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a b s t r a c t

Naturally fractured reservoirs make important contributions to global oil and gas reserves and pro-
duction. The modeling and simulation of naturally fractured reservoirs are different from conventional
reservoirs as the existence of natural fractures. To address the development optimization problem of
naturally fractured reservoirs, we propose an optimization workflow by coupling the optimization
methods with the embedded discrete fracture model (EDFM). Firstly, the effective and superior perfor-
mance of the workflow is verified based on the conceptual model. The stochastic simplex approximate
gradient (StoSAG) algorithm, the ensemble optimization (EnOpt) algorithm, and the particle swarm
optimization (PSO) algorithm are implemented for the production optimization of naturally fractured
reservoirs based on the improved versions of the Egg model and the PUNQ-S3 model. The results of the
two cases demonstrate the effectiveness of this optimization workflow by finding the optimal well
controls which yield the maximum net present value (NPV). Compared to the initial well control guess,
the final NPV obtained from the production optimization of fractured reservoirs based on all three
optimization algorithms is significantly enhanced. Compared with the optimization results of the PSO
algorithm, StoSAG and EnOpt have significant advantages in terms of final NPV and computational ef-
ficiency. The results also show that fractures have a significant impact on reservoir production. The
economic efficiency of fractured reservoir development can be significantly improved by the optimiza-
tion workflow.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Reservoir development dynamics are influenced by various
factors such as geological conditions and production working
conditions. To improve the economic efficiency of reservoir devel-
opment, relevant production decision variables need to be adjusted
timely according to reservoir dynamics (Yang et al., 2017; Wang
et al., 2016). Decision variables that satisfy the constraints tend to
form many combinations of potential optimal solutions. Therefore,
it is difficult to rely solely on the engineers' intuition to determine
the optimal solution (Al Dossary and Nasrabadi, 2016). Currently,
commonly used methods for reservoir development optimization
entional Oil & Gas Develop-
nistry of Education, Qingdao,
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are combining reservoir numerical simulation techniques with
various optimization algorithms. Reservoir numerical simulation
techniques are used to simulate the production dynamics of res-
ervoirs under different operating conditions and provide the
required production data for subsequent optimization algorithms.
Optimization algorithms then search for the optimal solution based
on this data to obtain the best development plan (Chen et al., 2020).
Therefore, accurate and effective reservoir modeling methods and
efficient optimization algorithms are necessary for reservoir pro-
duction optimization.

Almost all reservoirs have developed natural fractures to some
extent (Olorode et al., 2020). Fractures have a significant impact on
the flow behavior of reservoir fluids. For example, during the
implementation of enhanced oil recovery (EOR), the effectiveness
of EOR can be significantly reduced due to the channeling of
injected fluids through fractures. In turn, for shale reservoirs,
fractures from hydraulic fracturing are necessary for the flow of
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shale oil and gas in them. This makes the economic production of
shale reservoirs possible. In addition, these fractures facilitate the
initial production increase of shale reservoirs. Therefore, tech-
niques are needed for fractured reservoirs to characterize the flow
in such reservoirs (Soleimani, 2017). Characterization of fractures in
reservoirs is a challenging problem due to the extreme non-
homogeneity and anisotropy of fractures (Torcuk et al., 2013). A
large amount of work has been done by researchers to develop
accurate numerical simulation models to characterize the seepage
of reservoir fractures.

Warren and Root (1963) were among the first to use a dual-
porosity model (DPM) to study naturally fractured reservoir flow.
Because of the large limitations of the DPM method, the discrete
fracture model (DFM) for characterizing fractured reservoirs was
proposed by Karimi-Fard and Firoozabadi (2003). To avoid the
extensive unstructured mesh dissection process required for DFM
models to deal with complex fractures, Li and Lee (2008) proposed
the EDFM. The simulation of fractures in reservoirs using the EDFM
method has received increasing attention from researchers because
of the advantages of EDFM as strong fracture network character-
ization and low simulation cost (Sun and Xu, 2022). Chai et al.
(2018a) developed a modeling approach for fractured shale reser-
voirs combining EDFM andmultiple porosity/permeability method.
The improved model decreases the complexity of the gridding
process and improves the accuracy of fluid transport within and
between different porosity types. Xu et al. (2018) used EDFM to
simulate reservoirs in the Mancos Shale of the Piceance Basin and
showed that the EDFM method can be successfully applied to
model shale reservoirs at the field scale. Chai et al. (2018b) devel-
oped a compartmental EDFM (cEDFM) based on the original EDFM.
Unlike the original method, the fractures split the matrix grid
blocks in cEDFM. This model was then benchmarked and its ac-
curacy was evaluated by comparison with fine explicit cases. The
results show that the improved model yields better accuracy even
for multiphase flow simulations with flow barriers. The model was
then applied to history matching and uncertainties were quantified
for the fracture network for two synthetic cases. Fiallos et al. (2019)
studied the effect of inter-well interference based on EDFM and
history matching. Based on the actual production data, they
established a model that can be successfully applied to oil fields.
Chang et al. (2020) proposed a well-spacing optimization method
based on EDFM and applied it to actual shale gas reservoirs. The
effects of reservoir uncertainty and fracture parameters are
considered in the study. Jia and Xian (2022) applied 3D EDFM to
simulate the process of pulse-decay experiments in fractured shale
cores. Zhu et al. (2020) developed an EDFM on the basis of the
corner grid and coupled it with local grid refinement. Parameter
optimization of a multi-stage fractured horizontal well was
implemented. Torres et al. (2021) optimized the numerical simu-
lation of reservoirs with complex fracture systems and refined
previous comprehensive description techniques for Eagle Ford
shale oil based on the EDFM.

