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ABSTRACT

Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex
morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was
proposed to predict fracture parameters for the evaluation of the fracturing effects. Field experience and
the law of fracture volume conservation were incorporated as physical constraints to improve the pre-
diction accuracy due to small amount of data. A combined neural network was adopted to input both
static geological and dynamic fracturing data. The structure of the DNN was optimized and the model
was validated through k-fold cross-validation. Results indicate that this DNN model is capable of pre-
dicting the fracture parameters accurately with a low relative error of under 10% and good generalization
ability. The adoptions of the combined neural network, physical constraints, and k-fold cross-validation
improve the model performance. Specifically, the root-mean-square error (RMSE) of the model decreases
by 71.9% and 56% respectively with the combined neural network as the input model and the consid-
eration of physical constraints. The mean square error (MRE) of fracture parameters reduces by 75%
because the k-fold cross-validation improves the rationality of data set dividing. The model based on the
DNN with physical constraints proposed in this study provides foundations for the optimization of
fracturing design and improves the efficiency of fracture diagnosis in tight oil and gas reservoirs.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Fracture geometry and conductivity need to be accurately
diagnosed for the optimization of stimulation measures. It is more

Horizontal well with volumetric fracturing is the key technology
for the commercial development of tight oil and gas reservoirs (Lei
et al, 2022). The staggered well design and zipper fracturing
technology were adopted to develop the vertical superimposed
multi-layers (Jaripatke et al., 2018). This improves oil and gas pro-
duction in some oilfields in the western China (Lei et al., 2021; Li et
al., 2020). However, the complex morphology of the multi-layer
fracture network leads to significant challenges of hydraulic frac-
turing evaluation.
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difficult for the three-dimensional well platform due to more wells,
fracturing stages and perforation clusters. The common methods of
fracture diagnosis include direct monitoring and indirect inversion.
The direct monitoring technologies include tracer monitoring,
microseismic monitoring, surface or downhole inclinometer, and
optical fiber monitoring (Li et al., 2019, 2020; Li et al., 2020; Liu
et al., 2020; Miao et al., 2019; Pakhotina et al., 2020; Tian et al.,
2016; Zhou et al., 2015). However, these technologies could not
be widely applied due to the short migration distance of tracer, low
signal-to-noise ratio and high cost (Mahmoud et al., 2021). In
addition, fracture conductivity could not be obtained through these
methods in addition to the fracture geometry.

Apart from the direct monitoring, the indirect inversion is
another common method for fracture diagnosis, such as Diagnostic
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Fracture Injection Tests (DFITs) (Barree et al., 2009; Wallace et al.,
2016), numerical simulation (Yang et al., 2017), fracture model
analysis (Fiallos Torres et al., 2021; Fries and Belytschko, 2010;
Shauer and Duarte, 2019), and production history matching
(Soleimani, 2017; Xiao et al., 2021). These methods are more suit-
able for conventional reservoirs whereas the fracture parameters
interpreted in tight reservoirs may often deviate from the real
values. These discrepancies may result from complexity of fracture
morphology and ideal assumption of the inversion model
(Mahmoud et al., 2021).

To sum up, more time and efforts are needed to obtain accurate
fracture geometry parameters with the direct and indirect diag-
nosis methods. It is difficult to diagnose complex fractures for the
three-dimensional horizontal well fracturing. However, a large
amount of data has been accumulated in tight oil and gas reservoirs
in recent years due to the wide application of horizontal well
fracturing technology. The utilization of data-driven machine
learning could possibly be a new solution.

Great efforts have been put on the application of machine
learning and the developed deep neural network (DNN), known as
deep learning (DL), in the oil industry (He et al., 2021; Huang et al.,
2020; Liu et al., 2020; Sang et al., 2021). The improved algorithms
(such as convolutional neural network (CNN)) have been applied to
data processing and parameter prediction of fractured wells
because of strong learning ability (Janiesch et al., 2021). Specifically,
the DL method was applied in the production prediction, rapid
optimization of horizontal well parameters and reservoir charac-
teristic description (Kulga et al., 2018). It has also been applied to
microseismic event processing and production history matching
(Chen and Saad, 2022; Tripoppoom et al., 2020; Wang et al., 2022;
Zhang et al., 2018).

Most of the applications were pure data driven, whereas there
are some problems with the data. Noteworthily, there are much
accumulated experimental and numerical data while some data are
invalid and could not be used. In contrast, the data available for
some specific problems is not enough to support pure data-driven
deep learning. In addition, the pure data-driven models are often
impractical without physical meaning. Therefore, the prediction
accuracy of the pure data-driven model with small amount of valid
data is poor.

The physics-informed neural networks (PINN) improves the
prediction accuracy of the DL model in two ways. The mathematical
equations including controlling equations, boundary conditions,
and initial conditions can be converted to loss functions. In
particular, the productivity equation could be added to the loss
function to predict well production to form physically constrained
deep learning frameworks (Dong et al., 2022). Different types of
loss functions could be applied to guide the training process of
seismic impedance inversion. The fracturing effect of coalbed
methane reservoirs could be evaluated with data-driven model
with physical laws (Song et al., 2022).

Alternatively, the physical models can be transformed to the
components of neural networks. Specifically, the rock physics
model was regarded as the activation function of convolutional
neurons to predict the overpressure (Cheng and Fu, 2022). The
porosity and specific surface area were incorporated into the sec-
ondary network to predict permeability through digital core im-
ages (Wu et al., 2018). In short, the PINN has been mostly applied to
the production prediction, while greater challenges of data col-
lecting, model optimization and physical constrains have been
proposed for the evaluation of the fracturing effects of horizontal
wells.

