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a b s t r a c t

Typically, relationship between well logs and lithofacies is complex, which leads to low accuracy of
lithofacies identification. Machine learning (ML) methods are often applied to identify lithofacies using
logs labelled by rock cores. However, these methods have accuracy limits to some extent. To further
improve their accuracies, practical and novel ensemble learning strategy and principles are proposed in
this work, which allows geologists not familiar with ML to establish a good ML lithofacies identification
model and help geologists familiar with ML further improve accuracy of lithofacies identification. The
ensemble learning strategy combines ML methods as sub-classifiers to generate a comprehensive lith-
ofacies identification model, which aims to reduce the variance errors in prediction. Each sub-classifier is
trained by randomly sampled labelled data with random features. The novelty of this work lies in the
ensemble principles making sub-classifiers just overfitting by algorithm parameter setting and sub-
dataset sampling. The principles can help reduce the bias errors in the prediction. Two issues are dis-
cussed, videlicet (1) whether only a relatively simple single-classifier method can be as sub-classifiers
and how to select proper ML methods as sub-classifiers; (2) whether different kinds of ML methods
can be combined as sub-classifiers. If yes, how to determine a proper combination. In order to test the
effectiveness of the ensemble strategy and principles for lithofacies identification, different kinds of
machine learning algorithms are selected as sub-classifiers, including regular classifiers (LDA, NB, KNN,
ID3 tree and CART), kernel method (SVM), and ensemble learning algorithms (RF, AdaBoost, XGBoost and
LightGBM). In this work, the experiments used a published dataset of lithofacies from Daniudi gas field
(DGF) in Ordes Basin, China. Based on a series of comparisons between ML algorithms and their cor-
responding ensemble models using the ensemble strategy and principles, conclusions are drawn: (1) not
only decision tree but also other single-classifiers and ensemble-learning-classifiers can be used as sub-
classifiers of homogeneous ensemble learning and the ensemble can improve the accuracy of the original
classifiers; (2) the ensemble principles for the introduced homogeneous and heterogeneous ensemble
strategy are effective in promoting ML in lithofacies identification; (3) in practice, heterogeneous
ensemble is more suitable for building a more powerful lithofacies identification model, though it is
complex.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Abbreviations

The abbreviations used in the paper are summarized in Table 1
below.
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1. Introduction

Lithofacies identification based on logging data is an important
task in petroleum exploration and development, since it is critical
for reservoir characterization, calculation of reserves and 3D
geological modelling (Dong et al., 2022; Ma, 2011; Martyushev and
Yurikov, 2021). However, the relationships between well logs and
lithofacies are usually complicated since well log responses are
influenced by other factors such as porosity, oil-bearing properties,
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Table 1
Term abbreviations used in this work.

Full name Abbr. Full name Abbr.

machine learning ML gradient boosting machines GBMs
linear discriminant analysis LDA random forest RF
Naive Bayes NB adaptive boosting AdaBoost
k-nearest neighbors KNN gradient boosting decision tree GBDT
iterative dichotomiser 3 ID3 eXtreme gradient boosting XGBoost
classification and regression trees CART light gradient boosting machine LightGBM
decision tree DT double fault DF
support vector machine SVM Daniudi Gas Field DGF
artificial neural networks ANN Hangjinqi Gas Field HGF
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fractures, etc. (Liu et al., 2018; Saggaf and Nebrija, 2000; Yang et al.,
2019). To build lithofacies identification models, many mathemat-
ical methods have been introduced to train the prediction models
utilizing logging data labelled by rock cores (Delfiner et al., 1987;
Tokhmechi et al., 2009). Among them,machine learning techniques
perform well in many oilfields, which can be divided into common
single-classifier methods and methods based on ensemble classi-
fiers (Tewari and Dwivedi, 2019).

Single-classifier methods are widely used in lithofacies identi-
fication, such as linear discriminant analysis (LDA) (Busch et al.,
1987; Dubois et al., 2007; Li and Anderson-Sprecher, 2006), naive
Bayes (NB) (Corina and Hovda, 2018; Li and Anderson-Sprecher,
2006; Moja et al., 2019), k-nearest neighbors (KNN) (Tripoppoom
et al., 2019; Wang et al., 2018), decision tree (DT) (Breiman et al.,
2015; Kolose et al., 2021; Li et al., 2011; Quinlan, 1986, 1996), sup-
port vector machines (SVM) (Al-Anazi and Gates, 2010; Hou et al.,
2020; Liu et al., 2020; Sebtosheikh et al., 2015), artificial neural
networks (ANN) (Bressan et al., 2020; Gorai et al., 2021; He et al.,
2019; Lawal et al., 2021; Wang et al., 2017), and etc. The idea of
LDA is to extract linear features distinguishing lithofacies according
to the principle of maximizing the distance between classes and at
the same time minimizing the distance within each class (Dong
et al., 2016). In the Shublik Formation of the Prudhoe Bay, Amer-
ica, LDA obtained an accuracy of 75% in the lithofacies identification
which provided support for reservoir description (Busch et al.,
1987). When lithofacies become quite complex, LDA may perform
poorly since linear methods are not enough to deal with nonlinear
classification problems. For example, the accuracy of LDA is only
about 60% in Panoma Gas Field in southwestern Kansas, America
(Dubois et al., 2007). NBminimizes errors of identification based on
posterior probability, which is calculated by prior probabilities of
each lithofacies and prior distributions of logs against lithofacies
(Corina and Hovda, 2018; Moja et al., 2019). In the Upper Tensleep
Formation in Teapot Dome, Powder River Basin, Wyoming, a naive
Bayes classifier was trained by petrophysical logs of seven wells. It
obtained an accuracy of about 75% with a similar performance to
LDA in both efficiency and consistency (Li and Anderson-Sprecher,
2006). However, naive Bayes assumes each well log is independent
of any other logs, which is usually difficult to realize in practice (Ao
et al., 2018). KNN is a classification method by which the data are
classified based on a plurality vote of its neighbors. A new sample
will be assigned to the most common class among its neighbors
(Tripoppoom et al., 2019). Optimized KNN and traditional KNN
methods are used to identify the lithology by well-logging data
acquired by Gaoqing Oilfield in China, and the total classification
accuracy is about 61% (Wang et al., 2018). DT is essentially a series
of statements that are aligned through the structure of nodes and
sheets and have specific if-else rules (Kolose et al., 2021). ID3
(iterative dichotomiser 3) decision tree (Quinlan, 1986), C4.5 (an
extension of ID3) (Quinlan, 1996) and CART (classification and
regression trees) (Breiman et al., 2015) are three representative DT
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methods wildly used in lithofacies identification. SVM maps orig-
inal logs into a higher feature space by kernel functions and builds a
hyperplane classifier to identify lithofacies (Cortes and Vapnik,
1995). For the heterogeneous carbonate reservoirs in Iran, the
RBF kernel based SVM using well logs after feature selection won a
lower misclassification rate (about 8%) than SVM based on poly-
nomial and polynomial kernels (Sebtosheikh et al., 2015). For the
sandstone reservoirs in the Middle East, SVM combined with
feature selection based on fuzzy theory obtained a misclassification
of about 10%, and outperformed LDA and probabilistic neural
network (PNN) (Al-Anazi and Gates, 2010), since SVM is good at
addressing high-dimensional nonlinear features in the logging data
(Anifowose et al., 2015). The ANN is a bionics method imitating the
biological neural network to process information and predict lith-
ofacies (Kardani et al., 2022). For the Longmaxi-Wufeng shale res-
ervoirs in the Fuling Gas Field of Sichuan Basin, China, the
combination of ANN and hierarchical decomposition (HD) by con-
ventional logs were used to identify lithofacies for 3-D geological
modelling. The lithofacies labels of training data were determined
by cores and elementary capture spectroscopy (ECS). The cross-
validation accuracy of all shale lithofacies is about 85%. Neverthe-
less, the identification of mixed shale is relatively low (about 65%)
(Wang et al., 2017).

