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a b s t r a c t

An accurate numerical simulation for wave equations is essential for understanding of wave propagation
in the earth's interior as well as full waveform inversion and reverse time migration. However, due to
computational cost and hardware capability limitations, numerical simulations are often performed
within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for
obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a
transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D
second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive
weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through
several numerical examples, we determine that the proposed THABC approach is characterized by the
following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in
eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in
computation, since it only requires the wavefields at the current and last time steps to solve the
transmitting formula within the absorbing layers. Benefiting from a simple but effective combination
between the transmitting equation and the second-order wave equation, our scheme performs well in
the 3D fractional Laplacian viscoacoustic numerical simulation.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction 2014; Ren et al., 2017; Wang et al., 2019b; Ren et al., 2021; Wang
Numerical simulation is crucial in comprehending seismic wave
propagation mechanisms and is a prerequisite for imaging and
subsurface structure inversion (Li et al., 2017; Wang et al., 2017,
2019a; Liu et al., 2020; Yao et al., 2020; Zou et al., 2020; Ren et al.,
2022). Seismic forward modeling can be implemented using finite-
difference (Alford et al., 1974; Virieux,1984), finite element (Lysmer
and Drake, 1972; Khataniar and Peters, 1991), pseudo-spectral
(Kreiss and Oliger, 1972; Fornberg, 2012), one-step method
(Zhang and Zhang, 2009; Liu and Zhang, 2019), and several other
methods. Because of computational cost and hardware capability
limitations, numerical simulations are often performed within a
finite domain, although the subsurface can be considered a semi-
infinite medium. If these artificial boundary reflections are not
appropriately processed, erroneous events might appear in seismic
imaging and inversion (Zhang and Shi, 2019). Therefore, these
nonphysical boundary reflections must be eliminated to perform
accurate seismic simulations, imaging, and inversion (Roger et al.,
y Elsevier B.V. on behalf of KeAi Co
et al., 2021; Zhang et al., 2021).
Early attempts to achieve nonreflecting absorbing boundary

conditions (ABCs) are divided into three categories. The first one is
based on wavefield energy attenuation, where the damping layers
are introduced to absorb boundary reflections (Cerjan et al., 1985;
Berenger, 1994; Collino and Tsogka, 2001; Yao et al., 2018). Among
them, PML is the most extensively used scheme and is one of the
most effective and stable ABCs (ChewandWeedon,1994). However,
conventional PML requires splitting each variable, making them
either perpendicular or parallel to the boundary, and the wave
equation must be modified according to attenuation factors.
Kuzuoglu and Mittra (1996) proposed a general complex frequency
shifted (CFS) method to absorb the evanescent waves more effec-
tively. To effectively implement the CFS-PML method, Roden and
Gedney (2000) proposed a convolution PML (CPML) scheme to
avoid wavefield splitting in numerical simulations. However, most
PML or CPML methods are more suitable for first-order velocity-
stress equations but complicated for second-order equations
(Komatitsch and Tromp, 2003; Zhuang et al., 2020). CPML usually
needs to introduce auxiliary variables or equations when applied to
the second-order equation, leading to additional computation
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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burdens and storage (Martin et al., 2010; Zhang and Shen, 2010; Li
and Matar, 2010; Duru and Kreiss, 2012; Ma et al., 2019). Thus, this
absorbing boundary might degrade the computational efficiency in
seismic imaging and inversion, especially for large-scale 3D prob-
lems (Zhang et al., 2020).