In this study, a PINN model was proposed to evaluate the frac-
turing effects of horizontal wells in tight oil and gas reservoirs. Field
experience and physical model were incorporated as physical
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constraints. In addition, the evaluation model was optimized and
validated to improve prediction accuracy. Moreover, the effects of
the combined neural network, physical constraints, and k-fold
cross-validation method on the performance of the model were
analyzed. Furthermore, the model was utilized to predict the frac-
turing parameters of the well in adjacent platform to prove
generalization ability of the model. The establishment of the eval-
uation model of fracturing effects for horizontal wells in tight res-
ervoirs provides foundations for the real-time optimization of
fracturing parameters and maximization of economic benefits.

2. Methodology
2.1. Deep neural network

In this study, the deep neural network is the critical component
of the evaluation model of the fracturing effect of horizontal wells
to extract features from input data and acquire evaluation param-
eters through model optimization and validation. The Deep Neural
Network (DNN) was developed on the basis of Artificial Neural
Network (ANN) (Shrestha and Mahmood, 2019). Different from
ANN with only one hidden layer, there are multiple hidden layers in
DNN, which greatly improves the ability of DNN to extract data
features (Syed et al., 2022). In addition, the DNN model performs
better on model convergence and parameter adjustment,
compared with conventional neural networks (such as BP neural
networks).

2.2. Combined neural network

Appropriate neural networks need to be selected according to
different types of input data of the evaluation model of fracturing
effects of horizontal wells (Valle dos Santos and Vellasco, 2015). The
conventional neural network is suitable to process one-
dimensional data, while the convolutional neural networks are
suitable for two-dimensional and three-dimensional data. Single
neural network does not perform well with different data di-
mensions, and several networks need to be combined together to
input data. In this study, the input data consist of one-dimensional
geological data and two-dimensional fracturing treatment data,
considered as static data and dynamic data respectively according
to whether they change with time. Since the amount of dynamic
data is much larger than that of the static data, the characteristics of
the dynamic data would be more highlighted if only one neural
network was used to input data, resulting in insufficient utilization
of input data. Therefore, two deep neural networks with different
dimensions were combined into a new neural network, which was
utilized in this study to input data according to the characteristics
of both dynamic and static data, solving the problem of inconsistent
dimensions of input data.

2.3. Deep neural network with physical constraints

Since the amount of the sample data of the hydraulic fracturing
evaluation is relatively small, the prediction results with conven-
tional deep neural networks may deviate from the real ones due to
the lack of physical meaning. The introduction of physical con-
straints into the deep neural network can effectively solve this
problem. In this study, physical constraints were incorporated into
the loss function of the deep neural network, which measures the
deviation between the prediction of the model and the real value,
to restrain the prediction results. The model training and test are to
minimize the model loss.

The loss function of the conventional data-driven model can be
expressed with the mean square error (MSE) as follows:



H.-Y. Qu, J.-L. Zhang, E-J. Zhou et al.

MSE — XN: ( predict data)2 (1)

i=1

Z\'—'

where MSE represents the mean square error, N represents the
number of sample data, y;Predict is the predicted value, and ;42 is
the true value.

In this study, the field experience, namely the fracturing pa-
rameters estimated by oilfield experts according to the geological
data and fracturing treatment data, was supplemented into the loss
function to further improve the prediction accuracy of the model.
The prediction results of the model should be within the probable
ranges of the fracture parameters given by the field experience. The
loss function of the field experience can be described as follows:

0 O’ﬁmin Fredlct <yf >
ij fimax .
LOSSf - predlct 2 1 (J = 17253) (2)
yf] (yjjmax +yﬁmir1>/ ,(else)
Loss 0, (ykmm < yDredlct < Ykmax> (3)
k =
y;?,rEdlCt + (Vkmax + .Vkmin)/27 (else)

where Loss represents the loss defined by the field experience, the
subscript f represents the fracture geometry, the subscript k rep-

resents the fracture permeability, y}’re‘ﬁd represents the predicted

fracture geometry parameters, y‘md'Ct represents the predicted

fracture permeability, Yfmin and ysmax represents the minimum and
maximum value of the fracture geometric parameters respectively
according to the field experience, Yxmin and Yxmax represents the
minimum and maximum value of the fracture permeability
respectively according to the field experience, j = 1, 2, 3 represents
the fracture length, fracture height, and fracture width respectively,
and i represents the number of the data samples.

Apart from the field experience, a two-dimensional fracture
geometry calculation model was also considered as a part of the
physical constraints. The common two-dimensional fracture
models include the PKN model and the KGD model (Esfandiari and
Pak, 2023). The fracture width and fracture length of the KGD
model were selected as other physical constraints of the neural
network model considering the impact of filtration on fracture
propagation. The difference between the prediction results of the
DNN model and the calculation results of the KGD model is regar-
ded as a part of the loss function. The model was trained according
to the model loss, and the calculation results of the KGD model
were used to constrain the model to avoid the unreasonable pre-
diction from the deep neural network model. The fracture width
and length of the KGD fracture model were calculated as follows:

w=1.87 {%}EHB (4)

3 1%
L:O.GS{ Gq }t2/3 (5)

(1 —-v)u

where w is the fracture width, L is the fracture length, » is the
Poisson's ratio of the rock, q is the slurry rate, u is the viscosity of
the fracturing fluid, G is the shear modulus of the rock, and t is the
fracturing treatment time.

