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a b s t r a c t

The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin, and the source rocks of Paleogene
Dongying and Shahejie Formations were buried deeply. Most of the drillings were located at the
structural high, and there were few wells that met good quality source rocks, so it is difficult to evaluate
the source rocks in the study area precisely by geochemical analysis only. Based on the Rock-Eval py-
rolysis, total organic carbon (TOC) testing, the organic matter (OM) abundance of Paleogene source rocks
in the southwestern Bozhong Sag were evaluated, including the lower of second member of Dongying
Formation (E3d2

L), the third member of Dongying Formation (E3d3), the first and second members of
Shahejie Formation (E2s1þ2), the third member of Shahejie Formation (E2s3). The results indicate that the
E2s1þ2 and E2s3 have better hydrocarbon generative potentials with the highest OM abundance, the E3d3
are of the second good quality, and the E3d2L have poor to fair hydrocarbon generative potential.
Furthermore, the well logs were applied to predict TOC and residual hydrocarbon generation potential
(S2) based on the sedimentary facies classification, using DlogR, generalized DlogR, logging multiple
linear regression and BP neural network methods. The various methods were compared, and the BP
neural network method have relatively better prediction accuracy. Based on the pre-stack simultaneous
inversion (P-wave impedance, P-wave velocity and density inversion results) and the post-stack seismic
attributes, the three-dimensional (3D) seismic prediction of TOC and S2 was carried out. The results show
that the seismic near well prediction results of TOC and S2 based on seismic multi-attributes analysis
correspond well with the results of well logging methods, and the plane prediction results are identical
with the sedimentary facies map in the study area. The TOC and S2 values of E2s1þ2 and E2s3 are higher
than those in E3d3 and E3d2L, basically consistent with the geochemical analysis results. This method
makes up the deficiency of geochemical methods, establishing the connection between geophysical
information and geochemical data, and it is helpful to the 3D quantitative prediction and the evaluation
of high-quality source rocks in the areas where the drillings are limited.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
@nwu.edu.cn (J.-F. Ma).
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1. Introduction

Organic matter (OM) abundance is a significant part of source
rocks evaluation (Tissot et al., 1987; 1987). Although the traditional
geochemical tests are accurate enough, it is also difficult to obtain
three-dimensional (3D) distribution of source rocks and petroleum
resource prediction in the areas with few drillings and samples.
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Geophysical methods are also significant for the research of source
rocks, the well logs and seismic data are important supplements to
the geochemical testing (Passey et al., 1990; Magoon and Dow,
1991; Zhu and Jin, 2002; Zhang and Zhu, 2007; Løseth et al., 2011).

Well logging is widely used in the petroleum exploration with
high vertical resolution. Researchers have already started to iden-
tify source rocks using well logs such as natural gamma ray (GR),
sonic transit time (DT), density (DEN) and resistivity (RD) logs
(Beers, 1945; Swanson, 1960; Schmoker and Hester, 1981, 1983;
Meyer and Nederlof, 1984; Herron, 1988). Total organic carbon
(TOC) is one of the significant parameters of OM abundance. The
common method for TOC prediction is DlogR method, which is a
quantitative evaluation model based on resistivity, porosity logs
(generally DT) and thermal maturity parameter (LOM). It can be
applied to terrestrial and marine source rocks, in which the re-
sistivity logs mainly identify hydrocarbons in the pores of source
rocks, and the porosity logs are mainly used to identify the solid
kerogen (Passey et al., 1990; Kenomore et al., 2017; Sêco et al., 2019;
Aziz et al., 2020; Tenaglia et al., 2020). Scholars have proposed
various improved DlogR methods (Liu et al., 2014, 2021; Hu et al.,
2015; Wang et al., 2016; Zhao et al., 2016; Zhu et al., 2019). Log-
ging multiple linear regression method is also a popular method to
predict the TOC. The well logs have high correlation coefficients
with TOC are selected and then the multiple linear regression
method is used to calculate the TOC. However, this method has
regional limitations and it is difficult to be popularized (Aziz et al.,
2020).

Although well logs combined with geochemical data could
evaluate the vertical heterogeneity of source rocks more accurately,
the sparse well logs and geochemical data in areas with few dril-
lings hinder 3D prediction of the source rocks. Therefore, additional
research with seismic methods is needed. Previous studies mainly
used post-stack seismic data to predict source rocks by combining
the seismic facies and seismic attributes (Zhang and Zhu, 2007;
Gupta et al., 2013; Infante-Paez et al., 2017). In general, the study of
seismic response in source rocks should be based on the sequence
stratigraphy method. After well-seismic calibration, picking up
various seismic attributes (amplitude, frequency, phase, etc.), and
performing single attribute correlation analysis with TOC curves,
and then establishing mathematical model by selected seismic at-
tributes with high correlation coefficients. Finally, the mathemat-
ical model obtained by training is applied to the 3D seismic data
volume (Løseth et al., 2011; Li et al., 2014; Ji et al., 2018; Qin et al.,
2018). Seismic inversion is also an extensive method to quantita-
tively evaluate OM abundance of source rocks (Chen, 2014; Badics
et al., 2015; Tao et al., 2015; Wang et al., 2016; Infante-Paez et al.,
2017; Niu et al., 2017; Chen et al., 2018; Chopra et al., 2018;
Mahmood et al., 2018; Paris and Stewart, 2020; Sahoo et al., 2021).
After petrophysical analysis, scholars found that there are good
correlations between TOC and elastic parameters such as P-wave
impedance and pre-stack density inversion results, so the TOC
prediction can be calculated by post-stack or pre-stack seismic
inversions. In recent years, the shale rock physics and pre-stack
AVO analysis have become focused areas. Some published articles
reported that source rocks have significant class IV AVO charac-
teristics, that is, the intensity of negative reflection amplitude de-
creases with the increase of offset (Carcione et al., 2011; Løseth
et al., 2011; Del Monte et al., 2018). Numerous studies on the pet-
rophysics of organic-rich shale have been reported, which has laid
foundation for the study of the relationship between kerogen and
petrophysical elastic parameters of source rocks (Vernik and Nur,
1992; Vernik and Landis, 1996; Carcione, 2000; 2001, 2015;
Hansen et al., 2019; Del Moro et al., 2020; Zhao et al., 2020; Matava
et al., 2021).

In recent years, the application of neural network methods for
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petroleum exploration are becoming very popular, so lots of models
for predicting TOC by machine learning have also been proposed.
Based on petrophysical analysis, several well logs have significant
correlations with OM abundance were selected, and applied
different machine learning algorithms to establish models for
prediction (Huang and Williamson, 1996; Kamali and Mirshady,
2004; Bolandi et al., 2015; Tan et al., 2015; Verma et al., 2016; Ji
et al., 2018; Wang and Peng, 2018; Shalaby et al., 2019; Wang
et al., 2019; Zhao et al., 2021).

