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a b s t r a c t

Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) pre-
diction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial
and temporal correlations of measurement while drilling (MWD) data with traditional intelligent
models. In this work, we develop a novel hybrid neural network, which integrates the Convolution
Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accu-
rately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is
used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we
explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-
term potential periodic correlation in drilling data. Then, the different model structures tuned by the
Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid
models can extract spatial-temporal information of data effectively and predict more accurately than
random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-
attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness
due to the hybrid network structure and attention mechanism, having the lowest mean absolute per-
centage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and
temporal characteristics and guidance for managed pressure drilling in complex formations.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Accurately predicting the bottom hole pressure (BHP) is critical
for managed pressure drilling (MPD), which is an essential tech-
nology for safe and efficient drilling. Real-time BHP calculation can
significantly reduce incidents such as wellbore influx, wellbore
instability, well control issues, and uncontrolled flow (He and Yun,
2018; Sami, 2021). Traditional BHP estimation methods include
mechanistic and empirical models and downhole sensor acquisi-
tion, but they have limitations (Marfo et al., 2021; Nait Amar and
Zeraibi, 2019). The empirical models (Aziz and Govier, 1972; Duns
ineering, China University of

y Elsevier B.V. on behalf of KeAi Co
and Ros, 1963; Hagedorn and Brown, 1965; Orkiszewski, 1967)
and mechanistic models (Ansari et al., 1994; Chokshi et al., 1996;
Gomez et al., 2000) require assumptions based on certain correc-
tion factors and empirical coefficients, and the iterative solution
time is long, making it difficult to achieve the necessary accuracy
and real-time efficiency required in drilling operations. Downhole
sensors are costly and face the challenge of failure under extreme
high-temperature and high-pressure conditions, leading to the
collection of invalid data from deep wells.

The oil and gas industry has recently seen a surge in the appli-
cation of intelligent technologies, including machine learning al-
gorithms, to solve complex nonlinear problems. Artificial neural
networks (ANNs) have been extensively used to improve the ac-
curacy of bottom hole pressure (BHP) prediction, with various re-
searchers proposing ANN models with different structures (Chen
et al., 2017; Jahanandish et al., 2011; Mask et al., 2019;
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Mohammadpoor et al., 2010; Okoro et al., 2021; Sami and Ibrahim,
2021; Spesivtsev et al., 2018). Al Shehri et al. (2020) explored the
use of functional neural networks (FNN) and long short-term
memory (LSTM) in addition to ANN for BHP prediction. Marfo
et al. (2021) developed M5 prime decision tree method to predict
flowing bottom hole pressure and compared it with other basic
models to demonstrate its superior performance. Zhu et al. (2022)
proposed a hybrid parallel network model that combines convo-
lution neural network (CNN) and LSTM (CNN-LSTM) as well as
backpropagation neural network (BPNN) and LSTM (BPNN-LSTM)
to extract temporal features in MPD data and enhance prediction
accuracy. However, complex data-driven models often have a large
number of parameters, and manual experimentation is time-
consuming and may not achieve the global optimal solutions.
Therefore, researchers have integrated optimization algorithms
into the model to further improve the computational efficiency and
accuracy of the model. Nait Amar et al. (2018) demonstrated the
superiority of the hybridization ANN and grey wolves optimization
(ANN-GWO) over other hybridizations such as genetic algorithm
(GA) and particle swarms optimization (PSO) or the BPNN alone.
Nait Amar and Zeraibi (2019) proposed a hybridmodel based on the
combination of support vector regression and firefly optimization
algorithm (SVR-FFA), which realizes the prediction of BHP in ver-
tical wells of multiphase flow. The superior robustness and accu-
racy of SVR-FFA is demonstrated through a comparison with SVR-
GA. Tariq et al. (2019) and Liang et al. (2020) indicated the use of
hybrid models such as PSO-ANN and GA-BPNN, which can perform
better in terms of prediction accuracy and convergence speed.

MPD data contains both the local spatial information between
features and contextual information related to depth variation.
Although the abovemodels have shown improvement in prediction
accuracy, in terms of extracting information, they only focus on
point-to-point mapping information or variation information in a
single dimension (e.g., temporal or spatial) and may not be able to
capture spatial-temporal information simultaneously, leading to
the loss of critical information.

