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a b s t r a c t

Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal
development scheme have been widely used to solve reservoir production optimization problems.
However, existing research suggests that the effectiveness of a surrogate model can vary depending on
the complexity of the design problem. A surrogate model that has demonstrated success in one scenario
may not perform as well in others. In the absence of prior knowledge, finding a promising surrogate
model that performs well for an unknown reservoir is challenging. Moreover, the optimization process
often relies on a single evolutionary algorithm, which can yield varying results across different cases. To
address these limitations, this paper introduces a novel approach called the multi-surrogate framework
with an adaptive selection mechanism (MSFASM) to tackle production optimization problems. MSFASM
consists of two stages. In the first stage, a reduced-dimensional broad learning system (BLS) is used to
adaptively select the evolutionary algorithm with the best performance during the current optimization
period. In the second stage, the multi-objective algorithm, non-dominated sorting genetic algorithm II
(NSGA-II), is used as an optimizer to find a set of Pareto solutions with good performance on multiple
surrogate models. A novel optimal point criterion is utilized in this stage to select the Pareto solutions,
thereby obtaining the desired development schemes without increasing the computational load of the
numerical simulator. The two stages are combined using sequential transfer learning. From the two most
important perspectives of an evolutionary algorithm and a surrogate model, the proposed method im-
proves adaptability to optimization problems of various reservoir types. To verify the effectiveness of the
proposed method, four 100-dimensional benchmark functions and two reservoir models are tested, and
the results are compared with those obtained by six other surrogate-model-based methods. The results
demonstrate that our approach can obtain the maximum net present value (NPV) of the target pro-
duction optimization problems.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the decrease in the number of newly discovered oil fields
and the output of currently exploited oil fields, research is now
focused on how to utilize existing oil fields to maximize the
ang).
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development of reservoir potential. Production optimization
(Oliveira and Reynolds, 2013; Isebor and Durlofsky, 2014; Gu et al.,
2021; An et al., 2022; Xue et al., 2022; Zhong et al., 2022) is a crucial
component of closed-loop reservoir management that can signifi-
cantly increase production efficiency (Foss and Jenson, 2011; Hou
et al., 2015; Mirzaei-Paiaman et al., 2021). Production optimiza-
tion aims to find the optimal development scheme that can fully
develop the reservoir potential and achieve the maximum
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Nomenclature

DB Database
db The set of samples to train the surrogate models
P Excellent parent population in the database
C Offspring population after evolutionary operator

update
BLS Broad learning system
NSGA-II Non-dominated sorting genetic algorithm II
NPV Net present value
SAEAs Surrogate-assisted evolutionary algorithms
DE Differential evolution
GWO Grey wolf optimizer
PSO Particle swarm optimization
PRG Polynomial regression model
RBF Radial basis function
MSBN Multi-surrogate stage based on NSGA-II
ASSSME Adaptive selection stage of a single surrogate with

the multi-evolutionary algorithms
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economic benefit (usually measured in NPV). The popular ap-
proaches used for reservoir production optimization can be roughly
split into two groups: gradient-based methods and gradient-free
methods. The gradient-based methods use the adjoint strategy
(Forouzanfar et al., 2013; Zhang et al., 2014; Volkov and Bellout,
2017) to determine the gradient of the objective function. These
methods have high computational efficiency, but obtaining infor-
mation about the gradient is challenging, and it is prone to reaching
the local optimal solutions during the optimization process.
Approximate gradient methods (Chen et al., 2017; Chen and Xu,
2019) and evolutionary algorithms are two categories of gradient-
free techniques. Among them, evolutionary algorithms such as
differential evolution (DE) (Das and Suganthan, 2010), particle
swarm optimization (PSO) (Kennedy and Eberhart, 1995), and the
grey wolf optimizer (GWO) (Mirjalili et al., 2014) have been popu-
larly applied in production optimization in recent years.

Most of the evolutionary algorithms have efficient global
searchability, allowing them to generate numerous new develop-
ment schemes to ensure solution diversity. If all of these schemes
are evaluated by the numerical simulator, the computational pro-
cess is quite time-consuming, resulting in the so-called expensive
production optimization problems (Chen et al., 2020a). To address
this issue, different kinds of approaches using surrogate models
have been developed in the evaluation process (Jin et al., 2019;
Chen et al., 2020b; ZhaoM. et al., 2020a; ZhaoM. et al., 2020b; Zhao
X. et al., 2020; Ma et al., 2022a; Ma et al., 2022b). The production
regimes are fed into the surrogate models to quickly produce
reservoir prediction results, such as NPV, without implementing
the complex simulations. Surrogate models are mainly categorized
into physics-based (Zhao et al., 2016; Ren et al., 2019; Wang et al.,
2021) and data-driven-based cases. Data-driven surrogate models
mainly include the Kriging model (Güyagüler et al., 2002), the
radial basis function (Luo et al., 2011), polynomial regression
(Ostertagov�a, 2012), and so on. This paper focuses on data-driven
surrogate models.

Instead of an actual numerical simulator, a surrogate model can
save time. However, in practice, the optimization procedure uses
just one surrogate model, which may not be applicable to all
reservoir optimization problems as it lacks physical significance
(refer to Section 3.1). The objective of this paper is to enhance
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adaptability to different scenarios by incorporating multiple sur-
rogate models, thus addressing the limitations of using a single
surrogate model. The best solution cannot be obtained by simply
superimposing multiple surrogate models without considering
their relationship (Zerpa et al., 2005). Thus, a more appropriate
approach is to use a multi-objective algorithm with different sur-
rogate models as the objective functions to obtain Pareto solutions
suitable for them (Dong et al., 2021). However, if the multi-
objective algorithm's input population is poor, getting the optimal
development scheme will be challenging during the subsequent
optimization procedure. Moreover, there is not only one Pareto
solution, and it's worth considering how to choose what we need.
It's also crucial to note that the ability of evolutionary algorithms to
adapt to different problems can vary (refer to Section 3.1).
Furthermore, production optimization is a continuous process, and
the performance of an evolutionary algorithm differs between the
early and late stages of optimization (Li et al., 2022). In other words,
different algorithms possess varying exploration and exploitation
capabilities. By employing multiple evolutionary algorithms in
conjunction with various surrogate models, adaptability to a wide
range of issues can be enhanced.