However, the experimental results of Ţene et al. (2017) showed
that the EDFM model is not suitable in the case where the fracture
permeability is lower than the matrix permeability. In addition, the
existing EDFM formulation ignores the properties of the fracture
between adjacent matrix cells. To address the limitations of the
above methods, they proposed projection-based EDFM (pEDFM),
and the results showed that pEDFM significantly outperformed the
original EDFM. Researchers then carried out a lot of work around
this newmethod. Rao et al. (2020) pointed out the limitations such
as the lack of practical projection surface selectionmethods and the
poor performance in some cases in the original pEDFM. The cor-
responding modification methods are proposed to address these
limitations. Then the necessity and effectiveness of these modified
2269
methods are illustrated by some test cases. Finally, the robustness
of the modified pEDFM for practical applications in fractured res-
ervoirs is illustrated by examples. Liu et al. (2020) implemented the
pEDFM method to evaluate the CO2 sequestration capacity of shale
gas reservoirs with complex boundary shapes. The method was
also compared with the commercial software CMG to verify the
validity of the method. Finally, a field case in the New Albany Shale
was used to illustrate the practical application of the proposed
model in simulating the CO2 sequestration process and evaluating
the CO2 sequestration capacity. Rao et al. (2022) applied the pEDFM
method to the numerical simulation of two-phase heat and mass
transfer in fractured reservoirs. The numerical simulation results
showed that the accuracy of temperature and saturation distribu-
tion calculated using pEDFM is much higher than that of EDFM
when the multiphase flow crosses the fractures or there are flow
barriers in the reservoir. The results of the study indicate that
pEDFM can be more accurately and effectively applied to the nu-
merical simulation in realistic fractured reservoirs under complex
geological conditions.

In terms of optimization algorithms, researchers have tried to
introduce various algorithms into the field of reservoir production
optimization in recent years (Chen and Reynolds, 2018; Feng et al.,
2022; Wu et al., 2022; Xue et al., 2021). Depending on whether the
optimization process involves the computation of gradients, these
algorithms can be categorized as derivative-free and gradient-
based optimization algorithms. Gradient-based methods are
computationally efficient, but the true gradient is always difficult to
obtain (Zhang et al., 2014). The advantages of the derivative-free
optimization algorithm are mainly the high global optimization
capability and robustness, and it also allows dealing with non-
differentiable variables, etc. These algorithms include genetic al-
gorithms (GA) (Murray et al., 2020), PSO (Lee and Stephen, 2019; Jia
et al., 2020), simulated annealing algorithms (Tukur et al., 2019),
long short-term memory (LSTM) algorithms (Zhu et al., 2022; Pan
et al., 2022), etc. Ma et al. (2022) implemented well-control opti-
mization for the 3D Bruges case model based on the PSO algorithm
and the multi-group optimization strategy they developed. Nasir
et al. (2022) used a two-stage optimization strategy based on the
PSO-mesh adaptive direct search (MADS) algorithm for solving the
large-scale oil field well location optimization problem. The
derivative-free optimization methods have the above-mentioned
advantages. However, they all require a large number of reservoir
simulation runs to ensure global search capability. Therefore, the
computational cost is relatively high. Considering the advantages of
gradient-based algorithms and the difficulties in obtaining real
gradients, researchers introduced the approximate gradient
method. One of the approximate gradient methods is EnOpt, as first
proposed by Lorentzen et al. (2006) and Nwaozo (2006). With the
progress of research on the EnOpt, Fonseca et al. (2017) proposed
the StoSAG, which is an improved version of EnOpt with better
performance in robust optimization. Subsequently, researchers
have carried out much research work around StoSAG. Chen et al.
(2017) used StoSAG based on the lexicographic method frame-
work to achieve robust production optimization with the minimi-
zation of associated risks or uncertainties. The effectiveness of the
framework was also validated in two reservoir examples. Lu et al.
(2017) proposed an adaptive robust optimization algorithm based
on the StoSAG. Themethod utilizes themethod of selecting a subset
of realizations to reduce the number of realizations involved in
robust optimization while preserving the characteristics of the set
of realizations. The optimization results of all three cases show that
the algorithm effectively improves the convergence speed and also
finds a higher optimal NPV. Liu and Forouzanfar (2018) combined a
hierarchical clustering approach and StoSAG to achieve robust
optimization of well control in naturally fractured reservoirs by
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selecting representative models. Chen and Xu (2019) provide a
theoretical discussion on the phenomenon of StoSAG superiority
over EnOpt and a comparative validation on the Brugge field case.