The loss function of the KGD fracture model is described as
follows:
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predlct

predlct
y fil

Lossyp = —Li+ Yris

(6)

where Loss,p represents the loss of the two-dimensional fracture
model, ypredlct and ypredlct

predlcted by the model respectively, and w and L represents the
fracture width and fracture length calculated by the KGD model
respectively.

The total loss function was obtained by combining the loss
functions of the data-driven model, field experience, and fracture
model (Song et al., 2022), and expressed as follows:

represents the fracture length and width

N
Lossyy = a1 RMSE + e Z (Lossf + Lossk> +agy Z Lossyp)
i=1

(7)

where Loss,j represents the total loss, ay, az and a3 represents the
weight coefficient for each specific loss respectively, and the spe-
cific value needs to be verified through model training.

3. Procedure
3.1. Workflow

In this study, the evaluation model of the fracturing effect of
horizontal wells was established based on the deep neural network
with physical constraints. The specific workflow includes the
establishment of sample data set, construction of the evaluation
model, model optimization, model validation and fracturing effect
evaluation, as shown in Fig. 1. The optimized and validated model
can be used to evaluate the fracturing effect of horizontal wells, and
the fracture geometry parameters and fracture permeability can be
predicted by inputting geological data and fracturing treatment
data.

The sample data set was established with a total of 200 samples
selected, including both input and output data. The input data are
composed of geological data (static data) and fracturing treatment
data (dynamic data). The geological data were obtained through
calculation with logging data. The fracturing treatment data were

[ Sample data set J
!

Establishment of fracturing effect evaluation
model of horizontal well

)

DNN considering physical ’

|
¥ ¥

Combined neural network .
constraints

! !
[ Model input ] [ Model calculation ]

[ I
i

[ Model optimization ]
!

[ Model validation ]
!

[ Prediction of fracture parameters ]
¥

[ Evaluation of the fracturing effects ]

Fig. 1. The workflow chart of the establishment of the evaluation model of fracturing
effects of horizontal wells.
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preprocessed to obtain the fracturing treatment data table with the
same dimension. The output data include fracture geometry pa-
rameters (fracture length, fracture width and fracture height) and
fracture permeability, which were obtained through fracturing
pressure fitting and verified with microseismic data to ensure the
reliability of the sample data.

In addition, the evaluation model of the fracturing effect was
established based on the sample data, composed of a combined
neural network and a deep neural network. The combined neural
network was constructed with different neurons assigned to each
neural network according to the characteristics of the input dy-
namic data and static data. In this way, the two different types of
data were effectively input into the model. The combined neural
network was connected to the deep neural network and the
physical constraints were considered by redefining the loss func-
tion to improve the prediction accuracy with small sample data.
The parameters of the deep neural network model were initialized,
and the data set was divided into the training set and test set for the
model calculation.

Moreover, the model was optimized through optimizing the
number of hidden layers of the deep neural network and the
number of neurons in each hidden layer according to the model
calculation results, and further validated with the k-fold cross-
validation by re-dividing the data set. The effects of hydraulic
fracturing were evaluated based on the predicted fracture
parameters.

Furthermore, the impacts of the combined neural network,
physical constraints, and k-fold cross-validation on the evaluation
model of the fracturing effect of horizontal wells were analyzed,
and the model was applied to predict the fracture parameters of the
other wells in adjacent platforms.

3.2. Establishment of the sample data set

The sample data in this study is derived from a tight oil reservoir
in western China. A set of three-dimensional staggered well pattern
is designed in platform A in X region, and eight wells are deployed
in two adjacent layers. The intralayer and interlayer well spacing is
200 m and 100 m respectively, and the length of each horizontal
well is 1800 m. The collected data include geological data and
fracturing treatment data of 380 stages of the 8 fractured horizontal
wells on the platform in the reservoir. Data of 200 stages were
selected as the sample data in this study after invalid data were
eliminated due to sand plugging or other operating problems.

The sample data of the model includes both input and output
data. The input data consists of static geological data and dynamic
fracturing data. The geological data of each fracturing stage of the
wells were obtained by calculating the average value of the
geological parameters according to the depth of the stage with the
logging data. Fracturing treatment data were recorded in the pro-
cess of fracturing treatments, which change with time. The output
data are composed of fracture geometry parameters (fracture
length, fracture width, and fracture height) and fracture perme-
ability, which were obtained by fitting the fracturing treatment
pressure of each stage of the horizontal wells.

3.2.1. Preparation of static input data

The fracture geometry parameters are affected by the geo-
mechanical parameters, such as reservoir pressure, the maximum
and minimum horizontal principal stress, Young's modulus and
Poisson's ratio. Fracture permeability is related to the permeability,
porosity and oil saturation in the reservoir. Therefore, these con-
trolling parameters were selected as the input geological data,
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which were calculated with logging data and averaged by depth.
The mean data of each fracturing stage were selected as the
geological data for that stage. The detailed ranges and values of the
static input data are shown in Table 1.