In this paper, we propose a hybrid neural network based on the
CNN and Gate Recurrent Unit (GRU). The CNN is utilized to extract
the spatial local dependence features of drilling data, while the GRU
is used to capture the context information of the data changing
with depth. Additionally, considering the long-term potential pe-
riodic characteristics of MWD data, improved GRU structures with
skip connections and attention mechanism are proposed, respec-
tively. Finally, to obtain the optimal prediction model and further
improve the prediction accuracy of the BHP, the Bayesian optimi-
zation algorithm is used to tune the hyper-parameters of themodel.
The main contribution of this paper can be further defined as
follows:

(1) We propose a novel CNN-GRU hybrid neural network, which
combines the strengths of traditional intelligent models and
effectively captures spatial local correlation and depth-
dependent contextual information.

(2) We enhance the GRU component by adding skip connections
and an attention mechanism, which improves the model's
ability to extract long-term potential periodic information.

(3) To improve the prediction accuracy of BHP and computa-
tional efficiency, this paper adopts the Bayesian Optimization
(BO) algorithm to automatically tune model hyper-
parameters and avoid time-consuming manual experiments.

(4) The prediction results of the proposed model and the exist-
ing basic model are compared and analyzed, and its superi-
ority is validated.

The remainder of this paper is organized as follows. Section 2
3713
illustrates related approach for processing data, the structure of
the proposed models and the principle of BO algorithm. Section 3
presents comparison and results, which compares the perfor-
mance of three different model structures, the impact of skip pe-
riods on the prediction results and the superiority of the proposed
model over other basic models. We end with some conclusions and
expectation in Section 4.

2. Methodology

Fig. 1 illustrates the workflow of this paper for predicting BHP
using the proposed model. The workflow comprises four main
steps: data preprocessing, model establishment, tuning, and
application. The details of each step will be discussed in the next
sections.

2.1. Data preprocessing

2.1.1. Data composition and description
The original dataset used in this study is the 100,000 sets of

MWD data from the surface monitoring in the Tarim Oilfield
located in Xinjiang, China. The dataset includes 70 distinct features,
such as logging data, measurement while drilling data, and drilling
fluid data, with a maximum measured depth of 6705 m and a
maximum vertical depth of 4942 m. To ensure the quality of the
data and mitigate the impact of environmental noise, the 3 s-rule
(Lehmann, 2013) was applied to eliminate fluctuating BHP anom-
alies, which is a simple and widely utilized method for detecting
outliers. Following data cleaning, a total of 80,000 data points were
available for training, validation, and testing the model. The char-
acteristics of the cleaned BHP are presented in Table 1.

2.1.2. Feature engineering
To explore the relationship between the characteristic variable

and the target variable BHP, reduce the noise effect of irrelevant
variables on BHP prediction, and enhance the robustness of the
model. In this part, we use the distance correlation coefficient
(Sz�ekely and Bakirov, 2007) to measure the correlation, which can
describe the linear and nonlinear relationship between variables at
the same time. The calculation formula is defined as follows:

dCor2nðX; YÞ¼

8>>><
>>>:

dCov2nðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCov2nðXÞdCov2nðYÞ

q dCov2nðXÞdCov2nðYÞ>0

0dCov2nðXÞdCov2nðYÞ ¼ 0

(1)

where dCor2nðX;YÞ is the distance correlation coefficient of X and Y,
dCov2nðX;YÞ is the distance covariance of X and Y, dCov2nðXÞ is the
standard deviation of the distance of X, and dCov2nðYÞ is the standard
deviation of the distance of Y.

The correlation coefficient indicates the strength of the rela-
tionship between two variables. A larger coefficient implies a
stronger correlation, while a coefficient of 0 indicates indepen-
dence. Table 2 depicts the medium-strong correlations (�0.5) be-
tween features and their distance correlation coefficients. These
correlations align with physical drilling laws, such as the strong
correlation between BHP and well depth and true vertical depth, in
line with the momentum conservation equation in the annular
multiphase flow model. The response mechanism between BHP
and engineering parameters is also evident, such as BHP increasing
with the back-pressure pump flow rate. Meanwhile, considering
that the rheological parameters of drilling fluid play a major part in
predicting BHP (Zhu et al., 2022), some stable features in the field



Fig. 1. The overall workflow of this study.