In this work, our objective is to couple the optimization algo-
rithm (StoSAG, EnOpt, and PSO) with EDFM to form a fractured
reservoir optimization workflow and to investigate the perfor-
mance of the workflow. We first introduce three kinds of optimi-
zation algorithm and couple the EDFM with them. Then, the grid
refinement method is used to verify the effectiveness of the
workflow for fractured reservoir production optimization. Finally,
two case studies based on actual reservoir models demonstrate the
applicability of the workflow in fractured reservoir production
optimization.

2. Optimization algorithm

In reservoir development optimization, it is common to use the
NPV or cumulative oil production, etc., as the objective function. In
the work of this paper, we choose the NPV over the production life
of fractured reservoirs as the objective function, with the well
control variables as optimization variables, other settings kept
constant, and all drilling costs ignored.

The formula for calculating NPV is as follows.

Jðmi;uÞ ¼
XNt

n¼1

8<: Dtn

ð1þ bÞ tn
365

24XNW

j¼1

�
ro,qno;j þ rg,qng;j � cwqnw;j

�

�
XNI

k¼1

�
cwi,qnwi;k

�359=; (1)

where u is a Nu-dimensional well control vector; n is the nth time
step for the reservoir production; Nt is the total number of time
steps; tn is the time at the end of the nth time step; Dtn is the nth

time step size; b is the annual discount rate; NW and NI are the
number of production wells and injection wells, respectively; ro is
the oil revenue, $/m3; rg is the price of natural gas, $/m3; cw and cwi
denote the disposal cost of produced water and the cost of water
injection, respectively, $/m3; qno;j and qnw;j , respectively, denote the

average oil production rate and the average water production rate
of jth production well during the nth time step, m3/day; qng;j is the

average gas production rate of jth production well during the nth

time step, m3/day; qnwi;k denote the average water injection rate of

kth injection well during the nth time step, m3/day.

2.1. StoSAG

In this paper, logarithmic transformation is introduced in the
StoSAG implementation referring to the article by Chen and Xu
(2019). Firstly, the optimized variable x in the domain [xlow, xup]
is converted to the variable u in the domain ½�∞;∞� for the opti-
mization search according to Eq. (2), and then u is converted back to
the actual well-control vector x and run the simulation according to
Eq. (3).

ui ¼ ln

 
xi � xlowi

xupi � xi

!
(2)

xi ¼
expðuiÞ,xupi þ xlowi

1þ expðuiÞ
(3)

For a general optimization problem, the formula for the search
direction of StoSAG is given in Eq. (4).
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dl ¼ VuJðu;mÞ (4)

where u is the log-transformed well-control vector; m denotes the
realization for reservoir model; VuJðu;mÞ is the stochastic
approximation of the gradient, which is obtained by Eq. (5).

VuJðu;mÞ ¼ 1
Np

XNp

j¼1

�
dbul;j

�
dbul;j

�T �þ
dbul;j

�
J
�bul;j;m

�
� Jðul;mÞ

�
(5)

where Np is the number of control perturbations, and each control
perturbation bul;j; j ¼ 1;2; :::;Np, is generated from the distribution
Nðul;CUÞ at iteration l; CU is a predefined covariance matrix which
is defined as shown in Eq. (6). The superscript sign “þ” denotes the
Moore-Penrose pseudo-inverse, and dbul;j ¼ bul;j � bul.

CU ¼

0BBBBBB@
C1
U 0 / 0

0 C2
U / 0

« « « «

0 0 / Cw
U

1CCCCCCA (6)

where Cw
U ;w ¼ 1;2; :::;nwell is a covariance matrix; nwell is the total

number of well (Chen and Xu, 2019).
2.2. EnOpt

The basic search direction of the EnOpt algorithm is expressed
as:

dk;EnOpt ¼
1

Np � 1

XNp

i¼1

�buk;i � buk
��
J
�
m; buk;i

�� Jðm;ukÞ
�

(7)

with

buk ¼
1
Np

XNp

i¼1

buk;i; Jðm;ukÞ¼
1
Np

XNp

i¼1

J
�
m; buk;i

�
(8)

where control perturbation buk;i; i ¼ 1;2;3; :::;Np, is generated by
the distribution N ðuk;CUÞ at the kth iteration. After obtaining the
approximate gradient, the steepest ascent method is used to find
the optimum. The convergence condition of the EnOpt algorithm is
the same as that of the StoSAG algorithm.
2.3. PSO

The third algorithm used in this paper, the PSO algorithm, is a
typical derivative-free algorithm (Han et al., 2021). The particle
swarm is first initialized randomly in the solution space. Then each
particle updates its position and velocity by tracking the individual
extremum and the global extremum. Where the individual
extremum is the optimal solution found by each particle itself, and
the global extremum is the optimal solution found by all particles in
the swarm. The algorithm uses the fitness value to evaluate the
potential of the current particle to become the target solution. In
this paper, the fitness value is the NPV obtained by simulating the
corresponding well control vector for each particle.