This paper suggests a multi-surrogate framework with an
adaptive selection mechanism (MSFASM) to address the above-
mentioned issues. Two stages make up MSFASM. First, two surro-
gate models are used to assist the three evolutionary algorithms in
updating the population and pre-screening the optimal solutions in
each iteration process. Broad learning system (BLS) (Chen and Liu,
2018) is used to select the best one from the pre-screened
optimal solutions of these surrogate models. The establishment of
a multi-surrogate framework based on NSGA-II (Deb et al., 2000)
occurs in the second stage. The two surrogate models mentioned
above serve as the objective functions, and NSGA-II searches for a
set of Pareto solutions that are appropriate for them. Then, an
optimal point criterion is proposed to select Pareto solutions and
input them into the database together with the optimal solution in
the first stage. Repeat these two steps until the stop criteria is
reached. The rest of this article is organized as follows. The pro-
duction optimization problems are introduced in Section 2, and the
surrogate-assisted evolutionary algorithms (SAEAs), BLS, and
NSGA-II are introduced in Section 3. Section 4 contains details
about the proposed method, MSFASM. In Section 5, the experi-
mental results of four 100-dimensional benchmark functions and
two reservoir models are given. Finally, Section 6 summarizes this
paper.
2. Problem statement

2.1. Production optimization model

The objective of the reservoir production optimization is to find
the optimal production control variable xd, where d is the dimen-
sion of the variable, d ¼w� p,w is the number of wells, and p is the
number of time steps. We choose a net present value (NPV) as the
objective function, which can be defined as follows:

f ðx; zÞ ¼ NPVðx; zÞ ¼
Xp
t¼1

Dt
Qo;t,ro � Qw;t,rw � Qi;t,ri

ð1þ bÞ (1)

where z is the state variable output by reservoir numerical simu-
lation calculation; Qo,t, Qw,t, and Qi,t are the oil production rate,
water production rate, and water injection rate at a time step t,
respectively; ro, rw, and ri are oil production revenue, water removal
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cost, and water injection cost, respectively; b is the discount rate.
Therefore, the water flooding production optimization can be
defined in the following form:

max
x

f ðx; zÞ; x2Rd; s:t:z ¼ gðxÞ; xlow � x � xup (2)

where xlow and xup are the lower and upper bounds of the control
variable x, respectively.
3. Related works

3.1. Surrogate-assisted evolutionary algorithms

Using evolutionary algorithms to generate a substantial number
of promising candidate development schemes has gained popu-
larity in the field. However, the optimization process often involves
extensive numerical simulation calculations, which can be time-
consuming. To mitigate this issue, data-driven surrogate models
trained on samples are employed to replace the reservoir numerical
simulators for evaluating the fitness (i.e., NPV) of the development
schemes. These surrogate-assisted evolutionary algorithms (SAEAs)
have proven to be effective in identifying optimal development
schemes while reducing the overall time cost. To provide a clearer
understanding, this paper introduces several definitions of SAEAs
in the context of production optimization problems:

� Sample: A sample contains a development scheme and its
corresponding NPV.

� Database: The database consists of all development schemes
and their NPV (i.e., all samples).

� Training: Since the surrogate is driven by data, the surrogate
model is constructed with the development schemes as inputs
and the NPV as outputs during the training process.

� Initial population: The initial population is the set of devel-
opment schemes that are input into the evolutionary algo-
rithms. The initial population is usually selected from the
database based on NPV.

� Generation of offspring: Generation of offspring is the process
in which an evolutionary algorithm uses operators to generate
new development schemes based on the initial population.

� Selection: Selection is the process of calculating the fitness
between the initial population and the offspring generated by
the evolutionary algorithms and selecting the better of the two.
3.1.1. Differential evolution
Differential evolution is an efficient global optimization algo-

rithm widely used in engineering problems. The initial population
of the differential evolution can be viewed as x ¼ fxigni¼1, where n is
the number of population, xi can be expressed as xi ¼n
xi1; xi2; xi3; :::; xid

o
, and d is the dimension of xi. DE consists of

three main components: mutation, crossover, and selection. The
mutation strategy selected in this paper can be expressed as
follows:

vi ¼ xbest þMuðxr1 � xr2Þ (3)

where vi is the ith mutant vector; xbest is the best development
scheme at present;Mu is a scaling factor; r1; r22j1; nj and they are
randomly generated integers that differ from each other. The
crossover strategy is as follows:
368
uji ¼
8<: v

j
i; if Ujð0;1Þ � CR or j ¼ jrand

xji; otherwise
(4)

where uji denotes the jth variable of the ith trial vector; Uj(0, 1) is a
uniformly distributed random number between 0 and 1; CR is the
crossover rate; and jrand is a random index to prevent ui from being
the same as xi. The selection strategy is as follows:

x*i ¼
�
ui; if f ðuiÞ< f ðxiÞ
xi; otherwise (5)

where x*i is the ith development scheme for the next generation; f is
an objective function (i.e., a numerical simulator), and to reduce the
time cost of using it, the surrogate models described next are used
instead. To save space, the other two evolutionary algorithms (PSO
and GWO) used in this paper are shown in Appendix A.
3.1.2. Polynomial regression model
The polynomial regression model is a simple and practical sur-

rogate model. Polynomial regression analysis is used to study the
quantitative relationship between the objective function and the
observation variable. The polynomial regression used in this paper
is a second-order polynomial model, and its mathematical
expression is as follows:

bf ðxÞ¼b0 þ
Xd
i¼1

bixi þ
Xd
i¼1

biix
2
i þ

Xd�1

i¼1

Xd
j¼iþ1

bijxixj (6)

where bf ðxÞ is the PRG prediction; x is the observation variable; b ¼n
b0; bi; bii; bij

o
and are polynomial coefficients that can be

calculated by the least squares method (Dong et al., 2021); d de-
notes the dimension of the observation variable.
3.1.3. Radial basis function
The radial basis function is more suitable for high-dimensional

problems than other surrogate models, so it is widely used for
expensive optimization and engineering problems. Its expression is
as follows:

bf ðxÞ ¼ ε
Tj ¼

Xn
i¼1

εij
����x� sðiÞ

���� (7)

where bf ðxÞ is the RBF prediction; x is the input variable; j repre-
sents the radial basis function, and the types are linear, cubic,
gaussian, etc. In this paper, we use the cubic type, and its expression
is shown as follows:

j
����x� sðiÞ

����¼
����x� sðiÞ

����3 (8)

where s(i) represents the ith center point equivalent to the known
samples, all of the centers can be represented as S ¼�
sð1Þ; sð2Þ; sð3Þ; :::; sðnÞ

�T
, where n is the number of sample centers

and ε is the weight vector. The other detailed information about the
RBF can be found in Yu et al. (2018).
3.1.4. The overall process of SAEAs
In Algorithm 1, we give the pseudo-code of SAEAs.
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Algorithm 1. The framework of SAEAs (Viana, 2016).
In the above framework, the stopping criterion is whether the
maximum number of calculations by the simulator reaches the
specified value. In step 4, some samples are selected in the database
based on the NPV to form a set db ¼ fxi; yigni¼1 to construct PRG or
RBF model. In step 5, we choose a better part of the development
schemes from db according to the NPV to form the initial popula-

tion P ¼ fxign
*

i¼1 ðn* � nÞ, which is input to the evolutionary algo-
rithm to generate the offspring population C. The solution xb with
the best-predicted value among the population C is selected in step
6 using the surrogate model built in step 4. The NPV yb of xb is
calculated by the numerical simulator. Then, the new sample (xb,
yb) is added to the database.

