4u?
Q' =Im (giﬂdd Ewhite- (30b)

The physical parameters used in the numerical example are
listed in Table 1. For the 1D poroelastic model, the sample is fully
water-saturated with an open boundary condition, and Young’s
modulus and its attenuation at the global scale are computed. For
the layered White model, the water saturation is about 99.9%,
which is close to full saturation. The lengths of the REV (hq+hy)/2
are 1.001L, 0.5005L and 0.250025L, respectively. The numerical
results are shown in Fig. 3. When the diffusion lengths are
approximately equal for the two models, Young’s modulus and its
attenuation are similar (black and red solid lines in Fig. 3). The
insignificant difference between the two models is due to the
different saturated fluids and boundary conditions. When the
diffusion length of the layered White model becomes larger or
smaller than that of the 1D poroelastic model, Young’s modulus and
its attenuation shift to lower or higher frequencies (red dotted
lines) compared to that of the 1D poroelastic model.

In addition, when the diffusion lengths are approximately equal
for the two models, the characteristic frequencies are about 25.8 Hz
(the 1D poroelastic model) and 26.7 Hz (the layered White model),
respectively, and are mostly equivalent to each other. When the
diffusion length for the layered White model becomes smaller or
larger, the corresponding frequencies are about 106.9 Hz and
6.7 Hz, respectively, which are higher or lower than that for the 1D
poroelastic model. Moreover, when the diffusion lengths for both
models are approximately equal, the characteristic frequency of the
1D poroelastic model predicted by Pimienta et al. (2015a) and our
modified method are about 71.4 Hz and 25.1 Hz, respectively,
showing that our modified characteristic frequency is closer to that
of the numerical data.

5. Experimental data comparison

Pimienta et al. (2015a, 2015b) developed a new experimental
setup to investigate the elastic modulus dispersion and attenuation
at seismic frequencies when waves pass. For one sample that was
fully saturated with water/glycerin, Young’s modulus increased
dramatically with increasing frequency, and two attenuation peaks
appeared in the measured frequency range at an effective pressure

Table 1

The physical parameters used in the numerical example.
Input parameters Value
The bulk modulus of rock matrix Kg 37 GPa
The drained Young's modulus Eq 24 GPa
The drained Poisson’s ratio vq 0.15
The porosity ¢ 0.1
The permeability « 10 mD
The length of the sample L 0.08 m
The bulk modulus of water Kyater 2.25 GPa
The viscosity of water Nwater 0.001 Pa-s
The bulk modulus of gas Kgas 1 kPa
The viscosity of gas ngas le-5Pa-s
Confining oscillation amplitude AP 0.2 MPa
The thickness of layer 1 hy (gas) 2L/1000, L/1000, L/2/1000
The thickness of layer 2 h; (water) 2L, L L2
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of 1 MPa (Fig. 4). They attributed the first attenuation peak at lower
frequencies to the drained/undrained transition, which is caused by
macroscopic flow, and the other peak at higher frequencies to the
undrained/unrelaxed transition, which is caused by microscopic
flow (i.e., local/squirt flow). In the unrelaxed state, the pore fluid is
unable to flow out of the sample, the pore pressure in the sample
continue to increase from that of the undrained state, and it is no
longer isobaric. They then interpreted the modulus dispersion and
attenuation using the Zener viscoelastic model (Appendix C)
combined with the Gassmann formula. The drained and unrelaxed
Young’s moduli are about 34 GPa and 65 GPa, respectively. The
undrained Young’s modulus was obtained by using the Gassmann
formula. The characteristic frequencies for the macroscopic and
microscopic flows are about 10 Hz and 1000 Hz, respectively
(Pimienta et al., 2015b).

This interpretation phenomenally shows the frequency depen-
dence of the modulus and its attenuation; however, it cannot reveal
the underlying mechanism that controls the frequency depen-
dence. Here, we use the 1D poroelastic model to interpret the first
attenuation peak and its Young’s modulus dispersion (at the strain
gauge scale). The second attenuation peak and its Young’s modulus
dispersion cannot be interpreted using the classical squirt flow
model (e.g., Gurevich et al., 2010) because of the lack of an
important input parameter (microcrack’s porosity). We here apply
the Cole-Cole viscoelastic model (Appendix D) to explain the sec-
ond attenuation peak and its Young’s modulus dispersion (with the
characteristic frequency of about 1000 Hz), which can cover the
wide distribution in the aspect ratio of the rock’s microcracks. The
input parameters used in the 1D poroelastic model and the Cole-
Cole model are listed in Table 2.