Different from single-classifier methods, an ensemble learning
method combines a set of weak classifiers (called individual clas-
sifiers or sub-classifiers (Li et al., 2013; Sun et al., 2015)) into a
strong classifier to codetermine predictions of lithofacies by a joint
decision-making mechanism (Tewari and Dwivedi, 2019). Two of
the most well-known methods are Boosting (Schapire, 1990) and
Bagging (bootstrap aggregating) (Breiman, 1996). Commonly used
Boosting methods include adaptive boosting (AdaBoost) and
gradient boosting machines (GBMs). GBMs include gradient
boosting decision tree (GBDT), eXtreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM) and so on.
The representative Bagging method is random forest (RF) (Qiao and
Chang, 2021; Wang et al., 2020). For lithology identification in
Daniudi Gas Field and Hangjinqi Gas Field in Ordos Basin, China, the
ensemblemethods (GBDTand RF) obtained lower prediction errors,
compared with the single-classifier methods (e.g., SVM and ANN)
(Xie et al., 2018).

The Boosting method is consisted of a series of base classifiers,
which are trained and promoted sequentially. Each model tries to
compensate for theweaknesses of its predecessor. The step-by-step
optimization aims to upgrade weak rules to strong prediction rules
(Opitz et al., 2018). AdaBoost is a Boosting algorithm that changes
the deficiencies of the model by increasing the weights of mis-
classified data points (Freund and Schapire, 1997; Friedman et al.,
2000), while GBMs determine the weights by operating on the
negative partial derivatives of the loss function at each training
observation (Natekin and Knoll, 2013). In a Kansas oil field, exper-
iments on lithology identification indicated that AdaBoost can
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improve the accuracy of single classifiers (SVM, C4.5 DT, CART)
(Tewari and Dwivedi, 2019). For lithology identification in Daniudi
Gas Field (DGF) and Hangjinqi Gas Field (HGF), Ordos Basin, China,
the lithology classification by GBMs (e.g., XGBoost and LightGBM)
was better than single classifiers (e.g., SVM and ANN) in terms of
average precision, recall and F1-score (Dev and Eden, 2018, 2019;
Xie et al., 2018).

Bagging names from the abbreviation of bootstrap aggregating
(Breiman,1996). Aggregatingmeans a Bagging predictor aggregates
sub-classifiers to generate a comprehensive lithofacies identifica-
tion model through the plurality voting rule. Bootstrap means that
each sub-classifier is trained by randomly sampled labelled data
with random features, which is helpful for the decorrelation of the
sub-classifiers. It has been proven that Bagging is particularly
effective in improving the accuracy of unstable individual learners
since the ensemble of unstable individual learners with large di-
versity (Kuncheva and Whitaker 2003) can smooth the sharp de-
cision boundary of a classifier to reduce variance and improve
accuracy (Breiman, 1996; Bühlmann and Yu, 2002; Friedman and
Hall, 2006). In random forest, ‘forest’ means the ensemble of de-
cision trees (Breiman, 2001). Distinguished from bagged decision
tree (BDT)method in the split criterion, RF only randomly chooses k
features rather than all used by BDT (Breiman, 2001; Zhang et al.,
2016). RF was used to identify lithology in DGF and HGF, the pre-
cision scores for 5-fold-cross-validation on the DGF dataset and
HGF dataset are above 80%, which indicates RF has a good ability in
lithology recognition (Xie et al., 2018). In the case of rapid litho-
logical classification in International Ocean Discovery Program
(IODP), for cross validation, RF performed better than SVM, DT and
ANN in all scenarios (Bressan et al., 2020). The sub-classifiers in
Bagging can not only choose decision trees, but also choose other
learners to improve their prediction capacities. On a Kansas oil field
data in the United States, these single classifiers (SVM, C4.5 decision
tree, CART, etc.) are ensemble using the Bagging method, and the
accuracy of lithology identification can be improved (Tewari and
Dwivedi, 2019).

The reviews above indicate that (1) machine learning methods
are useful for lithofacies identification, but they have accuracy
limits to some extent; (2) ensemble learning performs better than
some single-classifier methods in many cases, and it can be used to
improve the prediction capacity of single-classifier methods; (3)
ensemble learning usually employs one kind of relatively simple
classifiers as sub-classifiers. Based on these reviews, to improve
lithofacies identification, two questions about ensemble learning
are raised: (1) whether only relatively simple single-classifier
method can be used as sub-classifiers, and if yes, which kind of
method can be employed as sub-classifiers and how to choose
proper sub-classifiers; (2) whether different kinds of machine
learning methods can be combined as sub-classifiers. If yes, how to
determine a proper combination.

This work introduces a simple ensemble learning strategy,
which is in fact the generalization of RF. It (1) generates sub-data for
sub-classifiers by random sampling with or without replacement
according to a specific sub-classifier method; (2) can use either
single-classifier methods or ensemble learning methods as sub-
classifiers (Fig. 1). Here, the sub-classifiers in homogeneous
ensemble are called base classifiers, while those in heterogeneous
ensemble are called component classifiers. Base classifiers are only
one kind of machine learning method while component classifiers
are a combination of multiple types of machine learning methods.
Based on the analyses of the two raised questions, several novel
ensemble principles are proposed. In Section 2, the ensemble
learning strategy, the used base classifiers and ensemble principles
are presented. In Section 3, a series of experiments are imple-
mented to analyse the two problems abovementioned and test the
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ensemble learning strategy and ensemble principles. The dataset is
from Daniudi Gas Field in Ordos Basin, China. Based on the exper-
iment results, the Discussions section tries to explain the two
questions abovementioned and summarize principles of choosing
proper sub-classifiers in the used ensemble learning strategy for
improving lithofacies identification.

2. Principle of mathematical methods

2.1. The ensemble learning strategy using random selections of
samples and features

The ensemble learning strategy is shown in Fig. 2, which is
divided into three parts. The first part is to generate sub-datasets.
The main content is to randomly sample the training dataset and
perform random feature selection to generate multiple training sub-
datasets. The second part is to train sub-classifiers. The multiple
training sub-datasets generated in the first part are used to train the
sub-classifiers. The third part is the ensemble. The multiple sub-
classifiers are integrated to generate an ensemble classifier accord-
ing to a votingmechanism. The testing dataset is used to evaluate the
classification prediction ability of the ensemble classifier, and the
parameters in sub-classifiers will be adjusted until the generated
ensemble classifier meets the accuracy requirement. The final
selected ensemble classifier is used for lithofacies identification.