3.2.2. Preprocessing of dynamic input data

The geological data can be directly input into the model, while
the fracturing data need to be processed in advance. Three pa-
rameters affecting fracture propagation were selected as the com-
ponents of dynamic data, including fracturing treatment pressure,
sand concentration and pumping rate. Since the fracturing data
were monitored and recorded in seconds in the process of frac-
turing treatment, the amount of data in each horizontal well is large
with different time steps for different fracturing stages. In addition,
the pressure test data before fracturing is not very relevant to the
fracture propagation, as shown in Fig. 2a. The redundant and
inconsistent data of each stage increases the difficulty of training
the neural network, and need to be preprocessed through effective
fracturing data selecting, data denoising, and feature point
extraction.

(1) Fracturing data tailoring

The high-viscosity slick water was utilized as the pad fluid to
initiate fractures, which was denoted by the amount of liquid
addition in the pumping schedule. The effective fracturing data
starts when the amount of liquid addition is over O for the first time.
Therefore, the amount of liquid addition was chosen as an index to
retain the effective fracturing treatment data.

Taking the fracturing data of stage S of well B as an example,
effective fracturing data were obtained after the original fracturing
treatment data were tailored, as shown in Fig. 2a, and the pressure
and pumping rate of the effective fracturing data no longer start
from 0. In addition, the amount of data after tailoring drops from
8000 to under 7000, reducing the time and difficulty of model
training, and saving the training memory of the neural network.
The data of other fracturing stages in all wells were processed and
effective fracturing data were obtained in the same way.

(2) Data denoising

The signals of downhole pressure and temperature collected
from hydraulic fracturing are normally with noise, which needs to
be removed and valid signals need to be retained. The fracturing
pressure fluctuates, as shown in Fig. 2b. The drastic fluctuations
may result from fracture initiation and fracture closure while the
small ones may be induced by the noise. Therefore, the fracturing
data needs to be denoised before feature points were extracted.

The fracturing pressure is mainly denoised because it is affected
by the change of pumping rate, proppant concentration and frac-
turing fluid viscosity during the fracturing treatment. A great many
of methods have been developed for signal denoising based on the
spectral distribution and statistical characteristics of the noise,
among which the wavelet denoising method is more commonly
used. In this study, the wavelet denoising toolbox in the software of
MATLAB was utilized to process the fracturing pressure data.
Proper denoising methods were selected according to the in-
dicators of signal-to-noise ratio (SNR) and root-mean-square error
(RMSE). The effectiveness of the wavelet denoising was evaluated
by the indicator of smoothness (r). Generally, the larger the SNR and
the smaller the RMSE and r, the smoother the signals, and the better
the denoising effect. The indicators of SNR, RMSE and r can be
expressed as follows:
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Table 1
The static input data of the model.
Variables Parameters Type Range Mean Unit
Reservoir geological data Reservoir Pressure point 49.29-52.37 50.8987 MPa
Maximum horizontal stress point 63.82—-102.72 82.48 MPa
Minimum horizontal stress point 54.53-78.73 69.12 MPa
Poisson's ratio point 0.27-0.29 0.28 /
Young's modulus point 16.7-21.83 20.8 GPa
QOil saturation point 0.77—-0.89 0.82 %
Porosity point 0.12—-0.175 0.15 /
Permeability point 0.001-3.3 0.0336 mD

SNR=10 x lg<’112fz(n)/:lZ[f(n) f(n)r)

LS~ ro-fa?

i=1

RMSE =

1

[f(wl f(z}

i=1

n—

(10)

Z[f(l+1 ()2

Where} (i) represents the original signal, f(i) represents the signal
after denoising, n represents the number of signals, and i represents
the ith signal.

Specifically, the biorthogonal spline wavelets were selected as
the wavelet family to distinguish weak signals, and Stein's Unbiased
Risk Estimate was selected as the noise reduction method in the
process of denoising fracturing pressure data. The soft threshold
constraint was used to decompose the 10-layer signals to obtain the
denoised pressure data. The results indicate that the fracturing
pressure data curve is effectively smoothed with the denoising
indicators SNR, RMSE and r of 145.68, 0.0018, and 0.9903 respec-
tively, and the effective feature points are retained. As shown in
Fig. 2b, the slight fluctuations of the fracturing pressure in the red
circle are replaced by the smooth data, while the turning points
with larger fluctuations in the blue circle are preserved.

(3) Feature point extraction

The data amount needs to be maintained the same for each
fracturing stage for the consistency of dimensions of the model
input data. However, different fracturing treatment time results in
the difference in data amount for each fracturing stage. Therefore, a
certain number of feature points of the fracturing data should be
selected for each fracturing stage, determined by the prediction
errors of the neural network model. In this study, the intersection of
corresponding pressure points where proppant concentration and
fracturing pressure exceeds a certain threshold respectively were
regarded as the feature pressure points as follows:

P{P{,P,, ..

1,2,...n)

(11)

where P{P{,P,,...Px} represents the feature pressure points,
ANproppant represents the change of proppant concentration, AP
represents the change of pressure, a and b are the threshold values,
and n is the number of data points in each fracturing stage.

The threshold of proppant concentration and fracturing pres-
sure was determined by the average of the difference between two
adjacent values respectively. The pumping rates and the proppant
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concentrations corresponding to these feature pressure points
were also selected as the input data. The fracturing pressure,
pumping rate and proppant concentration of each selected time
step form a X*1 data table respectively as the input dynamic data of
the combined neural network. The dynamic data are detailed in
Table 2.