The second scheme is based on one-waywave equation (Clayton
and Engquist, 1977; Higdon, 1986, 1987, 1991; Heidari and Guddati,
2006), which merely requires one boundary layer to suppress
boundary reflections. Even though the low-order one-way wave
equations performwell in computational efficiency, memory costs,
and mathematical form, the incident angle limits the absorbing
effect. High-order one-way wave equations can reduce the incident
angle limitation (Rabinovich et al., 2010; Song et al., 2015); how-
ever, this scheme is not frequently selected due to its complex
mathematical form or zero-frequency drift instability. Alterna-
tively, the transmitting boundary is universal and easy to imple-
ment (Liao et al., 2002). However, because solving the two-way and
one-way wave equations are different in conventional one-way
wave boundary conditions, all the above schemes introduce
boundary reflections arising from the sudden transformation be-
tween the internal physical domain and boundary.

The third scheme is the hybrid ABC (HABC). Liu and Sen (2010)
first introduced transition regions to remove mutations between
different equations, in which a linearly weighted coefficient is used
to glue the Clayton one-way and two-way wavefields. Two factors
affect the absorbing effect of HABC. The first is the choice of a one-
way wave equation. Liu and Sen (2012) used the Higdon one-way
wave equation to constitute the HABC (HHABC) and applied it in
second-order elastic wavefield simulations. Ren and Liu (2014)
extended the HHABC to a first-order elastic wave equation and
validated its superiority in absorbing effect and computational ef-
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ficiency over the conventional PML method. Another factor that
plays a key role in boundary elimination is the weighted coefficient
between the one-way and two-way wave equations. Liu and Sen
(2018) presented an exponentially weighted coefficient to couple
the boundary and central wavefields. This process can mitigate the
inner boundary reflections but ignores the outer boundary re-
flections. Xie et al. (2020) also developed an effective HHABCwith a
cosine-type weighted coefficient. Currently, HABC has been rapidly
developed and is widely used in seismic simulations (Zhao et al.,
2014; Liu and He, 2015; Takekawa and Mikada, 2016; Liu et al.,
2017; Wang and Liu, 2017; Xue et al., 2018).

In this paper, we aim to develop a new HABC based on a
transmitting formula (refer to THABC) for second-order wave
equations. More specifically, we devote our boundary to 3D vis-
coacoustic simulations involving fractional Laplacians. The pro-
posed THABC benefits from the following advantages. First,
compared with PML or CPML, THABC is especially suitable for
second-order wave equations and does not require auxiliary vari-
ables or equations. Second, HHABC needs internal wavefields at the
841
next time step as an initial condition in the boundary, whereas
THABC only requires wavefields at the current and last time steps.
Thus, THABC has a high potential to improve the computational
efficiency and reduce programming complexity. Third, we propose
an adaptive weighted coefficient to couple the transmitting and
two-way wavefields, and thus THABC can suppress reflections from
the inner and outer boundaries. Finally, THABC exhibits excellent
absorbing performance with fewer absorbing layers.

The rest of this paper is organized as follows. First, we review
the second-order fractional Laplacians viscoacoustic equation and
the transmitting formula expression. Then, we apply an adaptive
weighted coefficient for equalizing internal and external boundary
reflections and depict the THABC calculation flow. After that, we
present the numerical results of seismic wave simulations on 3D
homogeneous and overthrust models to further verify the feasi-
bility and effectiveness of THABC. Finally, we discuss the compu-
tation efficiency and sensitivity of THABC to quality factor Q.
2. Theory

2.1. Second-order constant-Q viscoacoustic equation

Xing and Zhu (2019) have proposed a second-order fractional
Laplacians viscoacoustic equation (Eq. (1)). It has drawn much
attention because of its concise mathematical form and capacity to
describe the frequency-independent Q behavior within all fre-
quency bands (Wang et al., 2022). Particularly, Eq. (1) has the ca-
pacity to effectively decouple the effect of the amplitude decay and
phase dispersion (Zhu and Harris, 2014), benefiting modeling and
imaging applications.
where V2 and P1 represent the Laplacians and pressure wavefield,
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u0. Due to containing fractional Laplacians in Eq. (1), the pseudo-
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operators (Zhu and Harris, 2014; Wang et al., 2018, 2019c),
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where F and F�1 denote the forward and reverse Fourier trans-
forms, respectively. The finite difference scheme is utilized to
calculate temporal derivatives. Therefore, Eq. (1) can be expressed
as
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2.2. Transmitting boundary