The reason for using multiple evolutionary algorithms is that
each one has its own adaptation problem. Furthermore, the per-
formance of an evolutionary algorithm can vary between the early
and late stages of optimization. To prove the above theory, we
optimize three different problems using DE, GWO, and PSO,
respectively. In Fig. 1(a)e(c), the 100-dimensional Ackley and
Ellipsoid benchmark functions (minimizing optimization prob-
lems) and the 65-dimensional (i.e., d in Section 2.1) three-channel
reservoir model (maximizing optimization problem) are optimized,
Fig. 1. Illustration of the reason for using multiple evolutionary algorithms. (a) Ackley fun
model optimization curve.
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respectively. It is observed that GWO outperforms the other two
algorithms on the Ackley function, PSO performs the best on the
Ellipsoid function, and DE achieves the optimal result on the three-
channel reservoir model. This demonstrates that no single evolu-
tionary algorithm can consistently attain optimal solutions across
all problems. Fig. 1(a) also shows that although PSO has the worst
final optimization effect, it declines the fastest in the early stage,
indicating a tremendous early exploration capability. In contrast,
GWO and DE have strong later exploitation capabilities. Balancing
exploration and exploitation throughout the optimization process
can be achieved by utilizing various evolutionary algorithms. Based
on these observations, this paper incorporates three evolutionary
algorithms to tackle reservoir production optimization problems,
ensuring a comprehensive approach that accounts for different
problem characteristics.

Similar to evolutionary algorithms, the combination of multiple
surrogate models is motivated by the fact that no single surrogate
model can effectively adapt to all problems. As shown in Fig. 2(a)
and (b), the DE algorithm is assisted by RBF and PRG, respectively, to
optimize two different issues: the 100-dimensional Levy bench-
mark function (minimizing optimization problem) and the 72-
dimensional PUNQS3 reservoir model (maximizing optimization
ction optimization curve; (b) Ellipsoid function optimization curve; (c) Three-channel



Fig. 2. Illustration of the reason for using multiple surrogate models. (a) Levy function optimization curve; (b) PUNQ-S3 model optimization curve.
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problem). It is observed that RBF performs better in optimizing the
Levy function, while PRG yields superior optimization results for
the PUNQS3 reservoir model. These surrogate models exhibit
different optimization performances across various problems.
When it comes to production optimization problems, the surrogate
models' capability to accurately represent the actual reservoir is
constrained due to the limited number of available samples for
model construction. As a result, it becomes challenging to deter-
mine which surrogate model will produce accurate reservoir pre-
diction results. Consequently, the utilization of multiple surrogate
Fig. 3. The flow chart of the NSGA-II.
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models becomes essential to enhance adaptability to a wide range
of problems.
3.2. Broad learning system

The broad learning system is an efficient algorithm that does not
have many parameters and machine resources to optimize
compared to deep learning. Based on the above advantages, BLS is
suitable for evaluating development schemes in production opti-
mization problems. In essence, we also treat BLS as a surrogate
model, but it is not combined with evolutionary algorithms for
optimization, so we introduce it separately. BLS consists of input, a
feature mapping layer, an enhancement layer, and output. The
training process for BLS is described as follows: we input the data
set XN�D, which contains N samples in D dimensions; Y is the
output matrix corresponding to X. BLS first maps the input to
construct a set of feature mappings. For n feature mappings, the
following formula can be expressed:

Zi ¼ 4iðXWei þ beiÞ; i ¼ 1; :::; n (9)

whereWei and bei are randomweights; 4i is a random mapping; Zi
is the ith feature mapping, the feature mapping layer can be rep-
resented as Zn ¼ ½Z1; :::; Zn�. The feature mapping layer is then
used to build the enhancement layer. The mth enhanced nodes can
be expressed as:

Hm≡xm
�
ZnWhm þ bhm

�
(10)

whereWhm, bhm and xm are defined similarly toWei, bei and 4i. The
enhancement layer can be represented as Hm ¼ ½H1; :::; Hm�.
Therefore, the generalized model can be expressed as:

Y ¼ �
Z1; :::; Zn

		x1�ZnWh1 þ bh1
�
; :::; xm

�
ZnWhm þ bhm

� 

Wm

¼ ½Z1; :::; ZnjH1; :::; Hm�Wm ¼ �
Zn		Hm
Wm

(11)

where Wm ¼ ½Zn		Hm�þY is the connection weight of the broad
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structure, which can be easily obtained by approximating the ridge
regression ½Zn		Hm�þ (Chen and Liu, 2018) when the output Y is
determined.

3.3. Non-dominated sorting genetic algorithm II

NSGA-II is a fast, non-dominated multi-objective optimization
algorithm with an elite retention strategy (Deb et al., 2000). We
use NSGA-II to connect multiple surrogate models to build an
efficient multi-surrogate framework. The NSGA-II is developed
based on the Pareto dominance relationship. For a maximized
multi-objective optimization problem, there are nf objective
functions FiðxÞ; i ¼ 1; :::; nf . Two arbitrary solutions xa and xb are
given, xa which is said to dominate xb if the following two con-
ditions are true:

1: FiðxbÞ � FiðxaÞci21; :::; nf
2: FiðxbÞ< FiðxaÞdi21; :::; nf

(12)

A solution is called a non-dominant solution (i.e., Pareto solu-
tion) if no other can dominate it. The Pareto rank of the non-
dominated solutions is defined as 1. The flow chart of NSGA-II
(Al-Aghbari and Gujarathi, 2022) is shown in Fig. 3. After gener-
ating the initial population, it is evaluated by multiple objective
functions. A fast non-dominant sorting is used to determine the
Pareto rank of each individual according to a process similar to Eq.
(12). The crowding distance is calculated to ensure that the solu-
tions have good space-filling characteristics. The larger the
crowding distance, the better the space-filling characteristics of the
individuals. Details of the fast non-dominated sorting and crowd-
ing distance calculation can be found in Farahi et al. (2021). In-
dividuals with lower Pareto rank and higher crowding distance are
selected to form an elite parent, and offspring individuals are
generated by crossover and mutation (Whitley, 1994). After the
objective function values of the offspring individuals are calculated,
the parent and offspring populations are then combined for the
above procedure until the stopping criterion is satisfied. This paper
sets the stopping criterion for iterating for 100 generations. Finally,
a set of Pareto solutions is output.