Table 1
Data description of BHP.

Evaluation standard Value

Count 80,000
Mean, MPa 56.61
Standard deviation, MPa 0.40
Min, MPa 55.37
Max, MPa 57.58
First quartile, MPa 56.26
Second quartile, MPa 56.70
Third quartile, MPa 56.70

Table 3
Input features of prediction of BHP.

Number Features Parameter category

1 Well depth Others
2 Rotary speed Engineering
3 Riser pressure Engineering, Hydraulics
4 Inlet flow rate Engineering
5 Outlet flow rate Engineering
6 True vertical depth Engineering
7 Back-pressure pump flow rate Engineering
8 Outlet density Drilling fluid
9 Total pool volume Engineering
10 Drilling fluid density Drilling fluid
11 Sand content Drilling fluid
12 Funnel viscosity Drilling fluid

C. Zhang, R. Zhang, Z. Zhu et al. Petroleum Science 20 (2023) 3712e3722
are difficult to reveal the intrinsic relation by statistical methods
alone. For instance, BHP will increase with the drilling fluid density
and viscosity. Consequently, this paper selectively supplements the
performance parameters of drilling fluid, including funnel viscosity,
sand content and drilling fluid density. Finally, 12 characteristic
parameters are selected as the input features, as shown in Table 3,
and their statistical description is presented in Table 4.

Data normalization is a common practice in machine learning
that scales the data to a range of [0, 1]. This improves the efficiency
of the gradient descent algorithm and prevents numerical issues
during training. Before training the model in this study, all input
parameters are normalized, as shown in the following equation:

~x¼ x� xmin
xmax � xmin

(2)

where ~x is the normalized value of x, xmin and xmax are the
maximum and minimum values of the variable x.

After comparing the effects of different dataset division
methods, the experimental dataset is divided into training, vali-
dation, and test sets in a 7:1:2 ratio, with 70% of the data used for
Table 2
The distance correlation coefficient of features and BHP.

Input
parameters

Well
depth

Rotary
speed

Riser
pressure

Inlet flow
rate

Outlet flow
rate

Coefficient 0.64 0.51 0.50 0.52 0.51
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model training,10% of the data is used as the validation set to obtain
the optimal hyper-parameters, and the remaining 20% for evalu-
ating the model.

2.1.3. Sample construction
To extract sequence information, the sliding window method

(Bao et al., 2020) is employed, which involves moving a fixed-sized
window over the MWD data sequence. Fig. 2 illustrates the sliding
window process, where the input window gradually shifts down-
ward over measured depth to construct the dataset for the model
training. Window size is one of the hyper-parameters that needs to
be optimized, and it determines the length of the historical MWD
data sequence used as input for the model.

2.2. Model building

In the analysis of measurement while drilling (MWD) data,
depth is commonly used as a proxy for time, treating the data as a
True vertical
depth

Back-pressure pump flow
rate

Outlet
density

Total pool
volume

0.62 0.57 0.52 0.51



Table 4
The statistical description of input parameters.

Well depth, m Rotary speed, rpm Riser pressure, MPa Inlet flow rate, L/s Outlet flow rate, L/s True vertical depth, m

Mean 6087.99 11.91 19.37 14.06 14.06 4935.39
Min 5832.82 5.26 17.24 13.14 13.50 4930.15
Max 6703.78 23.60 23.23 15.47 15.57 4942.07

Back-pressure pump flow rate, L/s Outlet density, g/cm3 Total pool volume, m3 Drilling fluid density, g/cm3 Funnel viscosity, s Sand content, %

Mean 8.35 1.19 146.44 1.1 44 0.2
Min 6.78 1.15 106.68 1.1 43 0.2
Max 10.78 1.26 175.22 1.2 45 0.2

