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a b s t r a c t

Wave propagation in the viscoacoustic media is physically dispersive and dissipated. Completely
excluding the numerical dispersion error from the physical dispersion in the viscoacoustic wave simu-
lation is indispensable to understanding the intrinsic property of the wave propagation in attenuated
media for the petroleum exploration geophysics. In recent years, a viscoacoustic wave equation char-
acterized by fractional Laplacian gains wide attention in geophysical community. However, the first-
order form of the viscoacoustic wave equation, often solved by the conventional staggered-grid pseu-
dospectral method, suffers from the numerical dispersion error in time due to the low-order finite-
difference approximation. It is challenging to completely eliminate the error because the viscoacoustic
wave equation contains two temporal derivatives, which stem from the time stepping and the amplitude
attenuation terms, respectively. To tackle the issue, we derive two exact first-order k-space viscoacoustic
formulations that can fully exclude the numerical error from the physical dispersion. For the homoge-
neous case, two formulations agree with the viscoacoustic analytical solution very well and have the
same efficiency. For the heterogeneous case, our second k-space formulation is more efficient than the
first one because the second formulation significantly reduces the number of the wavenumber-space
mixed-domain operators, which are the expensive part of the viscoacoustic k-space simulation. Nu-
merical cases validate that the two first-order k-space formulations are effective and efficient alternatives
to the current staggered-grid pseudospectral formulation for the viscoacoustic wave simulation.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Wave propagation simulation in real media (Carcione, 2007;
Moczo et al., 2014; Igel, 2017) plays a significant role in geophysical
modeling (Alkhalifah, 2000; Carcione et al., 2002; Berkhout, 2014a;
De Basabe et al., 2016; Gong et al., 2018; Du et al., 2020; Zou et al.,
2020; Xu et al., 2021; Zhou et al., 2021a; Wang et al. 2022a, 2022b)
and inversion (Virieux and Operto, 2009; Berkhout, 2014b). Field
data (McDonal et al., 1958; Campillo et al., 1985; Yoshimoto et al.,
1993) demonstrate that seismic wave propagation in the realistic
subsurface suffers from amplitude decay and phase dispersion ef-
fects due to the friction induced energy conversion. Researchers
name the intrinsic attenuation property in acoustic approximation
as viscoacoustic phenomenon (Aki and Richards, 2002; Carcione,
y Elsevier B.V. on behalf of KeAi Co
2007). Many theories are formulated to describe the phenome-
non (Carcione et al., 1988; Robertsson et al., 1994; Blanch et al.,
1995; Zhu and Harris, 2014). Among them, the constant-Q based
viscoacoustic theory (McDonal et al., 1958; Kjartansson, 1979; Day
and Minster, 1984; Emmerich and Korn, 1987; Zhu and Harris,
2014) is proven to be practical and widely applied to describe
acoustic wave propagation in attenuated media.

Generally, there are two main categories that describe the
constant-Q viscoacoustic effects, i.e., mechanical superposition
based physical models and pure mathematical models. The me-
chanical superposition models (Liu et al., 1976; Day and Minster,
1984; Blanch et al., 1995; Hestholm and Ruud, 1998; Zhu et al.,
2013; Qu and Li, 2019; Qu et al., 2021; Wang and Qu, 2021)
combine several springs and dashpots elements connected in series
and/or in parallel in a complex way to approximate the frequency
independent Q property within certain frequency bands. An alter-
native category of describing the constant-Q behavior is based on
strict mathematical derivations (Kjartansson, 1979), yielding
mmunications Co. Ltd. This is an open access article under the CC BY license (http://
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elegant and simple constant-Q model that only requires parame-
terization by reference velocity and Q. The model strictly captures
the constant-Q behavior for all frequency bands. Typical examples
are constant-Q wave equations based on fractional temporal de-
rivatives (Carcione et al., 2002) and fractional spatial derivatives
(Carcione, 2010; Treeby and Cox, 2010; Xing and Zhu, 2019).
Recently, the fractional spatial derivatives based method (Zhu and
Harris, 2014) has gained wide attention from the geophysical
community because of two major advantages. First, it avoids pre-
vious wavefield storage, which is often the case of the fractional
temporal derivative based method (Carcione et al., 2002). Second,
the fractional spatial derivatives based method decouples the
amplitude decay and phase dispersion effects, facilitating attenu-
ation compensation in seismic imaging (Zhu et al., 2014; Zhu and
Harris, 2015).