4. Proposed method

4.1. Adaptive selection stage of a single surrogate with the multi-
evolutionary algorithms

As verified in the above section, different evolutionary
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algorithms are suitable for different types of problems. Only one
evolutionary algorithm is used in canonical SAEAs. However, pro-
duction optimization is a complex problem, and each reservoir is
unique. Meanwhile, certain evolutionary algorithms excel at
exploration, while others demonstrate strong exploitation capa-
bilities. They are suitable for different periods of the optimization
process. If one evolutionary algorithm is used to solve the pro-
duction optimization problems for all reservoir types and periods,
optimal results cannot be obtained. Therefore, we propose an
adaptive selection stage of a single surrogate with the multi-
evolutionary algorithms (ASSSME) to solve the above problem.
The term "single surrogate" does not mean that we only use one
surrogate model, but that there is no connection between them.
They simply act as evaluators of fitness values (i.e., NPV) during the
update of the populations by the evolutionary algorithms, which
also highlights the difference with Section 4.2.

Algorithm 2 describes the details of ASSSME. The first step, as
outlined in Algorithm 1, involves extracting a sample set, denoted
as db, from the database DB. This sample set is then utilized to
construct PRG and RBFmodels, respectively. In step 4 of Algorithm
2, the set of development schemes, denoted as P, is provided as the
initial population for the three optimizers: DE, GWO, and PSO.
Instead of using numerical simulators, the evolutionary algo-
rithms are assisted by the PRG and RBF surrogate models for
population renewal. The utilization of two surrogate models
serves two purposes. Firstly, as mentioned in Section 4.2, surro-
gate models are required and can be constructed in advance.
Secondly, as indicated by Eq. (5), the evolutionary algorithms
employed in this paper rely on the fitness values of offspring to
determine their subsequent evolutionary direction. However, the
prediction bias of surrogate models may lead to the population
evolving in an unfavorable direction. By employing both PRG and
RBF surrogate models, the prediction uncertainty can be reduced,
increasing the likelihood of obtaining superior offspring. Conse-
quently, PRG and RBF are independently integrated with the three
evolutionary algorithms in each generation's population evolu-
tion. The discrepancies in their predicted values contribute to
diverse directions of population evolution. As a result, each
evolutionary algorithm will produce two offspring populations.
This means that after K generations, a total of six optimized

populations fCig6i¼1 will be obtained.

Algorithm 2. The framework of ASSSME



Fig. 4. BLS test accuracy of different data processing methods. (a) Test result for BLS without Sammon mapping; (b) Test result for BLS with Sammon mapping.

Fig. 5. Schematic of ASSSME.
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In step 9, similar to step 6 of Algorithm 1, each populationwill be
pre-screened by its corresponding surrogate model, and six sus-

pected optimal solutions fcbig6i¼1 will be obtained. The above pro-
cess is illustrated with a concrete example. Take GWO and RBF, for
instance. RBF assists GWO in updating the K generation to produce
372
the optimized population, C1. From this optimized population, the
individual cb1 with the best fitness value, as predicted by RBF, is
selected. Repeat the above steps for the three evolutionary algo-
rithms and the two surrogate models to obtain the previous results

fCig6i¼1 and fcbig6i¼1. What we seek is the individual with the

highest genuine NPV in fcbig6i¼1. However, as we are unsure now,
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we refer fcbig6i¼1 to the suspected optimal solutions. We cannot
evaluate them directly with the numerical simulator because the
simulator is too computationally intensive in each loop. We first
reduce the dimensionality of the samples for training the BLS
model and then use it to determine the best development scheme

in fcbig6i¼1. To our knowledge, this is the first time BLS has been
applied to reservoir production optimization problems.

In the framework above, steps 10, 11, and 12 show how the best

development scheme in fcbig6i¼1 is selected. First, the Sammon
mapping (Sammon, 1969) is used to reduce the dimensions of DB

and fcbig6i¼1. The goal of the Sammon mapping is to minimize the
following error function:

argmin
y

1P
i< j

Dismn

X
m<n

ðDismn � dismnÞ2
Dismn

¼ 1P
m<n

kxm � xnk
X
i< j

ðkxm � xnk � kxlm � xlnkÞ2
kxm � xnk

(13)

where xm and xn are the mth and nth development schemes in DB,
respectively; xlm and xln are the corresponding variables of xm and
xn in the dimensional reduction projection space, respectively;
Dismn is the distance between xm and xn; dismn is the distance be-
tween xlm and xln. Due to the high dimensionality of production
optimization problems, dimensionality reduction is carried out to
improve the accuracy of BLS. After Sammon mapping, the test ac-
curacy of BLS is higher than that of Kriging after dimensionality
reduction. For the 100-dimensional Ackley function, 200 sample
points are used to train BLS, and 50 sample points are tested. As can
be seen from Fig. 4, after Sammon mapping processing, the test
accuracy of BLS is improved compared with before.

After dimensionality reduction, all development schemes in DB,

together with NPV, are used to construct the BLS model, bf 3ðxÞ. The
following formulas are used to determine the actual best one
among the suspected optimal solutions:

8>><>>:
bycb1 ¼ bf 3ðcb1Þbycb2 ¼ bf 3ðcb2Þ
«bycb6 ¼ bf 3ðcb6Þ

(14)

where
�bycb1 ; :::; bycb6� are the BLSmodel predicted values of fcbig6i¼1

after dimensional reduction. The development scheme with the
largest NPV is considered the best for production optimization.
Therefore, BLS is used to adaptively select the one with the largest

predicted value in fcbig6i¼1, define it as cbest, calculate its real NPV
through the numerical simulator, and then add the new sample to
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the DB. The population that contains cbest in the fCig6i¼1 is desig-
nated as Cbest, and it is temporarily stored as part of the initial
population of Section 4.2. The schematic diagram of ASSSME is
shown in Fig. 5. The circle represents the population (i.e., the set of
development schemes), and the triangle represents the individual
(i.e., the development scheme). Within the ASSSME framework,
multiple evolutionary algorithms are employed to update the child
individuals. Despite the involvement of surrogate models in pop-
ulation updates, each evolutionary algorithm is assisted by the
same PRG and RBF models. As a result, the disparities observed in
the final populations can be attributed to the differences among the
evolutionary algorithms themselves. Furthermore, the reduced-
dimensional broad learning system (BLS) model is utilized to
determine the optimal solution. This stage involves adaptively
selecting the evolutionary algorithm that best aligns with the cur-
rent optimization period, thereby enhancing its adaptability to the
specific problem at hand. Moreover, ASSSME generates an excellent
initial population (i.e., Cbest), which serves as a foundation for the
subsequent multi-surrogate stage.

