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a b s t r a c t

The middle Eocene climatic optimum (MECO, ca. ~42 Ma) is a key time period for understanding
Cenozoic cooling of the global climate. Still, midlatitude terrestrial records of climate evolution during
MECO epoch are rare. In this study, continuous high-resolution record of shale sediments in mid-Eocene
Shahejie Formation (MES shales) in the Bohai Bay Basin were performed with major-element and
wavelet analysis. The midlatitude paleoweathering and paleoclimatic evolution during MECO epoch
were analyzed in this study. The MES shales experienced weak-moderate paleoweathering under a
subtropical monsoon paleoclimate with mean annual temperature of 8.3e12.9 �C and mean annual
precipitation of 685e1100 mm/yr. The MES shales record a mixed provenance involving intermediate
igneous rocks, and low compositional maturity. The nutrient-rich environment led to enrichment in
organic matter in the MES shales. Wavelet analysis revealed good periodicity about the paleoclimate and
weathering during MECO epoch. In the stage I of MES shales depositional process, the paleolake was high
in nutrients, and the MES shales experienced high chemical weathering due to a relatively warmer and
more humid climate. In contrast, the climate in stage II was relatively cold and dry, and the maturity of
the MES shales was relatively high during this stage, suggesting a relatively stable tectonic background.
This work provides more terrestrial records of MECO epoch for midlatitude region, and is benefit for
better understanding of the palaeoenvironment when MES shales formed. The implication of organic
matters enrichment in this study is meaningful for the shale oil/gas exploration in Nanpu Sag.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The Eocene was a time of large shifts in the global environments
following the disruption that occurred at the Paleocene-Eocene
Thermal Maximum (PETM, 55.5 Ma; Zachos et al., 2001). Temper-
atures were generally warm, and the global climate is sometimes
described as a period of “doubthouse” climate, transitional or in-
termediate between the greenhouseworld of theMesozoic through
early Eocene, and the icehouse world of the Oligocene through to
today (Miller et al., 1991; Zachos et al., 1993, 1994; Prothero, 2009;
etroleum Resources and Pro-
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Passchier et al., 2013, 2017). The polar regions were replete with
sub-tropical fauna and flora (Prothero, 2009). Tropical proxies are
known to suffer more from diagenetic alteration (Rohl et al., 2000).
Evolutionary increases in diversity, and increasing productivity
marked this epoch (Jahren et al., 2001). The magnitude and dura-
tion of carbon flux and climatic change across the PETM are typical
record that may approximate the pace of industrial anthropogenic
emissions (Bains et al., 1999). The future climate may be the
recurrence of Eocene warm period with the increase of global
greenhouse gas concentration. Thus, understanding the driving
mechanism of Eocene climate and the fate of the carbon during this
episode may lead to insights into the eventual of anthropogenic
carbon.

During Eocene, the middle Eocene climatic optimum (MECO, ca.
~42 Ma) is significant interval of transient warming event (Bohaty
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and Zachos, 2003; Kargaranbafghi and Neubauer, 2017). MECO is
recorded worldwide by an excursion of ~1.0‰ benthic d18O records
in fine-fraction suggesting 4 �C warming of both surface and in-
termediate deep waters, and pronounced changes in d13C values
and coeval oscillations in the global carbonate compensation depth
(Bohaty and Zachos, 2003; Bohaty et al., 2009). Its induced mech-
anism has been widely discussed, focusing Uplift of Qinghai Tibet
Plateau, global sea level decline and the rise of monsoon climate
etc. (Chung et al., 1998; Bohaty and Zachos, 2003; Ao et al., 2020).
While, these predispositions have great differences and contra-
dictions. The coupling relationship between the fine structure of
geological records and the climate environment is still unclear. At
present, most interpretations are based on marine sedimentary
records, but the typical marine sediment thickness is about 1e2 m
with low resolution, and it is vulnerable to biological disturbance. It
is clear that the high resolution study of deep-time climate events is
likely to be an increasingly fruitful line of research in understanding
the earth system (Zachos and Dickens, 2000). The lacustrine sedi-
ments recorded more details about MECO with relatively high rate,
but few relevant studies were reported at present.

Sedimentary record is strongly associated with the weathering
of the lithosphere, which is affected directly by climate (McInerney
and Wing, 2011). Weathering represents the interface and direct
interaction between the lithosphere, atmosphere, hydrosphere and
biosphere (Nesbitt and Young,1982,1989). The interaction between
precipitation and mineral grains in a rock, and results in selective
dissolution of soluble components; hydration; and consequently,
formation of newminerals (Perri, 2018). The silicate weathering on
land facilitates the preservation of carbonates, which is an impor-
tant mechanisms of atmospheric CO2 drawdown (Panchuk et al.,
2008). The carbon released into the atmosphere during the PETM
period can return to the pre-event level in 100 years only through
weathering. Generally, weathering is generally enhanced under hot
and humid conditions and suppressed under cold and dry condi-
tions (Eberl et al., 1984; Perri and Ohta, 2014; Perri, 2018;
Szyma�nski and Szkaradek, 2018). The effects of weathering can be
interpreted by analyzing the changes in the element compositions
of a sediment profile (Nesbitt and Young, 1989; Perri et al., 2012,
2016). In addition to weathering conditions, the provenance
(Armstrong-Altrin et al., 2013; Bakkiaraj et al., 2010; Cullers, 2000,
2002) and tectonic setting of a sedimentary basin (Armstrong-
Altrin et al., 2013; Fatima and Khan, 2012) also have strong ef-
fects on the elemental compositions of clastic sediments. Hence,
these factors must be interpreted collectively in order to disen-
tangle their individual effects and mutual interactions.

To investigate continental weathering and paleoclimate changes
at various temporal and spatial scales during MECO event, this
study provides a continuous high resolution profile at the mid-
latitude East Asian continent. This profile focus on the middle
Eocene lacustrine shale sediments at the Shahejie Formation of
Bohai Bay Basin, which offers a well-preserved in-situ core sedi-
mentary record under MECO event (42e42.5 Ma; Chen et al., 2019).
The elemental composition of sediments in 50 m interval in core
well A1 was measured at 1m intervals with X-ray fluorescence
(XRF) method. It allows high-resolution, nearly continuous,
nondestructive analyses of major and minor elements at the fresh
surfaces. Spectral analysis is used to analyze the periodicity of
paleoenvironmental changes under paleontological age constraint.
The aims of this study are to 1) provide more details about the
lacustrine records of MECO event; 2) reconstruct the history of
paleoclimate and paleoweathering of the mid-latitude East Asian
continent during middle Eocene; and 3) to provide more infor-
mation on the role of midlatitude physical and biogeochemical
processes in the global climate system during the middle Eocene.
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2. Geological setting