Accurately and efficiently solving the fractional spatial deriva-
tive based viscoacoustic wave equation (Zhu and Harris, 2014) is
widely studied in recent years. Unfortunately, the viscoacoustic
wave equation, which is often solved by the conventional pseu-
dospectral method (Fornberg, 1987; €Ozdenvar and McMechan,
1996), suffers from the temporal dispersion error due to the dis-
cretization of the time stepping and amplitude attenuation terms.
Chen et al. (2016) suppress the temporal dispersion by approxi-
mating the original fractional order viscoacoustic wave equation
(Zhu and Harris, 2014) using constant fractional derivatives. Wang
et al. (2020) design a simplified k-space method by adopting
different time stepping error compensation operators for the
amplitude decay and phase distortion terms, respectively. However,
the numerical dispersion error cannot be fully compensated by
these methods (Chen et al., 2016; Wang et al., 2020) because they
only approximate the dispersion relation of the original fractional
derivative based viscoacoustic wave equation (Zhu and Harris,
2014). Sun et al. (2015) propose eliminating the temporal disper-
sion by the analytical wavefields based low-rank one-step method,
which may increase the storage and computational requirement
because of the complex number operations. Notice that the afore-
mentioned temporal dispersion suppressing schemes (Sun et al.,
2015; Chen et al., 2016; Wang et al., 2020) focus on the second-
order viscoacoustic wave equation, which may not be easy to ac-
count for the density variation and incorporate the perfectly
matched layer (PML) (Berenger, 1994; Collino and Tsogka, 2001;
Komatitsch and Martin, 2007) based absorbing boundary layers as
the first-order one. Besides, compared with the second-order wave
equation, the first-order one, solved by the staggered-grid method
(Virieux, 1986; €Ozdenvar and McMechan, 1996; Wang et al. 2021,
2022a; Zhou et al. 2021b, 2022), can effectively remove the artifact
caused by the pseudospectral method (€Ozdenvar and McMechan,
1996). In this paper, we derive two first-order time domain vis-
coacoustic formulations that can fully exclude the dispersion error
from the viscoacoustic wave simulation by the k-space theory
(Tabei et al., 2002; Firouzi et al., 2012). Because of the features, we
name the new methods as exact first-order k-space formulations.
For homogeneous media, our formulations are free from grid
dispersion and highly accurate because our derivations are based
on the exact dispersion relation of the viscoacoustic wave equation
(Zhu and Harris, 2014). For heterogeneous media, we adopt the
low-rank method (Engquist and Ying, 2009; Fomel et al., 2013) to
accurately represent the mixed-domain operators caused by Q and
velocity heterogeneity. Numerical examples demonstrate that our
two exact k-space formulations are effective and efficient alterna-
tives to the current pseudospectral method based first-order vis-
coacoustic formulation.
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2. Theory and method

2.1. Conventional first-order staggered-grid pseudospectral
formulation of viscoacoustic wave equation

In this part, we summarize the shortcomings of the conven-
tional first-order staggered-grid pseudospectral solver for the
fractional derivative based viscoacoustic wave equation. First, we
derive the first-order viscoacoustic wave equation from the second-
order one (Zhu and Harris, 2014), which has the form

1
v2

v2u
vt2

¼ t
v

vt

�
�V2

�gþ1=2
uþ h

�
�V2

�gþ1
u; (1)

where u ¼ uðx; tÞ is the pressure wavefield and x ¼ ðx; zÞ is the
position related vector; V2 is the Laplace operator, v ¼
v0 cosðpg=2Þ, t ¼ � v

2g�1
0 u�2g

0 sinðpgÞ, h ¼ � v
2g
0 u�2g

0 cosðpgÞ,
g ¼ arctanð1=QÞ=p and v0 is the wave propagation velocity defined
at reference angular frequency u0. Transforming Eq. (1) into the
wavenumber-frequency ðk�uÞ domain, we have

ðiuÞ2 � v2tjkj2gþ1iu� v2hjkj2gþ2 ¼0; (2)

in which k ¼ ðkx; kzÞ. Multiplying k � u domain wavefield Uðk;uÞ
on both sides of equation, we have

ðiuÞ2Uðk;uÞþ v2
�
tjkj2g�1iuþhjkj2g

��
�jkj2

�
Uðk;uÞ¼0: (3)

Because of the Fourier relations of iu4 v
vt and � jkj24V,V, in

which V is the gradient operator V ¼ �
v
vx;

v
vz

�T, Eq. (3) can be
expressed in the spaceetime domain as

v2

vt2
uþ v2

�
tð�VÞ2g�1=2 v

vt
þ hð�VÞ2g

�
V ,Vu¼0: (4)