4.2. Multi-surrogate stage based on NSGA-II

Due to the inherent complexity of reservoir blocks, it is evident
that no single surrogate model can effectively address every issue.
This observation aligns with the previous discussion on the
adaptability of evolutionary algorithms. To account for the diverse
challenges posed by different reservoir types, the utilization of
multiple surrogate models becomes crucial. In order to establish a
robust relationship between these surrogate models, we propose
the implementation of a multi-objective algorithm. This approach
enables us to leverage the capabilities of various surrogate models
and build a comprehensive understanding of the problem at hand.
Consequently, we introduce a multi-surrogate stage based on
NSGA-II (MSBN), where the PRG and RBF surrogate models are
employed as the optimized objective functions. By employing a
multi-objective optimization framework, we can effectively tackle
the complexities associated with multiple surrogate models. The
formulation of the multi-objective optimization problem consid-
ering these surrogate models is defined as follows:

Maxfbf 1ðxÞ; bf 2ðxÞ g
s:t: lb � x � ub

(15)

In the formula, bf1ðxÞ and bf2ðxÞ are PRG and RBF, respectively; x is the
independent variable development scheme; and lb and ub are the
lower and upper limits of the injection rate and production rate,
respectively. Algorithm 3 shows the details of the MSBN.

Algorithm 3. The framework of MSBN



Table 1
Comparison between local sampling method and unifrnd.

The test case y1 y2 s1 s2

Ellipsoid 1.99Eþ06 2.21Eþ06 1.14Eþ06 1.28Eþ06
Griewank 2733.896 3007.624 227.0892 249.1488
Rosenbrock 5.31Eþ08 6.38Eþ08 2.97Eþ08 3.70Eþ08
Dixonpr 3.27Eþ06 4.02Eþ07 4.64Eþ06 6.04Eþ06
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In step 3, we use a local sampling method to form the initial
input population of MSBN:
Fig. 6. Flow diagram of th
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(
lbound ¼ minð½P; Cbest �Þ
ubound ¼ maxð½P; Cbest �Þ

POP ¼ LHSðlbound; uboundÞ
(16)

The excellent development scheme set P selected from DB is
combined with the Cbest obtained from ASSSME to form a local
search space by taking the upper and lower bounds of each
dimension. Then the outstanding initial population POP is generated
in the local region using the LHS method. In the conventional NSGA-
II, the initial population is sampled uniformly and randomly in the
original decision space by the unifrnd method (Dong et al., 2021).
e proposed method.
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Our local sampling method ensures that the superior sample points
generated in ASSSME are not wasted and are added to MSBN's initial
population generation session to achieve sequential migration
learning. We tested four 100-dimensional functions (minimizing
optimization problems) and compared the average function values
and standard deviations of the initial populations (population size is
100) produced by the two sampling methods. As shown in Table 1,
the initial population generated by the local sampling method has
smaller function values (y1) and standard deviations (s1), which are
better than those of the unifrnd method (y2 and s2). In step 4, our
method flow is similar to Fig. 3. There are two differences. First, in
the beginning stage, we use local sampling to generate the initial
population instead of the unifrnd method. Second, we use multiple
surrogate models as the objective functions. As can be seen from
Section 3.3, in the fast non-dominant sorting, the Pareto dominance

relation is determined according to the objective functions bf1ðxÞ andbf2ðxÞ, and finally, a set of Pareto solutions, pop, can be obtained. In
pop, there are many individuals with Pareto rank 1 who do not
dominate each other. They perform better on at least one surrogate
model compared to individuals of other ranks. We face the same
problem as when picking cbest in ASSSME.

We cannot evaluate all individuals in the pop using a numerical
simulator because this would significantly increase the computa-
tional effort. Therefore, selecting the most valuable sample point is a
vital issue. In steps 5 and 6, when a set of Pareto solutions (pop) is
obtained, PRG and RBF are used to predict it to obtain two sets of
predicted values, respectively. The individuals par1 and par2 with the
largest predicted values in the two sets are picked out, respectively.
The numerical simulator calculates the corresponding NPV, and then
the sample database is updated. We name this point selection cri-
terion the optimal point criterion. It can have a greater possibility of
selecting the best individual in the Pareto solution set according to
the fitness value of each individual. In this way, we only need to
evaluate par1 and par2, which guarantees the quality of the solutions
without occupying much computation power in the numerical
simulator. This paper presents a multi-surrogate framework based
on the PRG and RBFmodels. When the framework is determined, if a
new surrogate model with a better effect appears, it can be directly
used in the framework.
4.3. The whole framework of the proposed method

The entire process of MSFASM is shown in Fig. 6. In the initiali-
zation stage, the development schemes are generated using the LHS
method, and the numerical simulator is used to calculate their NPV.
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All development schemes are placed in the database along with the
calculated NPV. In the stage of the multi-evolutionary algorithms
(i.e., ASSSME), n sample points with higher NPV in DB are used to
train PRG and RBF surrogate models, respectively. Simultaneously,
the set P of n* excellent development schemes serves as the parent
population for optimization. In contrast to what is described above,
for a clearer description of the proposed method structure, here P is
considered to be selected from the DB rather than the db (since db is
also selected from the DB). With the assistance of PRG and RBF, the

three evolutionary algorithms generate six child populations fCig6i¼1

and the suspected optimal solutions fcbig6i¼1 for the corresponding

surrogatemodels' pre-screening. All sample points inDB and fcbig6i¼1
are processed by Sammon mapping, and the former is used as the
training set to train the BLS model. The latter serves as the test set,

and BLS adaptively selects the best individual cbest in the fcbig6i¼1. The

one that contains the cbest in the fCig6i¼1 is called Cbest and partici-
pates in the multi-surrogate stage (i.e., MSBN) through sequential
transfer learning. The previously established PRG and RBF models
and the population P are also involved in the MSBN (dashed part of
Fig. 6). After generating the initial population by the local sampling
method, NSGA-II is used to find Pareto solutions with good perfor-
mance on PRG and RBF. The optimal point criterion is used to select
excellent Pareto solutions, par1 and par2, without burdening the
numerical simulator. ASSSME and MSBN are linked by an initial
population constructed by sequential transfer learning. In each cycle,
we get three excellent new development schemes (cbest, par1, and
par2) through two stages, ASSSME and MSBN. The overall algorithm
framework is shown in Algorithm 4, and some details have been
introduced in Algorithms 2 and 3.