TheMesozoic-Cenozoic Bohai Bay Basin, located in northeastern
China, is a typical midlatitude rift basin (34�Ne42�N; Fig. 1; Allen
et al., 1997; Dong et al., 2010). It experienced regional extension
along with widespread faulting in response to subduction roll-back
at the active convergent Asian-Pacific plate boundary during
Eocene period (Allen et al., 1997). Due to the regional tectonics in
the early Tertiary, regional extension occurred in conjunction with
weak convergence and formed numerous secondary structural
units with Paleogene rifts in the Bohai Bay Basin (Fig. 1; Allen et al.,
1997; Dong et al., 2010). The basin was filled by a thick terrestrial
clastic succession resting on pre-Cenozoic basement. In the Eocene,
abundant organic-rich lacustrine mudstones and shales were
deposited in the Shahejie Formation (45.5e28.5 Ma; Guo et al.,
2013) of Bohai Bay Basin, which represents a well-preserved mid-
dle Eocene unit in China. The Shahejie Formation shales are
composed of thick mudstones and shales with interbedded evap-
orates, containing abundant organic matter (OM) and serving as
important source rock for hydrocarbon generation (Allen et al.,
1997).

The core samples in this study were collected from a well
located in the Gaoliu area of the Nanpu Sag, which is an important
hydrocarbon-producing subbasin in the north of the Bohai Bay
Basin (Fig. 1). The third member of the middle Eocene Shahejie
Formation (Es3, 45.5e33.7 Ma) is an important suite of source rocks
in the Nanpu Sag, and it predominantly consists of dark mudstones
and shales interbedded with sandstones and is further divided into
five submembers from top to bottom: Es31, Es32, Es33, Es34, and Es35

(Fig. 2, Dong et al., 2010). Es34 (ca. 42.5e42 Ma) contains significant
lacustrine shales with high quality OM, hereafter referred to as the
MES shales, and contributes large amounts of oil and gas (Zheng
et al., 2007; Dong et al., 2010). MES shales were deposited in a
semi-deep to deep lacustrine environment (Fig. 2; Zheng et al.,
2007; Dong et al., 2010). Under the influence of Pacific plate
movement, an obvious unconformity formed at the bottom of Es34

around 42.5 Ma, with distinguishing features in seismic profiles
and well lithology profiles (Xia et al., 2015; Chen et al., 2019).
Continuous dense sampling of MES shales provides important ma-
terial for the investigation of paleoweathering characteristics and
paleoclimate evolution in the midlatitudes during the middle
Eocene.

3. Methodology

Fifty-three MES shale samples were collected from a 50-m-thick
profile (3424.25e3474.08 m) of the continuous drill core of Es34 in
well A1 (Fig. 1). This section has not experienced modern weath-
ering. The position of the samples on the stratigraphic column is
shown in Fig. 2. All 53 MES shale samples were analyzed by
geochemical analysis and were used to evaluate the chemical
weathering conditions and climate variation during the middle
Eocene in the Bohai Bay Basin. All the tests were performed at State
Key Laboratory of Petroleum Resources and Prospecting.

Palynological analysis of MES shales was performed using
binocular biological microscope. Before observation, the samples
were treated with traditional acid and alkali methods (Phipps and
Playford, 1984; Xia et al., 2015). The argillaceous and calcareous
components in the crushed samples were removed by hydrofluoric
acid, and the samples were then neutralized by adding distilled
water. After stirring and centrifuging with zinc iodide heavy solu-
tion, sporopollen fossils were obtained.

The 53 shale samples were crushed to very fine powder for XRF
spectrometry to study the chemical composition. Before each



Fig. 1. Geological map and structural profile of the midlatitude Bohai Bay Basin on the eastern side of the Asian continent and the sampling well location (modified from Jiang et al.,
2016).
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experiment, the shale samples were ground to 200 mesh, oven
dried for 2e4 h at 105 �C and cooled. Portions of the samples (0.7 g)
were mixed with anhydrous lithium tetraborate, lithium fluoride
and ammonium nitrate in a porcelain crucible, stirred well during
transfer to a platinum alloy crucible and then dried. Then, the
mixture was melted at 1150e1250 �C for 10e15 min and stirred.
The resulting melt was cast in a mold to make the sample wafer.
Finally, the sample wafer was analyzed with a Shimadzu XRF-1800
X-ray fluorescence spectrometer equippedwith a 4.0 kWRh tube to
analyze the spectrum of eachmajor element. Eleven elements were
analyzed, and the results are displayed as concentrations in weight
percent of the major elements expressed as oxides (SiO2, Al2O3,
CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5 and TiO2). The chemical
analysis results for the major elements have precisions better than
5% based on replicate and standard analyses.

In addition, spectral analysis technology is used to analyze the
periodicity of paleoclimate fluctuation during the middle Eocene
1473
based on the no-breaks depositional profile of the MES shales.
Spectral analysis is a powerful technique for analyzing the peri-
odicity of various signals, and has been widely used to analyze
geological signals. The nonstationary geological signals, such as
paleoclimate, river discharge, seismic waves, and sequence strati-
graphic divisions, recorded in the sediments are superimposed and
feature many different frequencies (Wang et al., 2005). The main
frequencies of nonstationary geological signals could be analyzed
by wavelet transform, which is an advanced spectral analysis
technique based on the Fourier transform and represents an
effective method for analyzing the signals in a time series and can
provide more frequency information with higher resolutions in
terms of frequency and time domains. In this study, discrete
wavelet transformation (DWT) is used to process the paleoclimate
signal recorded by the chemical composition of the MES shales to
identify discrete geological signals. Due to the unequal interval
sampling of the MES shales, the signals are resampled, with a



Fig. 2. Paleogene stratigraphy of the Nanpu Sag, showing the lithology (Guo et al., 2013), fossil assemblage (Xia et al., 2015), thickness and tectonic stages (Dong et al., 2010) and
sedimentary evolution stages (Jiang et al., 2009).
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resampling interval of 0.125 m, to improve the accuracy of this
study. Then, the signals are extended to eliminate edge effects, and
the extended section is removed after DWT.