By defining v ¼ ðvx; vzÞ ¼ �1
rVu and p ¼ vu

vt , inwhich r is the density,

Eq. (4) can be reformulated into the first-order equations:

vp
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¼ rv2
�
t
�
�V2

�g�1=2 v
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þ h
�
�V2

�g��vvx
vx
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�
; (5a)

vvx
vt

¼ � 1
r

vp
vx

; (5b)

vvz
vt

¼ � 1
r

vp
vz

: (5c)

Compared with second-order viscoacoustic wave equation, the
first-order viscoacoustic wave equation can simultaneously ac-
count for attenuation effect and density variation. Besides, the first-
order viscoacoustic wave equation facilitates the implementation
of PML (Berenger, 1994; Collino and Tsogka, 2001; Komatitsch and
Martin, 2007). Conventionally, the first-order wave equations are
often solved by the pseudospectral staggered-grid method

(€Ozdenvar and McMechan, 1996), which gives the discrete form

vtpðx; tÞ¼ rv2
�
t
�
�V2

�g�1=2
v�t þ h

�
�V2

�g�
� �v�x vxðx1; tÞþ v�z vzðx2; tÞ

�
; (6a)



Fig. 1. The numerical solution of NF1 and analytic solution. (a) Q ¼ 20; (b) Q ¼ 35; (c) Q ¼ 50; (d) Q ¼ 65; (e) Q ¼ 80; (f) Q ¼ 800. The receiver is 2200 m away from the 25 Hz Ricker
wavelet source with 0.08 s delay. The grid spacing, time step and velocity are 10 m, 3 ms and 2200 m/s, respectively. The density is 2123 kg/m3.

Fig. 2. Snapshots of (a) conventional PS and (b) NF1 in homogeneous velocity and Qmedia. The velocity and Q are 2200 m/s and 30, respectively. The density is 2123 kg/m3. The grid
spacing is 22 m. 22 Hz Ricker wavelet is located at the center of the model. The snapshots are at 1.8 s.
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vtvxðx1; tþ dt =2Þ¼ � 1
r
vþx pðx; tþ dt =2Þ; (6b)

vtvzðx2; tþ dt =2Þ¼ � 1
r
vþz pðx; tþ dt =2Þ; (6c)

in which x1 ¼ ðxþdx =2; zÞ andx2 ¼ ðx; z þ dz =2Þ; the operators vt ,
1523
v�t , v
þ
x , v

�
x , v

þ
z and v�z can be expressed by space-time dependent

variables gðx; tÞ as

vtgðx; tÞ¼ gðx; t þ dt=2Þ � gðx; t � dt=2Þ
dt

; (7a)



Fig. 3. The numerical solution of NF2 and analytic solution. (a) Q ¼ 20; (b) Q ¼ 35; (c) Q ¼ 50; (d) Q ¼ 65; (e) Q ¼ 80; (f) Q ¼ 800. The receiver is 2200 m away from the 25 Hz Ricker
wavelet source, which is with 0.08 s delay. The grid spacing, time step and velocity are 10 m, 3 ms and 2200 m/s, respectively.

Fig. 4. Snapshots of the conventional PS, NF1 and NF2 in homogeneous velocity and Qmedia. (a) PS; (b) NF2; the left half of (c) is NF1; the right half of (c) is the snapshot difference
of NF1 and NF2. The velocity and Q are 2200 m/s and 30, respectively. The density is 2123 kg/m3. The grid spacing is 22 m. 22 Hz Ricker wavelet is located at the center of the model.
The time step is 4 ms. The snapshots are at 2.8 s.
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Fig. 6. The snapshots of the PS, NF1 and NF2. The time step for NF1 and NF2 is 3 ms. The PS method breaks downwhen adopting such a time step. We use the time step 1 ms for the
PS method for comparison.

Fig. 5. The snapshots of the PS, NF1 and NF2 methods. The same time step 2 ms is adopted for all methods.
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v�t gðx; tÞ¼
gðx; tÞ � gðx; t � dtÞ

dt
; (7b)

vþx gðx; tÞ¼F �1
h
eikxdx=2ikxF ½gðx; tÞ�

i
; (7c)
Fig. 7. CPU time of the PS, NF1 and NF2. We compare the CPU time of different
methods under the condition of comparable accuracy. The time steps for PS, NF1 and
NF2 are 1 ms, 3 ms and 3 ms, respectively.
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v�x gðx; tÞ¼F �1
h
e�ikxdx=2ikxF ½gðx; tÞ�

i
; (7d)

vþz gðx; tÞ¼F �1
h
eikzdz=2ikzF ½gðx; tÞ�

i
; (7e)

v�z gðx; tÞ¼F �1
h
e�ikzdz=2ikzF ½gðx; tÞ�

i
; (7f)

where F and F �1 represent the forward and inverse Fourier
transforms in space, respectively. The space-wavenumber domain

pseudo-differential operators ð�V2Þg�1=2 and ð�V2Þg can be
approximated by separable representation methods (Chen and Liu,
2004; Zhang and Zhang, 2009) such as low-rank matrix decom-
position (Engquist and Ying, 2009; Fomel et al., 2013). Because only
second-order accuracy center finite-difference operators vt and
first-order accuracy backward finite-difference operators v�t are
applied to approximate the partial derivatives in the discrete wave
equation, the overall accuracy of the conventional staggered-grid
pseudospectral formulation (6) is only first-order accuracy in
time. Coarse time step may distort the waveform for this conven-
tional formulation. Besides, the simulation stability is limited due
to the pseudospectral method in this formulation.