Results indicate that the number of feature points has great
impacts on the model performance. As the number increases, the
amount of information extracted from the data increases, and the
RMSE of the model gradually decreases, as shown in Fig. 2c. The
smaller the number of feature points, the more the data loss and
the worse the prediction. Specifically, the RMSE decreases by 2.14
when the number of feature points increases from 2000 to 4000.
The number of feature points is determined to be 2000 after
comprehensive evaluation. The amount of input dynamic data re-
duces from 7897 to 2000 after preprocessing, much smaller than
the original amount, while the important features of the original
data are maintained.

3.2.3. Preparation of the evaluation parameters of fracturing effects

The fracture parameters including the fracture length, fracture
height, fracture width, and fracture conductivity need to be pre-
dicted to evaluate the hydraulic fracturing effects. Since the fracture
conductivity is the multiplication of fracture width and fracture
permeability, the fracture length, fracture height, fracture width
and fracture permeability were set as the evaluation parameters of
the fracturing effect, which are also the output of the neural
network model.

Since the fracture parameters cannot be directly obtained from
the field monitoring (Zhao et al., 2022), they were inverted with the
common method of fracturing pressure analysis in this study. The
fracture geometric parameters and fracture conductivity were
determined by applying and combining the flow equation, conti-
nuity equation and the fracture calculation model during fracturing
treatment and after pump stopping. The fracturing treatment
pressures of each fracturing stage were analyzed and fitted with the
geomechanical model and the fracturing treatment scheme using
the software of Petrel. In addition, the in-situ stress and frictions
caused by fracturing fluid and proppant were corrected, and the
parameters including fracture length, fracture height, fracture
width and fracture permeability were obtained through inversion.
Moreover, the inverted fracture parameters were compared with
the field microseismical data to ensure the accuracy of the inver-
sion and the reliability of the model output data.

The fracture parameters obtained through inversion are well
matched with the field microseismic data, as shown in Fig. 3. Taking
the 39 fracturing stages of well B in platform A as an example, the
MRE between the inverted fracture length and the microseismic
data is 0.053, and the correlation coefficient (R?) is over 0.8, indi-
cating that these parameters are relatively valid as the output data
of the model. All sample output data of the evaluation model were
obtained in this way.
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Fig. 2. Preprocessing of fracturing treatment data of stage S of well B in platform A.
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3.3. Establishment of the model of fracturing effect evaluation of
horizontal well

The model of fracturing effect evaluation of horizontal wells was
established in this section, which is composed of a combined neural
network and a deep neural network, as shown in Fig. 4. The func-
tion of the combined neural network is to input data reasonably
according to the data characteristics, while the deep neural
network focuses on model calculation and prediction.

The deep neural network consists of one input layer, one output
layer, three hidden layers and physical constraints. There are 300
neurons in each hidden layer. The physical constraints are charac-
terized with the loss function composed of the conventional data-
driven loss function, field experience, and physical model.

The combined neural network is composed of two neural net-
works in parallel. The first neural network is composed of one layer
of neural network containing eight neurons to input the geological
data including reservoir pressure, the maximum and minimum
horizontal principal stress, Poisson's ratio, Young's modulus,
porosity, permeability, and oil saturation. The second neural
network consists of one input layer, six hidden layers and one
output layer, through which hydraulic fracturing treatment data are
input. The input layer is constructed by allocating 2000 neurons to
the fracturing treatment pressure, proppant concentration and
pumping rate respectively. Six hidden layers are set for the second
neural network because the amount of hydraulic fracturing treat-
ment data is much larger than that of the geological data, and the
impact of geological data on the model results may be weakened
during model calculation. 800 neurons are contained in each hid-
den layer, and 100 neurons are contained in the output layer. In this
way, the large fracturing data can be compressed to 100 neurons
without modifying the initial data, reducing the excessive impact of
the fracturing data on the model.

The evaluation indicators including the root-mean-square error
(RMSE), mean relative error (MRE) and correlation coefficient (R?)
were employed to evaluate the performance of the model, which
were calculated as follows:

1 Q . 5
RMSE = N Z (yiperdlct _ yidata) (12)
i=1
10 }yipredict _ yidata’
MRE:E;—yidm (13)
Xn: <yipredict _ yl_data>2
RR=1-—H=! (14)

n] (average (y;data) _yidata)z

where y;Predict js the predicted value, y;92t2 is the real data or true
value, n is the number of sample data, and average(y;32t?) is the
average value of the true value.

The fracturing effects of the horizontal wells can be evaluated
based on the predicted fracture parameters. In this study, the
stimulated reservoir volume (SRV) (Cipolla et al., 2008), fracture
complexity index (FCI) and fracture conductivity (FC) were selected
as the evaluation indicators of fracturing effects. They are calculated
as follows:
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Table 2
Dynamic input data parameters of the model.
Variables Parameters Type Range Mean Unit
Hydraulic fracturing data Treatment pressure table 0-80 / MPa
Pumping rate table 0-16 / m>/min
Proppant concentration table 0—400 / kg/m>

Microseismic fracture half length, m

80 T T T T T

140 160 180 200

Inverted fracture half length, m

Fig. 3. Comparison of inverted fracture length and microseismic data in 39 fracturing
stages of Well B in Platform A (the superposition diagram of two-dimensional fracture
inversion and microseismic data were illustrated in the upper left corner. The rose red
color represents the inverted fracture, and the green points are microseismic data).

n
SRV=""2Lg; x 2W; x H; x sin & (15)
i=1
n
2 Wi/Lf,i
Fel=21 (16)
n
n
> WK
FC:'Zlf (17)

where n denotes the number of fracture stages; the subscript i

/

Pressure A

Hydraulic
Fracturing
data

N

Slurry rate q

Proppont
concentration

Combined neural network

Input Hidden layers
\ Deep neural network

represents the ith fracturing stage; Lr denotes the half length of the
fracture, m; W represents bandwidth of the fracturing stages; H
represents the fracture height, m; « denotes the angle between the
fracture and horizontal well, °; W¢ denotes fracture width, mm; K
denotes fracture permeability, D.