4. Results

4.1. Pollen and geologic age

Abundant pollen fossils were identified in MES shales, and the
details are shown in Fig. 3. Angiospermae pollen dominates at 57.8
to 93.6%, followed byGymnospermae (6.4%e42.2%). Pteridophyta are
rare. Amongst Angiospermae pollen, Quercoidites dominates at
13.9e42.4%, followed by Quercoidites microhenrici (4.1%e28%),
Ulmipollenites and Ulmoideipites (8.3%e26%), Juglandaceae (2%e
20.2%) and Betulaceae (4.4%e19.7%). Quercoidites prefer subtropical
climate, and Ulmipollenites are mostly developed in temperate
climate regions. Preponderant Quercoidites and Ulmipollenites in
MES shales reflect the subtropical to temperate climate during
depositing phase, which also occur in Es4 sediments of Liaohe,
Jiyang and Dongpu Depressions in the Bohai Bay Basin (Zhang et al.,
2016). Furthermore, Ulmipollenites undulosus varies between 2.7%
and 8.5%, Juglanspollenites varies between 2% and 12.8%, Betula-
ceoipollenites between 2.2% and 11.5%, andMomipites between 2.2%
and 11.8%. Liquidambarpollenites (1.5%e11.5%) and Tricolpor-
opollenites (1.6%e5.9%) are also common in MES shales. In addition,
few Alnipollenites, Faguspollenites, Caryapollenites, Ulmipollenites
minor, Ulmoideipites tricostatus, Quercoidites minutus, Chenopodi-
pollis, Rutaceoipollenites, Labitricolpites, Magnolipollis, Meliaceaeoi-
dites have been distinguished in MES shales. Gymnospermae pollen
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is predominated by Pinaceae (1.1%e25.8%) and Taxodiaceae (1.6%e
11.7%), followed by Pinuspollenites (1.1%e17.2%), Abietineaepollenites
(0e6.9%), Taxodiaceo pollanites (0e6.8%) and Ephedripites
(0e11.7%). The appearance of Ephedropites indicates that there was
a dry and hot climate at that time, which is similar to the climate
and Ephedropites records of Es3 sediments in Dongpu Depression
(Zhang et al., 2016). Few Cedripites and piceaepollenites were found
in this study. The content of Pteridophyta pollen is very low
(0e3.1%), and several Alsophilidites, Deltoidospora and Poly-
podiaceaesporites have been identified. Furthermore, relatively
abundant algae fossils have also been discovered in MES shales.
Leiosphaeridia and Pediastrum are the most common in MES shales,
and Parabohaidina, Conicoidium, Cleistosphaeridium, Mem-
branilarnacia, Comasphaeridium, Granodiscus, Campenia and Fili-
sphaeridium were also found in this study.

Quercoidites, Quercoidites microhenrici and Quercoidites minutus
usually occurred in the Eocene and later sediments, and they are
widespread in China, Europe and North America (Wang et al.,
2003). Decline of apertured pollen, absence of archaic Norma-
polles and Aquilapolles, as well as increase in Tricolporopollenites
assembly are features of middle Eocene (Song and Liu, 1983).
Higher amounts of Quercoidites are a representative feature for the
Eocene Shahejie Formation in the Bohai Bay Basin (Zhang and Yin,
2005; Xia et al., 2015). The occurrence of Tricolporopollenites
(2e5.9%) suggests that the shales in this study belongs to the
middle Eocene. These assemblages of pollen and algae and their
variations in this study are consistent with the combination of
Ephedripites- Taxodiaceaepollenites- Ulmoideipites tricostatus- Pter-
isisporite in the previous study by Xia et al. (2015), which belong to



Fig. 3. Palynological diagram and assemblage in the MES shales.
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the Es34 stratum. In addition, the assemblages of pollen inMES shales
are similar to those in the Es3 sediments in Dongying sag, sug-
gesting the warm and humid climate (Lei et al., 2018).
4.2. Major elements and mineral composition

The elemental concentrations of the MES shales are shown in
Fig. 4a. Overall, the predominant major element is SiO2 (ranging
from 28.51 to 64.19 w.t.%, average: 49.60 w.t.%), followed by CaO
Fig. 4. wt percentages of major elements (a) and mineral composition (b) of the M
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(1.12e35.24 w.t.%, average: 13.62 w.t.%), Al2O3 (5.56e17.85 w.t.%,
average: 12.67 w.t.%), and Fe2O3 (3.12e15.43 w.t.%, average: 6.97
w.t.%), with lesser amounts of MgO (1.53e5.61 w.t.%, average: 2.58
w.t.%), K2O (0.88e3.50 w.t.%, average: 2.28 w.t.%), Na2O (0.43e1.87
w.t.%, average: 1.01 w.t.%), TiO2 (0.28e0.88 w.t. %, average: 0.63
w.t.%), P2O5 (0.17e1.98 w.t.%, average: 0.77 w.t.%), MnO (0.02e0.47
w.t.%, average: 0.16 w.t.%), and SrO (0.05e0.24 w.t.%, average: 0.12
w.t.%).

To compare these results with the average values of the upper
ES shales. The mineral composition data are derived from Chen et al. (2019).
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continental crust (UCC), the major element compositions of the
MES shale samples were normalized to the UCC composition
(Taylor and McLennan, 1985), and the diagrams are shown in Fig. 5,
which shows the gain or loss of elemental mass relative to the UCC.
Values > 1 indicate an increase in the relative abundance of the
element in the sample compared to the UCC, whereas values < 1
indicate a decrease in the relative abundance of the element,
mainly due to the paleoweathering processes (Perri and Ohta,
2014). In this study, the values of SiO2, Al2O3, K2O and Na2O are
less than 1, implying that the formation of the MES shales involved
moderate weathering of continental crustal material. Si, Al and K
are typical incompatible elements and important components of
chemically stable minerals, such as quartz and feldspar, which are
commonly concentrated in geochemically mature sediments
(Khudoley et al., 2001; Ohta, 2004; Perri and Ohta, 2014). This
result suggests that the Bohai Bay Basin most likely experienced
active tectonic conditions during the middle Eocene. The strong
depletion in Na and positive correlation between Na2O and SiO2
(Fig. 6a) implies intense dissolution of albite, which is themain host
mineral of the Naþ mobile cation (Fig. 6aeb).

Calcium is highly enriched in the MES shales compared to the
UCC, as shown in Fig. 5. The positive correlations between P2O5 and
CaO and between SO3 and CaO (Fig. 6dee) indicates that these el-
ements may be present as apatite and anhydrite/gypsum. This
result is confirmed by the mineral components (Fig. 6b) and XRD
result (Fig. 4). The presence of anhydrite indicates that it was in a
torrid evaporation environment. However, the correlations be-
tween P2O5 and SO3 and CaO are only weakly positive with rela-
tively high scatter, hinting that additional CaO may reside in
carbonates (Fig. 6eef). In addition, CaO is negatively correlated to
both Al2O3 and SiO2 (Fig. 6bec), suggesting a possible source of CaO
from silicate and carbonate minerals. The CaO content is several
times higher than the MgO content with a positive relationship
(Fig. 6f), suggesting that calcite is dominant over dolomite among
carbonates, which is also supported by mineralogical composition
(Figs. 6 and 4b).