Researchers have conducted some geophysical studies for the
source rocks of the Bohai Bay Basin. Based on geochemical char-
acteristics, well logging and seismic data. Niu et al. (2017) used
post-stack impedance inversion to predict the TOC of the Shahejie
Formation source rocks in the Liaoxi Sag, Bohai Bay Basin. Cai et al.
(2018) predicted TOC of Shahejie Formation source rocks in the
Liaodong Sag of Bohai Bay Basin by using post-stack multi-attribute
fusion method. Wang et al. (2019) proposed a six-layer convolu-
tional neural network (CNN) method to predict TOC, S1 and S2 of
Dongying Sag, Bohai Bay Basin. By modifying the model parame-
ters, Liu et al. (2014, 2021) introduced the proportion coefficient K,
which was considered to be an integrated reflection of kerogen,
porosity and hydrocarbon components, proposed the variable
overlay-coefficient DlogR method (V-DlogR), and satisfactory pre-
diction results have been obtained in Dongying and Zhanhua Sag,
Bohai Bay Basin. In general, there were few geophysical studies for
source rocks of Bozhong Sag, especially in the aspect of seismic
research. In addition, the published articles were mainly based on
post-stack seismic data, and therewere few cases of using pre-stack
seismic data to predict source rocks. Moreover, the pre-stack
seismic data contain more reservoir information, and can
describe the reservoirs and hydrocarbons more accurately, which
contributes to more accurate evaluation of source rocks (Hampson
et al., 2005; Sen and Stoffa, 2013; Zhao et al., 2021).

Based on organic geochemical analysis, this study compares
multiple well logging methods, preferably BP neural network for
prediction of TOC and S2, and then combines seismic inversion (P-
wave impedance, P-wave velocity, density inversion results) and
seismic attributes to predict the 3D distribution of TOC and S2. A
geochemistry-logging-seismic workflow of terrestrial deep source
rocks evaluation method is established in the southwestern Boz-
hong Sag of Bohai Bay Basin.

2. Geological settings

The Bohai Bay Basin is located in the eastern part of the North
China Block, with an area of nearly 2 � 105 km2, including a land
area of 1.2 � 105 km2, and it is a Cenozoic lacustrine pull-apart
basin, which resulted in the disappearance of the Upper Creta-
ceous strata, denudation of the Mesozoic and Paleozoic sediments
(Watson et al., 1987; Allen et al., 1997; Sun et al., 2008; Zhou et al.,
2009; Feng et al., 2016; Yu et al., 2020; Fu et al., 2022). The Bozhong
Sag is the largest hydrocarbon-rich Sag and the Cenozoic deposi-
tional center of the Bohai Bay Basin, covering an area of 8660 km2,
with a thick layer of Cenozoic deposition, surrounded by the Shi-
jiutuo Uplift, Shaleitian Uplift, Chengbei Lower Uplift and Bonan
Lower Uplift. A series of significant exploration discovery have been
made in the Bozhong Sag, and several large and medium-sized oil
and gas fields such as BZ19-4, PL19-3, BZ13-1 and CFD6-4 have
been discovered (Xie et al., 2018; Yin et al., 2020; Yu et al., 2020). In
recent years, the Tianjin Branch of CNOOC discovered a large gas
field in the deep Archean metamorphic exposed-hill of the Boz-
hong 19-6 (BZ19-6) structure and a large oil field in Archean granite
gneiss buried-hill oilfield of the Bozhong 13-2 (BZ13-2) in the
southwestern Bozhong Sag (Shi et al., 2019, 2021; Xu et al., 2019;
Xue et al., 2020; Yin et al., 2020; Li et al., 2021) (Fig. 1).



Fig. 1. (a) The location of the offshore Bohai Bay Basin (Feng et al., 2016; Fu et al., 2022). (b) Location map of southwest part of Bozhong Sag.
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According to previous studies, the Bozhong Sag has experienced
rifting and depressional periods since the Cenozoic, with relatively
independent extensional and strike-slip fractures, and strike-slip is
the main control factor for tectonic movement, trap formation and
petroleum accumulation since its Cenozoic deposition (Qi et al.,
1995a, 1995b; Feng et al., 2016; Wang et al., 2017; Xie et al., 2018;
Yu et al., 2020). Researchers have extensively evaluated the source
rocks in the Bohai Sea area, including four significant Paleogene
source-rock intervals, namely: (1) the thirdmember of the Shahejie
Formation (E2s3), (2) the first and second members of the Shahejie
Formation (E2s1þ2), (3) the third member of the Dongying Forma-
tion (E3d3) and (4) the lower second member of the Dongying
Formation (E3d2

L). Previous studies have reported OM characteris-
tics, hydrocarbon generation history, depositional environment
based on organic biomarkers, stable carbon isotope and trace ele-
ments, the source rocks in Bozhong Sag were further studied (Li
et al., 2001; Hao et al., 2010, 2011; Wang et al., 2015; Jiang et al.,
2016, 2019; Yin et al., 2020; Chen et al., 2021). However, the
lacustrine source rocks in Bozhong Sag have significant heteroge-
neity, and source rocks in different sub-sags may have different
hydrocarbon generation potentials (Hao et al., 2010, 2011; Wang
et al., 2022), and the studies on quantitative evaluation of source
rocks in Bozhong sub-sags were insufficient. The source rocks of
E2s3, which are the most important source rocks in Bozhong Sag,
represent lacustrine, fan delta sedimentary facies. The thickness of
E2s1þ2 source rocks are thinner than that of E2s3, representing
shore-shallow lacustrine, braid-delta and fan delta sedimentary
facies. The sedimentary facies of E3d3 and E3d2

L are river-delta and
lacustrine sedimentary facies, and their contribution to petroleum
accumulation in Bozhong Sag could not be ignored (Hao et al., 2010;
Jiang et al., 2016) (Fig. 2).

3. Samples and methodology

In this study, the data of 31 wells (X1, X2, X3, X4, X5, X6, Y1, Y2,
Y3, Y4, Y5, Y6, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13,
P1, Z1, Z2, Z3, Z4 and Z5), the pre-stack CRP gathers, post-stack
seismic data and seismic horizons in the southwestern Bozhong
Sag were collected, the 3D seismic survey covers approximately
800 km2. A total of 718 mudstone samples were collected for TOC
testing and Rock-Eval pyrolysis. The Rock-Eval pyrolysis and TOC
data of several wells (Q4, Q11, X5, X6, Z1) have been reported, but
they were used for research on organic facies, sedimentary envi-
ronment of source rocks, and oil-source correlation. These data
have not been used for geophysical prediction of source rocks
(Wang et al., 2020, 2022; Yin et al., 2020). All the above experi-
mental results were analyzed and identified in the Bohai experi-
mental center of CNOOC, State Key Laboratory of Continental
Dynamics of Northwest University, and State Key Laboratory of
Petroleum Resources and Prospecting, China University of Petro-
leum. The logging data and seismic data were obtained from the
Tianjin Branch of CNOOC.