3.4. Optimization and validation of the evaluation model

Since model calculation and prediction are the main function of
the deep neural network, its performance impacts the model pre-
diction results significantly. Therefore, the hyper-parameters and
structure of the deep neural network need to be optimized, espe-
cially the number of hidden layers and neurons in each hidden
layer. In addition, the model was validated with the method of k-
fold cross-validation.

3.4.1. Optimization of the deep neural network

The number of neurons in each hidden layer significantly im-
pacts the complexity and accuracy of the deep neural networks.
Generally, the same number of neurons could be allocated to all
hidden layers, whereas appropriate number of neurons in each
hidden layer needs to be determined. Few neurons could result in
model underfitting or high bias while overfitting or some other
problems may occur with too many neurons. Specifically, too many
neurons or too strong information processing capability of the
neural network may result in unappropriated training of some
neurons in the hidden layers and even model overfitting due to the
limited information contained in the training data. In addition,
even if enough information is contained in the training data, too
many neurons in the hidden layers would increase the training
time and difficulty of achieving the anticipated results. In conse-
quence, the number of neurons in each hidden layer needs to be
optimized.

The number of neurons in each hidden layer can be calculated
according to the Kolmogorov's theorem for neural networks as
follows:

(18)

m=({p+q)0.5+c

Loss
funcition

- ~

Conventional data-driven
Field experience

2D fracture model

\ Physical constraints j

Fig. 4. The structure of the model of fracturing effect evaluation of horizontal well.
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where m is the number of neurons in each hidden layer, p is the
number of neurons in the input layer, q is the number of neurons in
the output layer, and c is a constant ranging between 1 and 10. The
optimal number of neurons in each hidden layer is determined as
60 after training and the RMSE of the model is 10.25.

Apart from the number of neurons in each hidden layer, the
number of hidden layers also has a great impact on the perfor-
mance and prediction results of the neural network model, which
needs to be optimized. The performance of the model can be
improved more significantly by increasing the number of hidden
layers than that of the neurons in each hidden layer. In theory, the
more hidden layers, the stronger the capability of the model pre-
diction, and the better the prediction results. However, the increase
in the number of hidden layers may result in overfitting, increasing
the difficulty of model training and convergence. The number of
hidden layers affects the accuracy of the model, as shown in Fig. 5.
The model evaluation indicators of MSE and RMSE decrease all the
time as the number of hidden layers increases from 2 to 5, with the
minimum values of 60.11 and 7.75, respectively. They begin to in-
crease as the number of hidden layers increases to 6, indicating that
the model is inclined to overfit. Therefore, the optimal number of
hidden layers is determined as 5 in this study.

3.4.2. K-fold cross-validation

Since the sample data set is relatively small in this study, the
method of cross-validation was adopted to obtain as much effective
information as possible from the limited data. Simple cross-
validation is normally utilized by randomly dividing the sample
data set into training set and test set. The model and parameters are
trained with the training set and evaluated with the test set. The
samples are then scrambled, the training set and test set are re-
selected to train and test the model. However, the model predic-
tion results may still be bad with the simple cross-validation due to
the inadequate data utilization.

In consequence, the k-fold cross-validation method was utilized
to increase the rationality and accuracy of the model evaluation and
k was determined as 10 in this study, as shown in Fig. 6. The total
sample data were divided into 10 subsets with equal size, which
were iterated over successively to validate the model. During each
round of validation, the current sample data subset conducts as the
test set while all the remaining subsets are the training set, and the
model was trained and evaluated. In this study, there are 180
samples for the training set and 20 samples for the test set in each
round. The average evaluation results of the 10 rounds of validation
were regarded as the indicator of the model evaluation.

4000

I e
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2500
L 40
ww o
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The number of hidden layers

Fig. 5. Comparison of the MSE and RMSE for different numbers of hidden layers.
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Fig. 6. The method of k-fold cross-validation (k = 10 in this study).

4. Results

In this section, the results of model training and test were
illustrated and the fracture parameters were predicted with the
validated model. In addition, the effects of the combined neural
networks, physical constraints and method of k-fold cross-
validation on the performance of the model of fracturing effect
evaluation of horizontal wells were analyzed. Moreover, the model
was applied to predict the fracture parameters of the well Y in the
adjacent platform C and the prediction accuracy was evaluated
according to the evaluation indicators.

4.1. Prediction results of the model of fracturing effect evaluation of
horizontal wells

In this section, the performance of the model was evaluated and
the fracture geometry parameters and fracture permeability were
predicted based on the sample data set and the established model
of fracturing effect evaluation of horizontal wells. The appropriate
number of training times was optimized and determined as 300
according to the minimum final loss and RMSE after 10 rounds of
validation. The model was validated with the method of 10-fold
cross-validation according to the loss and prediction error, as
shown in Fig. 7. The initial loss and RMSE of both training set and
test set are pretty high in the first round of model validation, and
decrease rapidly with the increase of training times. The loss and
RMSE of the test set decrease more slowly than those of the training
set with higher final values. After 10 rounds of validation, the
performance of the test set is better with lower loss and RMSE,
indicating that the 10-fold cross-validation can improve the model
performance efficiently.