Suppose there is a dataset D ¼ fðx1;y1Þ; ðx2;y2Þ;…; ðxN ;yNÞg. xi
has m features. It is divided into a training dataset with ½N � rtrain�
samples and a testing dataset with ½N � ð1� rtrainÞ � samples (e.g.,
rtrain ¼ 80%). Random sampling with or without replacement will
generate nS sub-datasets with nb ¼ ½½N � rtrain� � rb � (e.g., rb ¼ 50%)
samples for training sub-classifiers. Each sub-dataset randomly
selects nprob ¼ �

m� rp
�
(e.g., rp ¼ 80%) features from all m features

without replacement.

2.2. Single-classifier methods will be used as sub-classifiers

As shown in Fig. 1, different single-classifier methods, including
regular methods, kernel methods and artificial neural network
methods, will be used in this work. The six specific methods are
LDA, NB, KNN, ID3, CART and SVM displayed in Fig. 3.

(1) LDA. LDA is a classic supervised dimensionality reduction
technique, which aims to find new projection axes maxi-
mizing separability among the known categories in the
target variables (Fig. 3(a)). The mapped data meets the re-
quirements of both maximizing distance between categories
and minimizing distance within categories. The problem can
be converted to a problem of solving generalized eigenvalues
(Dong et al., 2016; Shi et al., 2020). The values of eigenvalues
represent contributions of corresponding eigenvectors u to
distinguishing different classes. When the projection ux of a
new sample x is closest to the center of projected points in a
class, it will be identified in this category.

(2) NB. The NB method utilizes a posterior probability PðyjxÞ in
Eq. (1) to determine the label y of a sample x based on the
maximum posterior criterion. PðyÞ is the prior probability of
one category (e.g., y ¼ 1,2, …). PðxjyÞ is the probability dis-
tribution of x corresponding to samples in a category. Usu-
ally, x is multidimensional which makes PðxjyÞ difficult to
determine. Hence, Naïve Bayes simplifies this problem by
assuming each variable of x is independent. Subsequently,

PðxjyÞ can be expressed by
Yn
i¼1

PðxijyÞPðyÞ, where n is the

number of all categories. Because PðxÞ is the same for each



Fig. 1. Schematic diagram of experiments in this work. The sub-classifiers in homogeneous ensemble are called base classifiers, and the ones in heterogeneous ensemble are called
component classifiers.

Fig. 2. Schematic diagram of the used ensemble learning strategy.
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Fig. 3. Schematic diagrams of single-classifier methods.
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sample, PðxjyÞPðyÞ
PðxÞ can be substituted by

Yn
i¼1

PðxijyÞPðyÞ. After

PðxijyÞ and PðyÞ are determined by the training data, the label
of a new sample will be the category with the largest pos-
terior probability.
PðyjxÞ ¼ PðxjyÞPðyÞ
PðxÞ f

PðxjyÞPðyÞ
Yn
i¼1

PðxijyÞPðyÞ
(1)

(3) KNN. As shown in Fig. 3(b), a sample marked by a pentagram
needs to be classified. In the K¼5 neighbors, there are four
"1" and one "2". According to plurality voting, this sample
will be identified as "1". It should be noted that different
values of K may lead to different results.

(4) ID3. As a decision tree algorithm, ID3 iteratively di-
chotomizes nodes into two or more nodes at each step
(Fig. 3(c)). The division utilizes specific if-else rules based on
information gain criterion. Assuming that there are K classes
in a dataset D, each sample a has n features fa1;a2;…;ang, the
probability that the sample point belongs to the k-th class is
pk. Then the information entropymeasuring the purity of the
division of a dataset is defined as Eq. (2), and the information
gain dividing a node will be calculated by Eq. (3). The leaf
nodes in a decision tree correspond to the decision results. A
depth threshold of a decision tree can be used to terminate
the spliting process. Besides, the spliting process can be
ended if there is only one sample in each leaf node.
737
XK

EntðDÞ¼ �

k¼1

pk log2pk (2)

�� ��

GainðD; aÞ¼ EntðDÞ �

Xn
i¼1

�Di�
jDj Ent

�
Di
�

(3)

where jDij
jDj is the weight assigned to the branch node, jDj represents

the number of samples of data D, and
���Di

��� indicates the number of
samples whose value is ai on attribute a.

(5) CART. Different from ID3, a Gini criterion is used in CART
instead of information entropy. The CART tree shares the
same structure with ID3 as shown in Fig. 3(c). The Gini index
assessing the purity of the dataset is displayed in Eq. (4).
GiniðDÞ¼
XK
k¼1

pkð1�pkÞ¼1�
XK
k¼1

p2k (4)

(6) SVM. In SVM, a smart implicit nonlinear mapping without
knowing the map function makes a nonlinear problem lin-
early separable as shown in Fig. 3(d). The implicit mapping is
implemented through replacing inner product of two map-
ped vectors in the feature space by kernel function value of
the original vectors. In the feature space, SVM builds an
optimal classifier using support vectors by the maximum



Fig. 4. Schematic diagrams of ensemble-learning-classifiers methods.
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margin principle. Support vectors are data points that are
closer to the hyperplane classifier.
2.3. Ensemble-learning-classifiers methods will be used as sub-
classifiers

(1) RF. RF is a typical representative ensemble learning method
combining Bagging and random feature selection. The prin-
ciple of RF is shown in Fig. 4(a). The term “random” refers to
generating n sub-datasets by randomly sampling with
replacement and randomly removing some features of each
sub-dataset. The term “forest” means that sub-classifiers are
decision trees. The prediction results are based on a voting
mechanism.

(2) GBMs. Boosting models based on decreasing gradient algo-
rithms are termed as GBMs (Natekin and Knoll, 2013). As
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shown in Fig. 4(b), a GBM trains the decision tree base
learners in a gradual, additive and sequential manner. The k-
th base learner is an update of the (k�1)-th base learner, in
which the weights of misclassified samples in (k�1)-th base
learner will be increased in the k-th one. The negative gra-
dients of pseudo-residuals between true and predicted labels
against parameters in GBM will help determine a set of
optimal parameters. eXtreme gradient boosting (XGBoost)
(Chen and Guestrin, 2016; Liu and Wang, 2022) and light
gradient boosting machine (LightGBM) (Gu et al., 2021) are
recently developed tree-based scalable versions of GBMs.
XGBoost applies the idea of gradient tree boosting and op-
timizes both the objective function and the node splitting of
the tree. A regularization term is added to the objective
function:
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ðsÞ Xn � ðs�1Þ � �� � �

Obj ¼

i¼1

L yi; yi þ fs xi þ U fs (5)

where Lð�; �Þ is the loss function; byi ðs�1Þ is the predicted label of
sample xi in the (s�1)-th iteration; fsðxiÞ is the new sub-model
trained in the s-th iteration; the regularization term UðfsÞ ¼ gTþ
1
2 l

PT
j¼1u

2
j , T and g are the numbers of leaf nodes and its co-

efficients, respectively, uj is the weight score of each leaf node, and
l is the weight of the leaf nodes.