3.1. Geochemical analysis and geophysical data

1) TOC analysis. TOC was tested using CS-230 carbon and sulfur
analyzer. First, the mudstone samples were crushed to 80 mesh,
weighed to take 0.3 g sample and put into a quartz crucible.
Then 5% dilute hydrochloric acid was added and then it was
heated at 80 �C to remove the inorganic carbon. The selected
samples shall be washed with pure water and dried at 60 �C.
Finally, the crucible in which the samples were placed in the
CS230 carbon and sulfur analyzer to determine the TOC.

2) Rock-Eval pyrolysis. For Rock-Eval pyrolysis using ROCK EVAL 6
pyrolyzer, the mudstone samples were crushed to 100mesh and
34
then 60 mg of samples were weighed and heated for pyrolysis
and placed in the Rock-Eval pyrolyzer.

3) The well logs mainly include sonic transit time (DT and DTS), P-
wave (converted from DT), S-wave (converted from DTS), den-
sity (DEN), deep resistivity (RD) and natural gamma ray (GR).
The wells involved in the logging prediction methods include:
X1, X2, X3, X4, X5, X6, Y1, Y2, Y3, Y4, Y5, Y6, Q1, Q2, Q3, Q4, Q6,
Q7, Q9, Q11, Q12, Q13, P1, Z1, Z2, Z3, Z4 and Z5.

4) Seismic data inline direction is north-south, crossline direction
is east-west. Seismic bin size is 25 m � 12.5 m, the post-stack
seismic data with the traditional processing of amplitude re-
covery and residual amplitude compensation, static correction,
suppress multiple waves, velocity analysis, pre-stack time
migration. For pre-stack simultaneous inversion, gather condi-
tioning is needed. The wells involved in the seismic inversion
and attributes analysis within the seismic workings include: Y1,
Y2, Y4, Q1, Q2, Q3, Q4, Q6, Q7, Q9, Q11, Q12, Q13 and P1.
3.2. Well logging evaluation of organic matter abundance in source
rocks

Generally, source rocks are mainly marine carbonate rocks or
terrestrial lacustrine mudstones, which mainly consist of rock
matrix and pores, and the rock matrix of non-source rocks are
mainly clay minerals (montmorillonite, kaolinite, illite, etc.), non-
clay minerals (quartz, feldspar, carbonate minerals, etc.) and
kerogen, and as the source rocks mature, the solid kerogen will
evolve into oil and gas entering the pore and drive out the pore
water (Fig. 3). The rock physical differences (P-wave velocity,
density, resistivity, etc.) between kerogen and other clastic particles
(such as quartz, feldspar, and carbonate minerals) in source rocks
are more significant, so the variability of component content (the
OM abundance) of source rocks could be identified by well logging
methods (Passey et al., 1990; Zhao et al., 2016).

A total of 620 groups data of TOC and S2 of the southwestern
Bozhong Sag were selected, including 312 groups in E3d2

L, 142
groups in E3d3, 59 groups in E2s1þ2, and 107 groups in E2s3. Based
on DlogR method, generalized DlogR method, multiple linear
regression and BP neural network method, the determination co-
efficient R2 and average relative errors of the prediction models in
different intervals and sedimentary facies are compared. In order to
select the suitable and unified method, the data of different in-
tervals are unified together for comparison and optimization.

3.2.1. Adapting Passey et al. (1990) method to estimate TOC
The DlogRmethod is one of the most classical logging prediction

methods for estimating TOC proposed by Passey et al. (1990). The
RD logs and the DT logs are superimposed in reverse in the non-
source rocks intervals, and the part where the two logs
completely overlap in a certain range is the baseline. Since the sonic
transit time value of kerogen is generally larger than that of inor-
ganic minerals such as quartz and feldspar, the resistivity value of
oil and gas is higher than inorganic-rich intervals, a certain sepa-
ration between the baselines will be generated, and the separation
is designated as DlogR, that is

DlogR ¼ log10ðR=RbaselineÞ þ 0:02� ðDt � DtbaselineÞ (1)

In Eq. (1), where R is the resistivity log value, Rbaseline is deep re-
sistivity baseline value, Dt is sonic transit time log value, Dtbaseline is
sonic transit time baseline value, respectively. And the DlogR sep-
aration is linearly related to TOC values through the maturity
parameter (LOM) in Eq. (2). In general, LOM can be obtained from a
variety of laboratory analysis and testing, burial and thermal



Fig. 2. Generalized stratigraphy of the Bohai Bay Basin modified from (Hao et al., 2010, 2011; Li et al., 2021). Possible source rock and reservoir intervals are marked.
Form ¼ Formation; PY ¼ Pingyuan; RPW Depth ¼ Relative paleo-water; Rs ¼ Reflectors.

Fig. 3. Petrophysical models of non-source, immature and mature source rocks modified from (Passey et al., 1990; Zhao et al., 2016). (a) Non-source rocks model. (b) Immature
source rocks. (c) Mature source rocks.
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history. LOM determine the accuracy of TOC prediction.

TOC¼ðDlogRÞ � 10ð2:297�0:1688�LOMÞ þ DTOC (2)

3.2.2. Adapting generalized DlogR method to estimate TOC
The DlogR method produced a more apparent amplitude dif-

ference between the RD and DT logs superimposed on the intervals
of mature source rocks (Fig. 4), and the generalized DlogRmethod is
a method proposed by (Hu et al., 2015) for deep intensive
compaction formations in the terrestrial facies, which takes into
account that the relationship between TOC values and DlogR is not
a simple linear relationship, and needed to introduce LOM, but the
conductive component of the terrestrial source rocks makes the
separation of the immature source rocks intervals implicit to be
calculated, thus introducing the GR log, which is more sensitive to
the terrestrial intensive compaction formations, and this article
also introduce the DEN log, which is sensitive to the OM. The
generalized DlogR method considering GR and DEN is obtained:

TOC¼ ½a� log10ðGRÞþ b�DENþ c� �DlogRþ DTOC (3)

where a, b, and c are fitting coefficients and DTOC is the background
value of OM abundance, and Eq. (3) is used in combinationwith Eq.
(1).

3.2.3. Adapting multiple linear regression to estimate TOC
Multiple linear regression method is also a popular method to

calculate the OM abundance of source rocks. It was found that the
correlations between logging parameters and OM abundance pa-
rameters (TOC and S2) were inapparent, so the mathematical
relationship between multiple logging parameters with TOC and S2
could be considered for the prediction.