Al2O3 has a positive relationship with K2O (Fig. 6g), indicating
that both K and Al are most likely incorporated into the mineral
illite (Gabbott, 1998). The positive correlation between SiO2 and
Al2O3 suggests that the primary host of Si may be clay minerals
(Fig. 6heg). In this study, a good positive correlation exists between
TiO2 and Al2O3 (Fig. 6i). The fairly constant Al/Ti ratio indicates that
Fig. 5. Mass-balance calculation for major elements in the MES shales compared to the
UCC. The UCC normalized concentrations refers to the ratio of measured oxide content
to that in UCC which is derived from Taylor and McLennan (1985).
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Ti is mainly incorporated into the structure of clay minerals or
occurs as hydroxides or oxides (Young and Nesbitt, 1998; Panahi
et al., 2000).

These results are consistent with the mineralogical composition
reported in previous study about MES shales (Fig. 4b; Chen et al.,
2019). The minerals in MES shales are dominated by clay min-
erals, and followed by quartz, feldspar and carbonates. Further-
more, orthoclase and albite could be observed inMES shales. Calcite
is dominant amongst carbonates, followed by dolomite. The main
clay minerals include illite and smectite. Moreover, minor gypsum,
pyrite, siderite, apatite and so on could also been observed in MES
shales. The morphology of these minerals could be observed as in
Fig. 7, and some dissolutions were also presented in MES shales.

4.3. Weathering characteristics and paleoclimate conditions

Chemical weathering strongly affects the geochemical and
mineralogical variability of sedimentary rocks (Nesbitt et al., 1996).
Chemical weathering, which is mainly mediated by the climate
conditions, converts primary labile silicate minerals to secondary
clay and oxide-hydroxide minerals by releasing mobile elements,
such as sodium, calcium and potassium, from silicate minerals.
Paleoweathering processes can be quantified by the chemical index
of alteration (CIA), which was proposed by Nesbitt and Young
(1982) as follows:

CIA¼ ½Al2O3 = ðAl2O3 þCaO*þNa2OþK2OÞ� � 100 (1)

CaO* is the amount of CaO present in the silicate fraction of the
rock. In this study, CaO in phosphate was corrected (McLennan,
1993). In addition, a reasonable CaO/Na2O ratio was proposed to
indirectly estimate the CaO in the silicate fraction by distinguishing
it from carbonate CaO directly (McLennan, 1993; Bock et al., 1998).
When CaO > Na2O, CaO* ¼ Na2O; and when CaO � Na2O,
CaO* ¼ CaO. The CIA is a dimensionless parameter ranging from
0 to 100. Generally, high CIA values indicate the removal of mobile
elements (e.g., Ca2þ, Naþ, and Kþ) relative to stable conservative
elements (Al3þ and Ti4þ) due to chemical weathering under humid
and warm climate conditions, inwhich secondary minerals, such as
kaolinite, are produced. Therefore, higher CIA values correspond to
increasing chemical weathering and sedimentmaturity. In contrast,
very low CIA values reflect the absence of source-area weathering
and low sediment maturity and deposition under cool and/or arid
conditions (e.g., Rieu et al., 2007; Perri, 2018). CIA values of 45e55
indicate no weathering, while a CIA value of 100 indicates intense
weathering. CIAvalues between 50.0 and 60.0 indicate a lowdegree
of chemical weathering, values ranging from 60.0 to 80.0 indicate
moderate weathering, and values > 80.0 indicate extreme chemical
weathering (Nesbitt and Young, 1982; Fedo et al., 1995, 1996). In
this study, the CIA values of the MES shales range from 57.3 to 75.5,
with an average of 69.2. The CIA values of MES shales are signifi-
cantly higher than that of the UCC (47.7), but similar to that of post-
Archean Australian shales (PAAS) (70.3; Taylor and McLennan,
1985, Fig. 8a). The results are also supported by the relative high
content of Ulmipollenites Betulaceoipollenites and Juglanspollenites
in the Angiospermae pollen of theMES shales. The CIA values of EMS
shales are lower than those of the Es3L sediments in Dongying sag
(avg. 81.6), while are similar to the CIA values of the evaporite
interlayer in the Es4U sediments of Dongying sag (63.1e84.0, avg.
69.4). This feature reflects the relative dry climate and weak-
moderate weathering during the MES shales depositing (Ma, 2017).

In addition, based on the proportion of secondary aluminous
minerals relative to primary mineral phases, the Al2O3-
(CaO*þNa2O)eK2O (A-CN-K, Fig. 8a) ternary plot has been widely
used to analyze the weathering rates of primary minerals and



Fig. 6. Correlations among the major element oxides (in molar proportions) in the MES shales. (a) shows a positive correlation between Na2O and SiO2. CaO show negative cor-
relations with Al2O3 (b) and SiO2 (c), but positive correlations with P2O5 (d), SO3 (e), and MgO (f). Analogously, good positive correlations were presented in K2O vs. Al2O3 (g), SiO2 vs.
Al2O3 (h) TiO2 vs. Al2O3 (i).
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weathering-induced diagenetic alteration (Nesbitt and Young,
1984, 1989; Panahi et al., 2000). In this diagram, A, (C þ N) and K
are in molar values. The progress of weathering on such diagrams is
generally shown along straight lines subparallel to the A-CN line.
Almost all of MES shale samples were plotted on the straight line
subparallel to A-CN (Fig. 8a). This reflects that sediments have been
subjected to different degrees of chemical weathering, leading to
the predominant removal of silicate Ca and Na due to the
destruction of plagioclase feldspars (Nesbitt and Young,1982, 1984;
Újv�ari et al., 2014). This plots along the predicted weathering trend,
indicates Ca2þ and Naþ leaching via moderate weathering pro-
cesses. Furthermore, the weathering trend resulted in the forma-
tion of some minerals that are compositionally between illite and
kaolinite (Fig. 8a). No obvious tendency towards the K2O vertex is
observed for MES shales, suggesting little K-metasomatism partic-
ipated in the chemical weathering process (Fedo et al., 1995).
Furthermore, a quantitative method has been proposed to calculate
K2O addition by Panahi et al. (2000):

K2Ocorr¼ ½m�Aþm�ðC*þNÞ� = ð1�mÞ (2)

M¼K = ðAþC*þNþKÞ (3)

wherem could be obtained from a line emanating from the plotted
points and parallel to the A-CN line (Fig. 8a), and m ¼ 0.14 in this
study. The K2Ocorr values of theMES shales are low (0.01e0.03; avg.
0.02), indicating weak and negligible K-metasomatism in the
weathering process.
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The geochemical weathering conditions can also be predicted by
theM-F-W ternary diagram, whichwas developed from a statistical
analysis of element behavior during the course of igneous rock
weathering (Ohta and Arai, 2007). M and F represent mafic and
felsic igneous source rocks respectively, and W represents the de-
gree of weathering (Ohta et al., 2011). This method takes into ac-
count eight major elements, and it is more reliable and sensitive to
weathering trends than conventional indices based on two to four
element oxides. In this study, the W values of the MES shales range
from 31.02 to 69.02 with an average of 54.64, and it has a strong
positive correlation with the CIA (Fig. 10a), suggesting its good
reliability for identifying weathering conditions. The MES shales
plots show a trend toward the W vertex (Fig. 8b), indicating mod-
erate weathering condition. The W values of the MES shales are
equivalent to those of recent soils that developed in midlatitude
regions with a temperate climate (Ohta et al., 2011; Perri and Ohta,
2014, Fig. 9). Although the MES shales in this study are not consis-
tent with paleosol, its W values are distinctly different from those
of soils that developed in arctic, boreal temperate and tropical
rainforest climates, implying that the MES shales sediments expe-
rienced a temperate climate during the middle Eocene. This result
is also supported by the relatively high content of Ulmipollenites,
Betulaceoipollenites and Juglanspollenites in the Angiospermae pol-
len. In addition, Quercoidites dominate in the MES shales, and this
genus is regarded as a representative subtropical pollen that showa
preference for subtropical climates.