The transmitting equation's expression is another key element
of THABC. Based on the multiple transmission theory, the unified
transmission formula in the x-direction boundary can be expressed
as (Liao et al., 1984)

P2ðtþDt;x;y;zÞz
XN
k¼1

ð�1Þkþ1CNk P2ðt�ðk�1ÞDt;x�kc0Dt;y;z


;

(5)

where ðx; y; zÞ is the spatial position, t refers to the temporal posi-
tion,Dt represents the time step, N is the transmitting order ðN� 2Þ
positively related to the absorbing effect of boundary reflections

(N ¼ 2 in this paper). CNk ¼ N!
ðN�kÞ!k! and P2 represent the second-

order coefficient and transmitting wave wavefield, respectively.
Equation (5) can transmit incident waves out of the artificial

boundary to avoid boundary reflections. However, it cannot be used
for discrete numerical calculations and must be expressed
discretely. Near the boundary, the distance between nodes
perpendicular to the boundary is taken as a constant. Using the
quadratic interpolation formula, Eq. (5) can be written as

P2ðtþDt; x; y; zÞz
XN
k¼1

ð � 1Þkþ1CNk T
kUk

; (6)

where Tk;Uk respectively represent the recursive coefficient and
wavefield matrixes, written as (e.g., left boundary surface)
Tk ¼
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where
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t1 ¼ ð2� c0Dt=dxÞð1� c0Dt=dxÞ=2
t2 ¼ ðc0Dt=dxÞð2� c0Dt=dxÞ k � 2
t3 ¼ ðc0Dt=dxÞðc0Dt=dx� 1Þ=2

; (9)

and

ui;j ¼ P2ðt � ðj� 1ÞDt; x� ði� 1Þdx Þ; (10)

where x and dx represent the space step in the x-direction and the
coordinate of the boundary node, respectively. i and j represent the
time and spatially-dependent variables, respectively.

As stated above, Eq. (6) can obtain the boundary wavefields
using only wavefields at the current and last time steps.
2.3. Weighted coefficient

Because of the difference between the viscoacoustic equation
and the transmitting formula, the abrupt variation between the
physical domain and the boundary will inevitably cause boundary
reflections. Hence, it is necessary to introduce a weighted coeffi-
cient to smooth the transition of different wavefields. Although a
linear weighted coefficient (Liu and Sen, 2010) can be applied to
eliminate boundary reflections, the coupling between the trans-
mitting and viscoacoustic wavefields is not optimal. Liu and Sen
(2018) enhanced the absorbing effect of the HABC by presenting a
single-exponential weighted coefficient u1 (Eq. (11)) to solve the
inner boundary reflections effectively; however, such an approach
still cannot address the problem of outer boundary reflections.
Along the same line, Xie et al. (2020) deformed u1 to obtain a
single-exponential weighted coefficient u2 (as shown in Eq. (12)) to
suppress reflections at the outer boundary, but its absorbing ca-
pacity of internal boundary reflections is weak. Because a single-
exponential weighted coefficient cannot simultaneously suppress
internal and external boundary reflections, we propose an adaptive
weighted coefficient (Eq. (13)) to better balance the internal and
external reflected energy by effectively combining u1 and u2.



Fig. 1. The computing region of THABC in a 3D numerical simulation.

Fig. 2. THABC flow chart.