According to previous studies, the P-wave velocity of kerogen is
generally 1700e2300 m/s, the P-wave velocity of clay minerals
such as kaolinite and illite are generally 3000e4000 m/s, while the
P-wave velocity of minerals such as quartz, feldspar and calcite is
generally above 4000 m/s. Therefore, the OM in the source rocks
would result in the decrease of the P-wave velocity (the increase of
DT values) (Mavko et al., 2020). The density of kerogen is generally
1.3e1.4 g/cm3, while the density of other minerals such as quartz,
Fig. 4. (a) Sonic/resistivity overlay difference and calculated TOC profile of immature sour
source rocks modified from (Passey et al., 1990; Hu et al., 2015).
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feldspar, calcite are higher than 2.0 g/cm3, therefore, the OM
enrichment would result in the decrease of DEN values. Moreover,
kerogen contains radioactive elements such as U, Th, K, etc., which
will affect the RD and GR (Mavko G et al., 2020).

According to 3D cross-plot analysis (Fig. 5), it is found that the
correlations of DT, DEN, RD and GR with TOC and S2 decrease in
southwestern Bozhong Sag. Therefore, the calculation formula of
TOC and DT, DEN, RD and GR logs is established in Eq. (4), where d,
e, f, g and h are fitting coefficients:

TOC¼d� DTþ e� DENþ f � RDþ g � GR þ h (4)
3.2.4. Adapting BP neural network method to estimate TOC
BP (back propagation) neural network is a multi-layer feed-

forward neural network trained according to the error back prop-
agation algorithm. Its topology includes input layer, hidden layer
and output layer (Fig. 6), and the core theory is that the training
samples are input from the input layer, processed by multiple
hidden layers and output to the output layer, if the desired output is
not obtained, the hidden layers back propagate and pass the error
signal to the neurons in the previous layer, and then adjust the
weights and thresholds so that the error between the actual output
and the desired output is minimized. This process is called back
propagation (Huang and Williamson, 1996; Kamali and Mirshady,
2004; Bolandi et al., 2015; Tan et al., 2015; Verma et al., 2016; Ji
et al., 2018; Wang et al., 2017; Shalaby et al., 2019; Wang et al.,
2019; Zhao et al., 2021). To obtain the desired output results, the
prediction of the network can be optimized by adjusting the
number of layers of the hidden layer or increasing the number of
neuron nodes in a single hidden layer. Only nonlinear separation
problems require multiple hidden layers, and the neural network
model with a single hidden layer can effectively approximate
arbitrary continuous functions. In this study, the BP neural network
model with a single hidden layer is constructed, and its mathe-
matical formulas are as follows in Eqs. (5)e(8):

Input layer:

xðiÞ (5)

Hidden layer:
ce rocks. (b) Sonic/resistivity overlay difference and calculated TOC profile of mature



Fig. 5. Correlation analysis diagram between logging parameters and OM abundance (TOC and S2). (a) DT, (b) DEN, (c) RD, (d) GR.

Fig. 6. Diagram indicates formulation of input petrophysical data to TOC and S2 by a
three layered artificial neural network modified from (Bolandi et al., 2015).
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aðiÞ1 ¼ f
�
w1x

ðiÞ þ b1
�

(6)

Output layer:

byðiÞ ¼ f
�
w2a

ðiÞ
1 þ b2

�
(7)

The output expression after several training sessions is

Y ¼
Xm
j¼1

"
w2jk � f

 Xn
i¼1

w1ij � xðiÞ þ b1j

!#
þ b2k (8)

where x(i) is the feature vector of the output layer; f ($) is the
activation function; w1ij is the weight from the input layer to the
hidden layer; b1j is the threshold from the input layer to the hidden
layer; w2jk is the weight from the hidden layer to the output layer;
b2k is the threshold from the hidden layer to the output layer.

Similarly, chloroform bitumen “A”, hydrocarbons formed before
pyrolysis S1, S2 and other OM abundance parameters can also be
calculated by this method.
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3.3. Seismic prediction of organic matter abundance in source rocks

3.3.1. Pre-stack simultaneous inversion
Based on the pre-stack CRP gathers, well logs data, geological

data, etc., the pre-stack simultaneous inversion is performed
(Hampson et al., 2005; Sen and Stoffa, 2013; Chen et al., 2018) (14
inversion wells, namely, Y1, Y2, Y4, Q1, Q2, Q3, Q4, Q6, Q7, Q9, Q11,
Q12, Q13, P1), and after the gather conditioning processes, wavelet
extraction, well seismic calibration, low frequency model estab-
lishment. The pre-stack inversion data results such as P-wave,
density, S-wave, P-wave impedance, and P-wave and S-wave ve-
locity ratios were obtained to provide the basis for multi-attributes
prediction of TOC and S2.

A. Pre-stack gather conditioning. The original seismic data is pre-
stack CRP gathers, which has low signal-to-noise ratio, no flat-
tening of the events, and large differences in wavelet morphology,
etc. Therefore, to obtain more accurate inversion results, the orig-
inal CRP gathers are needed gather conditioning before the pre-
stack inversion. It can be seen that after pre-stack gather condi-
tioning, the reflection horizons of the gathers are flattened and the
signal-to-noise ratio and resolution are improved, which can be
used for pre-stack simultaneous inversion and OM abundance
prediction in the southwestern Bozhong Sag (Fig. 7).

B. Wavelet selection and generation of synthetic seismogram.
After obtaining the CRP gathers by the pre-stack gather condi-
tioning, it is necessary to perform well-seismic calibration by
correlating well logs with the seismic data. In this work, we extract
the zero-phase statistical wavelet to make synthetic seismogram.
The synthetic seismogram is further calibrated and compared with
the actual seismic traces near wells, and the corresponding hori-
zons were traced and adjusted repeatedly with the aim of obtaining
accurate and reliable time-depth relationships at thewell locations.
Fig. 8 shows the synthetic seismogram results of well Q2 and well
Q3, with the geological strata on the far left, the P-wave velocity
logs on the red curve, the density logs on the blue curve, and the
blue seismic traces are the synthetic seismogram, red seismic traces
are the seismic traces near wells, and the actual seismic traces near
wells are shown on the far right. The yellow boxes at the top and
bottom are the target intervals. It can be seen that the synthetic
seismogram results in the target formations are satisfactory, with
correlation coefficients of 0.8410 for well Q2 and 0.8020 for well Q3.
Fig. 7. Pre-stack gather conditioning processes. (a) CRP gathers, (b) CRP gathers after mut
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C. Establishment of low frequency model. After establishing the
reliable seismic time-depth relationship, a low-frequency model
needs to be built with the help of logging information (Mahmood
et al., 2018). The pre-stack simultaneous inversion requires the
establishment of the pre-stack P-wave impedance, the P-wave ve-
locity and the density models to constrain the inversion results,
filling the low-frequency portion of the seismic frequency
spectrum.