Algorithm 4. The framework of the proposed method
5. Experimental results and discussion

To demonstrate MSFASM's performance, four benchmark func-
tions and two real reservoir examples are tested in this paper. The
benchmark functions are set to 100 dimensions: Ackley, Ellipsoid,
Griewank, and Rosenbrock (Jamil and Yang, 2013). The variables of
the two reservoirs are 65 and 72, respectively. One is the three-
channel model; the other is the PUNQS3 model. To effectively test
the performance of MSFASM, it is compared with six other
surrogate-model-based methods, including two multi-surrogate
frameworks, SGOP (Dong et al., 2021) and Direct (Zerpa et al.,
2005), a SADE-Sammon (Chen et al., 2020a) algorithm that also
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utilizes Sammon dimensional reduction, and three DE-MSBN,
GWO-MSBN, and PSO-MSBN algorithms that combine a single
evolutionary algorithm with the MSBN stage. In SGOP, the NSGA-II
is also used to connect the PRG and RBF models to construct a
multi-surrogate framework to find more excellent solutions. The
unifrnd method and the KNN algorithm (Guo et al., 2003) are used
in the initial population generation and the selection of the final
obtained Pareto solutions in the optimization process, respectively.
Direct uses a naive multi-surrogate approach, the weighting
method, which divides different weights according to the predic-
tion accuracy of each surrogate model. The final prediction result is
the prediction value of each model multiplied by their respective
weights and summed. A modified Lipschitzian approach (Jones
et al., 1993) is used as an optimizer for Direct, and the two surro-
gate models used in this paper are also used in its multi-surrogate
framework. The comparison with SGOP and Direct highlights the
advantages of the multi-surrogate framework of our approach. The
SADE-Sammon algorithm uses Sammon mapping to solve the dis-
advantages of the Krigingmodel in high-dimensional problems and
uses DE as the evolutionary algorithm. The overall processes of DE-
MSBN, GMO-MSBN, and PSO-MSBN are similar to those of MSFASM.
Still, the difference is that the above three methods do not have the
ASSSME stage but only use DE, GWO, and PSO as optimizers,
respectively. The comparison with them is to highlight the effec-
tiveness of the ASSSME stage.

Themaximumnumber of function evaluations (i.e., the stopping
criterion) of the seven methods tested on the benchmark functions
is set to 1000. The maximum number of numerical simulations in
the actual reservoir cases is set to 500. The LHS method sets the
number of initial sample points (i.e., N) to 200 on the benchmark
functions and 130 on the reservoir cases, which is also the number
of sample points (i.e., n) in db used to train the surrogate models on
each cycle. The number of development schemes (i.e., n*) in the P
that is input to the evolutionary algorithms for optimization is set
to 50. In the ASSSME stage, the population is updated for 20 gen-
erations in each evolutionary algorithm (i.e., K ¼ 20). Sammon
mapping reduces the dimensions of variables to 3 dimensions. The
number of feature mapping layers, nodes in the feature mapping
layer, and nodes in the enhancement layer of BLS are set to 10, 1,
and 15, respectively. The number of individuals in the initial pop-
ulation of the MSBN stage is set to 100. The parameter settings of
the DE optimizer are consistent with those in Chen et al. (2020b).
The learning factors c1; c2 of the PSO algorithm are set to 2, 2, uini
and uend are set to 0.8, 0.6 (the specific meaning of symbols can be
found in Appendix A).
5.1. Example 1: benchmark function

In this part, we test a total of four benchmark functions. The
expressions of these functions and their upper and lower bound
constraints are as follows:

Ackley: f ðxÞ ¼ � 20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1

x2i

r
� e

1
d

Pd
i¼1

cosð2pxiÞ
þ 20þ e;

xi2½ � 32:768; 32:768�
(17)

Ellipsoid: f ðxÞ ¼
Xd
i¼1

ix2i ; xi2½ � 5:12; 5:12� (18)
376
Griewank : f ðxÞ¼
Xd
i¼1

x2i
4000

�
Yd
i¼1

cos
�
xiffiffi
i

p
�
þ1; xi2½�600; 600�

(19)

Rosenbrock : f ðxÞ ¼
Xd�1

i¼1

�
100

�
xiþ1 � x2i

�2 þ ðxi � 1Þ2
�
;

xi2½ � 5; 10�
(20)

where d is the number of variables of the benchmark functions,
which is set to 100 in this paper, the minimal values of these four
tested functions are f ðx*Þ ¼ 0. To prove that MSFASM is suitable for
a variety of problems, we chose different types of test functions,
including unimodal and multimodal characteristics.

Fig. 7(a)e(d) show the convergence curves of SGOP, Direct,
SADE-Sammon, DE-MSBN, GWO-MSBN, PSO-MSBN, and MSFASM
after 10 independent operations on the four benchmark functions.
The multi-surrogate methods (SGOP, Direct, DE-MSBN, GWO-
MSBN, PSO-MSBN, and MSFASM) perform better than the single-
surrogate method (SADE-Sammon) in the optimization of the last
three functions, which proves that combining multiple surrogate
models can enhance the adaptability to the problems. SADE-
Sammon uses Sammon mapping to reduce the dimensions of the
development schemes input into the surrogate model, thus
improving the prediction accuracy of the Kriging model. However,
it only pre-screens the newly generated development schemes
with a single surrogate model and cannot find the optimal solution
through collaboration among multiple surrogate models as other
methods do. Although Direct can converge quickly, its multiple
surrogate models are not effectively connected to each other and
only sum up their respective predictions based on weights. Even if
the surrogate models with higher prediction accuracy are assigned
larger weights, the prediction bias from the poorly performing
surrogate models will still mislead the optimization direction.
Therefore, it is not as effective asMSFASM. Although SGOP also uses
NSGA-II to optimize PRG and RBF, it uses the unifrnd method to
generate the initial population, which is inferior to the strategy in
this paper. Additionally, in the selection of Pareto solutions, SGOP
uses the KNN algorithm to select the solution with the largest
Euclidean distance from the database as the new sample. This
method does not guarantee the quality of the obtained solutions. As
a result, SGOP is less effective than MSFASM in terms of overall
optimization. It can be seen from the convergence curves that none
of these three combined MSBN methods (DE-MSBN, GWO-MSBN,
and PSO-MSBN) can obtain optimal solutions for all issues. The
reason is that they do not have the adaptive selection process
(ASSSME) that uses BLS for multiple evolutionary algorithms, so
they do not achieve wide adaptability to the problems, and the final
results are not as good as MSFASM's. ASSSME andMSBN are used in
MSFASM to enhance the adaptability of both the evolutionary al-
gorithms and the surrogate models to different problems so that
the best results can be obtained in all the functions tested.
Fig. 7(e)e(h) present the box graphs of the optimal values of seven
methods described above after 10 independent operations on four
benchmark functions. According to the box graphs, MSFASM has
better optimization results and stability than the other sixmethods.