S.-L. Li, Y. Shi, N. Wang et al. Petroleum Science 20 (2023) 840e856

843



Fig. 3. 2D wavefield snapshot slices of 3D snapshots with different weighted coefficients (t ¼ 600 ms, y ¼ 750 m).
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where ix and L represent the spatial position in the x-direction and
the boundary width of the transition, respectively; b ¼ 1:0þ
0:15� L, and k is the variable factor of the exponential function. Eq.
(13) can automatically adjust the specific coupling ratio of the
different single-exponential weighted coefficient according to the
spatial position ix. Therefore, it can effectively balance the reflected
energy generated from internal and external boundaries.
2.4. Numerical implementation

Fig. 1 depicts the computing region of THABC in a 3D numerical
simulation. In Fig. 1, the size of the total area is
(Nx þ 2L) � (Ny þ 2L) � (Nz þ 2L), which can be divided into the
following three parts:

Area I is the internal domain or computation-domain (equal to
844
the real model) with the size of Nx � Ny � Nz. Area III is in the
outermost layer with a thickness of 1. The size of Area III is
2 � ((Nxþ2L) � (Nyþ2L)þ(Nxþ2L) � (Nzþ
2L) þ (Nyþ2L) � (Nzþ2L)). Excluding Areas I and III, the rest is Area
II.

Nx, Ny, Nz are the numbers of grid cells in the x-, y-, and z-di-
rections, respectively. As shown in Fig. 2, our approach is imple-
mented by following the procedures. First, we solve the second-
order viscoacoustic equation in total area. Then, we solve the
transmitting formula in Area II and Area III. Finally, an adaptive
weighted coefficient in Area II couples the viscoacoustic and
transmitting wavefields. Thus, we obtain the expression of the
boundary wavefield at the t moment

Pðt; x; y; zÞ ¼ uP2ðt; x; y; zÞ þ ð1� uÞP1ðt; x; y; zÞ: (14)

It is worth noting that the implementation at the boundary edge
and corner regions is different from that on the boundary surfaces.
The absorbing regions can be divided into six surface regions,
twelve edge regions and eight corner regions in the 3D case. The
boundary surfaces only need to absorb the reflections from one
direction. Since Eq. (14) can absorb the incident wave in a specific
direction, reflections at the edge regions (such as the overlapping
layers of the x- and y-directions) can be suppressed by calculating
the boundary surfaces of two directions. The treatment of the
corner regions (overlapping layers of three surfaces) is similar to
that of the edge regions; the properties of the corner regions are
superimposed onto three surface directions.
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Numerical simulations without ABC and with THABC can be
expressed in Algorithms 1 and 2, respectively. Comparing
Algorithms 1 and 2, we find that THABC only needs an extra
calculation step and updates the boundary wavefields in the orig-
inal numerical simulation step. Therefore, THABC can be embedded
in the second-order viscoacoustic equation codes without modi-
fying the primary framework, promising for pseudo-spectral and
spectral-element simulations where second-order wave equations
are widely used (Basu and Chopra, 2004; Festa and Vilotte, 2005;
Matzen, 2011).

Algorithm 1. 3D viscoacoustic numerical simulation without ABC
E .
Algorithm 2. 3D viscoacoustic numerical simulation with THABC
3. Numerical experiments

In this section, we first compare the absorbing performance of
THABC with different weighted coefficients. Then, we perform
numerical simulation on 3D homogeneous and overthrust model
using the proposed THABC, existing HHABC, and split PML (Chen
845
et al., 2017) to verify the feasibility and effectiveness of our pro-
posed scheme. Note that we used the split PML proposed by Chen
et al. (2017). More specifically, we approximated the power of
fractional Laplacians to the integer order, then split PML formula-
tion for the second-order equation frame is introduced (Chen et al.,
2013; Yuan et al., 2014).
3.1. Homogeneous model

We conduct seismic modeling in a homogeneous viscoacoustic
medium, mainly compare the absorbing performance with
different boundary conditions and discuss the effects using various
weighted coefficients. Simulations are performed at a reference
velocity of 3000 m/s, and the quality factor Q is 50. The model
contains 150 � 150 � 150 cells with a uniform grid spacing of 10 m
and 30 absorbing layers. A 30 Hz Ricker wavelet is at the model's
center, and 150 receivers are at each grid point at x ¼ 750 m and
z ¼ 300 m. The maximum excitation time is 1.2 s and the sampling