Specifically, in the first round of model validation, the loss of the
training set decreases rapidly from 600 to 450 in the first 15 times
of training and then decreases slowly to 350 with a constant rate.
Similarly, the loss of the test set drops sharply from 800 to 230 in
the first 15 times of test and then reduces slightly to 210, as shown
in Fig. 7a. After ten rounds of validation, the loss of the training set
and test set tends to be stable, slightly fluctuating around 58 and 37
respectively. The trend of the RMSE is similar to the loss, as shown
in Fig. 7b. During the first round of model validation, the RMSE of
the training set decreases rapidly from 45 to 15 in the first 10 times
of training and barely changes thereafter. The RMSE of the test set
reduces from 25 to 21 in the first 10 times of test, and then slowly
decreases to 19. After ten rounds of validation, the RMSE of the
training set and test set levels off, and slightly fluctuates around 7.6
and 6.1 respectively.

The fracture parameters of the whole sample set were predicted
with the validated model and compared with the expected data, as
shown in Fig. 8. The indicators of relative error, RMSE, MRE, and R?
of the fracture length, fracture height, fracture width, and fracture
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Fig. 7. Variations of the loss and RMSE with training times in the first and last rounds of 10-fold cross-validation.
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permeability were calculated respectively to evaluate the accuracy
of the model prediction. The ideal results occur if the model pre-
diction results are the same as the expected data, when the points
fall on the 45° dotted line. In addition, the closer the data points to
the 45° dotted line, the more accurate the model prediction.

The results indicate that relative errors of fracture geometry
parameters and fracture permeability are under 10% by and large,
and the majority of the data points lie between the two green lines
representing the range of relative error of (—10%, 10%). In addition,
the MRE of all fracture parameters are less than 0.1, and the values
of R? are in the range between 0.83 and 0.96, indicating that the
accuracy of the model prediction is fairly high. Specifically, the
relative errors of fracture length and fracture height are under 10%,
and the prediction accuracy of the test set is higher than that of the
training set. The prediction errors of fracture width and fracture
permeability are slightly higher due to the lower order of magni-
tude of the values. The smaller the parameters, the greater the er-
rors. However, all the prediction errors are within the acceptable
error range. The slightly higher errors of the fracture width and
fracture permeability may also be caused by the input data. As
mentioned above, fracture width and fracture permeability deter-
mine the fracture conductivity, which could not be diagnosed
accurately with field monitoring technology. In this study, the
fracture length and fracture height were calibrated with the field
microseismic data while the calibration to fracture conductivity is
relatively weak, which affects the prediction accuracy of the model
to some extent.

According to the evaluation indicators calculated by Egs.
(8)—(10), the comprehensive fracturing effects of platform A were
evaluated. The SRV, FCI and FC is 10191 x 10* m? 0.41, and 28.1
D-cm respectively. Results demonstrate that the wells in platforms
A are successfully stimulated. Therefore, the model proposed in this
study can be applied to evaluate the fracturing effects.

4.2. Analysis of factors affecting the performance of the evaluation
model of fracturing effects

4.2.1. Effects of the combined neural network

In this section, the prediction results of the test set of two
models were compared by changing the neural network of the
model input module while considering the same physical con-
straints and applying the same cross-validation method to the
same sample data set. In addition, the impact of the combined deep
neural network on the performance of the model of fracturing ef-
fect evaluation of horizontal wells was analyzed. The conventional
convolutional neural network (CNN) and combined deep neural
network (C-DNN) was utilized as the input module respectively
while other settings are the same as those of the basic model. Since
the same dimensional data should be input with CNN, the dynamic
fracturing treatment data was chosen as the model input data of the
CNN, whereas both static and dynamic data were adopted as the
input data of the C-DNN.

The results illustrate that the prediction accuracy of the model is
greatly improved with a 71.9% lower RMSE by inputting multi-
dimensional data with C-DNN. The MRE of the fracture parame-
ters predicted by the model with CNN is in the range between 0.16
and 0.29, as shown in Fig. 9, which decreases significantly with C-
DNN with the highest value of 0.1, and the lowest value of 0.04.
Specifically, the MRE of fracture length and fracture width de-
creases by 83.8% and 65.5% respectively. The excessive impact of
dynamic data on the prediction results is diminished by inputting
multiple types of data with C-DNN and adjusting the input network
structure under the same physical constraints. In consequence, the
prediction accuracy of fracture parameters is effectively improved.
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Fig. 9. Comparison of the mean relative error of prediction results using C-DNN and
CNN as model input modules.

4.2.2. Effects of physical constraints

In this section, the prediction results of the test set of two
models with and without physical constraints were compared by
changing the loss function, and the impact of the physical con-
straints on the performance of the model of fracturing effect eval-
uation of horizontal wells was analyzed. The conventional data-
driven loss function and the loss function considering physical
constraints with field experience and the physical model of fracture
parameters were adopted respectively. The other model settings
are the same as those of the basic model. Both models were trained
and validated with the same sample data set and 10-fold cross-
validation method. The prediction results of models with conven-
tional data-driven deep neural networks and deep neural networks
considering physical constraints were compared.