5.2. Example 2: three-channel model

The first practical reservoir example selected in this paper is the
three-channel model. This model's well position and permeability
field are shown in Fig. 8. This reservoir is developed under



Fig. 7. Results for the benchmark functions with 10 independent runs. (a)e(d) Convergence curves of the benchmark functions; (e)e(h) Distribution of the optimal values of the
benchmark functions.
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Fig. 8. Well position and permeability field of the three-channel model.

Table 2
Properties of the three-channel model.

Properties Value

Reservoir grid 25 � 25� 1
Depth, ft 4800
Initial pressure, psi 4000
Porosity 0.2
Water compressibility, psi�1 3.74 � 10�6

Rock compressibility, psi�1 6.10 � 10�5

Density, kg/m3 911.93
Initial water saturation 0.2
Oil viscosity, cP 1.2

Fig. 9. Results for the three-channel model with 10 independent runs. (a)
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waterflooding with four water-injection wells and nine production
wells. The properties of the three-channel model are summarized
in Table 2. The model has 25� 25� 1 grid blocks. The thickness of
each grid block is 20 ft, and the porosity of all grid blocks is 0.2. This
paper's control variables are liquid production rate of each pro-
ducer andwater injection rate of each injector. The production rates
of the nine production wells are 200 STB/D on the upper bounds
and 0 STB/D on the lower bounds. The upper bounds of the injec-
tion rates of the four-water injection wells are 500 STB/D, and the
lower bounds are 0 STB/D. The production lifetime is 1800 days,
divided into 5-time steps on average (360 days for each step), so the
total number of decision variables is ð4 þ 9Þ� 5 ¼ 65. The oil
revenue, water injection, and water-production costs are set to 80,
5, and 5 USD/STB, respectively, and the discount rate is 0%.

Fig. 9(a) shows the optimization result after running the three-
channel model independently 10 times. As can be seen from the
figure, the multi-surrogate methods using the NSGA-II (SGOP,
GMO-MSBN, PSO-MSBN, and MSFASM) outperform the single-
surrogate method (SADE-Sammon) in the three-channel model,
which proves that solutions suitable for multiple surrogate models
can be obtained based on Pareto sampling criteria and improves the
optimization performance. Although the SADE-Sammon improves
prediction accuracy from the perspective of constructing a surro-
gate model, the limitation of a single surrogate makes it less
adaptable to problems. Direct has theworst performance because it
inevitably suffers from the influence of surrogate models with
lower prediction accuracy, which leads the optimization in a poorer
direction. On the one hand, MSFASM employs BLS to choose the
most promising evolutionary algorithm out of a variety while
avoiding the limitations of the problems it adapts to. On the other
hand, the generation of the initial population of the NSGA-II is
guided by the updated population of the evolutionary algorithm,
which can provide an excellent starting point for the subsequent
optimization. In addition, Pareto solutions are selected from the
optimal point criterion according to the predicted value of each
surrogate model, so as to ensure the most desirable development
schemes. Due to the above advantages, MSFASM is the most
effective method for the three-channel model optimization
Average NPV versus simulation runs; (b) Boxplots of the optimal NPV.



Fig. 10. Optimal liquid-production-rate well controls provided for the three-channel model. (a) SGOP, (b) Direct, (c) SADE-Sammon, (d) GWO-MSBN, (e) PSO-MSBN, (f) MSFASM.
Color scale indicates liquid production rate in STB/D.

Fig. 11. Optimal water-injection-rate well controls provided for the three-channel model. (a) SGOP; (b) Direct; (c) SADE-Sammon; (d) GWO-MSBN; (e) PSO-MSBN; (f) MSFASM.
Color scale indicates water injection rate in STB/D.

Fig. 12. Results of optimal control for the three-channel model. (a) Cumulative oil production versus time. (b) Cumulative water injection versus time; (c) Cumulative water
production versus time.
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problem. At the same time, box diagram of the optimal NPV after 10
independent operations (Fig. 9(b)) shows that MSFASM is more
stable than other methods.

The optimal well control schemes for the production and in-
jection of wells resulting from all methods are shown in Figs.10 and
11. Each row represents the optimal scheme of a well throughout
the entire optimization time, and each square denotes the control
scheme of the well at a time step. The changes in cumulative oil
production (FOPT), cumulative water injection (FWIT), and cumu-
lative water production (FWPT) with development time are shown
in Fig. 12. MSFASM can obtain the highest cumulative oil produc-
tion, and although the cumulative water production is also higher,
the highest economic benefit is ultimately obtained due to the
lower cost of produced water.

5.3. Example 3: PUNQ-S3 model

The second practical reservoir example selected for this paper is
the PUNQ-S3 model (Bush et al., 2002). It is a three-dimensional,
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three-phase model. The model has 19� 8� 25 grid blocks. Only
oil and water phases are considered in this paper. The model con-
sists of three water-injection wells and six production wells. The
well position and permeability field of this model are shown in
Fig. 13. Details of the model can be found in Gao et al. (2006). The
production rates of the six production wells are 1000 STB/D on the
upper bounds and 0 STB/D on the lower bounds. Water-injection
wells have the same water-injection rate limits as production
wells. The production lifetime is 5760 days, divided into 8-time
steps on average (720 days for each step), so the total number of
decision variables is ð3 þ 6Þ� 8 ¼ 72. The oil revenue, water in-
jection, and water-production costs are set to 80, 5, and 5 USD/STB,
respectively, and the discount rate is 0.