Fig. 4. Simulated seismograms with different weighted coefficients (x ¼ 750 m, y ¼ 750 m, z ¼ 300 m).
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interval is 1 ms.
In the first test, we compare the effectiveness with different

weighted coefficients. Fig. 3 shows 2D slices of 3D snapshots at
600 ms. In detail, Fig. 3aed correspond to the linear, exponential
type 1 (Eq. (11)), the exponential type 2 (Eq. (12)), and the adaptive
(Eq. (13)) schemes, respectively. In Fig. 3, we find that boundary
reflections with different intensities exist in the slices of linear and
single-exponential weighted coefficients, whereas inconspicuous
boundary reflections can be observed in the adaptive weighted
coefficient scheme. We obtain clear observations by displaying the
portion of seismograms at x ¼ 750 m, y ¼ 750 m, and z ¼ 300 m in
Fig. 4, where the local zoomed-in sections at 300e700 ms are
extracted. The black line represents the exact solution performed in
an extended model without boundary reflections. The green, red,
blue, and pink lines represent linear, exponential type 1, expo-
nential type 2, and the proposed adaptive schemes, respectively.
The total relative errors between the weighted coefficients and the
exact solution are shown on the right side of the legend. Fig. 4
exhibits two prominent peaks (marked by boxes with a dotted
line) corresponding to the reflections generated by the inner and
outer boundaries of the transition regions. Notably, we can observe
distinct boundary reflections in the green line, indicating that the
linear weighted coefficient is unsatisfying on suppressing boundary
reflections. The blue and red lines show the obvious reflections
generated at the inner and outer boundaries, respectively. These
phenomena suggest that the single-exponential weighted co-
efficients cannot effectively couple two different wave equations.
From another perspective, the adaptive weighted coefficient has
the advantages of single-exponential types 1 and 2. Thus, consid-
ering the overall absorbing effect of the inner and outer boundaries,
we utilize the adaptive weighted coefficient to perform the
following tests.

As stated above, the proposed THABC performs than the existing
schemes with the same absorbing layers. The 3D homogeneous
model further verifies this superiority. In Fig. 5, from top to bottom,
the snapshots correspond to the without absorbing boundary, the
split PML (hereinafter referred to as PML), the HHABC, and the
THABC, respectively. The first column represents the 3D snapshots
at 350ms, the second column corresponds to 500 ms, and the third
column highlights the 2D wavefield slices at t ¼ 500 ms and
846
y ¼ 750 m. Specifically, at 350 ms when a seismic wave arrives at
the boundary, it travels back into the physical domain because the
boundary is untreated; by contrast, the boundary reflections cannot
be observed in Fig. 5bed. At 500 ms when the seismic wave has
fully traveled through the calculated regions, serious false re-
flections occur in Fig. 5e and i. Obviously, PML boundary cannot
reduce boundary reflections effectively (as shown in Fig. 5f and j),
indicating that this scheme needs more absorbing layers. Although
HHABC can absorb most boundary reflections, visible faint pseudo-
oscillations still occur in Fig. 5g and k. Differently, it is challenging
to observe the boundary reflections under the same gain control in
Fig. 5h and l, indicating a prominent absorbing effect of THABC.
Fig. 6 sketches the common-gathers with different boundary con-
ditions, and we cut off the direct wave to better investigate the
boundary reflections. Fig. 6aed correspond to the exact solution,
without absorbing boundary, HHABC, and THABC, respectively.
Note that we display Fig. 6a, c and d in the same amplitude range
and observe substantial high-energy false reflections in Fig. 6b due
to the untreated boundary. In Fig. 6c, the false reflections of HHABC
are relatively feeble, and only the spurious responses before 750ms
could be observed. Differently, THABC generates a similar common-
gather as the exact solution. To understand the discrepancies in
accuracy with different absorbing methods in detail, seismograms
at 100e800 ms are shown in Fig. 7. We also display a local zoomed-
in section of 300e700 ms for clearer observation. Fig. 7aec corre-
spond to 10, 20 and 30 layers where the black, red, blue and green
lines denote the exact solution, HHABC, PML and THABC, respec-
tively. Since the boundary reflections of PML are strong, we
multiply them by 0.1, 0.15, and 0.25 in the zoomed-in box. In Fig. 7,
the boundary reflections of PML and HHABC are obvious, whereas
THABC (green lines) is closer to the exact solution. For quantify, we
utilize the root mean square error (RMS) to quantitatively evaluate
the accuracy of different boundary conditions shown in Fig. 8
where Fig. 8aec represent 10, 20 and 30 layers, respectively. The
RMS equation can be expressed as