Fig. 7. The mineral morphology of MES shales from scanning electron microscopy observation. The minerals include quartz (Q), pyrite (Pr), illite (I), illite/smectite mixture (I/S),
orthoclase (Or), calcite (Cc), feldspar (Fs), albite (Ab), ankerite (Ak) and OM (C). Some cracks and dissolution could also been observed.
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4.4. Paleotemperature and paleoprecipitation

In the chemical weathering process, the mobile alkaline cations
of alkaline aluminosilicates, i.e., Naþ, Kþ, and Ca2þ, are depleted
because the dissolved carbonic and organic acids present in
meteoric water and surface water transform these aluminosilicates
into clay minerals. This process is primarily controlled by the pre-
vailing climate, including the surface temperature and precipitation
regime (Muhs et al., 2001; Sheldon et al., 2002; Passchier et al.,
2013, 2017), and leads to geochemical and mineralogical vari-
ability in sedimentary rocks.

By analyzing the different molar oxide ratios of K, Na, and Ca
versus Al in the soil weathering horizons in North America, Sheldon
et al. (2002) proposed the mean annual temperature (MAT) and
mean annual precipitation (MAP) as two climofuctions to recon-
struct the paleoclimate under which paleosols formed, and the
results are comparable to other independent proxies. This method
has been used by Passchier et al. (2013, 2017) to reconstruct Ant-
arctic continental paleotemperature and precipitation during the
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Eocene andMiocene. Themean annual temperature is calculated as
MAT¼�18.516(S) þ 17.298, where S is defined as the molar ratio of
Na2O and K2O to Al2O3. For MAP (mm/yr), Passchier et al. (2013)
modified the climofunction based on Sheldon et al. (2002) to
emphasize the silicate mineral-bound components:
MAP ¼ 147.75 � exp(0.0232 � CIA-K), where CIA-K is the CIA
without potassium (potassium is excluded to remove the effects of
potassium metasomatism on paleosols; Maynard, 1992).

For theMES shales (Fig. 10), the MAT values range from 8.3 �C to
12.9 �C with an average of 11.3 �C. The MAP values are in the range
of 685.2e1099.8 mm/yr (avg. 946.5 mm/yr), suggesting that the
Bohai Bay Basin suffered seasonally dry and humid conditions
(600e1200 mm/yr; Sheldon et al., 2009) during the middle Eocene.
Furthermore, these values are obviously lower than those associ-
ated with tropical conditions, which have annual rainfall totals of
2500e3750 mm (Nesbitt and Young, 1989). This result is also
supported by pollen. The content of helophytes, such as Poly-
podiaceaesporites, Taxodiaceaepollenites, and Alnipollenites, are
lower than that of Ephedripites in MES shales indicating that a



Fig. 8. Geochemical weathering trends of theMES shales. (a) A-CN-K (Al2O3eCaO* þ Na2OeK2O, all in molar proportions) ternary diagram showing the weathering trend of theMES
shales, with the chemical index of alteration (CIA) scale on the left. Yellow stars: A, andesite; B, basalt; F, felsic igneous rock; and G, granite (Condie, 1993). UCC, upper continental
crust; PAAS, post-Archean Australian shales (Taylor and McLennan, 1985). (b) Weathering trends of the MES shales depicted on the M-F-W diagram (Ohta and Arai, 2007). The M, F
and W vertices represent unweathered mafic igneous rocks, felsic igneous rocks and weathering degree of these parent igneous rocks, respectively. The black dashed line represents
a compositional linear trend for igneous rocks. The dashed lines with arrows (①, ② and ③) are compositional linear trends for the weathering of basalt, diorite and granite.

Fig. 9. Comparison of the W values of recent soils developed under various climate regimes (Ohta et al., 2011) and those of the MES shales. The W values of the MES shales in the
Bohai Bay Basin are comparable to the soils developed in temperate climates in the midlatitude region. For each box plot, the lower and upper limits represent the first (Q1) and
third (Q3) quartiles and the line within the box represents the second (Q2) quartile. The small block within the box represents the mean value. The widths of notches on the side of
each box indicate the 95% confidence intervals of the median (Ohta et al., 2011). Whiskers represent the allowable range of the data (1.5 times the interquartile range). Solid circles
represent outliers.
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transitory moist climate occurred along with the persistent sea-
sonal climate.

The maximumvalue is below the upper limits of MAT > 18 �C or
MAP > 1600 mm/yr, which correspond to the complete leaching of
labile minerals (Sheldon et al., 2002; Passchier et al., 2013). The
MAP and MAT trends of the midlatitude Bohai Bay Basin during the
middle Eocene calculated in this study are similar to those of the
high-latitude Antarctic continental margin calculated by Passchier
et al. (2013; Fig. 11) and show the same magnitude, despite the
considerable geographic differences. In addition, the MAP and MAT
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trends both decrease (Fig.11) during themiddle Eocene over a short
time scale of 42.5-42Ma. In addition, the MATandMAP are positive
correlated with the CIA (Fig. 10bec), which supports the above
explanation of the CIA.

5. Discussion

5.1. Provenance, tectonics and sediment maturity

Provenance and tectonics are important factors that affect



Fig. 10. (a) Shows a positive relationship between the CIA and the W index. Positive relations of CIA with MAT (b) and MAP (c).