Fig. 14(a) shows the optimization result after the independent
running of the PUNQS3 model 10 times. As can be seen from the
figure, similar to the optimization results of the three-channel
model, the multi-surrogate methods using NSGA-II (SGOP, GMO-
MSBN, PSO-MSBN, MSFASM) have better performance. This
shows that the effect of ensemble surrogate optimization



Fig. 13. Well position and permeability field of the PUNQ-S3 model.
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constructed by the multi-objective algorithm is better than that of
the single-surrogate method (SADE-Sammon) and weighted multi-
surrogate method (Direct). For the PUNQS3 reservoir model opti-
mization problem, the overall optimization performance of GWO
and PSO is similar, with the former having a strong late-stage
exploitation capability and the latter having a high exploration
capability in the early stage of optimization, as explained in Section
3.1. Therefore, the difference between the final optimization results
Fig. 14. Results for the PUNQ-S3 model with 10 independent runs. (a) Av
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of GWO-MSBN and PSO-MSBN is not significant. MSFASM adap-
tively selects the best evolutionary algorithm in each iteration us-
ing ASSSME, which fully exploits the performance of each
optimizer in different optimization periods so that MSFASM can get
the best result. The final distribution box diagram of optimal NPV
after 10 independent runs in Fig. 14(b) also shows that MSFASM has
satisfactory effectiveness and stability.

Figs. 15 and 16 show the optimal well control schemes for the
production and injection wells resulting from all methods in the
PUNQ-S3 model. In the control schemes of our method, injector 2
has a high water injection rate at each time step because it is
located in the middle of the reservoir blocks, and increasing its
water injection rate can help other producers. On the contrary,
injector 1 is far away from producer 4 and producer 5. If the in-
jection rate of injector 1 is increased, it will not affect them effec-
tively. Therefore, the injection rate of injector 1 is not the same as
that of injector 2. Fig.17 shows the changes in development time for
three critical metrics. Although MSFASM has the highest FWPT, it
has the most increased cumulative oil production, leading to the
highest economic benefits.
6. Conclusions

Using surrogate-assisted evolutionary algorithms (SAEAs) can
solve the time-consuming problem of reservoir numerical simula-
tors in the evaluation process while finding the optimal develop-
ment scheme. However, one surrogate model cannot solve all
problems, and various evolutionary algorithms affect different is-
sues differently. Therefore, it is necessary to use a method that
effectively combines multiple surrogate models with multiple
evolutionary algorithms to have broad adaptability to reservoir
blocks and optimization periods. This paper proposes an efficient
approach, MSFASM, to solve production optimization problems
that combines multi-evolutionary algorithms and multi-surrogate
models through sequential migration learning. MSFASM is
erage NPV versus simulation runs. (b) Boxplots of the optimal NPV.



Fig. 15. Optimal liquid-production-rate well controls provided for the PUNQ-S3 model. (a) SGOP; (b) Direct; (c) SADE-Sammon; (d) GWO-MSBN; (e) PSO-MSBN; (f) MSFASM. Color
scale indicates liquid production rate in STB/D.

Fig. 16. Optimal water-injection-rate well controls provided for the PUNQ-S3 model. (a) SGOP; (b) Direct; (c) SADE-Sammon; (d) GWO-MSBN; (e) PSO-MSBN; (f) MSFASM. Color
scale indicates water injection rate in STB/D.

Fig. 17. Results of optimal control for the PUNQ-S3 model. (a) Cumulative oil production versus time; (b) Cumulative water injection versus time; (c) Cumulative water production
versus time.
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divided into two stages: ASSSME and MSBN. The former combines
the advantages of various evolutionary algorithms and provides a
suitable population for the next stage, while MSBN fully exploits
the benefits of different surrogate models. Combining the two can
finally lead to optimal solutions with wide adaptability to various
problems. To verify the validity of MSFASM, four benchmark func-
tions and two reservoir models are tested, and the results are
compared with those obtained from six other surrogate-model-
based methods. Experimental results show that the MSFASM can
obtain the minimum values of the benchmark functions and the
optimal well control schemes for the production optimization
problems, thus achieving the highest NPV. Compared with other
methods, MSFASM has better stability. This also shows that the
framework proposed in this paper can be adapted to various
problems.
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Appendix A

In order to save the length of Section 3.1, the other two evolu-
tionary algorithms used in this paper, grey wolf optimization
(GWO) and particle swarm optimization (PSO), are introduced here.

The GWO algorithm simulates grey wolf predation and has
strong convergence performance. It takes the optimal development
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scheme as a, and the second and third best schemes are b and d,
respectively, and they can be regarded as the leaders of the pack.
The remaining candidate solutions are represented by6 and guided
by the threewolves. In the process of population evolution, a, b, and
d are first found according to fitness values. The distances between
them and other individuals are calculated using the following
formula:

Da ¼ jC1,aðtÞ �6ðtÞj;
Db ¼ jC2,bðtÞ �6ðtÞj;
Dd ¼ jC3,dðtÞ �6ðtÞj;

(A1)

where t represents the current iteration number; Da, Db, and Dd

represent the distances between a, b, and d from other individuals,
6, respectively; C is a coefficient vector that can be calculated as
follows:

C¼ 2,r1 (A2)

where r1 is a random number between 0 and 1. The individuals for
the next generation are generated by the following formulas:

6ðtþ1Þ¼aðtÞ � A1,ðDaÞ þ bðtÞ � A2,
�
Db

�þ dðtÞ � A3,ðDdÞ
3

(A3)

where A is a random vector that can be calculated as follows:

A¼2a,r2 � a (A4)

where a is the vector between 0 and 2 that decreases linearly
during the iteration; r2 is a random number between 0 and 1.

Particle swarm optimization is a kind of evolutionary computing
technology that is derived from the study of the predation behavior
of birds and then builds a model by using swarm intelligence. PSO
makes use of the information sharing among individuals in a group
to make the movement of the whole group have a trend from
disorder to order, and then obtains the optimal solution. PSO
mainly defines two concepts, one of which is speed of movement:

vi
ðtþ1Þ ¼u� vi

ðtÞ þ c1 � rand�
�
pbesti � xi

ðtÞ
�
þ c2 � rand

�
�
gbest� xi

ðtÞ
�

(A5)

where vi
ðtþ1Þ is the velocity of the ith particle when the evolu-

tionary algebra is t þ 1; c1 and c2 are learning factors; rand is a
random number between 0 and 1; pbesti is the current best
development scheme for the ith particle; gbest is the current global
optimal production system of the group; xiðtÞ is the position of the
ith particle with the evolution algebra t; u is the inertia weight. In
this paper, the strategy of linearly decreasing weight is used for u:

uðtÞ ¼uini �ðuini �uendÞ �
t

tmax
(A6)

where uðtÞ is the inertia weight when the evolutionary algebra is t;
uini is the initial inertia weight; uend is the inertia weight when
iterating to the maximum evolutionary algebra tmax. Another
important concept is the position of movement:

xi
ðtþ1Þ ¼ xi

ðtÞ þ vi
ðtÞ (A7)

where xiðtþ1Þ is the position of the ith particle in evolutionary
algebra t þ 1.
382
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