Ermsðx; y; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
it¼0
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�
x; y; z; it

�
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Fig. 5. Wavefield snapshots of different boundary conditions.
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where Pref represents the wavefield of the exact solution, and Pcal is
the wavefield obtained by different boundary conditions. In Fig. 8,
the lowest RMS of THABC also confirms its superiority in sup-
pressing boundary reflections.
3.2. Free surface application

Here, we evaluate the applicability of THABCwhen a free surface
is present. The velocity model and numerical simulation parame-
ters are the same as the homogeneous model, except that the
absorbing layers on the upper boundary are replaced by the free
surface. We implement the free surface via the mirror-image in-
verse-symmetry boundary condition (Graves, 1996). Fig. 9aed
847
shows snapshots at 0.2, 0.3, 0.4, and 0.7s, obviously, the wavefield
energy propagates steadily, except for the free boundary re-
flections, the reflections can be well absorbed. Fig. 10 shows the
energy decay curve with different ABCs where the black, blue, and
red lines represent THABC, HHABC and PML, respectively. The black
line decays the fastest, indicating that THABC can effectively sup-
press boundary reflections when the free surface is present. We
further extended the simulation to 20 s to further evaluate the
stability of THABC in large-time numerical simulations, and use a
regularizing operator (Liao et al., 2002) to avoid the zero-frequency
drift. As the energy attenuation curves show (Fig. 11), the THABC is
still stable even for 20 s.



Fig. 6. Common-gathers without direct wave.
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3.3. 3D overthrust model

We verify the effectiveness of THABC for the complex medium
848
by performing 3D seismic modeling on the overthrust model.
Fig. 12 denotes the velocity model, numerically discretized into
200 � 200 � 100 grid points with a uniform grid spacing of 10 m.



Fig. 7. Common-gathers for the homogeneous model with different ABCs at
(x ¼ 750 m, y ¼ 750 m, z ¼ 300 m).

Fig. 8. RMS curve of common-gathers for the 3D homogeneous model.
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Likewise, the Q model is built from the velocity model with an
empirical function of Q ¼ 3:516ðc0=1000Þ2:2 (Li, 1993), with a wide
velocity range and contains a high attenuation domain. A 25 Hz
Ricker wavelet is used as the source at x¼ 1000 m, y ¼ 1000 m, and
z ¼ 80 m. In total, 10000 receivers are uniformly located at a depth
of 80 m. The simulation time is 1.5 s, with a 1 ms time step, and the
absorbing boundary are 30 layers.