2.2. New first-order staggered-grid formulation of viscoacoustic
wave equation: formulation 1

To tackle the aforementioned problems, we propose a new first-
order staggered-gird formulation for the viscoacoustic wave



Fig. 8. (a) Velocity and (b) Q models. The reference frequency is 50 Hz. The density is calculated by the empirical formula r ¼ 310v0:25. The grid spacing is 10 m.

H.-Y. Zhou, Y. Liu and J. Wang Petroleum Science 20 (2023) 1521e1531
equation. We derive the new formulation from the k-space theory
(Bojarski, 1982; Tabei et al., 2002; Firouzi et al., 2012), and name it
new formulation 1 (NF1) for short.

In appendix A, we have derived the k-space time marching form
for viscoacoustic case as

Uðk;tþdtÞ�2Uðk; tÞþUðk; t�dtÞ
dt2

¼
Uðk; tÞ2

�
e
�
b
2
dt
cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c�b2
p

2
dt
�
�1
�

dt2
þ
Uðk;t�dtÞ

�
1�e�bdt

�
dt2

:

(8)

One can reformulate Eq. (8) into the equivalent first-order
equations:

Pðk; t þ dt=2Þ � Pðk; t � dt=2Þ
dt

¼ � rv2ðbvxVxðk; tÞþ bvzVzðk; tÞÞþ
Pðk; t � dt=2Þ

�
e�bdt � 1

�
dt

;

(9a)

Vxðk; t þ dtÞ � Vxðk; tÞ
dt

¼ � 1
r
bvxPðk; tþ dt =2Þ; (9b)

Vzðk; t þ dtÞ � Vzðk; tÞ
dt

¼ � 1
r
bvzPðk; tþ dt =2Þ; (9c)

in which Pðk; tÞ ¼ Uðk;tþdt=2Þ�Uðk;t�dt=2Þ
dt , Vxðk; tÞ ¼ �1

r
bvxUðk; tÞ and

Vzðk; tÞ ¼ � 1
r
bvzUðk; tÞ; bvx ¼ ikx

ffiffiffi
L

p
, bvz ¼ ikz

ffiffiffi
L

p
and L ¼

2e�
b
2 dt cos

� ffiffiffiffiffiffiffiffi
4c�b2

p
2 dt

�
�e�bdt�1

�jkj2v2dt2 .

Solving Eqs. (9a)-(9c) by staggered-grid pseudospectral method

(€Ozdenvar and McMechan, 1996) in space-time domain, we have
NF1 as
Fig. 9. Seismic records of NF1, NF2 and their difference. The rank and time step for
both methods are 4 and 1.4 ms, respectively. The annotation “diff” means the differ-
ence between the seismic records of NF1 and NF2.
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vtpðx; tÞ¼ � rv2
�
~v
�
x vxðx1; tÞþ ~v

�
z vzðx2; tÞ

�þ vspðx; t� dt =2Þ;
(10a)

vtvxðx1; tþ dt =2Þ¼ � 1
r
~v
þ
x pðx; tþ dt =2Þ; (10b)

vtvzðx2; tþ dt =2Þ¼ � 1
r
~v
þ
z pðx; tþ dt =2Þ; (10c)

in which the operator vt is expressed in Eq. (7a); the operators ~v
þ
x ,
Fig. 10. Seismic records of NF2, PS, reference solution and their difference. (a) PS with
time step 1 ms. (b) PS with time step 0.5 ms. (c) NF2 with time step 1.4 ms. The
annotation “ref” and “diff” means reference solution and the difference between the
reference solution and the method labeled at the left part of each subfigure. The
reference solution is calculated by the conventional PS method with time step
0.001 ms. All methods adopt rank 4 for low-rank decomposition.



Fig. 11. Seismic traces from PS, NF1 and NF2. Traces 1 and 2 are located at x ¼ 1.5 and 3.5 km, respectively. All methods adopt rank 4 for low-rank decomposition. (a) PS with time
step 1 ms and reference solution; (b) PS with time step 0.5 ms and reference solution; (c) NF1 with time step 1.4 ms and reference solution; (d) NF2 with time step 1.4 ms and
reference solution. The reference solution is calculated by the conventional PS method with time step 0.001 ms.