Fig. 11. Comparison of MAT and MAP under the high latitude regime (Passchier et al.,
2013) and for the MES shales in the midlatitude Bohai Bay Basin. The MAT and MAP of
the MES shales are consistent with their variation trend during the Eocene calculated
from the detrital geochemistry of the Antarctic continental margin. Gray shadings
present prediction intervals at a ¼ 0.05 level. The orange smoothing trendline is
derived by using the Locally Weighted Scatterplot Smoothing algorithm.
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weathering products (Armstrong-Altrin and Verma, 2005; 2013;
Awasthi, 2017). The A-CN-K plots show moderate paleoweathering
for the MES shales relative to the UCC and PAAS, and the prove-
nances are close to mafic and felsic igneous rocks (Fig. 8a).
Furthermore, the M-F-W diagram suggests that the provenance of
the MES shales was intermediate in composition (Fig. 8b). To
identify the provenance of the MES shales more exactly, a
discrimination diagram based on seven major element composi-
tions proposed by Roser and Korsch (1988) is further used in this
study. As shown in Fig. 12a, theMES shales are mainly located in the
P2 field, followed by the P1 and P3 fields. This pattern implies a
mainly intermediate provenance and less mafic and felsic sources.
This result also is supported by the Al2O3/TiO2 ratio of 16.92e31.11
(avg. 20.30), which indicate a provenance from intermediate
igneous rocks (Hayashi et al., 1997).

Furthermore, theMES shales aremainly immature and formed in
an active continental margin and island arc tectonic setting
(Fig. 12a; Roser and Korsch, 1988; Roser et al., 1996). This tectonic
background is further supported by the K2O/Na2O vs. SiO2 diagram
(Fig. 12b; Roser and Korsch, 1986) and Al2O3/SiO2 vs. Fe2O3 and
MgO diagram (Fig. 12c). Due to the subduction roll-back of the
Pacific Plate relative to the eastern margin of Asia, many exten-
sional basins with similar ages and structural styles formed on the
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eastern side of the Asian continent from Russia to Vietnam (Allen
et al., 1997). These active continental margin basins and associ-
ated island arcs are typical of the western Pacific Plate (Allen et al.,
1997). The Bohai Bay Basin is one of these active continental margin
basins associated with extensive regional normal-slip and strike-
slip faulting. To some extent, active tectonics can produce sedi-
mentary recycling (Armstrong-Altrin and Verma, 2005; Hao et al.,
2010; Awasthi, 2017), which is an important factor that can
change the bulk chemical and mineralogical composition of sedi-
mentary rocks. To ensure the accuracy of the weathering recon-
struction, first-cycle deposits are preferred. Sedimentary recycling
can be distinguished by the index of compositional variability (ICV)
proposed by Cox et al. (1995):

ICV ¼ðFe2O3 þK2OþNa2OþCaOþMgOþMnOþ TiO2Þ =Al2O3

(4)

where the weight percentages of the oxides are used. The ICV was
applied to estimate compositional maturity and has been used to
track sediment recycling. When ICV > 1, the sediments are
compositionally immature first-cycle deposits, which tend to be
found in tectonically active settings. In contrast, compositionally
mature sediments have low ICV values (ICV < 1). These sediments
are associated with active sediment recycling under quiescent or
cratonic environments. They may also be produced by chemical
weathering of first-cycle sediments (Cox et al., 1995; Perri and Ohta,
2014). The MES shale samples generally have ICV values of > 1,
suggesting that the MES shales were compositionally immature or
low-mature first-cycle deposits. Therefore, the chemical and
mineralogical composition of the MES shales could effectively
reflect the chemical weathering condition of its source area during
the middle Eocene.

The low compositional maturity of MES shales could be further
verified by the SiO2/Al2O3 ratio. The SiO2/Al2O3 ratio reflects the
abundances of quartz and clay/feldspar, and is sensitive to weath-
ering and sediment recycling. Thus, this ratio can also be used to
estimate the degree of sediment maturity. Higher SiO2/Al2O3 ratios
indicate the higher maturity due to increase in modal framework
quartz at the expense of less resistant components of feldspar
(Potter, 1978; Roser et al., 1996; Hao et al., 2010; Fadipe et al., 2011;
Fatima and Khan, 2012; Babeesh et al., 2017). The SiO2/Al2O3 ratios
of theMES shales are typically low (Roser et al., 1996), ranging from
3.31 to 5.92 (avg. 3.97). These values are close to that of PAAS (3.32),
suggesting that the MES shales are immature sediments derived
from a mixed provenance.

Overall, theMES shales feature a mixed provenance that consists
of intermediate igneous rocks. Due to the active tectonics during
the middle Eocene, the MES shales represent an immature first-
cycle deposits. Under a subtropical and seasonal climate, the MES
shales experienced moderate chemical weathering during the
middle Eocene.



Fig. 12. Provenance and tectonic discrimination plots for the MES shales (red solid triangle in subfigure). (a) Provenance discrimination diagram for the MES shales using the
discrimination diagram proposed by Roser and Korsch (1988); stars Rh, Rd, Da, An, and Ba represent the average rhyolite, rhyodacite, dacite, andesite and basalt, respectively. (b) and
(c) show the evaluation of tectonic settings of the Bohai Bay Basin by the SiO2eK2O/Na2O (Roser and Korsch, 1986) and Fe2O3þMgOeAl2O3/SiO2 diagrams (Bhatia, 1983). (d) shows
the geochemical classification of the MES shales using the log(SiO2/Al2O3) - log(Fe2O3/K2O) diagram (Herron, 1988).
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5.2. Organic matter implications

In addition to influencing chemical weathering, the climate also
influences the status of lakes. The primary productivity and fertility
of lakes are tightly associated with phosphate (Schindler, 1975;
Smith, 1983; Hecky and Kilham, 1988; Howarth et al., 1988). The
availability of phosphorus is critical to the OM production (Spears
et al., 1988; Ward et al., 1996). The presence of phosphorous en-
hances the growth of algae/vegetation, and the resulting OM can
then be preserved in reducing depositional environments (Ward
et al., 1996; Tao et al., 2012).

High-vitrinite sediments always have high phosphorus levels
(Ward et al., 1996), and phosphorus precipitation has a good posi-
tive correlation with the total organic carbon (TOC) content (Chen
et al., 2006). The phosphorus contents of the MES shales are
0.07e0.86 w.t.% (avg. 0.34 w.t.%; Fig. 4a), which is higher than that
in the UCC and PAAS (both 0.17 w.t.%; Taylor and McLennan, 1985).
The phosphorus content of dried modern plants is typically
approximately ten times that of sediments (Ward et al., 1996).
Hence, the phosphorus content found in coal seams is probably less
than that in the original vegetation that formed the peat accumu-
lations (Ward et al., 1996). The phosphorus contents in the MES
shales are higher than those in coals (Ward et al., 1996), indicating a
high degree of nutrient availability and productivity in the Bohai
Bay Basin during the middle Eocene. Furthermore, the P2O5* index
was used by Schmitz et al. (1997) to monitor the biological pro-
ductivity during the latest Paleocene benthic extinction event.
P2O5* is the concentration of phosphate in a sample normalized to
the UCC values. It is calculated as P2O5* ¼ (P2O5/Al2O3wr) �
Al2O3UCC, where Al2O3wr is the measured Al2O3 and Al2O3UCC is the
average Al2O3 content of the UCCwith a value of 15% (Schmitz et al.,
1997). The P2O5* values of MES shales range from 0.20 to 5.34, with
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a mean of 1.07, indicating that the MES shales were deposited in a
nutrient-rich environment along with abundant OM. The re-
lationships of P2O5* with MAP and MAT (Fig. 13aeb) shows that
values of 11.5e12 �C and 1000e1050 mm/yr prefer to phosphate
enrichment.