To alleviate the efficiency and scalability problems of XGBoost
for high-dimensional and large data, LightGBM (Gu et al., 2021) is
proposed, which combines two innovative technologies, namely
gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB). GOSS is used to split internal nodes. EFB aims to
speed up the training process without losing accuracy, especially
for input with high-dimensional and sparse features. Specifically,
samples with larger absolute values of gradients (i.e., a � 100%) are
selected as subset A, while the remaining samples with smaller
gradients are randomly chosen to form subset B (i.e.,
b � (1 � a) � 100%). Here, a and b are sampling ratios of data with
large and small gradients, respectively. The samples about the j-th
feature are split according to the variance gain VjðdÞ on A ∪ B in Eq.
(6). EFB bundles these features together into a single feature bundle
to achieve the purpose of dimensionality reduction.

VjðdÞ¼
1
n

2
66666664

�P
xi2Al

giþ1�a
b

P
xi2Bl

gi
�2

njlðdÞ
þ
�P

xi2Ar
giþ1�a

b

P
xi2Br

gi
�2

njrðdÞ

3
77777775

(6)

where Al ¼ fxi 2A xij � dg, Ar ¼ fxi 2A xij > dg, Bl ¼
fxi 2B xij � dg, Br ¼ fxi 2B xij > dg and gi denotes the nega-
tive gradients of the loss function for the LightGBM outputs in each
iteration.

(3) AdaBoost. Based on the result of the previous base classifier,
theweights of each training samplewill be revised in current
base classifier. Misclassified samples will be setted higher
weights while the weights of correctly classified ones will be
reduced. The current base classifier will be updated based on
the iterated samples, and many base classifiers will be ob-
tained. The base classifiers are combined into a strong clas-
sifier after the entire training process is completed. Here, an
AdaBoost model using three base classifiers is as an example
displayed in Fig. 4 (c).
2.4. Ensemble principles

To construct a good ensemble model, how to select sub-
classifiers and set their parameters are crucial (Yang, 2011). Typi-
cally, the settings should ensure sub-classifiers high accuracy and
diversity, since the success of ensemble learning depends on the
739
trade-off between the accuracy and diversity of sub-classifiers.
Hence, ensemble criteria for proper settings are described below.

(1) Principle for homogeneous ensemble

DT is the base classifier of RF. The generalization ability of DT is
relatively weak. DT often suffers from the issue of overfitting while
RF usually works well. In RF with good prediction performance,
there is a surprising phenomenon in which DTs in RF are near
overfitting or just overfits. Here, an assumption about choosing and
setting proper base classifiers is put forward: classifier methods
that can overfit are suitable for being base classifiers.

To choose and configure base classifiers of high accuracy, based
on the assumption above, an ensemble principle is proposed based
on the experience of using RF, inwhich parameters and sub datasets
should near or justmake base classifiers reach over-fitting to obtain a
high accuracy. In other words, we should choose base classifier that
can predict training data with a high accuracy (e.g., >90%) through
the operations of parameter setting and sub-data sampling.

Diversity of sub-classifiers depends on the nature of the algorithm
itself (algorithm stability). In addition, it can be artificially enhanced
by data sampling and feature sampling. To improve the diversity
between thebuilt sub-classifiermodels, the randomgenerationof the
sub-dataset in Step 1 of Fig. 2 is employed. This kind of random
sampling of data and random sampling of features can be defined as
data sampling disturbance and input feature disturbance. These two
methods are combined and used in our ensemble strategy.

A series of experiments will be carried out in Sections 3.2-3.5 to
test these proposed principles.

(2) Principle for heterogeneous ensemble

The combination of sub-classifiers in heterogeneous ensemble is
determined in a stepwise way that is based on homogeneous
ensemble models as shown in Fig. 5.

Firstly, choose a homogeneous ensemble model with the high-
est accuracy to become the first sub-classifier of the heterogeneous
ensemble model marked as Mj (j ¼ 0) which is the basis of the
entire heterogeneous ensemble model. Mj represents the j-th
ensemble model with accuracy Aj;

Secondly, calculate the double fault (DF) (Giacinto and Roli,
2001) of the rest sub-classifiers and generate a list
D ¼ ½h1;h2;…;hN � according to DF in decreasing order. DF focuses
on the error of two classifiers on the same sample, which measures
the diversity of the two classifiers. The expression of DF between i-
th and j-th sub-classifiers is shown in Eq. (7) (isj). The value range
of DF is [0,1]. In the worst case, the error rate of both classifiers is
100%, in which DF equals to 1, accuracy and diversity of the clas-
sifiers are the lowest at the same time;

DFi;j ¼
n00

n
(7)

where the total number of samples is n; n11 (n00) represents the
number of samples that were correctly (wrongly) classified by hi
and hj, n10 represents the number of samples that were correctly
classified by hi and misclassified by hj, and n01 represents the
number of samples that were misclassified by hi, hj. The number of
samples correctly classified, and they satisfy n11 þ n00 þ n10 þ
n01 ¼ n.



Fig. 5. Workflow of determining a proper combination of sub-classifiers in heterogeneous ensemble.

S.-Q. Dong, Y.-M. Sun, T. Xu et al. Petroleum Science 20 (2023) 733e752
Thirdly, calculate the accuracy Aj,k of ensemble models using Mj

and hk in a sequence of k ¼ 1, 2, …, N. If Aj,k > Aj, Mjþ1 becomes Mj

integrated with hk, j ¼ jþ1, k ¼ kþ1; Else, Mj remains the same.
Finally, obtain the combination of sub-classifiers in the hetero-

geneous ensemble model.
2.5. Metrics for evaluating performance of prediction models

Accuracy, precision, recall and F1-score are four commonly used
metrics for evaluating performances of prediction models. Take a
confusion matrix of four-categories in Fig. 6(a) as an example to
explain these metrics. Let the i-th category as a positive class, and
the rest as negative ones. The corresponding two-categories
confusion matrix consists of true positive (TP), false positive (FP),
false negative (FN) and true negative (TN) as shown in Fig. 6(b).
Fig. 6. The confusion matrix
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Then accuracy, precision, recall and F1-score can be calculated as
shown in Fig. 6(c).

Accuracy is the evaluation of the overall accuracy of the classi-
fier. Precision is the evaluation of the accuracy of the classifier's
prediction as a certain analogy. Recall is the ability of the classifier
to find relevant instances in the data set. When Precision and Recall
need to be considered comprehensively, F1-score is the index of the
harmonic value.
2.6. Grid search method for determining optimal parameters in
ensemble models

To evaluate the generalization ability of ensemble learning
methods effectively, stratified k-fold cross validation (SCV) tech-
nique is applied to unbalanced dataset used as shown in the left
and evaluation metrics.



Fig. 7. Grid search and SCV.
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part of Fig. 7. Distribution of each class in each fold is nearly the
same.could be ensured.

All labelled data will be divided into subsets of k folds. k-1
subsets will combine into a training dataset and the rest of one fold
data will be as the test data. The training dataset will be randomly
sampled into subsets for each base learner to train an ensemble
prediction model. Then the accuracy of the rest of one fold datawill
be predicted by the built model. Each fold of data will have an ac-
curacy. The average accuracy will be as a metric to measure the
performance of the proposed ensemble.