D. Pre-stack simultaneous inversion results. The final inversion re-
sults were obtained through several inversion analyses and im-
provements. Fig. 9 shows the P-wave impedance, P-wave velocity
and density inversion results (Inline 4938) over well Q7, the well
position was inserted into the well logs, and its color bar and the
inversion results color bar were adjusted to be consistent, the
inversion results near wells correspond well with the well logs, so
the inversion results have high credibility.

3.3.2. Multi-attributes fusion analysis based on neural network
Then multiple attributes of the seismic traces near wells are

extracted and combined with the P-wave impedance, P-wave ve-
locity and density inversion results to perform multi-attributes
analysis with TOC and S2. The multi-attributes fusion prediction
of several attributes has the highest correlation coefficients with
TOC and S2 are performed using the neural network method to
obtain the TOC and S2 prediction curves for the wells within the
seismic data, and then the neural network-trainedmodel is applied
to the entire seismic data to obtain the TOC and S2 3D prediction
results.

According to the analysis of the previous well logging parame-
ters cross-plots (Fig. 5), it is found that the OM abundance pa-
rameters (TOC, S2) of source rocks had the highest correlation
coefficients with DT and DEN logs, so this study uses the P-wave
velocity, density and P-wave impedance inversion results com-
bined with post-stack seismic data for multi-attributes optimiza-
tion and analysis.

Next, we need to extract the seismic attributes near wells and
make correlation analysis with the TOC and S2 curves predicted by
BP neural network method. Figs. 10 and 11 are the TOC and S2
curves of Well Q2, Q3, Q4 and Q12, and the seismic traces near
wells, P-wave impedance, P-wave velocity and density. In order to
make a satisfying match between TOC/S2 curves and seismic at-
tributes, it is necessary to time shift, smooth and filter logs (the
ed, (c) super gathers, (d) gathers after residual moveout correction, (e) angle gathers.



Fig. 8. Synthetic seismogram results of Well Q2 and Q3. (a) Well Q2, (b) Well Q3.
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black curves on the left are the TOC and S2 curves predicted by BP
neural network method, and the red curves are the TOC and S2
curves after time shift, smoothing and filtering) (Figs. 10 and 11).

The multiple attributes of the seismic traces near wells are
extracted to combine the values of P-wave impedance, P-wave
velocity, and density inversion results for multi-attributes analysis.
Tables 1 and 2 are the TOC and S2 multi-attributes correlations
analysis results, respectively. It can be seen that when performing
TOC multi-attributes analysis prediction. It is found that when the
number of attributes is 5 (reciprocal of P-wave velocity, reciprocal
of density, integrated absolute amplitude, dominant frequency, and
reciprocal of P-wave impedance) (Table 1), the correlation coeffi-
cient is the highest and the error is the lowest. The correlation
coefficient between the logging prediction TOC curves and seismic
near wells prediction TOC for 13 wells is 0.6378, and the overall
correlation coefficient is 0.7797 when using neural network
training. When performing S2 multi-attributes analysis prediction,
the highest correlation coefficient and the lowest error were found
when the number of attributes was 3 (reciprocal of P-wave velocity,
reciprocal of P-wave impedance, and integrated absolute ampli-
tude) (Table 2), the overall correlation coefficient between the
logging predicted S2 curves and the seismic near wells prediction S2
for 13 wells is 0.6187, and the overall correlation coefficient is
0.7175 when using neural network training.
4. Results

4.1. OM abundance of source rocks

OM abundance evaluation is an important part of source rocks
research (Peters, 1986; Hakimi and Ahmed, 2016). TOC, S1, S2, and
genetic potential (S1þS2) are used to evaluate the OM abundance of
source rocks in the southwestern Bozhong Sag. Table 3 shows the
OM abundance characteristic parameters of source rocks in
southwestern Bozhong Sag. There are many sedimentary facies
types in this area, including semi-deep and deep lake facies,
braided river delta, sublacustrine fan, shore and shallow lake facies.
The debris samples may be silty mudstone or siltstone, resulting in
low TOC and Tmax values.

The TOC of E3d2L source rocks ranges from 0.35% to 3.56% (avg.
0.85%), S2 values are 0.18 to 15.57 mg/g (avg. 2.30 mg/g). The TOC of
E3d3 source rocks ranges from 0.45% to 5.33% (avg. 2.19%); S2 values
are 0.13 to 31.03 mg/g (avg. 8.03 mg/g). The TOC of E2s1þ2 source
rocks ranges from 0.25% to 6.90% (avg. 2.84%); S2 ranges from 0.24
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to 54.29 mg/g (avg. 12.93 mg/g). The TOC of E2s3 source rocks
ranges from 0.80% to 7.76% (avg. 3.10%); S2 mainly ranges from 1.27
to 58.32 mg/g (avg. 14.75 mg/g) (Table 3).

Based on the cross-plots between the S2 and TOC (Fig. 12a), the
cross-plots between the S1þS2 and TOC (Fig. 12b), the frequency
distribution of TOC and S1þS2 (Fig. 12c and d), it can be seen that
the OM abundance of Shahejie Formation is higher than that of
Dongying Formation. E2s1þ2 and E2s3 source rocks have higher OM
abundance values, which indicating better hydrocarbon generative
potential. The hydrocarbon generation potential of E3d3 is relatively
weak, which are evaluated as fair-good source rocks. The E3d2

L

source rocks are poor to fair quality source rocks, the hydrocarbon
generation potential of E3d2

L is relatively poor (Fig. 12).
4.2. Logging prediction results and comparison

Comparing the determination coefficient R2 and the average
relative error of four methods (Fig. 13 and Table 4). The generalized
DlogR method has a higher prediction accuracy compared with
Passy's method because it takes into account intensive compaction
of source rocks in terrestrial facies; the correlation coefficient R2

and average relative error of the generalized DlogR method are
slightly better than multiple linear regression method. Compared
with the other three methods, the prediction accuracy of BP neural
network method is higher (Fig. 13).

According to the comparison results of correlation coefficients
of each TOC predictionmethod (Table 4), it can also be seen that the
generalized DlogR method has better results for different sedi-
mentary facies prediction models than the Passy's DlogR method.
For example, the determination coefficients are significantly
improved in the semi-deep and deep lacustrine facies of E3d2L and
E3d3 source rocks, while the correlation coefficients of the gener-
alized DlogR and the multiple linear regression methods have their
own advantages, respectively. It is difficult to compare and priori-
tize the four models of different sedimentary facies, so it is neces-
sary to conduct a unified analysis; the determination coefficient R2

of BP neural network method is roughly above 0.80 in different
sedimentary facies models, which is higher than the other three
methods. The prediction accuracy of BP neural network is better
than multiple linear regression and DlogR series methods in
southwestern Bozhong Sag.