Fig. 2. Sliding window scheme for training. Where Xt is the input MWD data sequence in depth t, the label is predicted BHP, the blue color box is the input sequence samples, and
the red color box is the corresponding predicted label. Figure takes the window size is 3, which means the input set is 0.3 m and predicted outcome is 0.2 m.
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time series that varies with depth. Consequently, predicting BHP
can be transformed into a time series forecasting problem, which
typically involves a combination of short-term and long-term
change patterns. Recurrent neural networks (RNNs) have been
intensively studied in energy prediction due to their ability to
capture the long-term dependencies from the historical informa-
tion (Asala et al., 2019; Huang et al., 2022; Lu et al., 2021; Wei et al.,
2019). Two commonly used RNN variants are LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Chung et al., 2014). In this study, we
opted for GRU as it is computationally cheaper and performs
similarly to LSTM (Group, 2017). On the other hand, CNN models
have shown powerful performance in identifying sudden changes
at various levels of granularity in the data (Kanwal et al., 2022; Ye
et al., 2022). However, they are not suitable for the long-term
memory tasks since they operate only on the current frame for
forecasting.

2.2.1. CNN-GRU
In this section, the hybrid model CNN-GRU is proposed to

enhance the accuracy prediction of BHP. The CNN component is
used to uncover the internal connections and reduce the scale and
complexity of MWD data. Meanwhile, the temporal memory ca-
pacity of the GRU neural network is employed to learn the internal
dynamic change patterns of the data. The hybrid neural network
CNN-GRU comprises the CNN component, the GRU component and
the full connected component, as depicted in Fig. 3. The modeling
process can be divided into the following parts:

(1) The CNN component is a convolutional network (Bezdan and
Bacanin, 2019) without a pooling layer, which is designed to extract
local feature information and dependencies to a greater extent. The
output is then mapped non-linearly using the Relu activation
function. The convolutional layer operation flow of CNN is illus-
trated in Fig. 4. The output results of the CNN component can be
obtained in this step:

xk ¼ReluðWk*xþbkÞ (3)

where x is the input vector, Wk is the weight matrice, * is the
3715
convolution operation and xk is the outputs, and Relu is an acti-
vation function.

(2) After the feature extraction by the CNN component, the
extracted features are transmitted to the GRU which includes two
gate structures, namely update gate and reset gate. The GRU
selectively memorizes and forgets the information passed to seek
pre and post correlation between BHP and other parameters. A
single GRU and its detailed schematic are shown in Fig. 5. The input
vector xt of the GRU at time t is given by:

rt ¼ sðxtWxr þht�1Whr þbrÞ (4)

ut ¼ sðxtWxuþht�1Whu þbuÞ (5)

ct ¼ReluðxtWxc þ rt 1 ðht�1WhcÞþbcÞ (6)

ht ¼ð1�utÞ1ht�1 þut1ct (7)

where s is the sigmoid function, xt is the input at time t, Wxr, Whr,
Wxu, Wxc are the weight matrices, br, bu, bc are offsets, hte1 is the
output at the previous time, ht is the current output, rt is the output
of the reset gate neuron, ut is the output of the update gate, ct is the
hidden state calculated based on reset gate, and 1 is the element-
wise product.

(3) Following the GRU component, the data flow into the full
connected component, which is a full connected layer that in-
tegrates the output features to obtain the final BHP prediction re-
sults. The output of the full connected is calculated as:

bYt ¼WTht þ b (8)

where bY t is the model's prediction results at time t.
2.2.2. Improved GRU components
However, GRU often loses some crucial information in this

process due to the gradient vanishing or exploding, which makes it
difficult to discover periodic signals. To overcome this issue and



Fig. 3. Structure of the hybrid neural network CNN-GRU.

Fig. 4. The operation flow of convolution layer for one sample.

Fig. 5. Structure of a single GRU.
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effectively use the periodic pattern in MWD data, we propose a
novel skip-GRU component. The overall CNN-skip-GRU architec-
ture is shown in Fig. 6, which utilizes skip connections to connect
the hidden cells with a certain interval to transmit periodic signals
effectively. The calculation updating process of the skip connection
can be computed as:
3716
rt ¼ sðxtWxr þht�sWhr þbrÞ (9)

ut ¼ sðxtWxuþht�sWhu þbuÞ (10)

ct ¼ReluðxtWxc þ rt 1 ðht�sWhcÞþbcÞ (11)

ht ¼ð1�utÞ1ht�s þut1ct (12)

where s is the number of hidden cells skipped and has to be defined
manually. In this part, based on human experience and pressure
measurement data while drilling, we initially define s to 10.