For an optimization problem where the swarm consists of N
particles in a d-dimensional search space, where the velocity and
position of each particle are updated by the following equations.
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�
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k
2

�
gkd � xki;d

�
xkþ1
i;d ¼ xki;d þ vkþ1

i;d ; i ¼ 1;2; :::;N
(9)

where u is the inertia weight; vki is the velocity of the ith particle in

the kth iteration; c1 and c2 are the learning factor; rk1 and rk2 are the
uniform random number in the range of [0,1] generated in the kth

iteration; xki is the position of the ith particle in the kth iteration; pki
is the optimal position searched by the ith particle up to now, which
is the individual extreme value; gk is the optimal position searched
by the whole particle population up to now, which is the global
extreme value.

3. EDFM-based simulation

In the EDFM implementation, the fracturedmesh and thematrix
mesh are not intersected in the physical domain; instead, they are
connected in the computational domain by the non-neighboring
connection (NNC). The above approach allows EDFM to balance
the structured mesh of the matrix with the simulation of complex
fractures (Xu and Sepehrnoori, 2019). Thus, the method can be
implemented in a reservoir simulator with NNC capabilities for the
simulation of complex fractured reservoirs.

A key point for the EDFM method to be successfully imple-
mented is the calculation of the transmissibility factor in the NNC.
Because this point is related to the accuracy of the calculated fluid
transfer between the fracture grid and the matrix grid, between
different fracture grids of the same fracture, and between fracture
grids of different fractures. To calculate the transmissibility factor
accurately, we use the calculation formula in the article of Moinfar
et al. (2014). Depending on the fracture cells' mass transfer objects,
NNCs are classified into the following three types: I. NNCs between
the fracture cell and its embedded matrix cell; II. NNCs between
different fracture cells in the same fracture; III. NNCs between
intersecting fracture cells. The general formula for calculating the
transmissibility factor for the three cases is as follows.

T ¼ANNC � kNNC

dNNC
(10)

When calculating the transmissibility factor between the fracture
cell and its embedded matrix cell, the physical meaning of each
symbol in Eq. (10) is as follows. ANNC is the surface area of fractures
embedded in thematrix grid block; kNNC is the harmonic average of
the matrix permeability and fracture permeability; dNNC refers to
the average normal distance, which is calculated as follows Eq. (11)
(Li and Lee, 2008; Hajibeygi et al., 2011).

dNNC ¼

ð
V

xndv

V
(11)

where dv is the volume element; xn is the normal distance of the
element from the fracture; and V is the volume of matrix gridblock.

When calculating the transmissivity of the NNC between two
intersecting fracture segments, the method of Karimi-Fard et al.
(2004) was applied and its formula is shown in Eqs. (12) and (13)
below.

kNNCANNC

dNNC
¼ T1T2
T1 þ T2

(12)
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T1 ¼ kf1uf1Lint
df1

; T2 ¼ kf2uf2Lint
df2

(13)

where Lint is the length of the intersection lines constrained in a
gridblock; uf and kf are the width and permeability of the fracture,
respectively; df is the average normal distance from the center of
the fracture sub-segment (located on both sides of the intersection
line) to the intersection line (Moinfar et al., 2014).

When calculating the transmissibility of the NNC between
different fracture cells in the same fracture, the physical meaning of
each symbol in Eq. (10) is as follows. kNNC is the fracture perme-
ability; dNNC is the distance between the centers of two fracture
segments; and ANNC is the area of the adjacent face of two adjacent
fracture grids.

4. Production optimization workflow

The main idea of our workflow is to couple a fractured reservoir
modeling approach (EDFM) with the optimization algorithms to
build a fractured reservoir production optimization system based
on both. The ensemble optimization workflow combined with the
EDFMmethod is shown in Fig. 1. In our implementation, we use the
NNC approach to achieve the embedding of different forms of
fractures. Althoughwemainly consider vertical, horizontal, and 45�

inclined fracture distribution morphologies in our case, the
embedding of more complex fracture networks can actually be
accomplished by the NNC method. It is important to note that ac-
curate numerical simulation models for fractured reservoirs are the
basis for NPV calculations and StoSAG gradient calculations in the
optimization process. Therefore, we verify the validity of the EDFM
method in the next section.

5. Validation

To verify the validity of the EDFMmethod using the commercial
software, wemodeled the same fractured reservoir using the EDFM
method and the grid refinement method, respectively, and
compared the simulation results of both. We chose cumulative
production (oil and water) and daily production (oil and water) as
comparative indicators. This is because they are closely related to
the calculation of the objective function (NPV) used in production
optimization.