Fig. 12. RMS errors of the seismic records of PS, NF1 and NF2 in Figs. 9 and 10.
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~v
�
x , ~v

þ
z , ~v

�
z and vs can be expressed as

~v
þ
x gðx; tÞ¼F �1

h
eikxdx=2bvxF½gðx; tÞ�i; (11a)

~v
�
x gðx; tÞ¼F �1

h
e�ikxdx=2bvxF½gðx; tÞ�i; (11b)

~v
þ
z gðx; tÞ¼F �1

h
eikzdz=2bvzF½gðx; tÞ�i; (11c)

~v
�
z gðx; tÞ¼F �1

h
e�ikzdz=2bvzF½gðx; tÞ�i; (11d)
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vsgðx; tÞ¼F �1

"
e�bdt � 1

dt
F½gðx; tÞ�

#
: (11e)

Note that although the NF1 is in the discrete form, it is still the
exact solution of Eq. (1) for the homogeneous case because it is
derived all the way from Eq. (1) without any approximation.
Particularly, when Q approximates þ∞ , Eqs. (10a)-(10c) reduce to
the exact k-space analytical solution for the lossless scalar wave
simulation (Tabei et al., 2002). To validate the correctness of NF1 for
the first-order viscoacoustic wave equation, we compare our nu-
merical result with the analytical solution generated by the Green's
function method (Carcione, 2007) in Fig. 1. It follows that the nu-
merical results of our k-space formulation NF1 conform to the
analytical solutions very well for a wide range of Q. The experiment
demonstrates the correctness of our derivation.

In Fig. 2, we compare our viscoacoustic NF1 with the conven-
tional pseudospectral (PS) method in the homogeneous case. It
shows that the snapshots of the viscoacoustic PS suffer from the
temporal dispersion, especially with the increase of the time step.
By contrast, the snapshot of our viscoacoustic NF1 demonstrates no
obvious dispersion effect despite using large time step.

For the homogeneous media, the velocity and Q are constants,
and the pseudo-differential operator

ffiffiffi
L

p
only varies with wave-

number k. Eqs. (10a)-(10c) can be efficiently solved by the PS
method and yield numerical dispersion free wavefields. However,
for the heterogeneous media, the operator

ffiffiffi
L

p
lies in the

wavenumber-space (k� x) mixed-domain. As pointed out in Du
et al. (2020), the exact representation of the mixed-domain oper-
ator by the phase-shift plus selection (PSPS) method can be pro-
hibitively expensive. To deal with the issue, we use the low-rank
matrix decomposition method (Engquist and Ying, 2009; Fomel
et al., 2013) to approximate the operator

ffiffiffi
L

p
, which has the form



Fig. 13. CPU run times of PS, NF1 and NF2 for 4 s simulation. The time steps for rank 2,
3 and 4 are 1.2, 1.3 and 1.4 ms, respectively. The time step of PS method is 0.5 ms.

H.-Y. Zhou, Y. Liu and J. Wang Petroleum Science 20 (2023) 1521e1531
ffiffiffi
L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðx;kÞ

q
zUpmVmnWnq ¼TpnWnq; (12)

in which the dimension of matrix Lðx;kÞ is p� q, containing p rows
space-related and q columns wavenumber-related information; the
matrices Upm ¼ Upmðx;kmÞ and Wnq ¼ Wnqðxn;kÞ are the m col-
umns and n rows sub-matrices of Lðx; kÞ; Vmn is the weighting
matrix for Upm and Wnq. With the matrix decomposition, the

operator ~v
þ
x in Eq. (11a) can be denoted as

~v
þ
x gðx; tÞ¼F �1

h
eikxdx=2bvxF½gðx; tÞ�

�
i
zTpnF �1

n
ikxeikxdx=2Wnqgðk; tÞ

o
: (13)

By using the low-rank method (Engquist and Ying, 2009; Fomel
et al., 2013), the number of the inverse Fourier transform decreases
from a large number p to a small number n, which is the rank
controlling the accuracy of approximation. Similarly, one can

approximate the operators ~v
�
x , ~v

þ
z , ~v

�
z and vs by the low-rank

method (Engquist and Ying, 2009; Fomel et al., 2013) to enhance
the efficiency.