Many parameter pairs in an ensemble model are displayed in
the right part of Fig. 7. Grid search technique is a method to
determine optimal parameters for a prediction model. Each pair of
parameters will have a further average accuracy by repeating the k-
fold processM times. As shown in Fig. 7, optimal parameters will be
obtained by the grid search method (Dong et al., 2020a).
3. Experiments of lithofacies identification by ensemble
learning strategy and principles

In this work, all methods are programmed by Python and all
calculations are conducted on an Intel (R) Core (TM) computer with
2.6 GHz CPU and 8 GB of RAM. The k-fold cross-validation, LDA, NB,
KNN, SVM, DT, RF and AdaBoost are implemented in the scikit-learn
library, while XGBoost and LightGBM are implemented by the
XGBoost and LightGBM libraries, respectively.
Fig. 8. Tectonic and geographic location of Daniudi gas field (by (Dong et al., 2020b),
changed).
3.1. Data set

The dataset used to test the ensemble learning strategy and
principles is from the Daniudi Gas Field (DGF) published in the
work of Xie et al., (2018). The DGF is located in the eastern portion
of the Yishan Slope of Ordos Basin in China, which is one of the
main gas-bearing areas of the Upper Paleozoic in the northern part
of the basin (Fig. 8). The main target formations from bottom to top
are the Carboniferous Taiyuan, Permian Shanxi and Xiashihezi
formations. The sedimentary environment of the target formations
is a fluvial-deltaic depositional environment.

This dataset has 915 samples which are consisted of well logs
and the corresponding lithofacies labels obtained by rock core. For
each sample, there are 7 properties, namely gamma ray log (GR),
acoustic log (AC), caliper log (CAL), density log (DEN), compensated
neutron log (CNL), deep investigation log (LLD) and shallow
investigation log (LLS). Lithofacies are divided into eight types,
including carbonate rock (CR), coal (C), pebbly sandstone (PS),
coarse sandstone (CS), medium sandstone (MS), fine sandstone
(FS), siltstone (S) and mudstone (M). To eliminate the influence of
data range, the linearization normalization method is used to
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convert the data to the range of [0,1], that is x* ¼ ðx� xminÞ=ðxmax �
xminÞ (Dong et al., 2020c).

3.2. Homogeneous ensemble learning using common single-
classifier methods

Six commonly used single-classifier methods are chosen as base
classifiers in homogeneous ensemble learning, that is to say LDA,
NB, KNN, SVM using RBF kernel, ID3 and CART. In Fig. 9, the red
dotted lines show accuracies of single-classifier methods: LDA
(51.1%), NB (57.7%), KNN (81.3%), SVM (83.5%), ID3 (72.5%) and CART



Fig. 9. Comparison of ensemble learning using regular classifiers.
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(70.9%). SVM and KNN perform best, ID3 and CART perform second
best, NB and LDA worst.

After homogeneous ensemble learning, the improved LDA, NB,
KNN, SVM, ID3 and CART reach accuracies of 57.8%, 61.7%, 82.6%,
84.0%, 81.0%, 81.4%, respectively. They are marked by green dashed
lines in Fig. 9. For the improved methods, KNN, SVM, ID3 and CART
can perform best and NB and LDAworst. However, all the improved
methods obtain an increase in accuracy compared with their cor-
responding single-classifier. The improved gaps of LDA, NB, KNN,
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SVM, ID3 tree and CART are 6.7%, 4.0%, 1.3%, 0.5%, 8.5%, 10.5%,
respectively. The relatively two weak single-classifiers (ID3 and
CART) improve significantly (>8%), the two weakest single-
classifiers (LDA and NB) improve by about 5%, while the two
strong single-classifiers (KNN and SVM) improve slightly (<1.5%).

As shown in Fig. 9, all the homogeneous ensemble models will
gradually increase with the increase of the number of base classi-
fiers and converge to specific upper limits of accuracy (green
dashed lines). The light blue shaded area is drawn to represent the



S.-Q. Dong, Y.-M. Sun, T. Xu et al. Petroleum Science 20 (2023) 733e752
95% confidence interval based on the accuracy obtained by five
repeated experiments. Red dotted lines, green dashed lines and
light blue shaded area in Section 3.3 and 3.4 have the same
meanings as those expressed here.

Besides the number of base classifiers, another two key param-
eters need to be determined, which are data sampling ratio (rb) and
feature sampling ratio (rp). The optimal rb and rp of homogeneous
ensemble models corresponding to each point in Fig. 9 are obtained
by the grid search method. The determination processes are dis-
played in Fig.10. The accuracy corresponding to each pair of rb and rp
areexpressedbyheightof z-axis andcolors (redonbehalf of thehigh
accuracy, and blue low). The highest accuracy point is marked by a
circle. These grid search processes only select thosewith the highest
accuracies as representatives. The optimal of rb and rp corresponding
to LDA, NB, KNN, SVM, ID3 and CARTare (0.022,1), (0.06,0.9), (3,0.8),
(1.6,0.9), (2.8,0.7), and (2.8,0.8), respectively.

Accuracy, recall, precision and F1-score of different single-
classifiers are shown in Fig. 11. The black error lines represent the
95% confidence interval for 5 repeated experiments. For LDA, NB,
KNN, SVM, CART and ID3, relative to single models, the recall im-
provements of ensemble models are 4.2%, 2.5%, 0.6%, 0.8%, 9.0%,
11.0%, respectively; the precision improvements are 12.9%, 7.5%,
0.6%, 1.4%, 8.9%, 12.1%, respectively; the F1-score improvements are
5.5%, 3.1%, 0.6%, 0.7%, 9.1%, 11.6%, respectively.

Increased value and small variance of four different evaluation
metrics for each classifier indicate ensemble models of single-
classifiers have stronger generalization ability and stability than
single-classifiers. The ensemble strategy improves single-classifiers
and there are different improvements. Note there are large variance
in precision and recall for LDA, which indicates that LDA tends to
identify samples as certain lithologies.
Fig. 10. Optimal parameter determination in homog
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3.3. Homogeneous ensemble learning using ensemble-learning base
classifiers

Four representative ensemble-classifier methods are chosen as
base classifiers in homogeneous ensemble learning, namely RF,
AdaBoost, XGBoost and LightGBM. As displayed in Fig. 12, the ac-
curacies of homogeneous ensemble classifier gradually rise with
the increase of the number of sub-classifiers, and eventually tend to
stabilize. The stable accuracies are 81.7% (RF), 83.3% (AdaBoost),
82.1% (XGBoost), 83.0% (LightGBM), respectively. The light blue
shaded area and the red dashed lines have the same meaning as
Fig. 9 above. Red dashed lines showaccuracies of base classifiers: RF
(79.8%), AdaBoost (81.3%), XGBoost (81.0%), LightGBM (82.3%).
Obviously, there are improvements for homogeneous ensemble
using ensemble-learning base classifiers compared to common
ensemble learning methods.

The other two key parameters rb and rp are obtained by the grid
search method similar to those in Section 3.2. The determinations
are displayed in Fig. 13. The optimal rb and rp of RF, AdaBoost,
XGBoost and LightGBM are (2.8,0.8), (3,0.8), (2.5,0.7) and (0.9,2.7),
respectively. They are marked by circles.