5.1. Intersected orthogonal fractures

We use a 2D fractured reservoir model with five intersecting
fractures as the validation model in this part, and the geological
schematic of the model is shown in Fig. 2. The reservoir model size
is 200m� 100m� 4m. Themain fracture length is 132m, the sub-
fracture length is 40 m, and the sub-fracture spacing is 44 m. The
reservoir contains one injector and one producer. The permeability
and porosity of the matrix are 10 mD and 0.1, respectively. The
conductivity of all fractures is 100 mD m. The compressibility co-
efficient for water and rock are 1.2 � 10�5 and 6.103 � 10�5 psi�1,
respectively. The initial reservoir formation pressure is 3596.94 psi
with a production life of 3000 days.

The grid is divided into 152 � 63� 1 cells in the grid refinement
model. In the horizontal direction, the grid size is gradually
changed near the fracture to ensure the simulation accuracy of fluid
flow near the fracture. We created a grid refinement area of 8 m
around the fracture for each fracture. For the EDFM model, a uni-
form 100 � 50 � 1 matrix grid and 106 fracture cells were used.
Both injection and production wells are controlled by constant
pressure, with BHP settings of 3596.94 and 797.71 psi for the



Fig. 1. Production optimization workflow using EDFM.

Fig. 2. Schematic of the fractured reservoir with five intersecting fractures.
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injection well and production well, respectively.
From the results of each production data given in Fig. 3, the

EDFM method used in this paper achieved almost the same results
as the fine-grid model in modeling intersected orthogonal frac-
tures, which verifies the effectiveness of the EDFM approach in
modeling intersected orthogonal fractures in this paper.
5.2. Dipping fracture

Here we modeled a dipping fracture using EDFM and Cartesian
single porosity model respectively and compared their results. The
latter uses a stair-stepping representation of the dipping fracture,
as shown in Fig. 4.

The size of this reservoir model is 4 m � 4 m � 1 m. The fracture
is located in the middle area of the model with a length of 2

ffiffiffi
2

p
m.

One injectionwell and one production well are in one corner of the
reservoir model. Both injection and productionwells are controlled
by constant pressure, with BHP settings of 3596.94 and 797.71 psi
for injection and production wells, respectively. The permeability
and porosity of the matrix are 1mD and 0.1. The conductivity of the
fracture is 1.414 mD m. The compressibility coefficient for water
and rock are 1.2 � 10�5 and 6.103 � 10�5 psi�1, respectively. The
initial reservoir formation pressure is 3596.94 psi with a production
2272
life of 100 days. Note that there is a discrepancy between the
fracture grid length in the EDFM method and its actual length
embedded in the matrix grid due to the tilted placement of the
fracture. The settings of some parameters need to be corrected.

The simulation results of the two modeling methods for the
non-orthogonal fracture model shown in Fig. 4 are given in Fig. 5.
From the figure, we can see that the EDFMmethod achieves almost
the same results as the Cartesian single porosity model in the
simulation of non-orthogonal fractures, which verifies the effec-
tiveness of the EDFM method in modeling non-orthogonal
fractures.

6. Examples and results

In this section, we combine the StoSAG algorithm with the
EDFM method to form a fractured reservoir optimization method,
which is applied in the production optimization of a conceptual
model and two fractured reservoirs based on actual reservoir
models, respectively. The corresponding optimization results are
also compared with those of EnOpt and PSO algorithms to deter-
mine the optimization performance of the method. All algorithmic
programs were implemented and run by Matlab 2019a, and all
simulations were run by the commercial software ECLIPSE. The
computing device is a Core i5 computer with a CPU processing
frequency of 3 GHz and 16 GB of RAM.

6.1. Example 1: Conceptual model

To further validate the stability of the EDFM method in the
production optimization process of fractured reservoirs, we first
conducted a production optimization study of a conceptual model.
The fractures in the model are all orthogonal, and this setup facil-
itates us to build the corresponding grid refinement reservoir
model. The schematic diagram of the conceptual model and the
distribution of fractures are shown in Fig. 6a. The matrix perme-
ability is 10 mD. The porosity of the matrix is 0.1. The conductivity
of all fractures is 8.3333� 104 mDm. The initial reservoir formation
pressure is 3596.93 psi with a production life of 3000 days. In the
EDFM method, the model consists of 100 � 100 � 1 matrix grids
and 440 fracture cells with a matrix grid size of Dx ¼ Dy ¼ 2 m,



Fig. 3. Comparison of (a) oil production rate, (b) cumulative oil production, (c) water production rate, (d) cumulative water production, (e) water injection rate, and (f) cumulative
water injection during 3000 days for the model shown in Fig. 2, modeled by the fine-grid model and EDFM model.