2.3. New first-order staggered-grid formulation of viscoacoustic
wave equation: formulation 2

Although the efficiency of the NF1 based k-space method is
enhanced by the low-rankmethod (Engquist and Ying, 2009; Fomel
et al., 2013) for the mixed-domain operators in the heterogeneous
media, there are still too many mixed-domain operators in NF1. If
one can reduce the number of the mixed-domain operators, the
computational cost can be fundamentally reduced. In this section,
we reach the goal by an alternative k-space formulation for the
first-order viscoacoustic wave equation, and we name the formu-
lation as new formulation 2 (NF2), which can be realized by
reformulating Eq. (8) as

Pðk; t þ dt=2Þ � Pðk; t � dt=2Þ
dt

¼ � rv2ðikxVxðk; tÞþ ikzVzðk; tÞÞþ
Pðk; t � dt=2Þ

�
e�bdt � 1

�
dt

;

(14a)
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Vxðk; t þ dtÞ � Vxðk; tÞ
dt

¼ � 1
r
bv*xPðk; tþ dt =2Þ; (14b)

Vzðk; t þ dtÞ � Vzðk; tÞ
dt

¼ � 1
r
bv*zPðk; tþ dt =2Þ; (14c)

in which Pðk;tÞ ¼ Uðk;tþdt=2Þ�Uðk;t�dt=2Þ
dt , Vxðk;tÞ ¼ � 1

r
bv*xUðk;tÞ, Vzðk;

tÞ ¼ � 1
r
bv*zUðk;tÞ, bv*x ¼ ikxL and bv*z ¼ ikzL. The corresponding space-

time domain staggered-grid forms of NF2 are

vtpðx; tÞ¼ � rv2
�
v�x vxðx1; tÞþ v�z vzðx2; tÞ

�þ vsp
�
x; t� dt

2

�
;

(15a)

vtvx

�
x1; tþ

dt
2

�
¼ � 1

r
v
͝ þ
x p
�
x; tþ dt

2

�
; (15b)

vtvzðx2; tþ dt =2Þ¼ � 1
r
v
͝ þ

z
pðx; tþ dt =2Þ; (15c)

in which the operators vt , v�x and v�z are expressed in Eqs. (7a), (7d)

and (7f), respectively; the operators v
͝ þ
x and v

͝ þ
z can be denoted as

v
͝ þ
x gðx; tÞ¼F �1

h
e
ikxdx
2 bv*xF½gðx; tÞ�i; (16a)

v
͝ þ
z gðx; tÞ¼F �1

h
eikzdz=2bv*zF½gðx; tÞ�i: (16b)

Note that like NF1, NF2 can exactly reproduce the wave equation
solution in Eq. (8) by eliminating the velocity variables, and thus NF2
can obtain dispersion free wavefield in the homogeneous case. To
validate the correctness of our NF2, wemake a quick test by adopting
the analytical solution of Green's function (Carcione, 2007) in the
homogeneous media. It can be observed in Fig. 3 that the modeled
traces agree well with the analytical ones for different Q. These
simple examples validate the correctness of our derivation for NF2.

In Fig. 4, we compare our NF1, NF2 and the conventional PS
methods in the homogeneous cases. It follows that the snapshot of
the conventional PS method shows significant phase advance in
Fig. 4a, indicating strong temporal dispersion, while the snapshot of
the NF2 method in Fig. 4b shows very clear wavefront. Fig. 4c
compares the snapshot of the NF1 method with that of the NF2. It
shows that the snapshot difference of two methods is almost
invisible, which demonstrates the equally high accuracy of the NF1
and NF2 methods when compared with the PS method.

Note that the key merit of our NF2 is that it contains fewer
mixed-domain operators than the NF1. The NF2 only contains 3
mixed-domain operators, while the NF1 includes 5 ones. For the
homogeneous case, this difference is trivial because the mixed-
domain operators reduce to the wavenumber domain ones, and
the NF1 and the NF2 take the same computational cost. However,
for the heterogeneous case, the NF2 takes fewer times Fourier
transform operations than the NF1 because of reduction of the
mixed-domain operators, and thus is more efficient. We will
demonstrate this point in detail in the numerical examples section.
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3. Numerical examples

In this section, we adopt two heterogeneous models to test the
accuracy and efficiency of the conventional PS, NF1 and NF2
methods.