However, the skip connection needs to manually define the
period interval of the skip, which is not applicable to the sequence
whose period length is dynamic over time. In order to further
enhance the accuracy of the model and better adapt to the bottom
hole pressure prediction task, an attention mechanism (Bahdanau
et al., 2014) is proposed in this part. The attention mechanism
learns the weighted combination at each hidden window of the
input matrix. Fig. 7 illustrates the architecture of the attention
mechanism. Finally, the output of attention layer can be calculated
as follows:

at ¼ Softmaxðf ðHt ;ht�1ÞÞ (13)

bYt ¼W½atHt ;ht�1� þ b (14)

where Ht ¼ ½ht�w;ht�wþ1;…;ht�1� is a matrix stacking the hidden
state of GRU column-wisely, w is the window size, f is a scoring
function cosine, at is the attentionweights at time t, and Softmax is
an activation function.

2.2.3. Parameter tuning using Bayesian optimization
The process of tuning hyper-parameters is crucial for developing

an optimal model. In the proposed hybrid model, there are several
hyper-parameters required to be pre-defined, such as window size,
number of epochs, number of neurons in CNN and number of
neurons in GRU, etc. Traditional population optimization algo-
rithms like GA and PSO require enough sample points for initiali-
zation, resulting in low optimization efficiency (Asante-Okyere
et al., 2022; Otaki et al., 2022). Grid search, random search, and
Bayesian optimization are other common methods for hyper-
parameter tuning (Snoek et al., 2012). Grid search compares the
performance of all the hyperparameter permutation and combi-
nation but computationally expensive, while random search may
not yield satisfactory results due to its randomness. Compared with
these methods, BO algorithm does not easily fall into a local



Fig. 6. Structure of the hybrid neural network CNN-skip-GRU.

Fig. 7. Structure of the hybrid neural network CNN-attention-GRU.
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solution, and it is a reliable faster way to machine learning for
hyperparameter tuning when the objective functions are expensive
to evaluate or potentially intractable (Bao et al., 2020; Frazier,
2018).

BO involves four components: objective function, domain space,
optimization algorithm and historical data of the results (Snoek
et al., 2012). In this study, the objective function is to minimize
the mean absolute percentage error (MAPE) of training and vali-
dation set, namely the objective function f of the BO is:

f ¼minðtrainingMAPEþ validationMAPEÞ (15)

In the domain space part, we define different spaces according to
different hyper-parameters, such as window size, number of neu-
rons in CNN and GRU networks, and number of epochs. The core
part of BO is the selection of search algorithm, and in this paper we
use Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011).
TPE sequentially constructs models to approximate the perfor-
mance of hyper-parameters based on historical measurements H,
and subsequently selects new hyper-parameters to test based on
this model. Finally, the optimal solution can be obtained by iterative
update as shown in Table 5 (Frazier, 2018).
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2.2.4. Evaluation criteria
To assess and compared the predictive performances of the

proposed models, three performance evaluation metrics are
selected, which are MAPE, root mean square error (RMSE) and
mean absolute error (MAE). MAPE represents the average absolute
prediction error of m samples. RMSE is the square root of the mean
squared errors of m samples. MAE represents the average absolute
prediction error of m samples. They are mathematically defined as:

MAPE ¼ 1
m

Xm
i¼1

���yi � ypre
���

yi
� 100 (16)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

�
yi � ypre

�2vuut (17)

MAE ¼ 1
m

Xm
i¼1

���yi � ypre
��� (18)

where yi is the observed BHP values and ypre is the calculated BHP
values which is predicted by the developed models.



Table 5
The BO for hyper-parameters tuning.

1 Initialize the probabilistic surrogate with n0 points, H0 ¼ fðx1; f1Þ; ðx2; f2Þ;/; ðxn0 ; fn0 Þg. Where x is the different hyper-parameter combination.
2 for n ¼ 0;1;…;N:
3 Select new query point xnþ1 by optimizing acquisition function AC
xnþ1 ¼ argmax ACðx;HnÞ
4 Evaluate f ðxnþ1Þ
5 Augment data Hnþ1 ¼ Hn∪fðxnþ1; fðxnþ1ÞÞg
6 Update the probabilistic model

Table 7
Range of hyper-parameter values for BO.