P2O5* is positive related with ICV (Fig. 14a), which suggests that
the OM accumulation and primary production in paleolakes were
associated with tectonic activity companying with higher terres-
trial inputs. A weak positive correlation was presented between
P2O5* and TOC (Fig. 14b), which may be affected by redox condition
of sedimentary water and sediment bulk accumulation rates
(Schoepfer et al., 2015). The relatively oxidized underwater envi-
ronment has found low ratio of organic carbon and organic phos-
phorus mass fraction with high productivity, (Canfield, 1994).
Under anoxic conditions, the degradation of organic phosphorus
saturates the phosphorus element in the water body, thereby
inhibiting the decomposition of biological phosphorus. At this time,
biological phosphorus can well indicate the change of productivity.
The MES shales deposited at a stratified water (Chen et al., 2021),
which may have great effect on the enrichments of TOC and
phosphorus. Sediment bulk accumulation rates is another major
factor influencing the accumulation of phosphorus. Organic carbon
accumulation rates show a strong correlation with sediment bulk
accumulation rate (Müller and Suess, 1979), although the nature of
the relationship differs between fully oxic and fully anoxic envi-
ronments (Tyson, 2005). In oxic environments, higher sediment
bulk accumulation rates minimizes the exposure time of organic
matter to aerobic decay in the shallow burial zone (Iversen and
Ploug, 2010). Ingall and Van Cappellen (1990) observed that TOC/
P ratios vary in a manner as a function of sedimentation rate. The
underlying control on this pattern possibly related to the interplay
of sedimentation rates with redox conditions. High TOC:P ratios are



Fig. 13. Shows the variation of the average P2O5* along with the intervals of MAT (a) and MAP (b) for the MES shales, respectively.

Fig. 14. (a) Shows a positive relation of P2O5* and ICV, and weakly positive relation between TOC and P2O5*.
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associated with reducing environments (Algeo and Ingall, 2007),
which tend to have sedimentation rates between those of highly
oxidizing environments in open-ocean settings (low sediment bulk
accumulation rates) and those in continent-margin systems (high
sediment bulk accumulation rates) (Ingall and Van Cappellen,1990;
Tromp et al., 1995). The MES shales interceded some sandy bands
(Fig. 2; Chen et al., 2019), which reflect the change of lithofacies and
terrigenous inputs. These lithofacies change show unstable depo-
sition rate of MES shales, thus affecting the accumulation efficiency
of TOC and phosphorus.

5.3. Evolution of paleoclimate and chemical weathering

Stratigraphic variations in the values of paleoweathering and
paleoclimate proxies are shown in Fig. 15. To more accurately
reflect the variation of the weathering conditions during the mid-
dle Eocene, the CIA values of theMES shale samples with ICV values
less than 1 have been eliminated (Fig. 15). Generally, the variations
of CIA, W, MAP and MAT show common trends in which the value
decreases from the bottom to top. The decreasing CIA is similar to
the previous study in the Dongying Sag (Ma, 2017), supporting the
climate transition during MECO epoch. The comparison of CIA
changes in the Xining Basin and Qaidam Basin in the same period
shows that the East Asian monsoon climate has existed in the
middle Eocene period. The MAP decreased along with climate
cooling, which resulted in a relatively arid climate that promoted
evaporite formation during Eocene. These results may account for
the occurrences of carbonate and anhydrite in MES shales (Fig. 4b).
This conclusion is consistent with the work of many researchers
who have demonstrating that China featured an extensive arid
climate at the beginning of the middle Eocene (Meng et al., 2012; Li
et al., 2015b; Hou et al., 2017; He et al., 2017; Song et al., 2018; Chen
et al., 2018; Wu et al., 2018).
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The relatively consistently high CIA, MAP and MAT values
throughout the entire succession are abruptly interrupted by low
values that corresponding to breaks in the lithological section, with
low ICV values (Fig.15). According to the variations in these proxies,
the MES shales could be divided into two stages. The Mann-
Whitney U test shows that the two sets of data have statistically
significant differences except ICV and P2O5*, and the p-value were
less than 0.05 (Fig. 15). In stage I, the MES shales experienced a
relatively gentle climate and moderate chemical weathering, with
consistently decreasing trends for CIA, MAP and MAT. This consis-
tently decreasing trends has been also observed in the Dongying
and Dongpu Sags (Jiang et al., 2021; Zhu et al., 2022), contrary to the
changes in the Xining Basin and Qaidam Basin. It reflects the East
Asianmonsoon leading to significant difference among thewestern
and eastern China. This change may related to the continuous uplift
of the Qinghai Tibet Plateau during this period. The uplifted Qinghai
Tibet Plateau blocks the sea breeze from the ancient Talimu Sea in
thewest and thewarm and humid air in the southern Indian Ocean,
which lead to the relatively dry climate in the eastern Asian
(Bosboom et al., 2011; Carrapa et al., 2015). In this stage, the average
MAT was 11.90 �C, the average MAP was 997.92 mm/yr, and the
nutrient-rich lakes featured relatively high primary productivity,
with an average P2O5* value of 1.26. Tectonic activity was relatively
high during stage I, with high mean ICV value of 3.02. The MES
shales in stage I have low degree of compositional maturity with
low average SiO2/Al2O3 value of 3.88. The climate in stage II was
cooler and drier than that in stage I, with an average MAT of
10.22 �C and an average MAP of 854.78 mm/yr. This climate also
induced relatively high salinity as shown in Fig. 4b, and resulted in
weak chemical weathering with relatively low CIA value. The CIA
values change shows obvious fluctuation, which also presented in
the Dongying sag. This fluctuation hints that there are other factors
affecting the sedimentary process, such as tectonic activity. In this



Fig. 15. Stratigraphic variations in the degree of paleoweathering and paleoclimate in the studied section, as measured using geochemical indices. ICV ¼ index of compositional
variability; CIA ¼ chemical index of alteration; W ¼ W index; MAT ¼ mean annual temperature; MAP ¼ mean annual precipitation. p is the p-value by Mann-Whitney U test. Kelly
shadings prediction intervals at a ¼ 0.05 level. The black smoothing trendline is derived by using Locally Weighted Scatterplot Smoothing algorithm.
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stage, the structurewas relatively stable, with lowmean ICV of 1.64.
The sediment maturities in this stage were relatively high, with an
average SiO2/Al2O3 value of 4.13. The paleolake fertility in this stage
was lower than that in stage I. This result suggests that more
terrigenous detritus was input into the paleolake from a mixed
provenance in stage I. The relatively active tectonics of the first
stage may have led to more provenance inputs.