Fig. 13 shows snapshots of different absorbing conditions, in
which the left and right columns correspond to 300 and 1300 ms,
respectively. From top to bottom, the boundary of each row is
without absorbing boundary, PML, HHABC and THACB, respectively.
Fig. 14 shows that the amplitudes in the four cases are highly similar
when the wave starts to propagate. At 1300 ms, the wavefield of the
PML boundary condition exhibits strong boundary reflections, indi-
cating that the absorbing effect of the PML is dissatisfying when the
absorbing layers are insufficient. Obviously, HHABC only corresponds
849
to slight reflection energy, better than PML, whereas THABC sup-
presses the boundary reflections effectively. Fig. 14 shows the 3D
common-gathers, in which Figs. 14aed correspond to the without
absorbing boundary, PML, HHABC, and THABC, respectively. All
common-gathers are displayed in the same amplitude range. As
indicated in Fig. 14a, severe false events are produced without
boundary conditions, contaminating the effective wavefields and
affecting the authenticity of the subsequent processing. Although the
PML boundary condition suppresses most false reflections, evident
boundary reflections can still be observed in Fig. 14b. The common-
gathers of the two HABC exhibit a remarkable absorbing effect and
no obvious false reflections can be observed (as shown in Fig.14c and
d). We further compare the absorbing effects of the two hybrid
absorbing boundaries by extracting the trace at x ¼ 880 m, y ¼ 1980
m, and z ¼ 80 m. As shown in Fig. 15, the red, green and black lines



Fig. 9. Wavefields of THABC when considering the free surface.

Fig. 10. Energy decay with different ABCs for homogeneous model when considering
the free surface.

Fig. 11. Energy decay of THABC for 20 s simulation.

Fig. 12. 3D overthrust velocity model.
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represent the exact solution, HTABC and HHABC, respectively. In the
zoomed-in box, the blue line marks the absolute error between the
exact solution and THABC (ERR1), and the pink line represents the
absolute error between the exact solution and HHABC (ERR2). It is
prominent that ERR1 is less than ERR2, illustrating that THABC has
exerted a better absorbing effect in the 3D viscoacoustic complex
heterogeneous media.
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Fig. 13. 3D snapshots of the displacement field from viscoacoustic modeling with different boundary conditions.
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Fig. 14. Common-gathers for 3D overthrust model with different boundary conditions.
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4. Discussion

4.1. Computation cost

In this section, we compare the computation cost of different
absorbing conditions. All numerical examples are implemented
using the Compute Unified Device Architecture (CUDA) programing
on a Nvidia Geforce RTX 2080Ti. The model parameters are
consistent with those in the homogeneous model except for the
852
absorbing layers. Table 1 shows the calculation time of different
boundary conditions with 20 absorbing layers. In Table 1, the PML
calculation time is the longest, that of THABC is the shortest, and
HHABC is slightly higher than THABC. Fig. 16 shows the energy
decay curve in the physical domain, inwhich the blue, black and red
lines represent PML, HHABC, and THABC, respectively. The waves
leave the physical domain between 350 ms and 700 ms, as indi-
cated by the steep decay in Fig. 16. All remaining energy, thereafter,
is not only spurious reflections but also indicators of the boundary



Fig. 15. Absolute error curves between different ABCs and the exact solution
(x ¼ 880 m, y ¼ 1980 m, z ¼ 80 m).

Table 1
The calculation time of different boundary conditions with the same layer thickness.

Boundary
condition

Weighted
coefficient

Layer
thickness

Calculation
time, s

Propagation
time, s

THABC adaptive 20 49.08 4
HHABC adaptive 20 53.24 4
PML e 20 68.86 4

Fig. 16. Energy decay in the computational domain for homogeneous model with 20
absorbing layers.
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condition's efficiency. Fig. 16 indicate that the PML energy curve
only decreases to approximately �100 dB, indicating that more
absorbing layers should be added in this scheme to enhance the
absorbing effect. Strikingly, the energy of THABC is minimal in the
physical domain and the energy curve decreases rapidly to
approximately �220 dB. Furthermore, Table 1 shows that THABC
can save 8.2% and 35.8% of the computational cost compared with
HHABC and PML, respectively. Hence, the method proposed in this
study enjoys a great advantage in absorbing effects and computa-
tional efficiency.
4.2. Code implementation