Parameters Value range and step

Window size (30, 50, 5)
Number of epochs (50, 80, 5)
Number of neurons in CNN (50, 80, 5)
Number of neurons in GRU (50, 100, 5)
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3. Results and discussion

3.1. GRU structure

For predicting bottom hole pressure, different model structures
exhibit varying prediction effects due to their different abilities to
extract and learn feature information. Firstly, we define the ranges
of the model parameters based on manual experiments and the
problem scale. In order to minimize the impact of experimental
randomness, we conduct multiple sets of comparative experiments
to ensure consistency among the parameters of the three models.
Moreover, to mitigate overfitting, the dropout probability is set to
0.2 and early stopping strategy is utilized in model validation stage
which monitors whether the validation set error continues to in-
crease. The parameters of window size and number of epochs are
set as 30 and 40, respectively. Table 6 compares the test results of
different GRU structures. It is observed that the proposed CNN-
skip-GRU and CNN-attention-GRU models exhibit superior perfor-
mance. With an increase in the number of neurons, the prediction
accuracy slightly declines, indicating that more complex models
learn less meaningful information when the models are trained on
a consistent amount of data. Among them, the MAPE of CNN-skip-
GRU is lower than CNN-GRU. CNN-Attention-GRU shows the best
performance on the test set, with a MAPE decrease to 0.029%.
Hence, we choose CNN-attention-GRU as the baseline model.
3.2. CNN-attention-GRU with BO

Based on the above experiment, it is evident that different
hyperparameter settings can result in different results. Therefore, it
is necessary to optimize the hyperparameters and select a group of
optimal hyperparameters for enhancingmodel performance. In this
section, we highlight the benefits of employing BO to find optimal
model. As shown in Table 7, different parameter ranges are defined
for BO. Then, by setting the number of trials for BO as 100, the
performance of the CNN-attention-GRUmodel on the validation set
is compared and the optimal model is retained in time for pre-
dicting the final test set. Fig. 8 illustrates the errors and results of
conducting 100 hyperparameter search experiments. The optimal
hyperparameters found by the BO algorithm are a window size of
45, 60 epochs, 55 CNN neurons, and 70 GRU neurons, with a
Table 6
Comparison of test results with different model parameters. The optimal parameters an

Model Neurons in CNN Neurons in GRU

CNN-GRU 50 50
CNN-GRU 60 60
CNN-GRU 70 70
CNN-skip-GRU 50 50
CNN-skip-GRU 60 60
CNN-skip-GRU 70 70
CNN-attention-GRU 50 50
CNN-attention-GRU 60 60
CNN-attention-GRU 70 70
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minimum MAPE of 0.025%. Using the BO algorithm instead of
manual experience, we effectively reduce the original MAPE to
0.025% and further improve the BHP prediction accuracy.

In previous tests, the training data are considered to be noise-
free. However, in practice, field data may contain noise from sen-
sors and other equipment, which can affect the stability of the
predicted model. Therefore, it is important to evaluate the perfor-
mance of the model when predicting with noisy data. In this sec-
tion, training datawith noise ratio of 10% and 20% are added to each
input features respectively, the evaluation metrics of the model are
shown in Table 8. For instance, we added noise to the real input
drilling fluid density while keeping the other input features as
ground truth to demonstrate the robustness of the model when
drilling fluid density is noisy. Additionally, an extreme scenario is
considered where all the input features are mixed with noise.

Table 8 demonstrates that the performance of proposed model
is almost unaffected by the noise. Compared to other input features,
the evaluation metrices of drilling fluid density and back-pressure
pump flow rate showed obvious changes when noise was added,
but the model still gave reliable predictions. The MAPE of drilling
fluid density increases from 0.025% (clean data) to 0.069% (with 10%
noise) and 0.088% (with 20% noise). This may be caused by a lack of
diversity in the collected drilling fluid density data. The drilling
fluid density is usually slightly changed in the field for drilling
safety, resulting in a narrow range of collected field data. For train
set, the mean value of drilling fluid density is 1.1 and the standard
deviation closes to 0.1, which means that most of the drilling fluid
density changes in the scope of 1.0e1.2. Meanwhile, the prediction
model is more sensitive to the fluctuation of BHP in the test set, and
the MAPE increases to 0.072% (with 10% noise) and 0.092% (with
20% noise), indicating that the back-pressure pump flow rate as the
most direct and efficient BHP control parameter. In fact, the BHP
d results are highlighted in bold font.