For base-classifiers of RF, AdaBoost, XGBoost and LightGBM, the
recalls of ensemble models improve 2.9%, 2.3%, 0.6%, 1.4%, respec-
tively, compared with the original models; the precisions improve
2.3%, 1.8%, 0.8%, 1.1%, respectively; the F1-score improve 2.7%, 2.1%,
0.9%, 1.1%, respectively, as shown in Fig. 14. Even though the im-
provements are relatively low compared with single-classifiers, the
generalization abilities of the prediction models (four common
ensemble learning methods) are enhanced.
eneous ensemble by different single-classifiers.



Fig. 11. Comparison of single-classifier methods and the corresponding ensemble-classifiers.
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3.4. Heterogeneous ensemble learning using a mixture of
component classifiers

The homogeneous models with relatively high accuracy will be
as the candidate base classifiers in heterogeneous ensemble, which
include SVM (84.0%), AdaBoost (83.3%), LightGBM (83.0%), KNN
(82.6%), XGBoost (82.1%) and RF (81.7%). According to the workflow
in Fig. 5, the building process of the heterogeneous ensemble is
shown in Fig. 16. Because SVM homogeneous ensemble model has
the highest accuracy and generalization ability, it is preferred as the
basis of the heterogeneous ensemble process. The next base clas-
sifier will be chosen by the double fault (DF) values between this
classifier and the current heterogeneous ensemble model. DF
measures the diversity between this method and the current het-
erogeneous ensemble model. The following heterogeneous
ensemble process will be:

(1) Calculate DF between SVM and other five homogeneous
ensemble models, which are AdaBoost (0.1136), LightGBM
(0.1202), KNN (0.1147), XGBoost (0.1191) and RF (0.1202),
respectively. Hence, AdaBoost is put into heterogeneous
ensemble. Due to an increase of accuracy (þ0.3%), the current
heterogeneous ensemble becomes [SVM þ AdaBoost];

(2) Calculate DF between [SVM þ AdaBoost] and other four ho-
mogeneous ensemble models, which are LightGBM (0.1303),
KNN (0.1322), XGBoost (0.1338) and RF (0.1404), respectively.
Therefore, LightGBM is put into heterogeneous ensemble.
Due to an increase in accuracy (þ0.6%), the current hetero-
geneous ensemble becomes [SVM þ AdaBoost þ LightGBM];
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(3) Calculate DF between [SVM þ AdaBoost þ LightGBM] and
other three homogeneous ensemble models, which are KNN
(0.1429), XGBoost (0.1434) and RF (0.1398), respectively.
Therefore, RF is put into heterogeneous ensemble. Due to a
decrease in accuracy (�0.5%), the current heterogeneous
ensemble model remains unchanged;

(4) Subsequently, put KNN with the second largest DF (0.1429)
into [SVM þ AdaBoost þ LightGBM]. Due to a decrease in
accuracy (�0.2%), the current heterogeneous ensemble
model remains unchanged;

(5) Finally, put XGBoost into heterogeneous ensemble. Due to a
decrease in accuracy (�0.1%), the current heterogeneous
ensemble model remains unchanged.

Hence, the final heterogeneous ensemble is
[SVM þ AdaBoost þ LightGBM]. There is an accuracy increase of
0.9% than the highest (SVM) homogeneous ensemble model.

Not only the evaluation metrics value of the final heterogeneous
ensemble model could reach a high level, but also the variance is
relatively small (Fig. 16). Results show that the model has higher
generalization ability and relative stability, revealing that the pro-
posed heterogeneous ensemble strategy is feasible.
3.5. Comparison of classification by ensemble methods

Accuracies of all experiments are shown in Fig. 17. The orange
and blue bars represent average accuracy values before and after
ensemble, and the red line is the best accuracy. The accuracy
changes are shown in Fig. 18.



Fig. 12. Comparison of ensemble learning using ensemble base classifiers.
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A single homogenous ensemble of the classifiers through the
established ensemble strategy can improve the classification ac-
curacy generally, and single classifiers as a sub-classifier have a
larger increase compared with ensemble learning classifiers as sub-
classifier. The model with the best generalization ability is het-
erogeneous ensemble model obtained by heterogeneous ensemble
strategy.

4. Discussions

4.1. Which kind of method can be as sub-classifiers of ensemble
models

Typically, a general idea is that ensemble learning is suitable for
weak sub-classifiers. Weak classifiers refer to ones that perform only
slightly better than a random classifier (Zhou, 2011). In practice, DT
method is mostly used as a sub-classifier. There are rarely research
focusing on other methods as sub-classifiers. This paper implements
ensemble learning using not only DT (ID3 and CART) but also other
single-classifiers (LDA, NB, KNN and SVM) and ensemble-learning-
classifiers (RF, AdaBoost, XGBoost and LightGBM) as sub-classifiers.
As shown in Figs. 9, Fig. 11, Figs. 14 and 12 in Sections 3.2 and 3.3, all
the homogeneous ensemble models can perform better than the
corresponding sub-classifiermethods inaccuracy, recall, precisionand
F1-score. Fig. 18 displays the change in accuracy between ensemble
models and their corresponding sub-classifiers. The results indicate
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that (1) the improvements of DTs are highest (�8.5%); (2) the im-
provements of LDA and NB are second-highest (�4%); (3) the im-
provements of ensemble-learning-classifiers are third-highest
(�0.7%); (4) the improvements of KNN and SVM are relatively low
(�0.5%). The highest improvements of DTs are consistent with com-
mon sense that DTs are suitable for ensemble learning. It should be
noted that the improvements of other methods mean the ensemble
strategy and principles can aid to build better lithofacies identification
models comparedwith theoriginalmachine learningmethods.Hence,
not only DTs but also other single-classifiers and ensemble-learning-
classifiers can be sub-classifiers of homogeneous ensemble learning.

Different from homogeneous ensemble learning, not several
kinds of classifiers can be combined to obtain a better prediction
model as shown in Fig. 15. However, based on the results in Section
3.4, heterogeneous ensemble using a proper combination of
component classifiers can obtain a better predictionmodel than the
used homogeneous ensemble models. As shown in Fig. 17, the built
heterogeneous ensemble model obtained the highest accuracy of
84.9%, and higher than the highest homogeneous ensemble model
using SVM (83.9%). Therefore, the selection of component classi-
fiers is important for heterogeneous ensemble learning.

4.2. How to select proper sub-classifiers for ensemble learning

The gap between models before and after ensemble can
demonstrate the effectiveness of the ensemble learning strategy



Fig. 13. Optimal parameters determination in different homogeneous ensembles.
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and principles for lithofacies identification. In practice, how select
proper sub-classifiers for ensemble learning should be paid more
attentions since it can help build a powerful prediction model. The
effect of the ensemble learning strategy and ensemble principles
used in experiments shows that these methods illustrated in Sec-
tion 2.4 can indeed play a role in enhancing the generalization
ability. The aims of selecting sub-classifiers are to obtain high ac-
curacy and diversity for sub-classifiers.

To obtain high accuracy in homogeneous ensemble learning, the
most effective approach is to set model parameters to ensure each
sub-classifier has a high accuracy (e.g., >90%) for the sub training
dataset. In fact, an over-fitting state is needed for training sub-
classifiers. Besides, sub-data and properties sampling can also
help sub-classifier obtain high accuracy.