In addition to the absorbing effect and computational cost, the
convenience of code implementation is also a vital indicator in
evaluating ABC performance. Therefore, we briefly discuss code
implementation for different boundary conditions. Due to the
governing equation depending on the wave equation, PML requires
overhauling revision of the existing finite-difference method, finite
element method, and pseudo-spectral methods (Zhuang et al.,
2020). Because Eq. (1) contains fractional Laplacians, it is difficult
to transform the viscoacoustic wave equation into a new second-
order partial differential equation in CPML. Meanwhile, CPML is
harder to be directly applied to the second-order wave equation
because it needs to introduce auxiliary variables or equations (Duru
and Kreiss, 2012; Ma et al., 2019). Such procedures would un-
doubtedly increase additional computation burdens and storage.
The traditional HHABC needs to be calculated from the inside to the
outside boundary. Therefore, it is inconvenient to CUDA program-
ming, increasing the unnecessary computational complexity. By
contrast, THABC refrains from rewriting the original modeling code
and is convenient for implementing multithreaded calculations.
Furthermore, HABC theoretically applies to most second-order
853
equations (Liu and Sen, 2012), indicating that THABC has the
same advantage in universality. Theoretically, THABC can be
extended to elastic wave equations, and we will focus on it in the
future.
4.3. Effect of different Q values

Quality factor Q should characterize the absorbing and attenu-
ation characteristics of seismic waves propagated in underground
media, and is one of the most significant parameters in viscoa-
coustic numerical simulations. Therefore, it is necessary to discuss
the effects exerted by Q factor on different absorbing schemes. We
conduct numerical modeling on 3D homogeneousmodels, inwhich
the parameters are the same as those in previous homogeneous
models but Q alters from infinity to 20. Fig. 17 shows 2D wavefield
snapshot slices with different Q values at y¼ 750m and t¼ 600ms,
in which all snapshots are shown with the same amplitude range.
The left and right columns represent HHABC and THABC, respec-
tively. Overall, the boundary reflections in the left column are
stronger than those in the right, indicating that THABC has a better
absorbing effect with different Q values. From top to bottom, each
row's quality factor Q is infinity, 100, 50 and 20, respectively.
Conspicuously, the boundary reflections are weaker as Q decreases
because the medium's inelasticity attenuates the boundary re-
flections. We quantitatively express the absorbing effect of
boundary reflections with different Q values by defining the
boundary reflection energy intensity (LEI), representing a relative
maximum error between THABC and the exact solution during the
simulation time. The LEI equation can be expressed as

LEIðx;y;zÞ¼ max
ct2½0;nt�

8>><
>>:
20log10

8>><
>>:

���Pref ðx;y;z;tÞ�Pcalðx;y;z;tÞ
���

max
ct2½0;nt�

n���Pref ðx;y;z; itÞ
���o

9>>=
>>;

9>>=
>>;
;

(16)

where Pref represents the exact solution. Pcal is the numerical so-
lution based on THABC with different Q. The LEI curve is described
in Fig. 18. It is remarkable that all LEI curves are highly similar for
different Q values close to �90 dB, indicating that the maximum
reflection energy is five to six orders smaller compared with the
first arrival wave. Therefore, we suggest that quality factor Q exerts
a relatively small influence on the absorbing performance of
THABC.



Fig. 17. 2D wavefield snapshot slices with different Q values at 600 ms
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Fig. 18. LEI result curve with different Q
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5. Conclusions

We have developed a THABC method for the second-order
fractional Laplacian viscoacoustic wave equation. The proposed
scheme enables us to suppress artificial boundary reflections in 3D
viscoacoustic wavefields without rewriting the original wave
equations or introducing additional auxiliary variables. The pro-
posed scheme enjoys high computational efficiency since it only
needs the current and last wavefields. Numerical experiments
show that the proposed scheme exhibits excellent absorbing per-
formance and computational efficiency. We anticipate that the
proposed THABC will directly benefit high-precision imaging ap-
plications and the development of inversion in 3D attenuation
media.
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