Fig. 4. (a) Geometric representation of the fractured reservoir containing an inclined
fracture. (b) A partial enlargement of the model shown in Fig. 4a.
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Dz ¼ 10 m. In the mesh refinement model, we use local mesh
refinement to simulate 16 intersecting small fractures in the
reservoir model and global mesh refinement to simulate the other
three large fractures. The grid refinement model of this reservoir
2273
model is shown in Fig. 6b.
The oil price is 377 $/m3. The treatment cost of the injected and

produced water is 31 $/m3 with an annual discount rate of 0.1. The
optimized parameters are the BHP with the upper bound of
3596.93 and 3596.93 psi, and the lower bound of 725.18 and 145.03
psi for injection and production wells, respectively. The key pa-
rameters of the StoSAG algorithm are set as follows. The pertur-
bation ensemble size is 5 and the perturbation step is 0.01; the
initial step size is 1.0 and themaximum number of step size cut is 5;
the initial search position is the middle of the upper and lower
limits of the well control, and the maximum number of iterations is
50.

First, we perform production optimization based on the StoSAG
for the grid refinement model and EDFM model of the fractured
reservoir shown in Fig. 6, respectively, and the optimization curves
are shown in Fig. 7.

We can see that the optimization curves of both models are
almost the same, but the NPV of the grid refinement model is



Fig. 5. Comparison of (a) oil production rate, (b) cumulative oil production, (c) water production rate, (d) cumulative water production, (e) water injection rate, and (f) cumulative
water injection during 100 days for the model shown in Fig. 4, modeled by the Cartesian single porosity model and EDFM.

Fig. 6. (a) Fracture distribution and well location distribution of the conceptual model.
(b) Grid refinement model.

Fig. 7. Optimization curves of fine-mesh model and EDFM model based on StoSAG
algorithm.
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slightly higher than that of the EDFM model at the later stage of
optimization. For this, we mainly consider that it is due to the in-
fluence of the stochastic nature of the StoSAG algorithm itself. It is
2274



Fig. 8. Optimization curves of three optimization algorithms for production optimi-
zation of the reservoir model based on EDFM method.

Table 1
Optimization time of three optimization algorithms for this reservoir model based
on EDFM method.

Algorithms PSO EnOpt StoSAG

Optimization time, s 69447.98 11654.00 7699.22
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worth noting the large difference in optimization times for both
models using the same optimization parameters. The optimization
times for the mesh refinement model and the EDFM model are
42,624.91 and 7699.22 s, respectively. The former takes 5.5 times
longer than the latter. This reflects the great advantages of the
EDFM model in production optimization.

Subsequently, in order to verify the adaptability of the StoSAG
for production optimization in fractured reservoirs. We used the
PSO, the EnOpt, and the StoSAG algorithm to optimize the pro-
duction of the EDFMmodel of the above reservoir model under the
same BHP constraint, respectively. The PSO algorithm parameters
are set as follows. The inertia weight w is 0.8, the acceleration
constants c1 and c2 are both 1.5, the particle population size is 100,
and the maximum number of iterations is 50. The key parameter
settings of the EnOpt are the same as those of the StoSAG. The
optimization curves of three optimization algorithms for produc-
tion optimization of the reservoir model based on EDFM are given
in Fig. 8.

Combining the optimization curves of the three algorithms for
the EDFM method for this reservoir model given in Fig. 8 and the
optimization elapsed time given in Table 1, the PSO algorithm ob-
tains the lowest final NPV compared to the other algorithms and
takes the longest time. This also illustrates the limitations of
derivative-free optimization algorithms such as the PSO algorithm,
Fig. 9. Final remaining oil saturation field corresponding to the optimal product
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which rely on many reservoirs’ simulation runs for the application
of large reservoir optimization. The optimization curves of two
approximate gradient algorithms are almost identical, which is
because StoSAG is an improved EnOpt for robust optimization as-
pects, so the advantage is not obvious in the optimization results of
a single deterministic reservoir. In this case, StoSAG algorithm takes
shorter time and the efficiency of optimization is slightly higher
than EnOpt.

From the final remaining oil distribution corresponding to the
optimal well control obtained by the different algorithms given in
Fig. 9, we can see that the three results have similar patterns of
remaining oil distribution and are all concentrated at the edge of
the reservoir. This is mainly due to the influence of two long frac-
tures near the producing wells, which reduces the ripple effect of
the injectedwater and forms a dead oil zone. On the other hand, the
PSO algorithm obtained a slightly larger remaining oil distribution
area than the other two algorithms, which is also reflected in the
NPV curve in Fig. 8. This indicates that an effective optimization
method can reduce the impact of fractures in the reservoir on the
development economics to some extent.

6.2. Example 2: Egg model

The second case is based on the Egg model that has beenwidely
used in the literature for well location and well control optimiza-
tion. We introduce natural fractures to the geological realization of
the Egg model. The Egg model contains 60 � 60 � 7 grid blocks, of
which 18,553 grid blocks are active. The grid size is
8 m� 8m� 4 m. The porosity of the substrate grid block is 0.2. The
specific settings of geological and fluid parameters for the Egg
model are described in Jansen et al. (2014). Eight injectionwells and
four production wells were placed in the model.