According to the above analysis, the S2 of source rocks in
southwestern Bozhong Sag was also predicted using BP neural
networkmethod. Fig.14 shows the TOC and S2 prediction profiles of



Fig. 9. Pre-stack simultaneous inversion results. (a) P-wave impedance, (b) P-wave, (c) Density.
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Fig. 10. Calibration diagram of TOC curves of typical wells and inversion trace of seismic data, P-wave impedance, P-wave velocity and density inversion results near wells. (a) Well
Q2, (b) Well Q3, (c) Well Q4, (d) Well Q12.
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well Q3 in the study area, and it can be obviously seen that the
prediction results of BP neural networkmethod in TOC and S2 are in
good agreement with the organic geochemical data. The OM
abundance (TOC, S2) values of E3d2

L source rocks are low, the OM
abundance values of the source rocks of E2s1þ2 and E2s3 are higher,
and that in E3d3 source rocks are medium (Fig. 14).

4.3. Seismic prediction results of organic matter abundance

Figs. 15 and 16 show the TOC and S2 seismic prediction profiles
across the inversion wells, and the logging prediction TOC and S2
curves are inserted at the well locations. The logging and seismic
near well prediction results correlation coefficient for TOC is 0.7797,
and the logging and seismic near well prediction results correlation
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coefficient for S2 is 0.7175, indicating that the neural network
combined with seismic multi-attributes (post-stack seismic attri-
butes, P-wave velocity, P-wave impedance and density inversion
results) to predict TOC and S2 of source rocks is feasible (Figs.15 and
16).

In order to prove the prediction accuracy of the model, we used
well Y3 that was not involved in pre-stack simultaneous inversion,
to test the model (Fig. 17), and obtained the TOC and S2 profiles
across the well Y3. The logging and seismic near well prediction
results correlation coefficient for TOC is 80.32%, and the average
relative error is 10.58%. However, the S2 value of the seismic near
well Y3 (especially the source rocks of E3d3 interval) is high (the
value ranges from 5.2 to 8.5), which is consistent with the trend of
prediction results of logging method, indicating that the prediction



Fig. 11. Calibration diagram of S2 curves of typical wells and inversion trace of seismic data, P-wave impedance, P-wave velocity and density inversion results near well. (a) Well Q2,
(b) Well Q3, (c) Well Q4, (d) Well Q12.

Table 1
Table of TOC and seismic multi-attributes correlation analysis.

Target curve Final attribute Training error Validation error

TOC Reciprocal of P-wave velocity 0.775878 0.806666
TOC Reciprocal of density 0.752918 0.787887
TOC Integrated absolute amplitude 0.736557 0.790879
TOC Dominant frequency 0.721891 0.794449
TOC Reciprocal of P-wave impedance 0.708371 0.767903
TOC Average frequency 0.692053 0.779249
TOC Amplitude weighted phase 0.688232 0.778316
TOC Instantaneous phase 0.685239 0.777785
TOC Apparent polarity 0.683159 0.783618
TOC Derivative of instantaneous phase 0.682065 0.786299
TOC Amplitude weighted cosine phase 0.679798 0.785816
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Table 2
Table of S2 and seismic multi-attributes correlation analysis.

Target curve Final attribute Training error Validation error

S2 Reciprocal of P-wave velocity 3.104438 3.286747
S2 Reciprocal of P-wave impedance 2.828075 2.991783
S2 Integrated absolute amplitude 2.748946 2.949182
S2 Density squared 2.719773 3.392887
S2 Amplitude weighted frequency 2.692451 3.379546
S2 Dominant frequency 2.661405 3.444809
S2 Amplitude weighted phase 2.640017 3.439983
S2 Average frequency 2.627350 3.570451
S2 Apparent polarity 2.618618 3.626040
S2 Amplitude envelope 2.612385 3.633032
S2 Instantaneous phase 2.606557 3.631869

Table 3
Geochemical characteristics of the source rocks.

Formation TOC, % S1, mg/g S2, mg/g S1þS2, mg/g Tmax, �C HI, mg/g

E3d2L 0.35e3.56 (0.85) 0.01e5.26 (0.47) 0.18e15.57 (2.30) 0.28e16.25 (2.78) 402e451 (437) 49.12e630.44 (242.21)
E3d3 0.45e5.33 (2.19) 0.03e6.38 (1.91) 0.13e31.03 (8.03) 0.33e32.16 (9.93) 393e493 (441) 8.96e774.48 (334.45)
E2s1þ2 0.25e6.90 (2.84) 0.02e6.21 (2.20) 0.24e54.29 (12.93) 0.26e59.80 (15.11) 397e457 (434) 14.59e1019.53 (393.45)
E2s3 0.80e7.76 (3.10) 0.16e7.59 (2.16) 1.27e58.32 (14.75) 1.62e63.99 (16.93) 418e468 (439) 52.27e1269.75 (426.85)

Note: The values in the brackets represent the arithmetic mean.

Fig. 12. Geochemical characteristics of source rocks in the study area. (a) Plot of TOC vs. S2 (after Hakimi and Ahmed, 2016), (b) TOC vs. S1þS2 (after Hakimi and Ahmed, 2016), (c)
Frequency diagrams of TOC, (d) Frequency diagrams of S1þS2.
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model has better prediction ability, and that the area near well Y3 is
the high-quality source rocks deposition area with good hydro-
carbon generation potential (Fig. 17).

The advantage of seismic method is that it has a high horizontal
resolution, and can effectively identify the source rocks that have
no samples. Therefore, the evaluation of TOC and S2 requires not
only comparing the seismic near well prediction results with the
43
logging prediction results, but also making plane distribution of the
TOC and S2 seismic prediction results, and further using the sedi-
mentary facies maps to verify the credibility of this method
(Figs. 18, 19 and 20).

As in Fig. 18a, the black dotted bordered rectangle is the seismic
workings. During the E3d2

L depositional stage, there are mainly
braided river delta facies within the seismic workings (the areas of



Fig. 13. Four methods to predict TOC determination coefficients, average relative errors analysis charts. (a) Passey's DlogR method, (b) generalized DlogR method, (c) multiple linear
regression method, (d) BP neural network method.

Table 4
Comparison of determination coefficient R2 of different TOC prediction methods.

Strata Sedimentary facies DlogR method Generalized DlogR method Multiple linear regression BP neural network

E3d2
L Braided river delta 0.7632 0.7822 0.7505 0.9086

Fan dalta 0.0482 0.6187 0.7056 0.8492
Shore-shallow lacustrine 0.6889 0.8125 0.3590 0.8305
Semi-deep and deep lacustrine 0.1371 0.6131 0.6317 0.8026
Sublacustrine fan 0.1707 0.2096 0.3409 0.8131

E3d3 Braided river delta and fan dalta 0.6911 0.8735 0.8656 0.9520
Shore-shallow lacustrine 0.4012 0.8512 0.7653 0.8755
Semi-deep and deep lacustrine 0.0195 0.5633 0.6216 0.7162
Sublacustrine fan 0.5473 0.5518 0.5256 0.9088

E2s1þ2 Shore-shallow lacustrine and braided river delta 0.5124 0.6912 0.4290 0.8156

E2s3 Braided river delta 0.5583 0.6932 0.7009 0.9254
Fan dalta 0.1972 0.5281 0.4990 0.6429
Semi-deep and deep lacustrine 0.2960 0.4676 0.3640 0.6851
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Fig. 14. TOC and S2 prediction results of well Q3.