MAPE, % MAE, MPa RMSE, MPa

0.040 0.037 0.092
0.039 0.035 0.077
0.041 0.040 0.087
0.033 0.024 0.062
0.035 0.026 0.085
0.035 0.026 0.075
0.030 0.019 0.049
0.029 0.018 0.045
0.031 0.020 0.047



Fig. 8. The MAPE of the different parameters of CNN-GRU with 100 trials. (a) The MAPE of different trials. (b) The MAPE is low when number of epochs is concentrated at 50e60. (c)
The MAPE is low whenwindow size is concentrated at 40e50. (d) The MAPE is low when number of neurons in GRU is concentrated at 65e75. (e) The MAPE is low when number of
neurons in CNN is concentrated at 55e60.
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fluctuation of the test data is caused by the real-time adjustment of
the back-pressure pump flow during MPD process. Finally, when all
the features mixed with noise, it is found that the model is still
powerful with a maximum MAPE of 0.229%. Therefore, the pro-
posed CNN-attention-GRU model with BO algorithm is robust
when the field data are affected by noise and is selected as the
baseline model.

3.3. Impact of different skip intervals

In this section, we aim to select the optimal parameter skip in
the CNN-skip-GRU model, analyzing the effect of different skip
intervals, and comparing the performance of model. According to
the evaluationmetrics of Fig. 9, it shows that when the skip interval
3719
is set to 10, the model achieves the best performance. As the skip
interval continues to increase, the performance of the model
significantly degrades. The results indicate that the longer skip
periods cause more loss of local information for MWD data, and the
proposed CNN-skip-GRUmodel effectively captures the short-term
autocorrelation of MWD data, making it critical to finding the
suitable skip interval for accurately predicting BHP.

3.4. Comparison of basic and proposed model

To verify the reliability and superiority of the proposed hybrid
models, the performance of the CNN-attention-GRUwith BOmodel
is compared with Random Forest (RF) (Breiman, 2001), Extreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), BPNN



Table 8
Model performance with adding noisy data.

Parameters Noisy ratio ¼ 10% Noisy ratio ¼ 20%

MAPE, % MAE, MPa RMSE, MPa MAPE, % MAE, MPa RMSE, MPa

Well depth 0.033 0.018 0.078 0.038 0.021 0.091
Rotary speed 0.040 0.018 0.088 0.042 0.037 0.062
Standpipe pressure 0.039 0.022 0.086 0.039 0.022 0.086
Inlet flow rate 0.040 0.022 0.093 0.040 0.022 0.093
Sand content 0.043 0.024 0.093 0.038 0.021 0.090
Outlet flow rate 0.037 0.021 0.089 0.037 0.021 0.089
True vertical depth 0.039 0.020 0.089 0.039 0.020 0.089
Total pool volume 0.036 0.019 0.084 0.036 0.019 0.084
Back-pressure pump flow rate 0.072 0.062 0.120 0.092 0.073 0.132
Outlet density 0.041 0.023 0.093 0.041 0.023 0.093
Drilling fluid density 0.069 0.056 0.113 0.088 0.064 0.124
All features 0.153 0.086 0.146 0.229 0.128 0.164

Fig. 9. Comparison of errors indicators with different skip intervals.
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(Sheu and Choi, 1995), CNN, GRU, CNN-GRU, CNN-skip-GRU which
are the most commonly applied intelligent models. The BO algo-
rithm is also implemented in the hyperparameter tuning process of
models.

Table 9 presents the prediction results of different models,
showing that the proposed hybrid models outperform other basic
models. In order to compares the prediction results more instinc-
tively, Fig. 10(a)e(h) are provided, which depict the prediction re-
sults of different models. Fig. 10 clearly shows that traditional
machine learning models such as RF and XGBoost fail to catch
temporal relations, resulting in a significant gap between the real
and predicted values. It demonstrates that traditional machine
learning models show inadequate ability for time series prediction
issue. BPNN in Fig.10(c) also shows a certain deviation from the real
value in the first 5000 points, indicating that it learns information
with uniformity and hardly considers the correlation of temporal
Table 9
Comparison of basic and proposed model. The optimal model and results are
highlighted in bold font.