To consider the effect of fractures, we introduced 420 fracture
meshes in themodel with 14 fractures on seven layers of themodel.
The conductivity of all fractures is 8.3333 � 104 mD m. The hori-
zontal permeability field and fracture distribution for each layer of
the reservoir model are given in Fig. 10. The white line segments in
the figure indicate fracture areas, the red solid dots denote pro-
duction wells, and the blue solid dots denote injection wells. The
initial formation pressure is 5801.51 psi. All production and injec-
tion wells are BHP controlled. The optimized parameters are the
BHP of the wells, where the upper and lower limits are 5801.51 and
1450.37 psi for production wells and 8702.26 and 5801.51 psi for
injection wells, respectively. The reservoir production life is set to
1500 days, during which a total of 30 control steps are set. The
economic parameters and algorithm parameter settings involved in
the optimization are the same as in Example 1, except that the
number of particles is increased to 120 in the PSO.

The optimization curves for the three optimization algorithms
ion strategy obtained by (a) StoSAG, (b) EnOpt, and (c) PSO for Example 1.



Fig. 10. Horizontal permeability field and fracture distribution in each layer of the reservoir.

Fig. 11. Optimization curves of three optimization algorithms for production optimi-
zation of Egg model.

Table 2
Optimization time of three optimization algorithms for Egg model based on EDFM
method.

Algorithms PSO EnOpt StoSAG

Optimization time, s 714200.92 116199.22 154758.08
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for the Egg model are given in Fig. 11, and the corresponding
optimization times for the three algorithms are given in Table 2. It is
clear that the computational efficiency of the other two algorithms
is much higher than that of the PSO algorithm.

It is clear in Fig.11 that the two approximate gradient algorithms
have a better search capability and the PSO algorithm does not
achieve the search results we expected. This may be due to the
insufficient number of particles, but further increasing the number
of particles will lead to more computational cost. For both
approximate gradient algorithms, the final NPVs obtained are very



Fig. 12. BHP control of wells in the Egg model (a, b) before and (c, d) after optimization based on StoSAG (left: BHP control of injection wells; right: BHP control of production wells).

Fig. 13. Remaining oil saturation distribution for different approaches, Example 2, Layer 1. (a) StoSAG; (b) EnOpt; (c) PSO.
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close and EnOpt is less than StoSAG in terms of optimization time.
For StoSAG, more dichotomous search in subsequent iterations of
the optimization process results in an increase in computation
time. Therefore, in the subsequent practical applications, the
introduction of dichotomous search with variable step size in the
StoSAG algorithm may further improve the computational effi-
ciency of the algorithm.

The BHP control of production and injection wells before and
after optimization based on the StoSAG algorithm is presented in
Fig. 12. We can see the most significant change in BHP control in
production well 2, which is closest to the fracture. The optimized
production of well 2 is operated at the highest BHP throughout the
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production process to avoid the occurrence of the early break-
through of the injected water due to the presence of fractures and
to improve the sweep efficiency of the injected water. For injection
wells, the optimized injection well BHP control also showed a
significant decrease compared to the pre-optimized BHP control.

The remaining oil distribution in layer 1 corresponding to the
best well control obtained by the three algorithms is given in
Fig.13, andwe can see that the dead oil zone is mainly concentrated
in the area between the fractures. The results of residual oil dis-
tribution are significantly different from Case 1. The remaining oil
distribution corresponding to StoSAG and EnOpt, which obtained
better optimization results in Fig. 11, is much larger than that of the



Fig. 14. Average remaining oil saturation distribution for different approaches, Example 2. (a) StoSAG; (b) EnOpt; (c) PSO.

Fig. 15. Comparison of three optimization algorithms for (a) cumulative oil production,
(b) cumulative water production, and (c) cumulative water injection, Example 2.

J.-C. Xu, W.-X. Zhou and H.-Y. Li Petroleum Science 20 (2023) 2268e2281
PSO algorithm. Considering the inter-layer differences of the Egg
model, the results of layer 1 are not generalized. Therefore, we
further present in Fig. 14 the reservoir average remaining oil
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distribution corresponding to the best well control obtained by the
three algorithms. That is the arithmetic average of the remaining oil
in each layer for the effective grid at the same location in the
reservoir. The average remaining oil distribution of the PSO algo-
rithm in Fig. 14 is still much smaller than the other two algorithms.
This is also confirmed in the cumulative oil production curve in
Fig. 15a.

The cumulative water production curve in Fig. 15b and the cu-
mulative injection water curve in Fig. 15c also give explanations for
these differences. The higher recovery of PSO is achieved at the cost
of high injection and high-water production. The presence of
fractures in the reservoir affects the injectionwater drive efficiency
to a large extent and reduces the injection efficiency ratio. There-
fore, although it is higher than the other two algorithms in terms of
recovery rate, the high cost of injectionwater and treatment cost of
produced water makes the final economic benefit much smaller
than the other two algorithms.
6.3. Example 3: PUNQ-S3 model

Considering that the gas phase in the formation fluid is more
sensitive to the existence of fractures, and the former two cases are
oil-water two-phase reservoir models, we add an oil-gas-water
three-phase reservoir model at the end. This model is based on
the PUNQ-S3 reservoir model and is realized by embedding two
fractures in each layer of the reservoir. Like the Egg model, the
PUNQ-S3 model is based on actual reservoirs and is widely used in
numerical simulation and development optimization of reservoirs.
The model contains 19 � 28 � 5 grid blocks, of which 1761 blocks
are active.