Fig. 4 shows the modeling results of the 1D poroelastic model
and Cole-Cole model. In Fig. 4, for the first attenuation peak and its
Young’s modulus dispersion, the modeling result of the 1D poroe-
lastic model shows the similar frequency-dependence trend with
the measured data, and there is a slight discrepancy between the
modeling result and the measured data. On the other hand, for the
second attenuation and its Young's modulus dispersion, the
modeling result of the Cole-Cole model is consistent with the
measured data, suggesting that the aspect ratio of microcracks in
natural rocks really has a wide distribution, not a single value. To
explain the discrepancy between the modeling results and the
measured data, especially the first attenuation peak, we combined
the 1D poroelastic model and the Cole-Cole model to reinterpret
the measured data. With Eqgs. (10), (D1) and (D2), the real and
imaginary parts of the complex modulus in the combined model
are

B 1 sinh(1 — B)x
Ere =Ey — 3 (Eu - Re(Esg) ) 1- cosh(1 — B)x + sin(x/2) |’
(31a)
1(Ey — E¢)cos(Bm/2)
Eyp = cozsh(l — e sin (k2] +Im(Esg), (31b)

where Eg is the undrained Young's modulus computed by the
Gassmann formula and the Young’s modulus Esg is obtained by Eq.
(10a). The corresponding attenuation is obtained by Eq. (D3). In
Fig. 4, the modeling result of the combined model shows excellent
agreement with the measured data, suggesting that the discrep-
ancy between the modeling result of the 1D poroelastic model and
the measured data is caused by the microscopic squirt flow with
wide aspect ratio distribution and that the 1D poroelastic model
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Fig. 3. Numerical results of the similarities and differences in the inherent mechanism and characteristic frequency between the two models.
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Fig. 4. Experimental data of Young’s modulus and its attenuation from Pimienta et al. (2015b), and the modelling results of the 1D poroelastic model, Cole-Cole model, and their

combined model.

Table 2

The input parameters used in the 1D poroelastic model and Cole-Cole model.
Input parameters Value
The bulk modulus of rock matrix Ko 37 GPa
The drained bulk modulus Ky 14 GPa
The drained Young’s modulus Eq 34 GPa
The unrelaxed Young's modulus E, 65 GPa
The porosity ¢ 0.072
The permeability « 4 mD
The length of the sample L 0.08 m
The bulk modulus of water Kyater 2.25 GPa
The viscosity of water Nwater 0.00089 Pa-s
The viscosity of glycerin ngiycerin 0.35Pa-s
Confining oscillation amplitude AP 0.2 MPa
The starting point the strain gauge bonded on the sample z; 0.037 m
The length of strain gauge [ 0.006 m
8 0.44

can predict the drained/undrained transition well.

On the other hand, in Fig. 4, the characteristic frequency of the

drained/undrained transition in the measured data is about 20 Hz.
Using Pimienta et al. (2015) 's method (i.e., Eq. (24)) and our
modified method (i.e., Eq. (28)), the characteristic frequencies are
predicted to be 39.3 Hz and 15.2 Hz, respectively. Compared with
the measured characteristic frequency, our modified characteristic

2388

frequency is much closer to the measured data, validating the
effectiveness of the modification of the characteristic frequency of
the 1D poroelastic model.

6. Conclusions

This study investigated the similarities and differences in the
inherent mechanism and characteristic frequency between the 1D
poroelastic model and the layered White model. Regarding the
inherent mechanism, both models are derived from quasi-static
flow due to fluid pressure diffusion and exhibits a slow P-wave
diffusion mode. However, they have different saturated fluids and
boundary conditions. On the other hand, for the characteristic
frequency, the characteristic frequency of the 1D poroelastic model
was first modified because the elastic constant Ly, and formula for
calculating it were misused in Pimienta et al. (2015a), and then the
characteristic frequencies for the models were compared. Both shift
toward higher frequencies with increasing permeability and
decreasing viscosity and diffusion length. The length of the sample
determines the diffusion length for the 1D poroelastic model,
whereas the length of the REV determines the diffusion length for
the layered White model. Then, a numerical example was con-
ducted to demonstrate the similarities and differences between the
two models. The numerical results show that: (1) Young’s modulus
and its attenuation are similar when the diffusion lengths are
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Appendix A. The layered White model