Model MAPE, % MAE, MPa RMSE, MPa

RF 0.384 0.214 0.272
XGBoost 0.369 0.206 0.270
BPNN 0.148 0.087 0.113
CNN 0.042 0.037 0.062
GRU 0.062 0.048 0.066
CNN-GRU 0.039 0.033 0.050
CNN-skip-GRU 0.027 0.016 0.070
CNN-attention-GRU 0.025 0.015 0.038
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sequence. It shows great performance to match the point-to-point
mapping. Although CNN in Fig. 10(d) has a high overall prediction
accuracy, there are some abnormal fluctuations at the pressure
sudden change. It indicates that CNN is sensitive to capturing local
spatial fluctuations, and fits the pressure changing trends rapidly
while it cannot follow the long-term pattern. In contrast, GRU in
Fig. 10(e) has the ability to memorize long-term patterns, but fails
to accurately predict the local maximum pressure variation point.
Fig. 10(e) depicts that GRU shows strong capability to capture the
correlation of long-term information and grasp global information
accurately.

The CNN-GRU model in Fig. 10(f) combines the respective
strengths of CNN and GRU, and there is a slight improvement at the
maximum pressure change, while they still have some gaps. It
proves the ability of the proposed model to capture short-term and
long-term patterns simultaneously, which the traditional predic-
tion model is not equipped. With considering skip component, the
CNN-skip-GRUmodel in Fig.10(g) shows a significant improvement
in responsiveness, indicating that the skip connection does help to
alleviate the loss of information transmission in GRU subnetwork,
and then prove the spatial and temporal characteristics of MWD
data. It demonstrates that the temporal skip connections can
extend the temporal span of the information flow, so that BHP at
different depths help to interact in adjacent period. With consid-
ering attention mechanism, the CNN-attention-GRU model in
Fig. 10(h) further improves the performance on basis of CNN-GRU
and ponders both stability and rapid response at the inflection
point, suggesting that the attention mechanism helps in focusing
on global feature information. It also implies that attention mech-
anism is more suitable for handling sequences with dynamic pe-
riodic changes, and it is crucial in the prediction task of the field
MWD data.

4. Conclusions

In this study, a novel hybrid model is proposed which is more
robust, comprehensive, and accurate to deal with complex situa-
tions in the field. The proposedmodel can significantly improve the
prediction accuracy of BHP and better response to real-time
downhole fluctuations. At the same time, BO algorithm is used to
tune the hyperparameters of all models, which can obtain optimal
models for different structures faster and more reliable than
manual experiments. The following conclusions can be drawn:

(1) The proposed hybrid neural networks show better perfor-
mance than other basic neural networks in BHP fluctuations
prediction. CNN-GRU combines the advantages of a single
basic model and effectively capture the spatial and



Fig. 10. Comparison of test results of different models. (a) XGBoost. (b) RF. (c) BPNN. (d) CNN. (e) GRU. (f) CNN-GRU. (g) CNN-attention-GRU. (h) CNN-skip-GRU.
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contextual information of the MWD data. The GRU compo-
nent with added skip connections can extract longer-term
well depth information, and the selection of skip intervals
plays a key role in the prediction results. The GRU compo-
nent with the attention mechanism can automatically cap-
ture the presence of uncertain periodic signals.

(2) Compared with other models, CNN-attention-GRU achieves
the highest prediction accuracy, and its MAPE, MAE, and
RMSE are better than other models. The model also shows
great robustness with 10% and 20% noise of input data.
3721
(3) The MAPE of CNN-attention-GRU using the BO algorithm is
decreased by 7.4% compared to the original, and MAE and
RMSE is reduced by 6.2% and 9.5%, respectively.

This research can be applied to optimally solvemultivariate time
series problem, and provide a reference for precise pressure control
in drilling. In the future, interpretable methods will be explored to
capture the physical meaning behind the MWD data and further
improve the transferability of the model for application in different
new wells.
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