To consider the effect of fractures, we introduced 100 fracture
meshes in the model with 10 fractures on five layers of the model.
The conductivity of all fractures is 8.3333 � 104 mD m. The
permeability and fracture distribution of each layer are shown in
Fig. 16. Also due to the strength of the aquifer, there are only six
vertical production wells in the original development program,
which do not require water injection wells for pressure retention.
Therefore, here we only optimize production for these six pro-
duction wells. All production wells are BHP controlled. The opti-
mized parameters are the BHP of the wells, where the upper and
lower limits are 2900.75 and 725.19 psi for these production wells.
The economic and algorithmic parameters involved in the optimi-
zation process are the same as in Case 2, except that the yield of the
output gas needs to be additionally considered. Here we set the
price of output gas to 0.007 $/m3 (Liu and Reynolds, 2021). The
optimization curves of each of the three optimization algorithms
for production optimization of fractured reservoirs based on the
PUNQ-S3 model are given in Fig. 17, and the corresponding



Fig. 16. Permeability and fracture distribution of each layer, Example 3.

Fig. 17. Optimization curves for three optimization algorithms for Example 3.

Table 3
Optimization time of three optimization algorithms for PUNQ-S3 model based on
EDFM method.

Algorithms PSO EnOpt StoSAG

Optimization time, s 42388.24 41851.55 62221.65
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algorithmic time consumptions are listed in Table 3.
As can be seen in Fig. 17, the StoSAG algorithm obtains the

highest final NPV, but the difference with the result obtained by the
EnOpt algorithm is not significant. The PSO algorithm performs the
same as in the previous two cases, still achieving the worst final
NPV. It should be noted that the computational time consumed by
each algorithm given in Table 3 is the same as in Case 2, due to the
large computational effort of PSO. Therefore, we use a parallel
version of the PSO algorithm and call 6 cores to accelerate the
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computation, so the time cost disadvantage of the PSO algorithm is
not obvious in the final computation elapsed time. Instead, the
computation time of StoSAG is the longest.

The final remaining oil distribution of the PUNQ-S3 model ob-
tained by the three algorithms is presented in Fig.18. The remaining
oil distribution of the three algorithms has similar areas of
remaining oil concentration and high residual oil saturation. This is
mainly because the need for injection is not considered in the initial
model and only production wells are available. Due to the presence
of fractures in the reservoir and the proximity of some of the
fractures to the producing wells. This leads to a large portion of the
crude oil in the reservoir being difficult to move.

The cumulative oil production, cumulative water production,
and cumulative gas production corresponding to the three algo-
rithms are given in Fig. 19. We can see that all the cumulative
production curves reach the inflection point earlier compared to
the production life of 3000 days. And generally, the development
optimization based on the PUNQ-S3 model is chosen for a longer
period, for example, 20 years (Ding et al., 2020). This indicates that
the presence of fractures can greatly accelerate the development
rate of the reservoir. Therefore, in further studies, production
optimization for fractured reservoirs needs to consider the cost of
the daily operation of the wells to avoid long-time ineffective
operation. This is because, in practice, the daily operation of wells
also requires costs.
7. Conclusions

In the work, we first verified the effectiveness of the EDFM
method by comparison with the grid refinement model for
different types of fracture distribution in the reservoir. Then, we
perform StoSAG-based optimization of the grid refinement model
and EDFM model for the same fractured reservoir separately with



Fig. 18. Average remaining oil saturation distribution for different approaches, Example 3. (a) StoSAG; (b) EnOpt; (c) PSO.

Fig. 19. Comparison of three optimization algorithms for (a) cumulative oil production,
(b) cumulative water production, and (c) cumulative gas production, Example 3.
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NPV as the objective function. We further validated the effective-
ness of the couple of EDFM and StoSAG algorithms. Finally, we
apply the StoSAG, EnOpt, and PSO algorithms to conceptual models
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of a single deterministic fractured reservoir and well control opti-
mization of two actual reservoir models with the introduction of
fractures, respectively. Compared with the initial guessed well
control of the three models, the optimized well control of all three
optimization algorithms obtained a large improvement in NPV,
among which the optimization effect of StoSAG and EnOpt algo-
rithms was themost significant. The disadvantage of PSO is obvious
in terms of computational efficiency. Combining the performance
of the three algorithms in this paper in the case of deterministic
optimization of fractured reservoir production, StoSAG and EnOpt
algorithms achieved the best optimization results. However, in
terms of optimization time consumption, both are limited by the
built-in fastest ascent method, and the computational efficiency
varies in different cases. The optimization results also show that the
presence of fractures has a huge impact on the injection water
sweep efficiency. The use of reasonable optimization algorithms
can attenuate the adverse effects of fractures on reservoir devel-
opment and improve the economic benefits of reservoir
development.
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