Fig. 15. The TOC prediction results of wells connection section.
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well Q2, Q3, Q4, Q6, Q7 and Q13), which are not conducive to the
formation of good-quality source rocks, while the areas of well Y1,
Y2, Q1 and Q11 are sublacustrine fan, semi-deep and deep lacus-
trine facies, which are conducive to the deposition of good-quality
45
source rocks. As in Figs. 19a and 20a, the TOC in the areas of well Y1,
Y2, Q1 and Q11 ranges from 1.0% to 2.0% and S2 ranges from 2 to
6mg/g, which are fair to good source rocks. The TOC in areas of well
Q2, Q3, Q4, Q6, Q7 and Q13 ranges from 0% to 0.4% and S2 ranges



Fig. 16. The S2 prediction results of wells connection section.
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from 0 to 2 mg/g, and the quality of source rocks is poor. The OM
abundance of source rocks in the north is better than that in the
south, and shows a trend of gradually decreasing from north to
south.

As in Fig. 18b, during the E3d3 depositional stage, the areas of
well Y1, Y2, Y4, Q1 and Q11 in the seismic workings are mainly
semi-deep and deep lacustrine facies, the areas of well Q2, Q3, Q4,
Q6, Q7, Q13 and P1 are shore-shallow lacustrine facies, and the
northern part is favorable for the deposition of good-quality source
rocks. As Figs. 19b and 20b, the TOC in the areas of well Y4 and Q11
and the western part of the workings ranges from 1.0% to 2.5% and
S2 ranges from 2 to 6 mg/g, which are fair to good quality source
rocks, and TOC in the areas of well Q2, Q3, Q4, Q6, Q7 and Q13
ranges from 0.2% to 0.6% and S2 ranges from 1 to 3 mg/g, the source
rocks are poor to fair quality.

As in Fig. 18c, during E2s1þ2 depositional stage, the seismic
workings are mainly shore-shallow lacustrine facies, and the
western part of the workings are semi-deep and deep lacustrine
facies. As in Figs. 19c and 20c, the TOC in areas of well Y2, Q3, Q7
and Q11 ranges from 1.0% to 3.0%, and S2 ranges from 2 to 8 mg/g,
which are good to very good quality source rocks, TOC in the areas
of well Q1, Q9 and Q12 is low, ranging from 0.2% to 0.6%, and S2
ranges from 1 to 4 mg/g, represent fair quality source rocks.

As in Fig. 18d, during the E2s3 depositional stage, semi-deep and
deep lacustrine facies are developed in the areas of well Y1, Y2, Y4,
Q4, Q7, Q9, Q11, Q12 and Q13, sublacustrine fan facies are developed
in the areas of well Q2, Q3 and Q6, and shore-shallow lacustrine
facies are developed in area of well Q1. As in Figs. 19d and 20d, the
TOC in the areas of well Q2, Q3, Q4, Q6, Q7 and Q13 ranges from
1.0% to 3.0%, and S2 ranges from 2 to 10 mg/g, which are very good
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to excellent quality source rocks, and TOC in the areas of well Y1, Y4,
Q1, and Q9 is lower, ranging from 0.6% to 1.0%, and S2 ranges from
2 to 4 mg/g, source rocks are fair quality.
5. Discussions

5.1. Passey et al. (1990) method

Among the methods for estimating TOC fromwell logs, Passey's
DlogR method is based on rigorous petrophysical model derivation
and includes fewer well logs (redundant information), using the
Wyllie formula and the Archie formula to overlap the porosity logs
(usually DT) with the resistivity logs (usually RD). The combination
of sonic transit time logs and resistivity logs could eliminate the
influence of porosity on the logging response from OM (Passey
et al., 1990). However, this method requires the determination of
the baseline value, and different baselines are used for different
wells and even different intervals, which makes the operation of
this method more complicated (Liu et al., 2014, 2021; Zhao et al.,
2016). Furthermore, the determination of DTOC is mainly based
on the empirical, geological settings and geochemical data, which
also has significant uncertainty. The overlay-coefficient not only
eliminates the effect of on the porosity logging response for OM,
but also affects the relative ability to identify kerogen and hydro-
carbon fluids. To determine the overlay-coefficient, the proportion
of kerogen and hydrocarbon fluids in the source rock should be
considered, and the overlay-coefficient value of 2 is not objective
enough. Finally, LOM is introduced into the equation, which is
generally obtained from a large number of sample analyses (such as
vitrinite reflectance, thermal alteration index, Rock-Eval Tmax



Fig. 17. The TOC and S2 prediction results of the section cross the well Y3.
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analysis), or from burial history and thermal history evaluation (Liu
et al., 2014, 2021; Wang et al., 2016; Zhao et al., 2016; Zhu et al.,
2019).
5.2. The generalized DlogR method

The generalized DlogRmethod includes GR and DEN logs, which
take into account: A single log curve is easy to be interfered, and
multiple logging curves have significant anti-interference ability.
The radioactive elements such as U, Th and K usually contained in
continental mudstone will lead to high natural gamma value. In
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addition, terrestrial facies intervals have intensive compaction ef-
fect, while GR log is less affected by compaction effect by
compaction and more sensitive to the changes of deep continental
source rocks (Hu et al., 2015; Liu et al., 2021). The DlogR method
and its improvement methods are widely used in major petrolif-
erous basins, including Songliao Basin, Bohai Bay Basin, Sichuan
Basin (Liu et al., 2014, 2021; Hu et al., 2015; Zhao et al., 2016; Zhu
et al., 2019) and the Western Basin of Canada (Wang et al., 2016).
The DlogR method and its improved methods have been applied
effectively in both marine and terrestrial sequences. In particular,
some large shale gas fields had been found in the Sichuan Basin in



Fig. 18. Sedimentary facies diagrams of southwestern Bozhong Sag (modified from the Exploration and Development Research Institute of CNOOC Tianjin Branch). (a) E3d2
L, (b) E3d3,

(c) E2s1þ2, (d) E2s3.
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recent years. The research on geophysical prediction of organic-rich
mudstones has become focused issues (Zhao et al., 2016, 2020;
Chen et al., 2018; Zhu et al., 2019). In this study, it is found that the
prediction accuracy of the DlogR method is relatively low, which
may be related to the complexity of geological settings of the
Bozhong Sag. The geological settings of rapid subsidence results in
significant differences in the burial depth, sedimentary facies, li-
thology and organic geochemical characteristics of source rocks
from each well.