5.4. Periodicity of paleoclimate and chemical weathering

The investigation of the periodicity of the paleoclimate variation
in the middle Eocene is valuable and important for understanding
the evolution of the global paleoclimate. Four proxies, namely,
corrected CIA, MAP, MAT and P2O5*, were chosen to determine the
periodicity in the paleoenvironment using the wavelet transform
technique, and the results are shown in Fig. 16. Three periodic os-
cillations were revealed in the CIA variation by wavelet transform
(Fig. 16), namely, 13.94, 5.38, 0.13 m/cycle. The MAP variation
contains five periodic oscillations (13.88, 5.25, 2.63, 1.31, 0.13 m/
cycle), which are similar to those of MAT (13.94, 5.25, 2.25, 0.56,
0.13 m/cycle) and P2O5* (13.94, 5.25, 2.25, 0.56, 0.13 m/cycle).
Furthermore, the main periodicity ratios of these proxies are nearly
identical, with 1:0.39:0.01 for CIA, 1:0.38:0.19 for MAP, and
1:0.38:0.16 for MAT and P2O5* (Fig. 16). These ratios are indicative
of a combination of astronomical periods over the last approxi-
mately 50 Ma estimated by Berger et al. (1992), including the short
eccentricity cycle (100 k.y.), the obliquity cycle (39 k.y.) and the
precession cycle (19 k.y. or 17 k.y.). The MES shalewas deposited at
approximately 42 Ma, which is close to the estimated time of these
astronomical periods. This compelling evidence shows good cor-
respondence between the sedimentary rhythm and orbital forcing,
which implies that the variations in chemical weathering and
paleoclimate during the middle Eocene were controlled by astro-
nomical periodic oscillation in the form of Milankovitch cycles.

Although the CIA frequencies of 13.94 m/cycle and 5.38 m/cycle
are perfectly consistent with the short eccentricity cycle (100 k.y.)
and obliquity cycle (39 k.y.), the main frequency ratio of 1:0.39:0.01
implies the absence of a precession cycle. The precession of Earth’s
rotation axis determines the timing and location of the seasons
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with respect to Earth’s orbit and drives the climate of Earth
(Paillard, 2010). There are two explanation for this situation: (1)
insufficient consideration is given to the effect of K-metasomatism
on the composition of the MES shale, potentially leading to error in
the ICV and CIA, and (2) the calculation of CaO* in section 4.3 is not
sufficiently accurate because of the lack of the mineral composition
of the MES shale.

The main periodicities of the paleoweathering and paleoclimate
indices corresponding to the astronomical periods are shown in
Fig. 16. In the MES shale core, the CIA time series contains 3 short
eccentricity cycles (100 k.y. and 13.94 m/cycle) and 7 obliquity
cycles (39 k.y. and 5.38 m/cycle). The MAP curve contains 3 short
eccentricity cycles (100 k.y. and 13.88 m/cycle), 7 obliquity cycles
(39 k.y. and 5.25 m/cycle) and 15 precession cycles (19 k.y. and
2.63 m/cycle). The MAT and P2O5* curves contain the same
numbers of astronomical periods, namely, 3 short eccentricity cy-
cles (100 k.y. and 13.94 m/cycle), 7 obliquity cycles (39 k.y. and
5.25 m/cycle) and 16 precession cycles (17 k.y. and 2.25 m/cycle).
Furthermore, an accumulation rate of 0.14 m/ k.y. is calculated ac-
cording to the analysis above, and this value may correspond to the
element accumulation rate or deposition rate. Furthermore, the
MAP and MAT curves contain approximately 2.1 short eccentricity
cycles and 5.4 obliquity cycles in stage I, and the MAT and MAP
decrease from 12.16 �C to 11.59 �C and from 1090.56 mm to
956.68 mm, respectively; therefore, the cooling and drying rates in
stage II are 0.27 � 10-2 �C/k.y. and 0.64 mm/k.y., respectively.
Because the MAP and MAT deceasing trends were relatively
consistent in stage II and represent the trend of the overall climate
during deposition of the MES shale, the climatic cooling and drying
rates in the midlatitude Bohai Bay Basin during the middle Eocene
are estimated to have been 0.27 � 10-2 �C/k.y. and 0.64 mm/k.y.,
respectively.

In addition, the amplitude of the obliquity cycle in the paleo-
climate proxies shown in Fig. 16 is heterogeneous. The amplitudes
of the obliquity cycle are weak in stage I and may be disturbed by
other superimposed signals, such as those of tectonic activity.
However, the amplitudes are stronger in stage II, inwhich the stable
tectonics produced less interferencewith the astronomically driven
climate signals. Therefore, the paleoclimate variation and chemical



Fig. 16. The results of wavelet analysis for the variation in the CIA (I), MAT (II), MAP (III) and P2O5* (IV) during the middle Eocene for the MES shale. Wavelet scalograms (a) shows
the energy fluctuation with depth at different scales, indicating the different oscillation cycles. (b) show the variograms of real wavelet coefficients, and the extreme points (orange
triangle) represent the main frequencies. (c) shows the cycle counting of the main astronomical period.
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weathering conditions during the middle Eocene were controlled
by the astronomical oscillation cycles and by the tectonic activity in
themidlatitude Bohai Bay Basin. The spectral analysis of the proxies
revealed cyclicity in the paleoweathering and paleoclimate condi-
tions in the Bohai Bay Basin during the middle Eocene, and these
findings can enhance the understanding of global paleoenviron-
ment variation in midlatitude regions during the middle Eocene.
6. Conclusions

Based on major element analysis, this study reveals the middle
Eocene terrestrial paleoweathering features and constructed the
paleoclimatic evolution profile for the Bohai Bay Basin at Asian in
Asia Continent. The Midlatitude Bohai Bay Basin experienced a
subtropical monsoon paleoclimate with MAT of 8.3e12.9 �C and
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MAP of 685e1100 mm/yr during middle Eocene. The nutrient-rich
environment of ancient lake deposited a large number of organic
richMES shales. The major element analysis revealed enrichment of
calcium and depletion of sodium in theMES shales compared to the
UCC. The CIA values for the MES shales are higher than those of the
UCC but similar to those of the PAAS. The MES shales experienced
moderate paleoweathering with little K-metasomatism. The MES
shales have a mixed provenance of intermediate igneous rocks with
low compositional maturity. According to the climatic variation, the
deposition process of the MES shales is divided into two stages. In
stage I, the paleolake was nutrient rich, and theMES shales suffered
high chemical weathering due to a warmer and more humid
climate. The climate in stage II was entirety cold and dry, and the
tectonic activity is relatively stable, facilitating the deposition of
MES shales with relatively high composition maturity.
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