High diversity can be guaranteed by algorithm stability and
random generation of sub-dataset. If sub-classifier is stable, such as
SVM in Section 3, the built sub-classifier model will have low di-
versity. DTs are relatively unstable, so the corresponding ensemble
models obtain obvious improvements as shown in Fig. 18. If a sub-
classifier is chosen, sampling of sub-dataset includes samples and
their properties will be the most effective way, which should make
the sub-classifier model nearly overfitting and unstable.

It should be noted that there is a contradictory relationship
between the accuracy and diversity of sub-classifiers. Therefore, the
core problem of ensemble learning research always revolves
around how to combine the two, to produce a sub-classifier whose
two properties are effectively compatible.

To some extent, homogeneous ensemble can be the basis of
building a good homogeneous ensemble model. Based on accuracy
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and DF, the stepwise addition and removal of sub-classifiers illus-
trated in Fig. 5 give a practical approach to determining an optimal
combination of sub-classifiers for a homogeneous ensemble.

4.3. Just overfitting of base classifiers for the training in the
ensemble process

Just overfitting is an effective approach to improving the accu-
racy of ensemble models. Overfitting means base classifiers can
have higher accuracy for training data (>90%) regardless of that of
test data. Typically, an accuracy >95% is better. If a base classifier
can obtain an accuracy for training data close to 100% (>99%), it will
have a good potential for the ensemble. Just overfitting means
parameters in a base classifier can make it just close to overfitting.
Take the construction of the SVM (RBF) ensemble model as an
example. The C parameter in SVM plays a pivotal role in overfitting.
For C ¼ 1400, the accuracy of training data is 89%; for C ¼ 1500,
accuracy is 98%; for C ¼ 1510, accuracy is 99.9%; for C > 1520, ac-
curacy is 99.9%, too. Then the parameter C for making SVM just
overfitting is about 1510. Therefore, this principle is suitable for
base classifiers with parameters, such as SVM. However, for
methods without adjustable parameters, such as LDA and NB, the
proposed principle will not work well.

4.4. Why the ensemble strategy and principles can improve sub-
classifiers

Lithofacies identification by machine learning is a classification
problem of supervised learning, in which expected error E on an



Fig. 14. Comparison of the ensemble base classifiers and the corresponding ensemble classifiers.

Fig. 15. Accuracy change trend of heterogeneous ensemble.
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unseen sample consists of three terms, namely bias, variance (var),
and a quantity called the base error s2 (irreducible) resulting from
noises in the problem itself (Bauer and Kohavi, 1999). E is shown in
Eq. (8).

E¼ bias2 þ var þ s2 (8)

where bias is an error from erroneous assumptions in a learning
algorithm. Methods with high bias typically produce simpler
models that may fail to capture important regularities (i.e. underfit)
in the data; var is an error from sensitivity to small fluctuations in
the training set. High-variance learning methods may be able to
747
represent their training set well but are at risk of overfitting to
noisy or unrepresentative training data.

The key difference between ensemble learning methods and
other machine learning methods is that they focus on the problem
of bias-variance tradeoff (Sun and Zhou, 2018). This problem is the
conflict in attempting to simultaneously minimize these two
sources of error that prevent supervised learning algorithms from
generalizing beyond their training set. From statistical aspects, the
ensemble strategy in this paper aims to reduce variances of pre-
diction models, while the principle of just overfitting for each sub-
classifier aims to decrease the bias error. The reasons, that this
ensemble strategy and principles canwork, lie in: (1) high accuracy



Fig. 16. Evaluation metrics of the built heterogeneous ensemble model.

S.-Q. Dong, Y.-M. Sun, T. Xu et al. Petroleum Science 20 (2023) 733e752
of sub-classifiers can lower the upper bound of the variance of the
ensemble model; (2) high diversity among sub-classifier models
can reduce the lower bound of the variance (Sun and Zhou, 2018).

The following analyses try to explain the reasons why the
Fig. 17. Comparison of classification accuracy a

Fig. 18. Comparison of accuracy chan
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proposed ensemble strategy and principles work for different sub-
classifier methods used above mentioned.

The foundation of NB is feature independence, which ensures
stable classification efficiency and capacity. Nonetheless, when
there is feature dependence in the dataset, the generalization
ability of the built NB model will decrease a lot. Except for GR and
other features, there is a relatively high correlation (>0.65 or < -
0.65) between other features in this case as exhibited in Fig. 19. The
sampling module in this ensemble strategy can reduce the corre-
lation of features in the dataset used by each sub-classifier. Besides
NB is good at addressing small sample problems for each sub-data.
The ensemble can not only improve the difference between the
base classifiers but improves the accuracy of each base classifier so
that the classification accuracy after ensemble is improved to a
certain extent.

LDA is a linear feature extraction and classification method. For
complex nonlinear lithofacies identification problems, the bias er-
ror of LDA will be large. In other words, the sub-classifier of LDA
cannot fit the pattern of training data well. Hence, it is not the best
choice for the ensemble. However, due to a decrease in variance
errors, the ensemble LDA can also obtain an improvement.
fter adopting ensemble learning strategy.

ges before and after ensemble.



Fig. 19. Correlation matrix of seven features in the dataset.
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DT is a relatively weak classifier prone to overfitting, but it can
meet the requirements of the ensemble principle and is suitable for
reducing bias errors. Besides, the ensemble strategy will reduce
variance errors of the ensemble DT model. Therefore, the ensemble
DTs achieve obvious enhancements.

KNN, SVMand ensemble classifiers all have high stability. In fact,
the diversity will not be very high, so the improvement will not be
quietly obvious. The general understanding is that these classifiers
are not suitable for the ensemble. However, the improvement after
ensemble indicates that the ensemble strategy and ensemble
principles can help improve their generalization ability. The im-
provements benefit from the decrease of variance due to the
ensemble strategy and the reduction of bias due to the ensemble
principles. Even though the increases of these methods are not the
best, their accuracy of lithofacies identification is high. Hence, in
practice, the ensemble of these kinds of methods should be paid
more attention to, which is usually ignored.

4.5. Other issues

(1) Data augmented sampling methods

The random sampling ratio in the paper can be greater than 1,
which is different from the previous random sampling method of
the sub-classifier. The effect of data enhancement of the sub-
training set is realized. The classification accuracy of the best sin-
gle RF model (single model) in the RF ensemble experiment in the
above experiments is lower than the ensemble learning classifier
formed in the CARTensemble experiment. This shows that this data
augmentation method does achieve the purpose of further
enhancing the generalization ability of the ensemble model for
most classifiers.

(2) Why ANN is not used in this work

The improvement of generalization ability is important for a good
ensemble, but time efficiency is also significant for practical appli-
cations. When ANN deals with supervised learning problems with
high-dimensional and nonlinear classification, a large number of
neurons need to be trained to obtain a machine learning model with
high generalization ability. The huge number of neurons makes the
time complexity of training the model extremely large (Fig. 20). The
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optimal parameter determination for ANN by grid searching takes
over 16 hours far more than other classifiers, which seriously affects
the practical application. In addition to ANN, GBDT has extremely
high training time complexity due to the defects of the algorithm
itself, so ANN and GBDT are not recommended in this work.