5.3. Multiple regression method

Compared with DlogR method, the multiple regression method
is relatively simple to operate. In this study, the correlation co-
efficients of resistivity and TOC, S2 are 0.5731 and 0.3425, respec-
tively, which are lower than the sonic transit time and density,
which may be related to the low maturity of source rocks in the
southwestern Bozhong Sag. There are no hydrocarbon liquids
displace formation water in the pores (Hao et al., 2010, 2011; Jiang
et al., 2016;Wang et al., 2020). The comparison of prediction results
shows that the prediction accuracy of multiple regression method
is better than that of Passey's method. The generalized DlogR
method uses DT, DEN, RD and GR logs, which are the same as those
used bymultiple linear regression, so the prediction accuracy of the
multiple regression method and the generalized DlogR method is
similar. However, the limitations of multiple regression method
should not be ignored. The formulas obtained by fitting are not
universal enough, different formulas need to be fitted in different
geological settings, different basins and even different intervals
(Mendelzon and Toksoz,1985; Aziz et al., 2020; Liu et al., 2021). The
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high correlation coefficients of DT and DEN logs with TOC and S2
indicate that it is feasible to predict OM abundance in this region by
using seismic pre-stack inversion (pre-stack P-wave velocity and
density inversion results) combined with post-stack seismic
attributes.

5.4. BP neural network method

The relationships between TOC and S2 and well logging are
difficult to be expressed by dominant function, which belongs to
nonlinear problem, because source rocks are a kind of sedimentary
rocks with significant heterogeneity (Huang andWilliamson,1996),
mineral composition, pore structure, fluid properties and kerogen
affect the petrophysical properties of source rocks, which lead to
the great differences in well logging values (Vernik and Nur, 1992;
1996; Carcione, 2000, 2001, 2011, 2015; Hansen et al., 2019), while
the neural networkmethods have incomparable superiority in non-
linear calculation (Kamali andMirshady, 2004; Bolandi et al., 2015).
Neural network methods have been widely used in OM abundance
prediction of source rocks (Huang and Williamson, 1996; Kamali
and Mirshady, 2004; Bolandi et al., 2015; Tan et al., 2015; Verma
et al., 2016; Ji et al., 2018; Wang et al., 2017; Shalaby et al., 2019;
Wang et al., 2019; Zhao et al., 2021). Although BP neural network
method is better than DlogRmethods in prediction accuracy, it does
not establish the internal relationships between OM and rock
physical parameters, and only builds the neural network model
from the perspective of mathematics, without considering the in-
fluence of geological settings, and there may be overfitting situa-
tion (Liu et al., 2021). In this study, for BP neural network method,
the correlation coefficient between the prediction values and the



Fig. 19. The TOC planar distribution. (a) E3d2L, (b) E3d3, (c) E2s1þ2, (d) E2s3.

X. Wang, G.-D. Liu, X.-L. Wang et al. Petroleum Science 21 (2024) 31e53
measured values of TOC is 0.9285, and the average relative error is
14.79%, indicating that its accuracy is better than the other three
methods. The source rocks (E3d2L, E3d3, E2s1þ2, E2s3) of the south-
western Bozhong Sag are typical continental mudstones. The tec-
tonic movement and sedimentary environment changes in
Bozhong Sag resulted in the heterogeneity of source rocks and
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differences in the OM enrichment models (Hao et al., 2011; Wang
et al., 2020). Therefore, the various TOC prediction methods
should be compared to select one that is more consistent with the
geological settings of the study area.



Fig. 20. The S2 planar distribution. (a) E3d2
L, (b) E3d3, (c) E2s1þ2, (d) E2s3.
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5.5. Seismic multi-attributes fusion method

Among the methods for estimating TOC and S2 from seismic,
post-stack seismic data generally contain less information, and the
logical relationships between the post-stack seismic attributes
50
(amplitude, frequency, phase, etc.) and the OM abundance are not
clear enough. Only P-wave impedance inversion results could be
obtained by post-stack seismic inversion. In the southwestern
Bozhong Sag, it is found that the TOC and S2 are positively corre-
lated with DT (negatively correlated with P-wave velocity) and
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negatively correlated with density through petrophysical correla-
tion diagram (Fig. 5). Therefore, the P-wave impedance, P-wave
velocity and density inversion results obtained by pre-stack
simultaneous inversion could predict the OM abundance (TOC
and S2) more effectively, and contain more information from pre-
stack seismic data, thus achieving higher inversion accuracy.
However, compared with post-stack inversion, pre-stack inversion
has a larger amount of computation and a longer operation time, so
it is not widely used in the industry (Hampson et al., 2005; Sen and
Stoffa, 2013; Chen et al., 2018). In this study, when predicting TOC of
source rocks, we found that the five attributes reciprocal of P-wave
velocity, reciprocal of density, integrated absolute amplitude,
dominant frequency and reciprocal of P-wave impedance are the
best and have the lowest prediction error. These five attributes
include pre-stack inversion, post-stack inversion and post-stack
seismic attributes. Moreover, TOC has the best correlation with
the reciprocal of P-wave velocity and reciprocal of density, indi-
cating that the method of combining pre-stack simultaneous
inversion, post-stack inversion and post-stack seismic attributes is
more effective in this study. The correlation coefficients of the
seismic prediction results near well and logging prediction results
are relatively high (TOC: 0.7797, S2: 0.7175). Geochemical analysis
of well Y3 also shows a high correlation between well logging and
seismic predictions, and the plane prediction results are relatively
consistent with the sedimentary facies map of the southwestern
Bozhong Sag, it is an effective method for the research of source
rocks in the areas with low-degree exploration.

6. Conclusions

Organic geochemical testing, petrophysical analysis, pre-stack
and post-stack seismic inversion, and multi-attributes analysis
are integrated to evaluate OM abundance of source rocks in
southwestern Bozhong Sag, Bohai Bay Basin. A summary of key
observations from this study follows:

(1) The OM abundance of Shahejie Formation is higher than that
of Dongying Formation in southwestern Bozhong Sag. E2s1þ2
and E2s3 source rocks have the highest OM abundance, which
indicating good to excellent hydrocarbon generative poten-
tial; E3d3 source rocks are fair to good quality source rocks;
E3d2

L source rocks have poor to fair hydrocarbon generative
potential.

(2) The accuracy of BP neural network method in predicting TOC
and S2 is higher than that of DlogR series methods and
multiple linear regression method.

(3) The seismic near wells prediction results of TOC and S2
correspond well with the logging prediction results, and the
plane prediction results are highly consistent with the sedi-
mentary facies. The multi-attributes method, which com-
bines pre-stack seismic inversion, post-stack seismic
inversion and seismic attributes, shows high horizontal res-
olution and compensates the limitations of geochemistry
and well logging methods.
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