3.1. Two-layer model

First, we adopt a two-layer model to test the accuracy and ef-
ficiency of the conventional PS, NF1 and NF2 methods. The size of
the velocity model is 600 � 600 with a grid spacing 20 m. The P-
wave velocity is defined at a reference frequency 50 Hz. The ve-
locities of the upper and lower layers are 2.6 km/s and 4 km/s,
respectively. The interface of the model is at depth 6 km. The
density is calculated by the empirical formula r ¼ 310v0:25. A 25 Hz
Ricker wavelet is added at (x, z) ¼ (6, 5) km. The rank parameter for
three methods is 2. Fig. 5 compares the simulation accuracy of the
PS, NF1 and NF2 methods by using the same time step. It can be
observed that the snapshot of the conventional PS shows obvious
dispersion effects because of discretization errors in time. By
contrast, the snapshots of the NF1 and NF2 methods are nearly free
from discretization errors. In Fig. 6, we increase the time step of the
NF1 and NF2 methods to 3 ms. The snapshots of the two k-space
methods remain accurate. The PS method breaks down because the
stability condition is not satisfied when adopting such a time step.
Therefore, we only display the snapshot of the PS method by a time
step of 1 ms. One can observe that the PS method still suffers from
weak discretization errors in time. In Fig. 7, we compare the CPU
time for the PS, NF1 and NF2 methods under the comparable ac-
curacy. It follows from Fig. 7 that the NF1 and NF2 methods are
more efficient than the PS method, and the NF2 method takes less
simulation time than the NF1 method.

3.2. Marmousi model

Second, we adopt the complex Marmousi velocity and Q models
in Fig. 8 to test the accuracy and efficiency of the PS, NF1 and NF2
methods. The velocity is defined at the reference frequency 50 Hz.
The density is calculated by the empirical formula r ¼ 310v0:25.
The grid spacing is 10 m. A 25 Hz Ricker wavelet is added at (x, z) ¼
(2.5, 0.1) km. The receivers are at the depth z¼ 0.2 km.We compare
the accuracy of the NF1 and NF2 methods by their seismic records
in Fig. 9. It shows that the difference between the two methods is
almost invisible. Because of this feature, we only compare the PS
method with the NF2 method in Fig. 10. We demonstrate that with
the decrease of the time step, the discrepancy between the PS
method and the reference solution decreases. The seismic record
error of the NF2 method with time step 1.4 ms is smaller than that
of the PS method with time step 0.5 ms. Then we extract the traces
at x ¼ 1.5 and 3.5 km from the seismic records in Fig. 11. These
comparisons show that the traces of the PS method with time step
1ms significantly deviate from the reference solution. Reducing the
time step of the PS method to 0.5 ms decreases the discrepancy.
However, the traces of PS method still do not match the reference
solution very well, and the traces of the NF1 and NF2 methods
match the reference solution better than those of the PS method. In
Fig. 12, we further calculate the RMS error of the seismic records
from the PS, NF1 and NF2 methods. The RMS error of different
methods also demonstrates that the NF1 and NF2 methods with
time step 1.4 ms are more accurate than the PS method with time
step 1 ms or even 0.5 ms. Note that the conventional PS method for
the viscoacoustic simulation breaks downwhen using the time step
1.4 ms because of the numerical instability. However, the NF1 and
NF2 methods are still stable for such a time step. Last, we compare
the modeling efficiency of the PS method with the NF1 and NF2
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methods in Fig. 13. As demonstrated before, the NF1 and NF2
methods with time step 1.4 ms have higher accuracy than the PS
method with time step 0.5 ms. Therefore, we only focus on the
comparison using these parameters. The comparison demonstrates
that the NF1 and NF2 methods are more efficient than the PS
method. The NF2 takes less CPU time than the NF1 due to the
reduction of the mixed-domain operators. Therefore, the NF2
method is the most efficient one among three methods.

4. Conclusion

We have developed two exact first-order k-space formulations
for the fractional derivative based constant-Q viscoacoustic wave
equation. Two new formulations can fully exclude the numerical
dispersion error for the homogeneous media. We have compared
two formulations with the conventional PS method by the homo-
geneous and heterogeneous examples, demonstrating that our new
formulations are more accurate and stable than the PS method.
Under the comparable accuracy, the new k-space formulations are
more efficient than the PS method. In addition, our second kind of
first-order k-space formulation is the most efficient one among
three methods because of the reduction of the mixed-domain
operators.
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Appendix A. Derivation for the k-space time marching form
for the viscoacoustic case

In the appendix, we derive the exact k-space time marching
form based on the dispersion relation of the viscoacoustic wave
equation (Zhu and Harris, 2014). The k � u domain viscoacoustic
wave equation can be expressed in the following alternative way:

ðiuÞ2 þ biuþ c¼0; (A.1)

where b ¼ �v2tjkj2gþ1 and c ¼ � v2hjkj2gþ2. The variable iu has
solutions

iu¼�b±i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� b2

p

2
: (A.2)

Multiplying k � u domainwavefield Uðk;uÞ on both sides of the
equation gives

iuUðk;uÞ¼�b±i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� b2

p

2
Uðk;uÞ; (A.3)

which can be turned back into time domain as

v

vt
Uðk; tÞ� fUðk; tÞ¼0; (A.4)

where f ¼ �b±i
ffiffiffiffiffiffiffiffiffiffiffi
4c�b2

p
2 . Eq. (A.4) has analytical solution (Boyce et al.,

2021)