In the layered White model, the complex P-wave modulus and its corresponding attenuation of the REV (Fig. 2) are computed by (White
et al., 1975)

e (Ala)
U+ Gz =2y )
QﬁlzﬂnuPL/ReUQ, (A1b)
where
$1 $2

Py— ——+—J, A2

0 (PGl Pg; (A2)
with s, = hp/(h1+h2), n =1, 2, and

4

Pen=Kon + 3t (A3)

where K¢, is the undrained bulk modulus of the porous layer n (1, 2) computed by the Gassmann formula (Gassmann, 1951), and g is the
drained shear modulus of the REV. The undrained bulk modulus Kc, is obtained by

1 1 1 1
¢Qm_m>+m_m
(A4)

Ken= ’
e (L _1) 1 (1 _ 1
G\ K K K \K K

where Kg, (n = 1, 2) represents the bulk moduli of water and gas (or two immiscible fluids), respectively; and other parameters are defined as
before.
The parameter r, representing the ratio of fast P-wave fluid tension to total normal stress in the layer n (n = 1, 2) is given by

70[Mn
PGn ’

I'n

with
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1 a—¢ o
TR e (A6)

The parameter Z, representing the impedance related to the slow P-wave in the layer n is derived as

_ M coth(Knhn
anxkn coth( 5 ), (A7)
where

_iwy
ko= [ (A8)
Kep = L4 (h9)

PGH
4

Pa=Kq + 3pa; (A10)

where « is the permeability of the REV (rock).
Appendix B. Biot consolidation equations

The Biot’s consolidation equations are given by (Biot, 1941; Quintal et al., 2011; Deng et al., 2012; Chapman and Quintal, 2018; He et al.,
2023)

V-0=0, (B1)
ou ow K
¢(E—E) :5VPf7 (B2)

where ¢ is the total stress tensor with components gy, i, j = X, ¥, z; u is the vector of solid displacement with its components u;; w is the vector
of pore fluid displacement with its components w;; and Pris the fluid pressure. The expressions for ¢ and P (i.e., constitutive equations) are
given by (e.g., Quintal et al., 2011; Deng et al., 2012)

gij = 2,ud£,~j + Adgiiéij - ané,-j, (B3)

Pf :MC — OéM&‘ii, (B4)
1 fou; oy

&j =35 <6xj+6)<i>’ (B5)

where pq and A4 are the drained shear modulus and Lamé parameter, respectively; d;; is the Kronecker delta; {=¢V- (u — w) represents the
volume of fluid which enters the pores of a unit volume of bulk material (Biot and Willis, 1957); the definition of parameter M can be found
in Appendix A; and summation over repeated indices is implied.

Appendix C. Zener model

The Zener model, which combines a spring in series with a parallel assemblage of a spring and dashpot (Mavko et al., 1998), is simple and
straightforward. The frequency-dependent modulus and corresponding attenuation in the model are expressed as

My — M;

Me=My ——, C1
re u l + (wTO)z ( )
1_Ap_ Y70 (C2)

Qu 1+ (wr9)?’

AM:M, (C3)

MuM;

where M, is the unrelaxed modulus, M; is the relaxed/undrained modulus, 7¢ is relaxation time and given by 79 = 1/(27tf.), and f; is the
characteristic frequency.
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Appendix D. Cole-Cole model
In Zener model (i.e., Appendix C), the relaxation time is a single value. When the relaxation time changes from a single value to normally

distributed values, which corresponds to different aspect ratios of soft pores/microcracks in natural rocks, the model becomes more general
and is called the Cole-Cole model (Cole and Cole, 1941). The real and imaginary parts of the complex modulus in the model are

B 1 sinh(1 — B)x
Me = My +§(Mr—Mu) l_cosh(l —Bx+sin@n2) |’ (D1)
1(My — My)cos(Br/2) (D2)

im = cosh(1 — B)x + sin(fm/2)’

where the moduli M, and M are defined as Appendix C, x is given by x = In(w7g), and § determines the width of the normal distribution of
the relaxation time. When (¢ = 0, the relaxation time becomes a single value and the Cole-Cole model degenerates into the Zener model.

The corresponding attenuation Ql(,f in the Cole-Cole model is obtained by

-1 _ Mim D3
A= My (D3)
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