The results indicate that the impact of physical constraints on
the prediction results of the deep neural network is significant. The
RMSE of the overall prediction results of fracture parameters de-
creases by 56% with consideration of physical constraints. In
addition, the prediction is better because values of relative error
between the prediction result and the expected data distribute
more closely to 0. The relative errors of the data-driven model are
large and distributed in the range of (—40%, 40%), denoted by the
two red dotted lines, as shown in Fig. 10. The relative errors
decrease after the physical constraints were incorporated and the
distribution is narrowed down to the range between —10% and 10%,
denoted by the two green dotted lines. Specifically, the MRE of the
fracture length and fracture width predicted by the model with
physical constraints reduces by approximately 75% respectively
compared to that of the pure data-driven model, indicating that the
performance of the model of the fracturing effect evaluation has
been improved with the physical constraints considered.

4.2.3. Effects of k-fold cross-validation

In this section, the prediction results of three models were
compared by changing the method of model validation. In addition,
the impact of k-fold cross-validation on the performance of the
model of fracturing effect evaluation of horizontal wells was
analyzed. The model was trained first and validated with the
methods of general validation, simple cross-validation (2-fold
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Fig. 10. Comparison of relative error distribution between two models with and
without physical constraints (hollow data points represent the prediction results of
conventional data-driven neural networks, and solid data points represent the pre-
diction results of deep neural networks with physical constraints).

cross-validation), and k-fold cross-validation respectively, while
other settings of the model and the sample data set are the same as
those of the basic model.

The results demonstrate that the k-fold cross-validation method
performs best, followed by the simple cross-validation, while the
prediction accuracy of the model validated by the general valida-
tion method is the worst. Specifically, the MRE of the fracture pa-
rameters predicted by the model with general validation is
between 0.45 and 0.53, as shown in Fig. 11, which decreases
significantly with simple cross-validation ranging from 0.13 to 0.17,
and further reduces to the range between 0.03 and 0.08 with the k-
fold cross-validation.

In particular, the problem of overfitting is diminished by
reducing the MRE of fracture height and fracture length by 80% and

0.8
General | 2-fold k-fold - k-fold cross validation
RMSE | 31.52 | 1153 | 59 I 2ot cross validation
- General validation
0.6 1

MRE

Fracture
permeability

Fracture
width

Fracture
height

Fracture
length

Output parameters

Fig. 11. Comparison of prediction results of models validated with the method of
general validation, simple cross-validation, and k-fold cross-validation.
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74% respectively. In consequence, the k-fold cross-validation can
effectively improve the prediction accuracy of the model. The poor
prediction performance with general validation results from the
improper division of the training set and test set. The prediction
results tend to be sensitive to certain data without cross-validation,
which may lead to small error for the training set and large error for
the test set and further result in overfitting. Nevertheless, more
information can be obtained from fewer data with simple cross-
validation and over-fitting can be avoided, while k-fold cross-
validation performs better than the simple cross-validation by
increasing the rounds of model training and testing to take full
advantage of limited data. The irrationality of data set dividing is
reduced and the prediction accuracy of the model with the small
sample data set is considerably improved by applying the k-fold
cross-validation in this study.

4.3. Field application

In this section, the model of fracturing effect evaluation of
horizontal wells was applied to the well Y in the adjacent platform
C to predict the fracture parameters. The indicators including the
relative error (RE), root mean square error (RMSE), and average
relative error (MRE) of the prediction results were calculated to
evaluate the accuracy of the model.

Results indicate that the prediction of the fracture length is the
best with relative errors basically ranging between —10% and 10%,
while the predictions of fracture height, fracture width, and frac-
ture permeability are pretty good with relative errors basically
distributing in the range of (—15%, 15%), denoted by the two blue
dotted lines, as shown in Fig. 12. The MRE of all the fracture pa-
rameters are approximately 0.1, demonstrating that the general-
ization ability of the evaluation model established in this study is
fairly good. It can be used to predict the fracturing parameters of
other horizontal wells in the block and evaluate the fracturing
effects.

According to the evaluation indicators calculated by Egs.
(8)—(10), the comprehensive fracturing effects of well Y in plat-
form C were evaluated. The SRV, FCI and FC of well Y in platform Cis
570.6 x 10* m? 0.63, and 70.13 D-cm respectively. The results
indicate that the fracture of well Y in platform C is more complex
with higher conductivity while the SRV of 8 wells in platform A is
much larger.

5. Conclusions

In this study, a model based on the deep neural network
considering physical constraints was presented to evaluate the
fracturing effects of horizontal wells in tight oil and gas reservoirs.
In addition, the field experience and KGD fracture calculation
model were incorporated in the loss function as physical con-
straints. Moreover, the model performance was improved by opti-
mizing the deep neural network and adopting the k-fold cross-
validation. Some main conclusions were drawn as follows.

(1) The number of hidden layers and neurons in each hidden
layer in the deep neural network impact the model perfor-
mance significantly, which was optimized as 5 and 60
respectively. The more the number of hidden layers and
neurons, the more complex the model and the easier the
model was over-fitted.

(2) The evaluation model performs well in fracture parameters
prediction and generalization. The adoption of physical
constraints and k-fold cross-validation effectively improves
the prediction accuracy of the model. The relative errors of
fracture parameters are basically within 10%.
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Fig. 12. Prediction results of fracture parameters of well Y in platform C.

(3) The combination of two neural networks effectively im-
proves the model performance, considerably reducing the
root-mean-square error. The combined neural network
improvs the impact of static data on prediction results and
reduces the RMSE of the model by 71.9%.
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