Uðk; tÞ¼Uðk;0Þeft : (A.5)

From Eq. (A.5), we have
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Uðk; tþ dtÞ¼Uðk; tÞef dt ; (A.6)

Uðk; t� dtÞ¼Uðk; tÞe�f dt ; (A.7)

and further have k-space formulation

Uðk;tþdtÞ�2Uðk; tÞþUðk; t�dtÞ
dt2

¼
Uðk; tÞ2

�
e
�
b
2
dt
cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c�b2
p

2
dt
�
�1
�

dt2
þ
Uðk;t�dtÞ

�
1�e�bdt

�
dt2

:

(A.8)

Eq. (A.8) is the final k-space time marching form for the vis-
coacoustic case. One can reformulate the k-space time marching
form as the first order forms in Eqs. (9) and (14), respectively.
Appendix B. Stability analyses for PS and two k-space
methods of viscoacoustic case

In this part, we give brief analyses on the stability performance
of the PS, NF1 and NF2 methods. For the PS method, transforming
Eqs. (6a)-(6c) into the wavenumber-time domain and eliminating
the velocity variables, we have

pðk; t þ dtÞ þ pðk; t � dtÞ � 2pðk; tÞ
dt2

¼ v2
�
tjkj2gþ1pðk; tÞ � pðk; t � dtÞ

dt
þhjkj2gþ2pðk; tÞ

�
;

(B.1)

which can be rewritten as the matrix recursive form as
�
pðk; t þ dtÞ

pðk; tÞ
�
¼
 
v2
�
tjkj2gþ1dt þ hjkj2gþ2dt2

�
þ 2 �1� dtv2tjkj2gþ1

1 0

!�
pðk; tÞ

pðk; t � dtÞ
�
: (B.2)
To ensure stable recursion, the eigenvalue of the updating ma-
trix should be less than 1, which is equivalent to (Zhu and Harris,
2014)

dt� � v2tjkj2gþ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2v2hjkj2gþ2

q
v2hjkj2gþ2 : (B.3)

The stability condition in inequality (B.3) is inconvenient to use.
It is reported (Zhu and Harris, 2014) that for the PS method, the
stability condition of the viscoacoustic wave simulation is stricter
than that of the acoustic one, which has the stability condition form
as

vdt
h

�
ffiffiffi
2

p

p
z0:45: (B.4)

The inequality (B.4) can be deemed as a necessary condition of
the PS method for stable viscoacoustic wave simulation. For NF1
and NF2 methods, transforming Eqs. (10a)-(10c) and (14a)-(14c)
into the wavenumber-time domain and eliminating the velocity
variables, we have an unified expression
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Uðk; tþdtÞ�2Uðk;tÞþUðk;t�dtÞ
dt2

¼
Uðk;tÞ2

�
e
�
b
2
dt
cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c�b2
p

2
dt
�
�1
�

dt2
þ
Uðk; t�dtÞ

�
1�e�bdt

�
dt2

;

(B.5)

which can be rewritten as the matrix recursive form as

�
Uðk; t þ dtÞ

Uðk; tÞ
�
¼

0BB@2e�
b
2 dt cos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� b2

p
2

dt

!
�e�bdt

1 0

1CCA
�
�

Uðk; tÞ
Uðk; t � dtÞ

�
:

(B.6)

To ensure stable recursion, the eigenvalue of the updating ma-
trix should be less than 1 (Liu and Sen, 2009), which is equivalent to

 
2e�

b
2 dt cos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� b2

p

2
dt

!!2

� 4e�bdt � 0; (B.7)

which can be simplified as

cos2
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c� b2
p

2
dt

!
� 1: (B.8)

Inequality (B.8) is the stability condition for NF1 and NF2
methods. For homogeneous Q and velocity media, this inequality is
always satisfied, therefore the simulation is always stable. For

heterogeneous media, the operator cos2
� ffiffiffiffiffiffiffiffiffiffiffi

4c�b2
p

2 dt
�

is a mixed-

domain operator, which can be approximated by the low-rank al-
gorithm (Engquist and Ying, 2009; Fomel et al., 2013). Therefore,
the stability condition depends on the approximation accuracy. It is
hard to determine when the approximated operator

cos2
� ffiffiffiffiffiffiffiffiffiffiffi

4c�b2
p

2 dt
�
turns out to be larger than 1. Therefore, we only use

the numerical examples to compare the stability performance of PS,
NF1 and NF2 methods.
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