The consumed time for training optimal ensemble models one
time and their corresponding base models is shown in Fig. 20(a).
The bar heights represent the average time in each training of the
grid searching and black error lines represent the 95% confidence
intervals. For training single methods, single-classifier methods
(LDA, NB, KNN, SVM, CART, ID3) uses 0.001e0.006s except ANN
uses 7.93s, and ensemble-classifier methods (RF, AdaBoost,
XGBoost, LightGBM, GBDT) uses 0.55e1.6s. For training ensemble
models by the proposed ensemble strategy and principles, the
ensemble models based on single-classifiers use 0.17e12.27s, while
those based on ensemble-classifiers use 3.15e41.33s. There are
increases of 6e26 times in time consuming of the proposed
methods. In practice, the time to build an ensemble method by the
proposed ensemble strategy and principles, and optimal parameter
determination should be considered, too. If the grid searching
method is used, the total number of parameter grid point repeats
will be needed compared with the training one time in Fig. 20(a).
For example, when the SVM using RBF kernel involving C and
gamma parameters is constructed as an ensemble model with 50
base classifiers, the average time consumed is 5.344s. After the grid
search method for data sampling ratio and feature sampling ratio is
used in Fig. 10 (d), the total time to complete the experiment is
about 13.4 min. Hence, in terms of time consumption, methods
with fewer parameters will be preferred.

The time consumed by the built optimal models to predict a new
sample is shown in Fig. 20(b). Single methods (LDA, NB, KNN, SVM,
CART, ID3, ANN, RF, AdaBoost, XGBoost, LightGBM, GBDT) use<0.05
s. For ensemble models by the proposed methods, the used time is
less than 0.2 s except for KNN (1.11 s) and SVM (0.41 s). In general,
the time consumed by the proposed ensemble increases but it is
acceptable.

In future work, the time of determining an optimal ensemble
model still need more work. For example, use gradient-free opti-
mization methods to determine parameters instead of grid
searching.

(3) Comparison with the original paper used the same dataset

In the original paper, five machine learning methods namely,
NB, SVM, ANN, RF and GBDT, are selected by the author for iden-
tification of lithofacies from the Daniudi dataset (Xie et al., 2018).
Three metrics precision, recall and F1-score were employed to
evaluate the built classifiers. The best prediction model is built by
RFwith precision (82.9%), recall (80.0%) and F1-score (80.8%). In our
work, the single-classifier RF can obtain precision (81.3%), recall
(79.7%) and F1-score (80.0%), which are similar to the original work.
Note that the ensemble RF model can achieve precision (83.6%),
recall (82.6%) and F1-score (82.7%). Besides the best homogeneous
ensemble model is the ensemble SVM model with precision
(86.0%), recall (86.0%) and F1-score (85.4%); the best heterogeneous
ensemble model (SVM þ AdaBoost þ LightGBM) has precision
(86.3%), recall (85.9%) and F1-score (85.7%).

In general, the ensemble learning strategy and principles can
improve machine learning in lithofacies identification.

(4) Quality control of lithofacies labels of well logs in training
data



Fig. 20. Consuming time for training ensemble models training.
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The interpreted labels of samples are quite important for the
following lithofacies identification by machine learning methods.
To build a stable and accurate model of lithofacies identification,
more attention should be paid to quality control of labelled well log
data. In this work, we choose a dataset from a published peer-
reviewed paper to ensure the quality of labelled training data, so
that we can pay more attention to the improvements of machine
learning methods suitable for lithofacies identification.

(5) Built models of lithofacies identification by single methods

In this work, all prediction models of single methods are opti-
mized by grid searching methods, which can ensure an equal com-
parison with the proposed method. All optimal hyperparameters for
eachof the singlemachine learning classifiers are shown inAppendix.
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(6) Further works

A proper combination of heterogeneous sub-classifiers is sig-
nificant for heterogeneous ensemble learning. This paper proposed
an approach to determine sub-classifiers as shown in Fig. 5. How-
ever, there still needs more work to improve the efficiency of het-
erogeneous ensemble principles. For example, choose a better
measurement instead of DF. Besides, how to more effectively
improve the diversity and accuracy of sub-classifiers in heteroge-
neous ensemble should be paid more attentions in further works.
5. Conclusions

A simple ensemble strategy and several novel ensemble prin-
ciples are proposed to aid geologists not familiar with ML to



Table A1
Optimal hyperparameters for each of the single machine learning classifiers

Single classifier Hyperparameters Optimal value

KNN n_neighbors 1
SVM(RBF) C 690

gamma 30
CART max_depth 30
ID3 max_depth 25
RF n_estimators 500

max_depth 30
max_features 4

AdaBoost base_estimator ‘DecisionTreeClassifier’
n_estimators 200
max_depth 25
max_features 4
learning_rate 0.35
algorithm ‘SAMME’

XGBoost n_estimators 400
learning_rate 0.05
max_depth 10
colsample_bytree 0.6
booster ‘gbtree’

LightGBM boosting_type ‘gbdt’
n_estimators 400
learning_rate 0.14
max_depth 25
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establish a good lithofacies identification model. They can also help
geologists familiar with ML further improve the accuracy of lith-
ofacies identification.

The ensemble strategy is a generalization of the ensemble in
random forest. The ensemble principles are to make sub-classifiers
just overfitting by algorithm parameter setting and sub-dataset
sampling. In the prediction, the ensemble strategy aims to
decrease variance errors, while the ensemble principles try to
reduce bias errors. The novel ensemble principles help make the
ensemble strategy more practical. Based on a series of comparison
experiments between original methods and the homogenous and
heterogeneous ensemble methods, conclusions are listed below:

(1) All homogeneous ensemble models improve compared with
the corresponding single-classifiers (e.g., LDA, NB, KNN, SVM,
CART, and ID3). Among them, the ensemble ID3 obtain an
accuracy increase of 10.5%. All homogeneous ensembles us-
ing ensemble-learning-classifiers (e.g., RF, AdaBoost,
XGBoost, and LightGBM) also improve over their sub-
classifiers, in which both the ensemble RF and ensemble
AdaBoost increase by 2.0%. Single-classifiers (especially DT)
are typically regarded as good candidates for ensemble
learning, but these results indicate not only DT but also other
single-classifiers and ensemble-learning-classifiers can be
sub-classifiers of homogeneous ensemble learning;

(2) For homogeneous ensemble, the best model in this work is
the ensemble SVMwith an accuracy of 83.9%, which is higher
than the most commonly used Random forests (ensemble
ID3, 81.4%, and ensemble CART, 81.0%). This demonstrates
other single-classifiers except random forests may obtain a
better ensemble prediction model for lithofacies;

(3) The ensemble principles, which make sub-classifiers just
overfitting by algorithm parameter setting and sub-dataset
sampling, for homogeneous ensemble are proven effective
for the introduced ensemble strategy;

(4) The heterogeneous ensemble model (SVM þ AdaBoost þ
LightGBM) achieves the best accuracy of 84.9% in this work.

(5) Not all heterogeneous ensemble is better than homogeneous
ones, but a proper combination of heterogeneous sub-
classifiers can obtain an improvement. The proposed het-
erogeneous ensemble principle based on double fault (DF) is
proven effective. In practice, heterogeneous ensemble is
more suitable for building a more powerful lithofacies
identification model, though it is complex.

There is still further work to be explored in the future, such as
revisions and improvements of ensemble principles for both ho-
mogeneous and heterogeneous ensembles.
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